International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

121

Specification of Requirements Using Unified
Modeling Language and Petri Nets

Radek Kodéi and Vladimir Janousek

Brno University of Technology, Faculty of Information Technology,
IT4Innovations Centre of Excellence
Czech Republic
email: {koci,janousek} @fit.vutbr.cz

Abstract—One of the major problems the software engineering is
dealing with is the correct specification and implementation of re-
quirements to the system being developed. A lot of design methods
use models of the Unified Modeling Language for requirements
specification and further design of the system. To validate the
specification, the executable form of models has to be obtained
or the prototype has to be developed. This may cause errors in
the transformation or implementation process, which results in
incorrect validation. The approach presented in this work focuses
on formal requirement modeling combining the classic models for
requirements specification (use case diagrams and class diagrams)
with models having a formal basis (Petri Nets). Created models
can be used in all development stages including requirements
specification, verification, and implementation. All design and
validation steps are carries on the same models, which avoids
mistakes caused by model implementation.

Keywords—Object Oriented Petri Nets; Use Cases; requirement
specification; requirement implementation.

I. INTRODUCTION

This work is based on the paper [1], which is extended of
detailed explanation of modeling requirements and behavior
of software systems using formal models. This work is part of
the Simulation Driven Development (SDD) approach [2] and
combines basic models of the most used modeling language
Unified Modeling Language (UML) [3][4] and the formalism
of Object-Oriented Petri Nets (OOPN) [5].

The fundamental problem associated with software de-
velopment is an identification, specification and subsequent
implementation of the system requirements [6]. Many design
methods have no formal definitions and depend on intuitive
approach to requirements specification and design. It results in
troubles with correct specification of system requirements and
their realization. The second problem is a rather complicated
way to verify designed concepts through models under realistic
conditions. Designers either have to implement a prototype
or transform the models into executable form, which can be
tested. All changes that result from testing are difficult to
transfer back to models that become useless.

Formal techniques allow to specify system requirements
and the solution in a clear, unambiguous way. Nevertheless,
there is a gap between the features that formal approaches
may offer and how they are actually utilized in the area of
system design. This gap is a result of two arguments. First, it
is a belief that formal approaches are hard to understanding and
therefore to use. Second, the formal specification is not suitable

for testing because of its non-executable form. Utilization of
formal approaches, such as the formalism of OOPN, addresses
mentioned disadvantage. Their formal nature combined with
graphic representation of models allows them to be used
by designers who have minimal knowledge of the formal
background. Models described by these formalisms can be
simulated as well as integrated into real conditions. All changes
in the validation process are entered directly into the model,
and it is therefore not necessary to implement or transform
models.

To model domain concepts of the system being developed
the class diagrams from UML are usually used [7]. Similarly,
to specify user requirements the use case diagrams from UML
are used. The concept of modeling requirements presented
in this paper is based on mentioned UML models and the
formalism of OOPN, which is used for behavior specifications.
The goal is to combine the advantages of intuitive approach to
system modeling with the precise specification of requirements
and the detailed description of realization. The concept is
demonstrated on a simple case study.

The paper is organized as follows. Section II deals with
related work. Section III summarizes the concept of software
system modeling and introduces the simple case study. The
question of user requirements modeling using use case dia-
grams is discussed in Section IV. It introduces our extension to
use case diagrams by one special relationship. Section V deals
with behavior modeling and compares an usage of statecharts
from UML and the formalism of OOPN. Modeling use case
relationships is discussed in Section VI. Use cases and their
behavior described by the formalism of OOPN create the
architectural form of modeled system. Mapping use cases, nets,
and classes is introduced in Section VII. The summary and
future work is described in Section VIII.

II. RELATED WORK

One of the major criticisms of UML is the inability to
precisely describe all aspects of the designed system including
integrity constraints [8]. The clear understanding, automated
transformations, and simulation of models are complicated.
One approach to addressing the problem is to introduce the
constraints on the model elements. An example is Object
Constraint Language (OCL) [9], which allows to precisely
specify the semantics of the model elements. Another approach
works with modified UML models that can be executed and,

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

therefore, validated by simulation. An example is the Exe-
cutable UML (xUML) language [4] used by the Model Driven
Architecture (MDA) methodology [10], or Foundational Subset
for xUML [11][12] associated with Action Language (Alf)
[13].

These methods are faced with a problem of model testing.
Models have to be transformed into executable form, whereas
the validation of proposed requirements through these models
in real conditions is complicated. Transferring changes made
during testing back to higher abstraction models is difficult,
sometimes impossible. It is a problem because the models
become useless over the development time.

Similar work based on ideas of model-driven development
deals with gaps between different development phases and
focuses on the usage of conceptual models during the simula-
tion model development process—these techniques are called
model continuity [14][15]. While it works with simulation
models during design phases, the approach proposed in this
paper focuses on live models that can be used in the deployed
system.

III. MODELING OF SOFTWARE SYSTEMS

To specify the system being designed, a wide range of lan-
guages and formalisms can be adopted. The most commonly
used means is UML language, which concentrates experiences
of other languages used in the past to modeling requirements
and behavior of systems. UML, however, fails to capture the
essential features of one model. It is necessary to work with
different views, but there is no mechanism for easy portability
between those views. The basic diagrams are use case diagrams
and class diagrams, which are supplemented by other diagrams
as necessary. Use case diagrams model the options, how
the system can be used, whereas use cases are specified by
diagrams of activities or interaction diagrams. Class diagrams
are a fundamental domain model and are linked with already
mentioned interaction diagrams. The behavior of individual
classes can be specified, e.g., by a state diagram.

