
An Approach to Provide User Guidance in Special Purpose Machines and its Evaluation

Valentin Plenk∗, Sascha Lang†, Florian Wogenstein‡
Institute of Information Systems at Hof University, Hof, Germany

Email: ∗valentin.plenk@iisys.de, †sascha.lang@iisys.de, ‡florian.wogenstein@iisys.de

Abstract—This paper proposes to make complex production ma-
chines more user-friendly. Improved machines help the operator
in case of an error message or a process event by displaying
recommendations, such as “at the last 10 occurrences of this
event the operators performed the following keystrokes”. The
messages are generated from statistical data on former user-
interaction and previous process-events. The data represents the
knowledge of all the machine operators. The data is gathered
by logging user-interaction and process-events during regular
operation of the production machine. This approach allows to
store the operators’ expert knowledge in the production machine
without human intervention.

Keywords–machine-learning; human machine interfaces;
special-purpose machines; production machines

I. INTRODUCTION

State of the art appliances (e.g., photocopiers) are equipped
with user interfaces that help the operator fix problems (e.g.,
paper jam). The implementation of the software driving the
interface contains structured knowledge about error scenarios
and step by step instructions on how to deal with them.

While this approach leads to very well usable appliances,
its proliferation is hampered by the engineering effort required
for the definition of the error scenarios. This effort is only
economically reasonable if it can be refinanced over a large
number of appliances. In the context of production machines,
particularily special purpose machines, where the usual lot size
is in a range below 10 similar machines per annum [2], a
different approach is needed.

To deal with that problem the authors propose to use
machine-learning algorithms to generate situation-specific user
guidance information from former user interactions and previ-
ous process events.

Similar applications of machine learning algorithms are
commonly used to enhance user interfaces in smartphones or
other IT-systems [3] [4]. In the production-machine sector,
however, the application of machine learning algorithms is
apparently limited to applications dealing with pattern detec-
tion in process data or distingushing different datasets [5] [6]
[7] [8]. In these papers the authors use the output of the
algorithms to detect errors or problems with production quality.
This information is then presented to the production-machine
operator requesting him to deal with the situation. While this
approach undoubtedly helps to make processes more stable, it
also demands ever more expertise of the operators.

Challiol et al. [9] describe an application striving to display
content dependent on the users context. While addressing a
completely different application domain this is similar to our
approach in terms of matching context to content. The context
matching algorithm proposed in [10] is quite abstract as is its
performance evaluation presented in [11].

stock material
(granulates)transport spindle

Heating  

nozzle

electric drive

vacuum pump

~ 2,5 meters

Figure 1. Working principle of an extruder
(courtesy: Hans Weber Maschinenfabrik, Kronach, Germany)

All the papers cited above assume the content to be
available, while we propose to automatically generate the
content of the recommendations. The algorithms presented in
Section V build a knowledge base that can be edited, i.e., the
recommendations can be presented to an experienced operator
who can modify or delete them. This is a marked difference
to most machine learning algorithms whose knowledge base
cannot be edited.

In this paper we extend our previous work. Our initial
approach presented in [1] transformed the raw data into an
event sequence. In [12] we added a second group of algorithms
working with the raw data and performed tests to compare the
performance of both algorithm types. In this paper we present
a more detailed evaluation of our algorithms. Section VII-C
introduces a bigger dataset which we processed differently
based on feedback from our test users.

Section II describes the application context and the system
architecture. Section III explains the fundamental idea of the
knowledge base. In Section IV we detail strategies for data
preprocessing. The main component, i.e., the recommendation
algorithms, is presented in Section V. Section VI briefly
presents the GUI of the system. In Section VII we describe an
mostly automatic way to score the quality of the recommen-
dations generated by our algorithm. Section VIII summarizes
the different scores achieved by the different algorithms and
reviews the computing exigencies of the algorithms. Section
IX briefly summarizes our findings so far and then gives an
outlook on our work schedule for the future.

II. TEST ENVIRONMENT

The test scenario for the development of the system is
a plastics extruder (see Figure 1). The basic purpose of this
machine is to melt and transport plastic granulates by means
of a threaded spindle towards a nozzle. The main process

167

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Black Box
Recommender

Machine

Graphical User Interface

PLC

Database with
* process values,
* operator values,
* alarms,
* recommendations,
* event lists

Graphical User Interface
with Guidance and rating

Database with
process values,
operator values,
alarm messages

Real Machine

Graphical User Interface
for unsolicited

Operator events

Data Observer
Event Filters

Event Filters

Machine specific Machine independent

Event FiltersEvent
Generators

Knowledge-base
(key-value-store)

Event Filters
Retrieval

Figure 2. Structure of the system

parameters are the speed of the spindle, the temperature of
the extruded material and the pressure of the material at the
nozzle. We have equipped three production machines with our
systems. All three extruders are manufactured by Hans Weber
Maschinenfabrik GmbH. They provide the machine specific
part of our system (see Figure 2). The machines are operated
by our other project partners: Two of them by H.N. Zapf
GmbH & Co. KG and one by Rehau AG & Co. KG. These
two partners provide us with data and feedback from the users.

Figure 2 shows the structure of the system. The box on the
left represents the existing machine consisting of the actual
machine, a PLC-controller for the real-time control and a
graphical user interface (GUI). The GUI communicates with
the PLC by means of a database containing all PLC-variables
and all alarms raised by the PLC. This is a fairly standard
architecture.

Our addition is shown in the right box. The Black Box is
basically a PC running several software components:

The DataObserver reads the data in the machine database,
transforms it to our internal format and stores it in a second
database. This component is machine specific and needs read-
only access to the PLC variables.

The database is the interface between the machine specific
parts and the machine independent part. It stores the PLC-
variables and the PLC-alarms written by the DataObserver as
well as the output of the Event Generators and the Recom-
mender. The two main tables in the database are shown in
Tables I and II. The PLC-variable table contains all the process
and operator values of the machine’s PLC. Each variable is
stored in its own column. The DataObserver adds a new row
every 10 seconds. The second table stores alarms which are
raised by the machine.

The Recommender is machine-independent. It is the key
component of the system. It builds a knowledge base from the
logged PLC-variables and generates recommendations when it
detects a new alarm message in the database.

time of
alarm event

time

process value 1

process value 2

operator value 1

operator value 2

Operator event
sequence

„fingerprint“ of alarm:
a) event sequence
b) point set

operator event

process value 3

Figure 3. Principle of user guidance generation

The GUI is used to translate the recommendations into
operator instructions that reflect the wording on standard GUI
of the machine. It displays a recommendation and allows the
operator to evaluate the quality of the recommendation.

III. PROPOSED APPROACH

The basic idea of our approach is to extract operator knowl-
edge from the continuous stream of PLC-variables logged
during the operation of the machine. We want our algorithms
to be as generic as possible and to work without deeper
understanding of the machine. However, we need information
to recommend actions to the machine operator: Which columns
in the PLC variable database (Table I) correspond to values
affected by the process, e.g., actual temperature, and which
are controlled by the operator, e.g., temperature set-point. We
call the first set of variables process values and the second
set operator values. The rows of the database hold consecutive
values for these variables.