A. Case Study

We will demonstrate basic principles and problems of user
requirements modeling on the simplified example of robotic
system. The example works with a robot, which is controlled
by the algorithm. Users can handle algorithms for controlling
the robot (he/she can choose one algorithm for handling and
start or stop the algorithm).

B. Domain modeling

Domain model captures the system concepts, as they are
identified and understood during the process of requirements
analysis. The domain concepts are modeled by class diagram
containing conceptual classes and their relationships. The
domain model is the initial model for modeling the functional
requirements and creation of design models. It is one of the
first models when creating software.

Initial analysis of presented case study suggests that we
must be able to work with concepts User, Algorithm, and
Robot. Thus, we can create the initial domain model, which is
shown in Fig. 1. There is a one-to-N association (1..N) between

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

122

Domain Model
1 * 1 1
User] [Aigorithm}'—Robot

Figure 1. Domain model of the case study.

User and Algorithm, since a user may work with multiple
algorithms. One particular algorithm controls only one specific
robot, so there is a one-to-one association between Algorithm
and Robot.

C. User Requirements Modeling

The use case diagrams are used for modeling of user
requirements. The aim is to identify users of the system,
the system requirements and how the user can work with
requests. The basic elements are therefore users, their role,
and activities. Roles are modeled as actors and activities are
modeled by individual use cases. The use case diagram of our
example is shown in Fig. 2.

<<human>> . ~.

. ~

<<system>>

X

— Robot

.
,/extends N

2°
choose
algorithm

Figure 2. First Use Case Diagram for the robotic system.

The diagram shows actors (roles) User and Robot and use
cases Start algorithm, Stop algorithm, Choose algorithm, and
Calibrate the system. Roles represent the interface between
the system and its surrounding and define operations allowed
for that role.

D. Behavior Modeling

Behavior models deal with functional requirements. They
model scenarios, i.e., specific behaviors and interactions of
individual use cases. For that purpose, various types of de-
scription are used—structured text, activity diagrams, state
diagrams etc. Generally, they are models enabling to cap-
ture work-flow supplemented by communications. Scenarios
of individual cases are modeled by activity diagrams, state
diagrams, or interaction diagrams. However, the formal models
and formal languages, such as Petri nets, can be used as
well. An important feature is the interconnection of use case
diagrams and scenarios modeled using specific diagrams, since
both types of models represent different view of the developed
system.

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. MODELING USER REQUIREMENTS

This section detail examines the concept of use cases in
system design. Use case diagrams (UCDs) are used in the
process of software system design for modeling user require-
ments. The system is considered as a black-box, where only
external features are taken into account. The objective of UCDs
is identify system users, user requirements, and how the user
interacts with the system. The model consists of actors and use
cases. Actor generates an external stimulus of the system and,
generally, it represents a kind of users working with the system.
Use case models a sequence of interactions between actors and
software system. For a description of the interactions, plain
text is usually used. The text describes inputs from actors and
reactions of the system. Use case defines what the system is to
do and pays no attention to a question ihow the system would
implement modeled requirements.

A. Actor

Actor is an external entity working with the software
system, so that actor is not part of the system, but it is a
generator of input stimulus and data for the system. Actor
models a group of real users, whereas all members of the
group are working with the system in the same way. Therefore,
actor represents a role of the user in which can appear in the
system. One real user can appear in the system in more roles.
Let us consider the example of conference system with actors
Author and Reviewer. These actors model two roles, each of
them defines a set of functions (use cases) the user can initiate
or can participate on. The real user can either be author or
reviewer, or can work with the system in both roles (the user
usually stands in just one role at the time).

Now, let us consider another example of the garage gate
handling system. The system consists of actuators (garage
gate), sensors (driving sensor, card scanner), and control soft-
ware. It is closed autonomous system with which two groups
of real users can work—Driver and Reception clerk. The driver
comes to the garage gate, applies a card to the scanner, and the
system opens the gate. If the user does not have a card, he can
ask reception clerk, who opens the gate. From system point of
view, actuators, sensors, and control software are internal parts
of the system. From the software engineering point of view,
actuators and sensors are external elements that are controlled
by the system, or from which it receives information.

We can ask a question whether we can model these external
elements using the actor concept. Actors represent human users
in many information systems (human actors). But, they can
also be used to model other subsystems such as sensors or de-
vices (system actors) because of they really represent external
entity. The system has to communicate with these subsystems,
nevertheless, they need not to be part of the modeled software
system. There are systems where this form of actors is more
important than users [16]. They concern especially embedded
or autonomous systems that intensively cooperate with input—
output devices, such as sensors, actuators, etc. These actors
represent the surroundings in which the system operates.