With this information we propose to generate user guidance
as shown in Figure 3: The alarm messages in the alarm
database are used to tag discrete parts of the endless stream of

168

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

data logged in the PLC-variable database. The alarm tag and
the data before the occurrence of the alarm are regarded as a
fingerprint that identifies the alarm. This fingerprint consists of
process and operator variables. The data after the occurrence
of the alarm also consists of process and operator values.
The actions performed by the operator will change some of
these operator values. By detecting these changes we build
a sequence of operator events. This sequence represents the
actions of the operator corresponding to a fingerprint.

With fingerprints and corresponding operator sequences
we build a key value store representing the operators’ ex-
pert knowledge. The fingerprint is the key and the operator
sequence the value. These key-value pairs are generated by
monitoring the continuous stream of data logged during the
operation of the machine. When the machine raises an alarm
the algorithms generate a key for that new problem. Now the
key-value pairs in the knowledge base are searched for the best
matching elements. The best matches are then provided as a
recommendation to solve the problem. The fingerprint and the
operator sequence performed by the operator is then stored in
the knowledge base as a new key value pair.

In Section V we describe two generally different ap-
proaches for the processing of the fingerprints: One set of
algorithms directly uses the process and operator variables.
The other set converts the data in the fingerprint into an event
sequence. Events are generated for the parts of a time series
where the data changes. Several events for one or several
columns constitute an event sequence.

IV. GENERATION OF EVENTS

The curves for process value 2 and process value 3 pre-
sented in Figure 3 show little variance over time. By generating
events for the points in time where a variable changes we can
suppress bits of data with no or low variance.

We distinguish between process events and operator events.
The process events are generated from process values, the
operator events from operator values.

For process events we have developed two different algo-
rithms. The selection of the appropriate algorithm for each
process value needs to be done by a person with sufficient
knowledge about the process and the machine.

We encode all events as string values containing the name
of the PLC variable and either a numerical value or a class

name. This encoding is not as efficient as a binary coding but
it allows us to interpret the event lists during our tests.

A. Operator Events

Operator events represent human interaction with the ma-
chine. These events are identified by checking columns con-
taining operator values.

We developed two algorithms to generate these operator
event sequences.

The first type compares all consecutive rows within an
alarm situation. For each column whose value changes it
generates an event when the new value stays constant for
at least three rows. We need this restriction because some
operator inputs are made by a hand wheel. To detect the final
value we wait until the operator has not made a change for 30
seconds. If we use this method we can get multiple steps for
one operator value.

The second method lakes all operator values in the moment
the alarm starts and compares them with the values they have
at the end of the alarm. If one value has changed it will then
be part of our operator sequence.

In consultation with our project partners we use the second
type for dataset 4. As a further improvement we replace
the absolute value with a relative value and come up with
recommendations like ”Change drive speed by +5 rpm” instead
of telling ”Set the drive to 15 rpm”.

In both cases these events represent operator interactions.
They are coded as string values, e.g., Loop2_SP_170, con-
taining the name of the PLC variable and the (relative) value
of the setpoint adjusted by the operator.

B. Process Events

For process variables we distinguish two types of variables:
The first group of variables has an associated setpoint. The
second group does not have such a setpoint, but we are able
to create our own setpoint.

For both classifications we chose to use literals instead
of numbers for our classes. Thus, we can easily distinguish
between operator events and process events when reviewing
the data.

TABLE I. EXAMPLE OF THE DATABASE WITH PLC-VARIABLES

PointID AIn1 1 AOut1 1 AIn1 2 AIn2 1 AOut2 1 Loop1 1 PV Loop1 1 SP Loop1 1 OP . . .
2016-09-27 07:42:37 87.488 87 65.169 95.985 95 22.5 120 0 . . .
2016-09-27 07:42:47 87.47 88 65.638 95.973 95 22.6 120 0 . . .
2016-09-27 07:42:57 87.03 87 65.461 96.027 96 22.6 120 0 . . .
2016-09-27 07:43:07 88.378 88 64.559 96.011 96 22.7 120 0 . . .
2016-09-27 07:43:17 85.695 86 64.93 96.008 96 22.8 120 0 . . .
2016-09-27 07:43:27 87.792 88 65.272 95.968 95 22.8 120 0 . . .
2016-09-27 07:43:37 87.615 88 65.589 96.004 95 22.7 120 0 . . .
2016-09-27 07:43:47 86.761 87 65.272 95.946 96 22.8 120 0 . . .
2016-09-27 07:43:57 87.446 87 65.191 95.997 96 22.8 120 0 . . .
2016-09-27 07:44:07 87.213 87 65.182 95.969 96 22.8 120 0 . . .
2016-09-27 07:44:17 86.472 86 64.172 95.973 96 22.8 120 0 . . .
2016-09-27 07:44:27 86.634 86 65.349 95.893 96 22.7 120 0 . . .
2016-09-27 07:44:37 87.291 87 64.776 96 96 22.6 120 0 . . .
2016-09-27 07:44:47 87.58 87 65.428 96.023 96 22.5 120 0 . . .
2016-09-27 07:44:57 86.966 87 65.522 95.981 96 22.6 120 0 . . .

. . .

169

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1) Process Values with Setpoint: We need a pair of process
and operator variable. The latter contains the setpoint. We
calculate the deviation from the setpoint of the variable

Varrel =

∣∣∣∣VarProcess

VarSetpoint
· 100%

∣∣∣∣ (1)

Then, we sort Varrel into one of the classes shown in Table
III and generate an event every time the process value enters
a new class. These events are also coded as string values, e.g.,
Loop_1_2_PV_X.

2) Process Values relative to Moving Average: For process
variables without corresponding setpoint, we calculate the
arithmetic mean over the last n values. With this as the setpoint
we treat the variable as described in Section IV-B1.

For our fingerprint, we have arbitrarily chosen to use
the five minutes before an alarm occurred. So, we have 30
datasets per alarm. To create a suitable moving average we
have to take much more then 30 datasets. At the moment, we
again arbitrarily chose to use 360 values, which equals one
hour. Both the time which is used for the fingerprint and the
amount of values used for the moving average need further
investigation whether they are reasonable values or not.

V. RECOMMENDATION GENERATION

In case the machine needs operator assistance, i.e., it raised
an alarm by adding a new row in the error message table, our
guidance generation algorithm is triggered. The fingerprint of
the current situation is used as a search key for the knowledge
base.

Section V-A describes a set of algorithms that convert the
data in the fingerprint into an event sequence and then searches
for this sequence. In Section V-B, we introduce algorithms
that directly use the N -dimensional point set of process and
operator variables in the fingerprint as a key.

A. Recommendation Generation using Event Sequences
1) Map: In [1], we used a content addressable memory,

i.e., a Java map, to store the knowledge base. We build the
knowledge base by iterating through all past occurrences of
alarms. For each fingerprint we calculate the event sequence
and use it as key and the corresponding operator event se-
quence as the value. Each key-value pair is then stored in
the map. For multiple entries, we store the frequency of the
respective sequence in the past.

To generate a recommendation, we simply generate the
event sequence corresponding to the fingerprint of the current
alarm and query the map for this key. For map entries with
several values for one key, we return several recommendations
and their frequency in the past. In case this key is not in the
map, we cannot generate a recommendation.