It will be useful to define specific categories of actors
based on their merit, whose semantics differ from conventional
apprehension of the term actor in use case diagrams. The
categorization follows:

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

123

e real user (stereotype human) — models a real user, or
more precisely his/her role in the system, which is
concerned in interactions with the system

e sensor, actuator, device in general (stereotype device)
— model a system element, which provides stimulus
to control software or receives commands

e system (stereotype system) — other system (or subsys-
tem) with which the modeled system cooperates

B. Use Case

An important part of functional requirements analysis is to
identify sequences of interaction between actors and modeled
system. Each such a sequence covers different functional
requirement on the system. The sequence of interactions is
modeled by use cases. The use case describes a main se-
quence of interactions and is invoked (its execution starts)
by input stimulus from the actor. The main sequence can
be supplemented by alternative sequences describing less
commonly used interactions. Their invocation depends on
specified conditions, e.g., wrong information input or abnormal
system state. Each sequence (the main or alternative one) is
called scenario. Scenario is a complete implementation of one
specific sequence of interactions within the use case.

C. Relationships Between Use Cases

Among the different use cases you can use two defined
relationships, include and extend. The aim of these relations
is to maximize extensibility and reusability of use cases if
the model becomes too complex. A secondary effect of using
of these relationships is to emphasize the dependence of the
individual use case scenarios, structuring too long scenarios to
more lower level use cases, or highlighting selected activities.

1) Relationship extend: Relationship extend reflects al-
ternative scenarios for basic use case. In cases where the
specification of a use case is too complicated and contains
many different scenarios, it is possible to model a chosen
alternative for new use case, which is called extension use
case. This use case then extends the basic use case that
defines a location (point of extension) in the sequence of
interactions and conditions under which the extension use case
is invoked. The relationship extend is illustrated in Fig. 2. The
use case calibrate has to stop the running algorithm first, then
to calibrate the system and, finally, to start it. Use cases start
and stop can thus expand the base case scenario calibrate.

2) Relationship include: Relationship include reflects the
scenarios that can be shared by more than one use case.
Common sequence can be extracted from the original use cases
and modeled by a new use case, which we will call inclusion
use case. Such use case can then be used in various basic use
cases that determine the location (point of insertion) in the
sequence of interactions for inclusion. The relationship include
is illustrated in Fig. 2. Now, we adjust the original sequence of
interactions with the use case start, which will need to select
the algorithm to be executed first. Use case start thus includes
the use case choose algorithm.

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3) Generalization use cases: The activities related to in-
teractions between the software system and a robot were not
highlighted yet. One possibility is to define inclusion use case
describing these interactions, i.e., the algorithm. However, this
method supposes only one algorithm, which contradicts the
specified option to choose algorithm. Second possibility is to
define extension use cases, everyone for various algorithms.
The disadvantage of this solution is its ambiguity; there is no
obvious the problem and the appropriate solution.

<<human>>

jgi

User

<<system>>

Figure 3. Specialization of the use case execute and the relationship affect.

Use case diagram offers the possibility to generalize cases.
This feature is similar to the generalization (inheritance) in an
object-oriented environment. In the context of the use case di-
agrams, generalization primarily reflects the interchangeability
of the base-case for derived cases. Although there are methods
that consider generalization as abstruse [17] and recommend
replacing it with relation extend, generalization has a unique
importance in interpreting the use case diagram. Relation
extend allows to invoke more extension use cases, whereas
generalization clearly expresses the idea that case start works
with one of cases execute (the model is shown in Fig. 3). The
model can also be easily extended without having to modify
already existing cases.

4) Use Case Diagram Extension: The present example
shows one situation that is not captured in the diagram and
use case diagrams do not provide resources for its proper
modeling. This is the case stop, which affects the use case
execute (or possibly derived cases), but does not form its
basis (the case execute is neither part of it nor its extension).
Nevertheless, its execution affects the sequence of interactions,
which is modeled by use case execute (it stops its activity). In
the classical chart this situation would only be described in
the specification of individual cases, however, we introduce
a simple extension affect, as shown in Fig. 3. Relation affect
represents a situation, where the base use case execution has
a direct impact on other, dependent use case. This relation
is useful to model synchronization between cases in such a
system, which suppose autonomous activities modeled by use
cases.

D. Problems associated with modeling relationships

The disadvantage of the use of relationships between use
cases is the ability to determine the nature of addiction without
detailed knowledge of the specification. If we analyze the
model in Fig. 2, we find that the relations extend are not
used correctly and can lead to more complications in the
design model. The example assumes that when you start
the algorithm, the user must always choose the algorithm,

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

124

which is in connection with the case calibrate inappropriate
(the algorithm is already selected, just for a moment it was
suspended). Moreover, it is not a user interaction, it is therefore
preferable to model the suspension and starting the algorithm
directly as the activity of the case calibrate without using the
relation extend.

V. BEHAVIOR MODELING

Use case specification format is not prescribed and can
have a variety of expressive and modeling means, e.g., plain
text, structured text, or any of the models. UML offers, among
others, the activity and state diagrams. These charts allow
precise description based on modeling elements with clear
semantics. In this section, we will outline UML based way how
to specify the use case algl (one of the possible algorithms
for controlling the robot; see Fig. 3).

A. State Diagram

Let us walk through an example of use case algl specifi-
cation using state diagram. We will discuss only part of the
model shown in Fig. 4.

(testing]

Ldo/ get a robot's stateJ

[obstacle]

[no obstacle]

walking]
Ldo/ send a command goJ

[no obstacle]

turnRight
Ldo/ stop robot, turn right, and get a stateJ
[obstacle]
J [no obstacle]
turnRound]

Ldo/ turn around and get a stateJ

[obstacle]

Figure 4. Statechart modeling the use case Algorithml (algl).