TABLE II. EXAMPLE OF THE DATABASE WITH MACHINE ALARMS

MainNr SubNr Start End
212 0 2016-09-27 07:42:37 2016.09-27 07:45:47
213 0 2016-09-27 07:42:47 2016.09-27 07:48:57
214 0 2016-09-27 07:42:47 2016.09-27 10:50:36
215 0 2016-09-27 07:42:47 2016.09-27 07:46:47
216 0 2016-09-27 07:42:47 2016.09-27 07:46:57
221 0 2016-09-27 07:42:57 2016.09-27 07:46:07
224 0 2016-09-27 07:43:17 2016.09-27 07:49:17
126 0 2016-09-27 07:46:17 2016.09-29 00:48:02

. . .

TABLE III. CLASSES FOR PROCESS VARIABLES

V arrel ≤ 1.77% ≤ 3.16% ≤ 5.62% ≤ 10.0% ≤ 17.78%
Class A B C D E
V arrel ≤ 31.62% ≤ 56.23% ≤ 100.0% ≤ 177.8% > 177.8%
Class F G H I X

2) Map with Statistical Event Filtering: The map presented
in Section V-A1 will only find a recommendation if the search
key exactly matches one of the stored keys. If the event
sequences contain spurious events, e.g., caused by noise, we
cannot find a match. So, we created an algorithm to suppress
the irrelevant events.

We use a statistical approach identifying unimportant
events to remove them from the process event sequence. The
filtered event list is then processed as described in Section
V-A1.

The filtering is done in two steps. First, we iterate through
the event sequences of all stored fingerprints for one alarm
and count how often an event is contained in the set of event
sequences. In the next step, we remove all events with a
frequency below a defined threshold from the event sequences.
So far our tests indicate that 0.5 is a reasonable choice.

3) String matching: The map algorithm presented in Sec-
tion V-A1 requires the key in the query to be absolutely
identical to one key in the map. Thus, it is very sensitive
to changes in the key, i.e., the event-sequence. We alleviate
this rigorous selection criterion by storing all keys and the
corresponding values in a vector. We then loop through all
the elements and compare the sequence of the query to the
sequence stored in the vector. We return the value as a
recommendation that is most similar to the key in the query.

We evaluate the similarity with two distance measurements
for string values: the Levenshtein distance and the Jaccard
distance, as described in [13]. For the comparison, we treat
each event in the sequence as one letter.

a) Levenshtein distance: For two strings of length a
and b the Levenshtein distance is defined as:

dl =


if a = b, 0
otherwise, min

{
dlv
(
a, b1:|b|−1

)
+ 1 ,

dlv
(
a1:|a|−1, b

)
+ 1,

dlv
(
a1:|a|−1, b1:|b|−1

)
+ 1
} (2)

b) Jaccard distance: For the sets A and B each con-
taining all letters of the strings a and b, the Jaccard distance
is defined as:

dj (A,B) = 1− J (A,B) = 1− |A ∩B|
|A ∪B| (3)

with 0 ≤ dj(A,B) ≤ 1.
c) Some Examples: Table IV gives some examples by

comparing four different event sequences. Smaller numbers
in the distance columns indicate more similar sequences. The
values in the Jaccard and the Levenshtein columns use different
scales and are only comparable inside their respective column.

The first row shows the distances between two event
sequences having one event switched. The Jaccard distance
has the lowest possible value of 0, whereas the Levenshtein
distance returns 2 by a maximum possible value of 3.

170

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In the second example, only one event differs from another
element. Here the Jaccard distance returns 0.5 whereas the
Levenshtein distance returns 1.

The third row shows an example with one switched event
and one different event. Jaccard judges them with a distance
of 0.5 whereas Levenshtein returns 3. Although they are not
completely different Levenshtein returns its maximum value.

The last three rows show the performance on completely
different event sequences. Both distance measurements confirm
this dissimilarity.

In conclusion, the Jaccard distance is more robust if some
event sequences are switched. If both have a completely
different order but the same elements, they will be treated as
similar. Whereas the Levenshtein distance will treat them as
totally dissimilar in the worst case.

B. Recommendation using point sets

The approach described in Section V-A3 allows for dis-
turbance by not requiring a complete match between search
key and stored key. We can take this idea one step further
by regarding the data points in the fingerprint as a set of
n-dimensional points. For one timestamp every process and
operator value is one dimension.

As in Section V-A3, we store the point sets, i.e., the keys,
and the corresponding operator events, i.e., the values, in a
vector. We then loop through all the elements and compare
the sequence of the query to the sequence stored in the vector.
We return the value as a recommendation that is most similar
to the key in the query. The procedures to find the most similar
point set are described in the following sections.

1) Distance measurements for points: Bacher et al. [14]
propose several ways to compare two points in space.

a) Minkowski-Metric: For two points a and b with the
dimension i the Minkowski-Metric is defined as:

dm (a, b) =

[∑
i

|ai − bi|r
] 1

q

(4)

If we modify the two parameters q and r, we get different
distance measurements. In particular, we use:

• q = ∞ and r = ∞: Chebychev- or Maximum-
distance

• q = 1 and r = 1: Manhattan-distance

• q = 2 and r = 2: Euclidean-distance

• q = 1 and r = 2: Squared Euclidean-distance

TABLE IV. COMPARISON BETWEEN JACCARD AND LEVENSHTEIN
DISTANCE

EventSequence 1 (query) EventSequence 2 (key) Jaccard Levenshtein
T_1_A#T_3_C#AIn1_B T_1_A#Ain1_B#T_3_C 0 2
T_1_A#T_3_C#AIn1_B T_1_B#T_3_C#AIn1_B 0.5 1
T_1_A#Ain1_B#T_3_C T_1_B#T_3_C#AIn1_B 0.5 3
T_1_A#T_3_C#AIn1_B T_2_A#AIn2_C#T_4_D 1 3
T_1_A#Ain1_B#T_3_C T_2_A#AIn2_C#T_4_D 1 3
T_1_B#T_3_C#AIn1_B T_2_A#AIn2_C#T_4_D 1 3

b) Jaccard-Metric: The Jaccard similarity can be used
for sets, as described in Section V-A3. It can also be used for
points. Let a and b be two n-dimensional data points. With
i being one of the dimensions the Jaccard distance for two
points is defined as:

djp (a, b) = 1−
∑

i ai +
∑

i bi − 2
∑

i min (ai, bi)∑
i ai +

∑
i bi −

∑
i min (ai, bi)

(5)

c) Canberrra-Metric: The Canberra metric for two
points a and b with i being a dimension it is defined as:

dc (a, b) =
∑
i

|ai − bi|
ai + bi

(6)

Identical differences in the nominator result in a higher weight-
ing for small values of the denominator.

2) Distance measurements for point sets: In this section,
we discuss distances for point sets. The Hausdorff distance as
well as the Linkage measurements make use of point distances
presented in Section V-B1. Jaccard, Dice and Sokal-Sneath
distances on the other hand do not use them.

a) Hausdorff-Distance: The Hausdorff-distance defines
a similarity between two not empty sets A and B.