The model captures system sub-states, system activities
carried out in those states and transitions between states.
Execution of transition is conditioned, conditions include ac-
tivities that are carried out to change the system state (in
this example it is not used). States are modeled as elements
that can contain internal activities performed by the system
or a particular object, which is in this state. Simultaneously,
it declares response to external events, i.e., its method of
operation depending on the system state. The transition is
modeled by edge, whose execution may depend on a condition
or external events. An example might be a possibility to stop

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the algorithm in any state. We will now analyze the model.
When activated, the system will move from the initial state
(bulging black full circle) into a state called festing. Activity
performed in this state is the acquisition of the robot state,
i.e., testing that the robot is facing an obstacle. Based on the
information obtained, the system moves into one of the states
walking (the road is clear and the condition no obstacle is met)
or turnRight (the road is not clear, the condition obstacle is
met).

testing t10

(> r r isClearRoad.
r go.

r

r walking <
r r
t1 turnRight t1
r isCloseToObstacle. r r r isClearRoad.
r stop. r go.
r turnRight.
r
r
t2 l turnRound 12
r isCloseToObstacle. r r risClearRoad. ||
r turnRight. r go.
r turnRight.
r
13 l stopped
| r isCloseToObstacle. r

Figure 5. Petri net modeling the use case Algorithml (algl).

These charts allow to describe functional requirements of
use case diagrams but their validation is problematic because
of impossibility to check models either by formal means or
by simulation. Of course, there are tools and methods [4][18]
that allow to simulate modified UML diagrams. Nevertheless,
there is still a strict border between design and implementation
phases. Another way is to use some of the formal models. In
this section, we introduce Object Oriented Petri Nets (OOPN)
for specifying use case, i.e., interactions between the system
and the actors. Let us walk through the previous example of
use case algl shown in Fig. 5.

B. Object Oriented Petri Nets

By comparison OOPN model (see Fig. 5) and the state
diagram (see Fig. 4) we find a fundamental difference in the
way of the states and transitions declaration. The system state
is represented by places of the OOPN formalism. System is in a
particular state if an appropriate place contains a foken. Actions
taken in a particular state is modeled as part of the transition
whose execution is conditioned by a presence of tokens in that
state. The transition is modeled as an element that moves the
tokens between places. Except the input places, the transition
firing is conditioned by a guard. The guard contains conditions
or synchronous ports. The transition can be fired only if the
guard is evaluated as true. If the transition fires, it executes

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

125

the guard, which can have a side effect, e.g., the executed
synchronous port can change a state of the other case.

The model (see Fig. 5) consists of states testing, walking,
and turnRight that are represented by places. State turnRight is
only temporal and the activity goes through these ones to the
one of stable states (e.g., walking). Control flow is modeled by
the sequence of transitions, where each transition execution is
conditioned by events representing the state of the robot. Let us
take one example for all, the state festing and linked transitions
t10 and t1. The transition ¢/ is fireable, if the condition
(modeled by the synchronous port) isCloseToObstacle is met.
When firing this transition, actions to stop the robot (stop) and
to turn right (turnRight) are performed and the system moves
to the state of rurnRight. The transition ¢/0 is fireable, if the
condition (synchronous port) isClearRoad is met. When firing
this transition, the action to go straight (go) is performed and
the system moves into the state walking.

Both testing condition and messaging represent the interac-
tion of the system with the robot. The robot moves the control
flow as foken, which allows interaction at the appropriate point
of control flow and at the same time defines the state of its
location in one of the places. To achieve correct behavior, it
is useful to define type constraints on tokens (see > { Robot};
it means the token should be of a type Robot). Even as, it
clearly shows which actor (and derived actors) interacts in
those scenarios.

4 °)

[obstacle] (testing]
Ldo/ get a robot's stateJ

[no obstacle]

[obstacle] l

turnRound] <
Ldo/ turn around and get a stateJ

\ [obstacle] /
C.) stop()

Figure 6. Composite state manipulation in statecharts.

To make decision about moving between states, obtaining
data is not separated from state testing. If we look at the state
testing in Fig. 5, we see that obtaining information and state
testing are modeled in the transition guard by calling predicates
or synchronous ports over the actor Robot.

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Modeling Alternative Scenarios in State Diagram

Modeling alternative scenarios, i.e., scenarios that sup-
plement the basic scenario, will be described on the case
of stopping algorithm. It can be modeled by transition that
responds to an external event stop. Since the transitions of
the same type had to be included in every state offers a state
diagram for these situations composite state, which introduces
a certain hierarchy in the modeling phase diagrams. Each
folded state is defined by the states and transitions again, there
is a possibility to define a transition from a folded condition,
which is interpreted as a transition from any state of the folded
state. The example is shown in Fig. 6.

D. Modeling Alternative Scenarios in OOPN

Alternative scenarios, i.e., scenarios that supplement the
basic scenario, are modeled by synchronous ports (perhaps
even methods) to handle a response to an external event. We
show a variant of the suspension of the algorithm, i.e., removal
of the token from the current state and restoring algorithm,
i.e., return the token back to the correct place. We introduce
a new state (place) paused representing suspended algorithm.
Because the formalism of OOPN does not have a mechanism
for working with composite states, we should declare auxiliary
transitions or ports for each state we want to manipulate with.

r startWalking: r (#walking,r)

walking
. r stopWalking: r (#walking,r) .

startTurnRight: r.

pausedType

(#turnRight,r)

stopTurnRight: r —

(#turnRight,r)

Figure 7. Composite state manipulation in OOPN.

Part of the use case model having established responses to
external events pause and resume is shown in Fig. 7. We have
to define an auxiliary place pausedType to store information
about original placing of the token. For example, the composite
synchronous port pause is fireable, if at least one of the
synchronous ports stopWalking and stopTurnRight is fireable.

—pause —
. self stopWalking: t || t
self stopTurnRight: t

sem paused
——resume
self startWalking: t ||
self startTurnRight: t

Figure 8. Composite state manipulation in OOPN.

This way of modeling is clear, however, confusing for
readability. Furthermore, to work with a larger set of states
is almost unusable. Nevertheless, there is the same pattern for
each state, so that the concept of collective work with the states
is introduced. It wraps the syntax of the original net. This
will improve the readability of the model, while preserving

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

126

walking || resume
resume

paused

V pause
pause

V pauseFail
pause

Figure 9. Composite state manipulation in OOPN.

the exactness of modeling by Petri nets including testing
models. The example is shown in Fig. 9. The synchronous
port is divided into two parts—the common part (C-part)
and the variable-join part (V-part). The C-part represents all
synchronous ports, which should be called from the composite
port. The V-part represents a way how to work with the C-
part—it is fireable, if at least one item of the C-part is fireable.

E. Modeling Roles

Until now we have neglected the essence of the token that
provides interaction with the actors and defines the system
state by its position. As mentioned, actor represents role of
the user or device (i.e., a real actor), which can hold in the
system. One real actor may hold multiple roles, can thus be
modeled by various actors. Actor defines a subset of use cases
allowed for such a role. For instance, the robot is not allowed
to choose algorithm to execute, so its model does not contain
any interaction to that use case.

A role is modeled as a use case and it behavior by Petri
nets. Interactions between use cases and actors are synchro-
nized through synchronous ports that test conditions, convey
the necessary data and can initiate an alternative scenario
for both sides. Use case can then send instructions through
messages too.

t2
d := s getDistance

d

— isCloseToObstacle —j
d<=10.

— isClearRoad —
d>10.

distanceToObstacle

Figure 10. Petri net specification of the role Robot.

In our example, we will model the secondary role Robot,
whose basic model is shown in Fig. 10. Scenarios of
the execute use cases are synchronized using synchronous

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ports isCloseToObstacle and isClearRoad whose definition is
simple—to test the distance to the nearest obstacle, which is
stored in the place distanceToObstacle. Its content is periodi-
cally refreshed with a new value coming through the common
place distance. The net can define methods for controlling a
real actor too.

uc

uc select: ucsel

(uc, ucsel)

ucsel
(uc, ucsel)

(uc, ucsel)
select: a cancel -
|_ucsel select: a |_ucse| cancel

Figure 11. Petri net specification of the role User.

return

Model of the next role User is shown in Fig. 11. The
primary actor defines stimuli (modeled as synchronous ports
and methods) that can perform a real actor. Their execution is
always conditioned by an actor workflow and a net of currently
synchronized use case. Model shows the workflow of the use
case start, which starts by calling a synchronous port start. It
invocates the use case start (the syntactically simpler notation
is used, it is semantically identical to invocation shown in
Fig. 12). Using the method getList is possible to obtain a list
of algorithms. Allowed actions can be executed by one of the
defined synchronous ports select: and cancel.

VI. RELATIONSHIPS MODELING

We turn now to a method of modeling the relationships
between use cases. As we have already defined, we distinguish
relations include, extend, affect, and generalization.

A. Common Net and Common Places

Modeling the workflow that includes multiple separate
synchronized nets may need to share a single network to other
networks. For this purpose, the synchronous ports are used.
Nevertheless, it can be difficult to read the basic model of the
flow of events, because of the need for explicit modeling syn-
chronous ports for data manipulation. Therefore, we introduce
the concept of common net and common place. It is not a
new concept, only the syntactic coating certain patterns using
synchronous ports.

Each model has defined its initial class that also defines the
common net represented by the class Common that for each
running model has exactly one instance identified by the name
common. The initial class initiates execution of the simulation
and, simultaneously, provides a means for accessing common
places. Content of the common places is is available through
standard mechanisms (e.g., synchronous ports). Difference to
the ordinary usage lies in the fact that access mechanisms are
hidden and access to the common places from other nets is

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

127

modeled by mapping—the place marked as common in the
other net is mapped onto common place defined in the common
net.

B. Modeling the include relationship

We will continue our example and create models of use
cases start and choose algorithm, which is inclusion case to
the case start. Case start is activated by actor user, connected
by a mutual interaction. Actor user is the primary actor, so it
generates stimulus to that the case has to respond. It implies a
method of modeling events in the sequence of interactions.
Responses to actor’s requirements have to be modeled as
an external event, i.e., using a synchronous port. Another
significant issue is a place of inclusion into the basic sequence
of interactions and invocation activities of the integrated case.

<common>
robot

r
incl_point . include
(rincl) incl := Incl new.
(r, incl)
el init: {chooseAlg).
I:select: incl -:l Q,
(incl, r) inclusion
< (incl,)
(incl, r)
tSelected tFail
incl selected: a | incl canceled
na := a new forRole: r.
na

Q <common> running_alg

Figure 12. Petri net specification of the use case start.