Let a be an element of set A and b an element of B. And d
being a distance defined in Section V-B1, the distance between
a and B is defined as:

DH (a,B) = min
b∈B

d (a, b) (7)

With this definition, the Hausdorff-distance between two sets
A and B can be expressed as:

dh (A,B) = max

{
max
a∈A

D (a,B) ,max
b∈B

D (b, A)

}
(8)

b) Single-, Complete- and Average-Linkage: These
metrics determine the distance from one point of one set to
all the other points of the second set.

The Single-Linkage method only uses the smallest distance
between two points of both sets. The Complete-Linkage on the
other hand uses the longest.

The Average-Linkage method calculates the arithmetic
mean of all point-to-point distances. This mean is taken as
the result.

Let A and B be two point-sets. Together with a and b being
points in A and B and d being a distance defined in V-B1, the
Single-Linkage can be written as:

DSL (A,B) = min
a∈A,b∈B

d (a, b) (9)

With the same notation, the Complete-Linkage can be
written as:

DCL (A,B) = max
a∈A,b∈B

d (a, b) (10)

Let |A| be the number of points contained in set A and
|B| the number of points in set B, then the Average-Linkage
is defined as:

DAL (A,B) =
1

|A| |B|
∑

a∈A,b∈B

d (a, b) (11)

171

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. GUIDANCE DISPLAY

As soon as the Recommender has found operator sequences
that fit the current fingerprint the GUI decodes the operator
event sequence and displays the recommendations as shown
in Figure 4.

On the left hand a list of currently raised alarm messages
is shown. The list on the top right shows the recommendations
found for the current fingerprint belonging to this alarm.
Underneath this lists the selected recommendation is displayed
with detailed actions that the operator has to take.

The recommendations can be scored by the operator. In
future this will help our algorithms to create better results.

Extruder: Change screw speed by -7.7 rpm

Figure 4. An example user guidance display

VII. QUALITY OF RECOMMENDATIONS

In the previous section we described a system for gener-
ating user guidance. Since this system has been designed to
interact with the operator during production it is not well suited
for comparative testing of different algorithms and parameter
sets lest we disrupt production or frustrate the operator. Instead
in this section, we use a “batch-mode”to automatically evaluate
our algorithms.

The batch-mode basically iterates through a long time se-
ries of PLC-variables and alarms. It triggers the recommender
for each alarm encountered during the iterations and requests
a recommendation. This recommendation is compared to the
operator sequence stored in the time series. This sequence
is taken as the expected recommendation or “truth” for this
particular alarm. If the recommendation is equal to the operator
sequence in the test-set the test is positive and Cpos is incre-
mented. If a different sequence is returned or the algorithm
returns nothing the test fails and Cneg is incremented. With
these two parameters we can calculate the Quality Qalg for
the algorithm:

Qalg =
Cpos

Cneg + Cpos
· 100% (12)

We need to train the recommender algorithms before feed-
ing them alarms. We generate the training data by dividing
the dataset into four subsets with an equal number of alarms.
One of these sets is taken as the test-set. The others are

TABLE V. DATASET 1: THE FIVE MOST FREQUENTLY RAISED ALARMS

Alarm number Alarm count With op-sequence Different op-sequences
1101 171 57 12
1012 107 86 19
12 106 53 19
22 106 49 16
2 59 30 10

combined into a training set. Thus, we can run four tests on
each of our algorithms by using the test-sets as training data.
The remaining sets of alarms and data are used to train the
algorithms.

The expression in Equation (12) ranges between 0 ≤
Qalg ≤ 100%. However, a closer look at the test-sets reveals
cases where an operator sequence only occurs in the test set
and not in the training set. Thus, the algorithm cannot learn this
recommendation and is not able to detect it correctly. Some
other keys have more than one associated value. In these cases
the algorithm is not able to decide which operator sequence
is the right one. Consequently the maximum possible score is
less than 100%.

For our evaluation, we use the data gathered during 5
minutes before the alarm to generate the fingerprint. The
operator sequence is generated for the duration of the alarm,
i.e., for the period of time in which the alarm condition is true.

A. Dataset 1 – Simulation
As a first dataset, we use a slightly extended version of the

data, we used in [1]. This dataset was obtained by operating
a simulation model of the production machine. It contains
NRows = 1, 150, 063 rows and NAlarms = 1, 254 alarms.

As in [1], we focus on alarm 1101. There are 171 instances
of this alarm in the dataset. For 57 of these instances, we
could generate the 12 different operator sequences shown in
Table VI. The remaining 114 occurrences of the alarm do not
contain operator sequences because the simulation was not
always operated properly.

8 of these operator sequences corresponding to 10 occur-
rences of alarm 1101 are only contained in one of the four
subsets. Thus these sets are either part of the training data or
of the test data. Therefore, we reduce the maximum possible
score from 57 to 47.

For the event based algorithms, we found 3 ambiguous
event sequences. Table XI shows all event sequences. The
ambiguous event sequences have more than one corresponding
operator sequence. We consider ambiguous sequences as un-
learnable. Our algorithm will always recommend the sequence

TABLE VI. DATASET 1: OPERATOR SEQUENCES

Frequency Operator Sequence Learnable
36 Loop1_3_SP_170 yes
7 Loop1_2_SP_170#Loop1_3_SP_170 yes
4 Loop1_4_SP_170 yes
2 Loop1_3_SP_250 no
1 Loop1_3_SP_225 no
1 AOUT1_1_OutValue_10 no
1 AOUT1_1_OutValue_29 no
1 AOUT1_1_OutValue_50 no
1 AOUT1_2_OutValue_9 no
1 Loop1_7_SP_250 no
1 Loop1_2_SP_250#Loop1_3_SP_250 no
1 Loop1_3_SP_170#Loop1_4_SP_170 no

172

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

with the highest frequency. Therefore, we subtract the number
of the other sequences from the maximum possible. In our
case this reduces the maximum possible by 10 to 37.

For event sequence based algorithms we get a maximum
possible score of

Qalg1evmax
=

37

57
· 100% ≈ 65% (13)

For the point based algorithms, we get a maximum score
of

Qalg1pmax
=

47

57
· 100% ≈ 82% (14)

B. Dataset 2 – Converted Data from real Machine
The second set of process- and operator values was taken

from a production machine. This dataset is identical to the
dataset we introduced in [12].

The database of that machine does not yet conform to our
interface standard and thus did not log the alarms. We resorted
to generating our own alarms based on process experts’ def-
initions for lower and upper bounds of process values. The
first occurrence of a value being outside the bounds was the
starting time for an alarm. The stopping time was taken the
moment the value was back inside the bounds.

The resulting database contains NRows = 1, 223, 992 rows
describing the machine state and NAlarms = 5, 667 alarms.
Table VII shows the five most frequent alarms in the dataset.
With the machine logging the data every 10 seconds, we have a
runtime of ≈ 3, 400 hours. This means, we have 1.7 alarms per
hour. According to H.N. Zapf GmbH & Co. KG, the project
partner operating the machine, this number seems to be very
high.

Not all alarms, we generated from the machine were useful
for our test. Some alarms were not followed by operator
events. We assume that these alarms are artifacts of our data
preparation algorithm. Other alarms obviously occurred at
the end of a production shift and consequently led to the
recommendation to shut down the machine. We chose alarm
225 for our evaluation.

Alarm 225 occurred 1949 times. For 277 instances of this
alarm, we could create a fingerprint and an operator sequence.

We assume that this difference is partly due to our self-
generated alarms and partly due to spurious and short alarms
that disappear without user intervention.

For these 277 instances of alarm 225, we generated the 22
operator sequences shown in Table VIII.

13 of these operator sequences corresponding to 46 event
sequences occur in only one of the four subsets. Consequently,
we reduce the theoretical maximum by 46. Furthermore, we
found 33 ambiguous event sequences shown in Table XII. We
subtract all but one of these ambiguous sequences except for

TABLE VII. DATASET 2: THE FIVE MOST FREQUENTLY RAISED
ALARMS

Alarm number Alarm count With op-sequence Different op-equences
225 1949 277 22
423 1059 70 43
122 763 243 93
123 503 149 69
214 238 142 81
213 109 76 60

TABLE VIII. DATASET 2: OPERATOR SEQUENCES FOR ALARM 225

Frequency Operator Sequence Learnable
54 AOut1_1_85# yes
53 AOut1_1_84# yes
30 AOut1_1_83# yes
30 AOut1_1_86# yes
20 AOut1_1_81# yes
17 AOut1_1_82# yes
16 AOut1_1_77# no
14 AOut1_1_87# yes
11 AOut1_1_80# yes
9 AOut1_1_76# no
7 AOut1_1_78# no
5 AOut1_1_79# no
2 AOut1_1_88# yes
1 AOut1_1_0#AOut2_1_6# no
1 AOut1_1_83#AOut2_1_64# no
1 AOut1_1_83#AOut2_1_98# no
1 AOut1_1_84#AOut2_1_98# no
1 AOut1_1_85#AOut2_1_98# no
1 AOut1_1_87#AOut2_1_73# no
1 AOut1_1_89# no
1 AOut1_1_91#Loop2_2_SP_230# no
1 AOut2_1_99# no

those that are already marked as not learnable because they are
appearing in only one subset. So, we have to subtract further
47 alarms.

For event based algorithms, we get a maximum score of:

Qalg2evmax
=

184

277
· 100% ≈ 66% (15)

For the point based algorithms, we get a maximum score
of:

Qalg2pmax
=

231

277
· 100% ≈ 83% (16)

C. Dataset 4 – Real Data
Dataset 4 was gathered on a new production machine

equipped with our system. The machine became fully produc-
tive a few weeks ago, so we now have NRows = 1, 062, 541
of data corresponding to a run time of ≈ 2, 951 hours. During
this time period, we found NAlarms = 10.431 alarms.

We could also conduct some interviews with operators
regarding the recommendations generated from the earlier
version of that dataset presented as dataset 3 in [12].

As a result of this discussion we now distinguish between
set-up operation and production. For now we focus on produc-
tion because the set-up operations are deemed too sensitive to
environmental influences not included in the process data. We
found NAlarms = 1446 alarms during operation.

Further investigation of our recommendations showed that
the gap between some alarms is less or equal to ten seconds.
To get operator sequences for these instances we decided to
combine two or more alarms if the gap between them is 10
seconds or less. We also removed alarms with a duration of
less than 10 seconds.

This gives us total of NAlarms = 358 alarms. For 194 of
these alarms we can generate an operator sequence. Table IX
lists the recommendations that occur more than once.

1) Dataset 4a – including ”no operation”: Previously
we ignored alarms without an operator event sequence. Our
interview partners assured us however, that sometimes the
appropriate operator action is to just wait for the alarm to clear

173

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IX. DATASET 4: OPERATOR SEQUENCES

Frequency Operator Sequence Learnable
164 no operator action yes
4 Meltpump.Output.Value -1.0# yes
4 Meltpump.Output.Value -9.0# yes
4 Meltpump.Output.Value -4.0# yes
4 Meltpump.Output.Value -2.0# yes
3 Meltpump.Output.Value -0.1# yes
3 Meltpump.Output.Value -3.0# yes
3 Meltpump.Output.Value -0.5# yes
3 Meltpump.Output.Value -5.0# yes
3 Meltpump.Output.Value -10.0# no
3 Tool.Temp1.SP 5.0# no
2 Meltpump.Output.Value -0.3# yes
2 Meltpump.Output.Value -0.2# yes
2 Meltpump.Output.Value 12.0# yes
2 Meltpump.Output.Value 4.0# yes
2 Meltpump.Output.Value -0.4# yes
2 Meltpump.Output.Value -5.8# yes
2 Tool.Temp2.SP 5.0# yes

Extruder.Temp3.SP 5.0#
2 Extruder.Temp4.SP 5.0# yes

Tool.Temp0.SP 5.0#
2 Tool.Temp3.SP -5.0# no
2 Meltpump.Output.Value -7.0# no
2 Meltpump.Output.Value -20.0# no
2 Tool.Temp1.SP 10.0# no

itself. Therefore, we include a ”do nothing”-recommendation
for alarms without operator event sequences.

Thus, we get get a maximum score for the point set based
algorithms:

Qalg4apmax
=

208

358
· 100% ≈ 58% (17)

And for the event sequence based ones:

Qalg4aevmax
=

198

358
· 100% ≈ 55% (18)

2) Dataset 4b – excluding ”no operation”: The 164 alarms
without operator event sequences constitute nearly half of our
alarms. Thus any algorithms recommending ”do nothing” will
achieve a high score. For a more detailed study of the other
recommendations we remove these alarms from the test sets.
This gives us a total of NAlarms = 195 alarms. The learnable
operator sequences are the same as in Table IX, only the first
line with the empty recommendation is not in the dataset any
more

If we determine which operator sequences are learnable we
get a maximum score for the point set based algorithms:

Qalg4bpmax
=

44

195
· 100% ≈ 23% (19)

And for the event sequence based ones:

Qalg4bevmax
=

38

195
· 100% ≈ 19% (20)

VIII. COMPARISON OF THE ALGORITHMS

After processing the three datasets through all of our
algorithms, we calculated the score for each dataset according
to Equation (12). Table X shows the results of our tests. As
discussed in Section VII the resulting values for Qalg are not
comparable between the datasets because of unlearnable and
ambiguous operator event sequences.

Equations (13) to (20) give the maximum possible score
for each dataset. With this score, we can normalize the results
as

Qalgrel =
Qalg

Qalgmax

· 100% (21)

To put the performance into perspective, we calculate the
performance of a simple approach that always recommends
the most frequent user sequence in the knowledge base. Such
an approach will propose a correct operator sequence for all the
alarms associated with the most frequent operator sequence:

Qsimple =
100%

NOpSeq
·NmostFreqOpSeq (22)

i.e.,

Qsimple1 =
100%

57
· 36 ≈ 63% (23)

Qsimple2 =
100%

277
· 54 ≈ 19% (24)

Qsimple4a
=

100%

208
· 164 ≈ 79% (25)

Qsimple4b
=

100%

44
· 4 ≈ 9% (26)

Figure 5 shows the normalized performance of the different al-
gorithms on the three datasets and for reference the normalized
scores of the simple approach.