The model of use case start is shown in Fig. 12. The in-
clusion use case is stored in a place inclusion and the insertion
point is modeled by internal event (transition) include with a
link to a place incl_point. Invoking the use case corresponds
to instantiate the appropriate net (see the calling new in the
transition include). The following external event (synchronous
port) select: initiates the interaction of the actor user with
integrated activity. The event binds the inclusion case to the
free variable incl, and simultaneously stores it to an auxiliary
place. Conditional branching is modeled by internal activities
(transitions) tSelected and tFail. Their execution is subject
to a state of inclusion case, which is tested by synchronous
ports in guards. In case of success (transition tSelected), the
synchronous port selected: binds the selected algorithm to the
free variable a and stores it to the common place running_alg.

The use case choose algorithm specification is shown in
Fig. 13. The basic sequence (to obtain algorithm list and select
one of them) is supplemented with an alternative sequence (the
user does not select any algorithm) and a condition (empty list
corresponds to the situation when a user selects no algorithm).
Inclusion case is viewed from stimuli generation point of view
as secondary element; its activities are synchronized by basic
case or actor, which works to the base case. Synchronization

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

init

.- init: >{execute}

°
list: Ist <L> st o
— | algorithms
°
waiting < L a

°

|— cancel —l
°

[canceled :l a<)

canceled selected_alg

Figure 13. Petri net specification of the use case choose algorithm.

points are therefore modeled as external events, i.e., using
synchronous ports. The case does not work with any secondary
actor, so that to define the status of the net is sufficient type-
free token (modeled as dot). The first external event is to obtain
a list of algorithms (synchronous port list:); the variable Ist
binds the entire content of the place algorithms. This place
is initialized by a set of cases (nets) derived from the case
(net) execute. Now, the case waits for actor decision, which
may be two. A user selects either no algorithm (external event
cancel), or select a specific algorithm from the list, which has
to match the algorithm from the place algorithms (external
event select:). Token location into one of the places canceled
or selected_alg represents possible states after a sequence of
interactions. These conditions can be tested by synchronous
ports unselected and selected:.

C. Modeling the extend relationship

Relation extend exists between cases start and execute,
where execute is the extension use case. This relationship ex-
presses the possibility of execution of the algorithm, provided
that some algorithm was chosen. Since this is an alternative,
it is expressed by branches beginning transition tSelected, as
we can see in Fig. 12. The transition tSelected represents
the insertion point of the extension of the basic sequence of
interactions.

D. Modeling the affect relationship

Relationship affect exists between cases stop and execute,
where stop influences the sequence of interactions of the case
execute, respectively any inherited cases. Petri nets model for
this use case is shown in Fig. 14. The activity begins from
the common place running_alg and branches in three variants
(transitions t/, ¢2, and t3). Branch ¢/ says no algorithm is
running; common place running_alg is empty. Because OOPN
do not have inhibitors, the negative predicate empty is used to
test conditions, which is feasible, if it is impossible to bind
any object to the variable a.

Branch 12 says the algorithm is running; the common place
running_alg contains an active algorithm. Synchronous port
pause (see Fig. 9) called on the running algorithm is evaluated

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

128

<common>
running_alg

1 M t2 3 \
self empty. || a pause. || a pauseFail.

Figure 14. Petri net specification of the use case stop.

as true and when performed, it moves the algorithm into
stopped state. Branch 13 says the algorithm is not running;
the common place running_alg contains an active algorithm.
Synchronous port pauseFail called on the running algorithm
is evaluated as true and when perform, it has no side effect.

This model is purely declarative. We declare three possible
variants that may arise, and simultaneously declare target indi-
vidual options to be done. Only one variant can be performed
at a time. We can define other activities related to these
variants. We can see that it does not invoke the use case
execute, i.e., there is no instantiating a net, but this activity is
affected. It is therefore not appropriate to model this situation
with the relations include or extend. After all, it is appropriate
to model that relationship.

E. Modeling the generalization relationship

The generalization of use cases does not have the same
meaning like the generalization of classes in object-oriented ar-
chitectural modeling. Special (inherited) case does not develop
or modify the basic case, the relationship demonstrates only
that fact, that it is possible to use any inherited case instead
of the base case. Modeling of the generalization relationship
in Petri nets reduces to express the possibility of working at
a point defining the relationship include or extend to some
case ¢, with all cases inherited from case c. In our example,
this situation is shown on the use case model choose algorithm
(Fig. 13). The place algorithm contains all possible algorithms
that can be provided, i.e., nets inherited from base use case
execute. Wherever the case executed is used in the model, it
is possible to use any inherited case.

VII. ARCHITECTURE MODEL

The presented concept of modeling assumes mapping use
cases and roles to individual nets. Each net is part of a class,
usually defined as the object net and in some cases as the
method net. This section introduces the class diagram of the
case study, which encapsulates designed nets.

A. Initial Class

Each model has defined its initial class that also defines
the common net in the form of an object net. The initial
class initiates execution of the simulation and, simultaneously,
provides a means for accessing common places.

The example uses two common places robot and run-
ning_alg. The place robot stores information about the role
of robot the whole system works with. The role is initialized
by the creation of initial object, as shown in the initial object

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

<common>

bezici_alg

r s := RobotDevice new.
r := Robot new forSubject: s.