The mapping algorithm introduced in [1] and V-A1 scored
≈ 63% on dataset 1. On dataset 2 it performed less with
only ≈ 12%. On dataset 4a it only gives a few correct
recommendations. On dataset 4b, however, it did not give
any correct recommendations. We attribute this lack of per-
formance to the fact that we have only a few identical event
sequences. Only operator sequences which are mapped at least
two times to identical event sequences can be discovered by the
simple mapping algorithm. In dataset 4a we found 38 operator
sequences which could be discovered by the simple mapping,
in dataset 4b instead it was only one operator sequence. In
total it scores less than the simple approach on all datasets
based on real data.

With ≈ 42% on dataset 2 the statistical filter performs
better than the simple approach and is almost on par with
the point based algorithms. It also shows good performance
on dataset 4a together with the Levenshtein String Matching
algorithm. However, in this case it is outperformed by the
simple algorithm. With 16.7 % on dataset 4b it shows the
best performance of all tested algorithms.

The point based algorithms score better on dataset 1 with
almost 90% and mostly > 40% on dataset 2. Dataset 4a,
however, proves difficult with ≈ 30 . . . 37%. On dataset 4b
the best results are near the simple algorithm or just a few
percent above.

A. Computing exigencies
1) Memory requirements: The recommendation algorithms

need to store keys and values for all past occurences of an
alarm.

In our test environment, we used a table with NColumns =
51 data columns in dataset 2 and 3 and NColumns = 250 in
dataset 1.

174

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Plain
Mapping

Hausdorff

Point-based algorithms

0102030405060708090

Ha
us
do
rf
f	+

	
M
an
ha
tta

n
Ha

us
do
rf
f	+

	
Ch

eb
yc
he
v
Ha

us
do
rf
f	+

	
Eu
cl
id
ea
n

Ha
us
do
rf
f	+

	
Sq
ua
re
d	

Eu
cl
id
ea
n

Ha
us
do
rf
f	+

	
Ca

nb
er
ra

M
ax
im

um
	

Li
nk
ag
e	
+	

M
an
ha
tta

n

M
ax
im

um
	

Li
nk
ag
e	
+	

Ch
eb
yc
he
v

M
ax
im

um
	

Li
nk
ag
e	
+	

Eu
cl
id
ea
n

M
ax
im

um
	

Li
nk
ag
e	
+	

Sq
ua
re
d	

Eu
cl
id
ea
n

M
ax
im

um
	

Li
nk
ag
e	
+	

Ca
nb
er
ra

St
rin

g	
M
at
ch
in
g	
+	

Le
ve
ns
ht
ei
n

St
rin

g	
M
at
ch
in
g	
+	

Ja
cc
ar
d

St
at
ist
ic
al
	

Fi
lte

r
Pl
ai
n	

M
ap
pi
ng

Da
ta
se
t	1

Da
ta
se
t	2

Da
ta
se
t	3

H
au

sd
or
ff

Po
in

t-b
as

ed
 a

lg
or

ith
m

s

M
an

ha
tta

n
C

he
by

ch
ev

Eu
cl

id
ea

n
Sq

ua
re

d
Eu

cl
id

ea
n

C
an

be
rra

M
an

ha
tta

n
C

he
by

ch
ev

Eu
cl

id
ea

n
Sq

ua
re

d
Eu

cl
id

ea
n

C
an

be
rra

St
rin

g
M

at
ch

in
Le

ve
ns

ht
ei

n

St
rin

g
M

at
ch

in
g

Ja
cc

ar
d

Ev
en

t-b
as

ed
 a

lg
or

ith
m

s

M
ax

im
um

 L
in

ka
ge

St
at

is
tic

al
Fi

lte
r

Pl
ai

n
M

ap
pi

ng

010203090 4050607080

Fi
gu

re
7.

N
or

m
al

iz
ed

re
su

lts
fo

r
va

ri
ou

s
re

co
m

m
en

de
r

al
go

ri
th

m
s

(l
ef

t
ba

rs
:

D
at

as
et

1,
m

id
dl

e
ba

rs
:

D
at

as
et

2,
ri

gh
t

ba
rs

:
D

at
as

et
3)

TA
B

L
E

V
II

.D
at

as
et

3:
T

he
fiv

e
m

os
t

fr
eq

ue
nt

ly
ra

is
ed

al
ar

m
s

A
la

rm
nu

m
be

r
A

la
rm

co
un

t
W

ith
op

-s
eq

ue
nc

e
D

iff
er

en
t

op
-e

qu
en

ce
s

21
.5

32
1

45
31

42
.0

12
1

9
9

36
.0

10
6

14
14

38
.0

82
2

2
18

.2
46

24
22

17
.3

43
28

25

E
qn

.
13

to
17

gi
ve

th
e

m
ax

im
um

po
ss

ib
le

sc
or

e
fo

r
ea

ch
da

ta
se

t.
W

ith
th

is
sc

or
e

w
e

ca
n

no
rm

al
iz

e
th

e
re

su
lts

as

Q
a
lg

r
e

l
=

Q
a
lg

Q
a
lg

m
a

x

·1
0
0%

(1
8)

Fi
g.

7
sh

ow
s

th
e

no
rm

al
iz

ed
pe

rf
or

m
an

ce
of

th
e

di
ff

er
en

t
al

go
ri

th
m

s
on

th
e

th
re

e
da

ta
se

ts
.

T
he

m
ap

pi
ng

al
go

ri
th

m
in

tr
od

uc
ed

in
[8

]
an

d
V

-A
1

is
ve

ry
se

le
ct

iv
e.

T
he

re
fo

re
it

do
es

no
tfi

nd
re

co
m

m
en

da
tio

ns
fo

r
da

ta
se

t
2

an
d

3.
O

ur
al

go
ri

th
m

s
ar

e
ab

le
to

re
co

m
m

en
d

th
e

op
er

at
or

ev
en

t
se

qu
en

ce
th

at
fit

s
th

e
si

tu
at

io
n

w
ith

an
ac

cu
ra

cy
of

>
20

%
.

TO
D

O
Pl

en
k:

Z
ah

l
no

ch
m

al
pr

ue
-

fe
n

W
hi

le
th

is
is

no
t

gr
ea

t
it

is
si

gn
ifi

ca
nt

ly
be

tte
r

th
an

a
re

co
m

-
m

en
da

tio
n

th
at

is
tie

d
to

th
e

al
ar

m
m

es
sa

ge
.S

uc
h

an
ap

pr
oa

ch
w

ou
ld

yi
el

d
a

sc
or

e
of

Q
s
im

p
le

=
10

0%

N
O

p
S

e
q
u

e
n

c
e
s

(1
9)

i.e
.,

fr
om

⇡
3
%

fo
r

da
ta

se
t

3,
⇡

5
%

fo
r

da
ta

se
t

2
to

⇡
14

%
fo

r
da

ta
se

t
1

.

A
.

C
om

pu
tin

g
ex

ig
en

ci
es

1)
M

em
or

y
re

qu
ir

em
en

ts
:

T
he

re
co

m
m

en
da

tio
n

al
go

ri
th

m
s

ne
ed

to
st

or
e

ke
ys

an
d

va
lu

es
fo

r
al

l
pa

st
oc

cu
re

nc
es

of
an

al
ar

m
.