<common>

robot

Figure 15. The initial class.

net. As the initialization is done only once, immediately the
net is created, this part can be regarded as a constructor (see
Fig. 15). The role is working with equipment whose interface
is represented by the class RobotDevice. At this moment we
do not resolve how this class is implemented (Petri nets or
domain language). The currently selected algorithm is inserted
into place running_alg by the activity Start.

B. Modeling Real Actors

Real actor can hold many roles that are modeled by actors
in the system. Each of these roles always has a common base,
which is a representation of the real actor, whether a user,
system, or device. The model has to capture this fact. For
terminological reasons, in order to remove potential confusion
of terms actor and real actor, we denote a real actor by the
term subject. The subject is basically an interface to a real form
of the actor or to stored data. Therefore, it can be modeled in
different ways that can be synchronized with Petri nets. Due
to the nature of the used nets, there can be used Petri nets,
other kind of formalism, or programming language.

<<Role>>

Robot

<<PN>>

<<Role>>

User F == =>

<<PN>>

<<Activity>>
Execute

<<PN>>

+<<Act>> start()

+<<Act>> select()
+<<Act>> cancel()
+<<Acc>> getlist()

+<<Act>> stop() +<<C>> forSubject(s)
+<<T>> isClearRoad()
+<<T>> isCloseToObstacle()
+<<Act>> go()

+<<Act>> stop()
<<Activity>> +<<Act>> turnRight()
Algorithm1l 0.

<<PN>>

+<<C>> forRole(r)
+<<Act>> resume()
+<<Act>> pause()

1

<<Subject>>
RobotDevice

<<Dom>>

+<<Act>> getDistance()
+<<Act>> go()
+<<Act>> stop()
+<<Act>> turnRight()

Figure 16. The basic class diagram.

The subject of the role Robot is modeled by the class
RobotDevice. Its operations are implemented by methods in
the supported language (in our case it is Smalltalk). This class
represents the interface to the real robot, which is controlled by
our application. The specific implementation is not important
for demonstration of the modeling principles, therefore we do
not mention it here.

The subject of the actor User can be modeled as a Smalltalk
class, whose object can access OOPN objects directly [19][20].
The following pseudo-code shows a simple example of ac-
cessing model from the subject implemented in programming

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

129

language. First, it asks a common net to get a role of user, then
invokes synchronous port start, a method getList, and finally
select first algorithm from the list.

usr < common.newUser();
usr.asPort.start();

Ist <— usr.getList();
usr.asPort.select(Ist.at(1));

C. Mapping Petri Nets and Classes

Class diagram of the architecture model is shown in Fig.
16. Classes represent elements of different levels, therefore
each class is marked by stereotypes for distinction. Stereotype
Activity denotes the class representing a use case, the stereo-
type Role denotes the class representing a role and stereotype
Subject denotes the class representing the subject. Each class
can be modeled (described) by different formalism, the next
stereotype distinguishes variant formalism. In our example, the
formalism of Petri nets (stereotype PN) and Smalltalk language
(stereotype Dom) are used.

<common>
running_alg

3 \
| | a pauseFail.

self empty. || a pause.

return

Figure 17. Model of the method net Execute.stop.

Class diagram shows the interface of individual elements
and the knowledge about other elements. This is indicated by
the arrows at the associations. The model shows that User is
aware of the existence of the activity Execute (corresponding
with the use case Execute in Fig. 3) and its derived activities
(classes). The activity Algorithml is created (instantiated) by
a user stimulus (this part is not captured). The activity Algo-
rithml is aware of the existence of role Robot (it may not be in
reverse order), and the role of Robot knows about the existence
of a subject RobotDevice (it may not be in reverse order). The
interface operations utilizes stereotypes that correspond to the
interface definition. Two kinds of relationships between classes
are suggested—the association and the usage. The association
expresses a condition where an instance of a class depends
on the instance of the second class; dependent instance always
contains a reference to the second instance (is part of the place
and is often represented by a control token). An example is
the association between class Algorithml and the class Robot.
The usage expresses a condition where the dependent instance
may not contain a reference to the second instance, but it can
be got through a common place. An example is the usage of
the classes Algorithml by the class User.

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Class Execute

The method net Execute.stop is shown in Fig. 17. The net is
invoked by sending the message stop, which corresponds with
the use case Stop. The method net works with the common
place running_alg and uses the negative predicate empty from
the object net.

E. Class Algorithml

Class User represents the role User, which enables basic
operations with the system start, select, cancel, and getList.
The operation start initiates the use case Start.

t10
risClearRoad.

testing

constructor forRole: r

r go.

r

r

t1
risCloseToObstacle. r

r stop.
r turnRight.

Figure 18. Part of the class Algorithml.

Model of the activity Algorithml, which is represented by
the class Algorithml, is shown in Fig. 18. This net commu-
nicates with a secondary actor Robot through synchronous
ports (for synchronization of states) and message passing (for
providing commands). The class Algorithml offers the opera-
tion forRole for activity initialization of the group constructor
(stereotype C) and two operations to stop and resume (pause
and resume) of the group actions (stereotype Act). If we
map classes to OOPN model, we can see that the operation
forRole is modeled as constructor and both operations pause
and resume is modeled as synchronous ports.