In
ou

r
te

st
en

vi
ro

nm
en

tw
e

us
ed

a
ta

bl
e

w
ith

N
C

o
lu

m
n

s
=

51
da

ta
co

lu
m

ns
in

da
ta

se
t

2
an

d
3

an
d

N
C

o
lu

m
n

s
=

2
5
0

in
da

ta
se

t
1.

Fo
r

ev
er

y
fin

ge
rp

ri
nt

w
e

us
e

N
R

o
w

s
=

3
0

ro
w

s,
i.e

.,
N

R
o
w

s
=

30
da

ta
po

in
ts

pe
r

se
t.

Fo
r

th
e

da
ts

et
1

w
e

us
ed

al
ar

m
22

5
w

ith
27

6
oc

cu
re

nc
es

an
d

sp
lit

th
e

da
ta

in
to

fo
ur

te
st

se
ts

.T
he

te
st

da
ta

fo
r

ea
ch

te
st

se
t

co
nt

ai
ne

d
ro

un
d

ab
ou

t
N

A
la

r
m

s
=

21
0

po
in

t
se

ts
.

T
he

po
in

tb
as

ed
al

go
ri

th
m

s
st

or
e

N
R

o
w

s
·N

C
o
lu

m
n

s
do

ub
le

va
ri

ab
le

va
ri

ab
le

s
as

ke
ys

an
d

a
sm

al
l

nu
m

be
r

of
op

er
at

or
ev

en
ts

as
va

lu
es

.
T

hu
s

in
ou

r
w

or
st

ca
se

on
e

fin
ge

rp
ri

nt
us

es
30

·2
5
0

·8
b
y
te

⇡
60

k
b
y
te

of
m

em
or

y
fo

r
th

e
po

in
t

se
t

al
go

ri
th

m
s.

W
ith

an
ef

fic
ie

nt
co

di
ng

of
th

e
ev

en
ts

th
e

ev
en

tb
as

ed
al

go
-

ri
th

m
s

w
ill

us
e

co
ns

id
er

ab
ly

le
ss

m
em

or
y

fo
r

th
e

fin
ge

rp
ri

nt
.

In
1

G
b
y
te

of
m

em
or

y
w

e
ca

n
st

or
e

da
ta

fo
r
⇡

1
6
.0

00
al

ar
m

s.
A

t
a

ra
te

of
2

A
la

rm
s

h
w

hi
ch

is
co

ns
id

er
ed

a
ve

ry
hi

gh
ra

te
by

ou
r

pr
oj

ec
t

pa
rt

ne
r

th
is

co
rr

es
po

nd
s

to
⇡

8
0
0
0
h

of
op

er
at

io
n.

A
st

an
da

rd
co

m
pu

te
r

sh
ou

ld
ha

ve
en

ou
gh

m
em

or
y

fo
r

tw
o

ye
ar

s
of

op
er

at
io

n.

B
.

P
ro

ce
ss

in
g

tim
es

O
nc

e
th

e
da

ta
is

st
or

ed
,

th
e

al
go

ri
th

m
s

ha
ve

to
ite

ra
te

th
ro

ug
h

th
e

st
or

ed
ke

ys
to

id
en

tif
y

th
e

pr
op

er
re

co
rd

.

To
de

te
rm

in
e

th
e

di
st

an
ce

be
tw

ee
n

tw
o

se
ts

w
e

ha
ve

to
co

m
pa

re
ea

ch
da

ta
po

in
t

fr
om

on
e

se
t

w
ith

ea
ch

da
ta

po
in

t
fr

om
th

e
ot

he
r

se
t.

T
hi

s
re

su
lts

in
N

2 R
o
w

s
co

m
pa

ri
so

ns
.E

ve
ry

di
m

en
si

on
ha

s
to

be
co

ns
id

er
ed

in
th

e
di

st
an

ce
m

ea
su

re
m

en
ts

,
so

ov
er

al
la

co
m

pa
ri

so
n

of
tw

o
se

ts
w

ill
ta

ke
N

2 R
o
w

s
·N

C
o
lu

m
n

s

flo
at

in
g

po
in

t
op

er
at

io
ns

.
To

fin
d

a
ne

w
re

co
m

m
en

da
tio

n
th

e
ne

w
po

in
t

se
t

ha
s

to
be

co
m

pa
re

d
to

al
l

re
sp

ec
tiv

e
po

in
t

se
ts

in
th

e
st

or
ed

da
ta

re
su

lti
ng

in
N

2 R
o
w

s
·N

C
o
lu

m
n

s
·N

A
la

r
m

s

flo
at

in
g

po
in

t
op

er
at

io
ns

.

Fo
r

ou
r

te
st

on
e

re
co

m
m

en
da

tio
n

w
ill

ta
ke

ro
un

d
ab

ou
t

30
2

·2
50

·2
7
6

·3 4
⇡

4
6

m
ill

io
n

flo
at

in
g

po
in

t
op

er
at

io
ns

.

A
st

an
da

rd
co

m
pu

te
r

sh
ou

ld
ne

ed
si

gn
ifi

ca
nt

ly
le

ss
th

an
1

se
c

to
pr

od
uc

e
a

re
co

m
m

en
da

tio
n.

Manhattan Chebychev Euclidean Squared
Euclidean

Canberra Manhattan Chebychev Euclidean Squared
Euclidean

Canberra String
Matching

Levenshtein

String
Matching
Jaccard

Event-based algorithms

Maximum Linkage

Statistical
Filter Simple

Figure 5. Normalized results for various recommender algorithms (left bars: Dataset 1, second bars: Dataset 2, third bars: Dataset 4a, right bars: Dataset 4b)

For every fingerprint, we use NRows = 30 rows, i.e.,
NRows = 30 datapoints per set.

For the dataset 1, we used alarm 225 with 276 occurences
and split the data into four test sets. The test data for each test
set contained approximately NAlarms = 210 point sets.

The point based algorithms store NRows ·NColumns double
variables as keys and a small number of operator events as
values. Thus, in our worst case one fingerprint uses 30 · 250 ·
8 byte ≈ 60 kbyte of memory for the point set algorithms.

In 1Gbyte of memory, we can store data for ≈ 16.000
alarms. At a rate of 2Alarms

h , which is considered a very
high rate, this corresponds to ≈ 8000h of operation. A
standard computer should have enough memory for two years
of operation.

With an efficient coding of the events the event based algo-
rithms will use considerably less memory for the fingerprint.

B. Processing times

Once the data is stored, the algorithms have to iterate
through the stored keys to identify the proper record.

To determine the distance between two sets, we have to
compare each data point from one set with each data point
from the other set. For point based algorithms this results in
N2

Rows comparisons. Every dimension has to be considered in
the distance measurements, so overall a comparison of two sets
will take N2

Rows ·NColumns floating point operations. To find a
new recommendation the new point set has to be compared to
all respective point sets in the stored data resulting in N2

Rows ·
NColumns ·NAlarms floating point operations.

For our test one recommendation will take round about
302 · 250 · 276 · 34 ≈ 46 million floating point operations.

A standard computer should need significantly less than
1 sec to produce a recommendation.

Event based algorithms do not have to compare all points
but just the events generated from the points. The processing
for the event generation is run only once prior to the iteration
through the stored keys and therefore does not significantly
increase the total processing time.