F. Class Robot

The class Robot has the constructor forSubject, three op-
erations of an action group (go, stop and turnRight) and two
operations from the test group (isClearRoad and isCloseToOb-
stacle). The operations stop, go, and turnRight can be realized
by synchronous ports or methods, depending on the selected
communication channel and the internal architecture of the
model.

subject

constructor forSubject: s — turnRight

return return

Figure 19. Method nets of the class Robot.

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

130

Fig. 19 shows the perhaps implementation of the operation
turnRight, which delegates the execution on the subject. The
other operations go and stop are modeled in a similar way.
The subject, with which the role communicates, is stored
in the place subject. Constructor that initializes the role by
inserting the correct subject is shown in Fig. 19.

VIII. CONCLUSION

The paper presented the concept of modeling software
system requirements, which combines commonly used models
from UML, such as use case and diagrams, with Petri nets
that are not commonly used in the requirements specification.
Relationships between actors, use cases, and Petri nets have
been introduced. Use case diagrams are used for the initial
specification of user requirements while Petri nets serve for
use case scenario descriptions allowing to model and validate
requirement specifications in real conditions. This approach
does not need to transform models or implement requirements
in a programming language and prevents the validation process
from mistakes caused by model transformations.

At present, we have developed the tool supporting pre-
sented approach. In the future, we will focus on the tool
completion, a possibility to interconnect model with other
formalisms or languages, and feasibility study for different
kinds of usage.

ACKNOWLEDGMENT

This work was supported by the internal BUT project
FIT-S-17-4014 and The Ministry of Education, Youth and
Sports of the Czech Republic from the National Programme
of Sustainability (NPU II); project IT4Innovations excellence
in science - LQ1602.

REFERENCES

[1] R. Ko¢i and V. Janousek, “Modeling System Requirements Using Use
Cases and Petri Nets,” in ThinkMind ICSEA 2016, The Eleventh
International Conference on Software Engineering Advances. Xpert
Publishing Services, 2016, pp. 160-165.

[2] R. Ko¢i and V. Janousek, “Modeling and Simulation-Based Design
Using Object-Oriented Petri Nets: A Case Study,” in Proceeding of the
International Workshop on Petri Nets and Software Engineering 2012,
vol. 851. CEUR, 2012, pp. 253-266.

[3] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual. Addison-Wesley, 1999.

[4] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie, Model
Driven Architecture with Executable UML. Cambridge University
Press, 2004.

[5] M. Ceéka, V. Janousek, and T. Vojnar, “Modelling, Prototyping, and Ver-
ifying Concurrent and Distributed Applications Using Object-Oriented
Petri Nets,” Kybernetes: The International Journal of Systems and
Cybernetics, vol. 2002, no. 9, 2002.

[6] K. Wiegers and J. Beatty, Software Requirements.
2014.

[71 N. Daoust, Requirements Modeling for Bussiness Analysts.
Publications, LLC, 2012.

[8] E. Seidewitz, “UML with meaning: executable modeling in foundational
UML and the Alf action language,” in HILT ’14 Proceedings of the
2014 ACM SIGAda annual conference on High integrity language
technology, 2014, pp. 61-68.

[9] J. Warmer and A. Kleppe, The Object Constraint Language: Getting
your models ready for MDA. Longman Publishing, 2003.

Microsoft Press,

Technics

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

[10]

(11]

[12]

[13]

[14]

R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” in International Conference on Software
Engineering, ICSE, 2010.

Object Management Group, “Semantics of a Foundational Subset
for Executable UML Models (fUML). OMG Document Number:
formal/2013-08-06,” http://www.omg.org/spec/FUML/1.1, OMG Doc-
ument Number: formal/2013-08-06, 2013.

S. Mijatov, P. Langer, T. Mayerhofer, and G. Kappel, “A framework for
testing uml activities based on fuml,” in Proc. of 10th Int. Workshop
on Model Driven Engineering, Verification, and Validation, vol. 1069,
2013.

Object Management Group, “Action Language for Foundational
UML (Alf). OMG Document Number: formal/2013-09-01,”
http://www.omg.org/spec/ALF/1.0.1, OMG Document Number:
formal/2013-09-01, 2013.

D. Cetinkaya, A. V. Dai, and M. D. Seck, ACM Transactions on
Modeling and Computer Simulation, vol. 25, no. 3, 2015.

[15]

[16]

(17]

[18]

[19]

[20]

131

X. Hu, “A Simulation-Based Software Development Methodology for
Distributed Real-Time Systems,” Ph.D. dissertation, The University of
Arizona, USA, 2004.

H. Gomaa, Real-Time Software Design for Embedded Systems.
bridge University Press, 2016.

Cam-

H. Gomma, Designing Software Product Lines with UML: From
Use Cases to Pattern-Based Software Architecture. Addison-Wesley
Professional, 2004.

D. S. Frankel, Model Driven Architecture: Applying MDA to Enterprise
Computing, ser. 17 (MS-17). John Wiley & Sons, 2003.

R. Ko¢i and V. Janousek, “Formal Models in Software Development
and Deployment: A Case Study,” International Journal on Advances in
Software, vol. 7, no. 1, 2014, pp. 266-276.

R. Koci and V. Janousek, “The Object Oriented Petri Net Component
Model,” in The Tenth International Conference on Software Engineering
Advances. Xpert Publishing Services, 2015, pp. 309-315.

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