IX. CONCLUSION AND FUTURE WORK

We presented a system to extract knowledge from data
logged during the operatiom of a production machine. Three
systems have been linked to actual production machines and
have started to collect data.

Based on the scoring introduced in [12] we have shown that
our recommender algorithms outperform a simple algorithm by
a factor of 2 on some datasets. On the real data in our latest
dataset they lack performance.

That being said, we want to point out that all algorithms
need the operator sequences, we generate from the logged data.
On dataset 4b we found 195 alarms with 159 different operator
sequences. This shows that our approach is able to extract
operator-knowledge from the logged data. Table IX shows that
we still only have a few cases for each operator sequence. We
hope that with more data we will also find more cases for these
operator sequences, not just more different operator sequences.

Alarm conditions in the real data sometimes overlap each
other, e.g., a warning for exceeding a first temperature level
(high-alarm) and a second more urgent warning for exeeding
a second higher temperature level (high-high-alarm). In these
cases we generate several, usually identical, operator sequences
and consequently generate multiple recommendations that
might confuse the operator. Therefore, we plan to generate
operator sequences without considering the alarms.

175

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This approach will also permit us to identify situations that
need operator action without the machine raising an alarm.
This may help us to incite operators to fix potential problems
before the machine detects them. Maybe, we can even indicate
problems that the machine itself can not identify.

ACKNOWLEDGMENT

We thank our industry partners Hans Weber Maschinen-
fabrik GmbH, H.N. Zapf GmbH & Co. KG and Rehau AG &
Co. KG for giving us access to their machines and feedback
on our software.

This work is funded by Hof University’s research center
for car infotainment and man-machine-interfaces.

REFERENCES
[1] V. Plenk, “Improving special purpose machine user-interfaces by

machine-learning algorithms,” in Proceedings of CENTRIC 2016 : The
Ninth International Conference on Advances in Human-oriented and
Personalized Mechanisms, Technologies, and Services, Rome, August
2016, pp. 24 – 28.

[2] V. Plenk, “A benchmark for embedded software processes used by
special-purpose machine manufacturers,” in Proceedings of the Third
international Conference on Software Engineering Advances. Los
Alamonitos: CPS, 2008, pp. 166 – 171.

[3] H. J. C. et al., “Learning styles diagnosis based on user interface
behaviors for the customization of learning interfaces in an intelligent
tutoring system,” in Proceedings of the 8th International Conference on
Intelligent Tutoring Systems (ITS 2006). Jhongli, Taiwan: Springer,
June 26-30 2006, pp. 513 – 524.

[4] B. D. Davison and H. Hirsh, “Predicting sequences of user actions,” in
AAAI Technical Report WS-98-07, 1998, pp. 5 – 12.

[5] P. K. Wonga, J. Zhonga, Z. Yanga, and C. M. Vong, “Sparse bayesian
extreme learning committee machine for engine simultaneous fault
diagnosis,” in Neurocomputing, 2016, pp. 331 – 343.

[6] K. Zidek, A. Hosovsky, and J. Dubjak, “Diagnostics of surface errors
by embedded vision system and its classification by machine learning
algorithms,” in Key Engineering Materials, 2015, pp. 459 – 466.

[7] J. Luo, C.-M. Vong, and P.-K. Wong, “Sparse bayesian extreme learning
machine for multi-classification,” in IIEEE Transactions on Neural
Networks and Learning Systems, 2014, pp. 836 – 843.

[8] A. Ziaja, I. Antoniadou, T. Barszcz, W. J. Staszewski, and K. Worden,
“Fault detection in rolling element bearings using wavelet-based vari-
ance analysis and novelty detection,” Journal of Vibration and Control,
vol. 22, no. 2, February 2016, pp. 396–411.

[9] C. Challiol, A. Fortier, S. Gordillo, and G. Rossi, “A Flexible Archi-
tecture for Context-Aware Physical Hypermedia,” in 18th International
Workshop on: Database and Expert Systems Applications, 2007. DEXA
’07., September 2007.

[10] S. Sigg, S. Haseloff, and K. David, “Context Prediction by Alignment
Methods,” in Proceedings of the 4th International Conference on Mobile
Systems, Applications, and Services (MobiSys 2006), June 2006.

[11] S. Sigg, D. Gordon, G. von Zengen, M. Beigl, S. Haseloff, and
K. David, “Investigation of Context Prediction Accuracy for Different
Context Abstraction Levels,” IEEE Transactions on Mobile Computing,
vol. 11, no. 6, June 2012, pp. 1047 – 1059.

[12] V. Plenk, S. Lang, and F. Wogenstein, “Scoring of machine-learning
algorithms for providing user guidance in special purpose machines,”
in Proceedings of CENTRIC 2017: The Tenth International Conference
on Advances in Human-oriented and Personalized Mechanisms, Tech-
nologies, and Services, Athens, October 2017.

[13] M. P. J. van der Loo, “The stringdist Package for Approximate String
Matching,” The R Journal, vol. Vol. 6/1, 2014, pp. 111 – 122.

[14] J. Bacher, A. Pöge, and K. Wenzig, Clusteranalyse - Anwendungsorien-
tierte Einführung in Klassifikationsverfahren. München: Oldenbourg,
2010.

[15] J. Lunze, Ereignisdiskrete Systeme. München: Oldenbourg, 2006.

176

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

APPENDIX A

TABLE X. RESULTS OF OUR TESTS (NON NORMALIZED)

Dataset 1 Dataset 2
Algorithm Cpos Cneg Qalg1 Cpos Cneg Qalg2
Plain Mapping 30 6 (21) 1 52.6 31 67 (179)1 11.2
Statistical Filter 9 37 (11) 1 15.8 100 133 (44)1 36.1
String Matching + Jaccard 30 6 (21) 1 52.6 73 104 (100) 1 26.5
String Maching + Levenshtein 36 21 63.2 37 240 13.6
Hausdorff + Manhattan 33 24 57.9 94 183 33.9
Hausdorff + Chebychev 36 21 63.2 87 190 31.4
Hausdorff + Euclidean 33 24 57.9 88 189 31.8
Hausdorff + Squared Euclidean 33 24 57.9 88 189 31.8
Hausdorff + Canberra 31 26 15.8 91 186 32.9
Average Linkage + Manhattan 32 25 56.1 83 194 30
Average Linkage + Chebychev 26 31 45.6 80 197 28.9
Average Linkage + Euclidean 26 31 45.6 83 194 30
Average Linkage + Squared Euclidean 32 25 56.1 83 194 30
Average Linkage + Canberra 32 25 56.1 84 193 30.3
Single Linkage + Manhattan 21 36 36.8 93 184 33.6
Single Linkage + Chebychev 21 36 36.8 81 196 29.2
Single Linkage + Euclidean 21 36 36.8 84 193 30.3
Single Linkage + Squared Euclidean 21 36 36.8 84 193 30.3
Single Linkage + Canberra 21 36 36.8 78 199 28.2
Maximum Linkage + Manhattan 35 22 61.4 100 177 36.1
Maximum Linkage + Chebychev 23 34 40.4 55 222 19.9
Maximum Linkage + Euclidean 36 21 63.2 78 199 28.2
Maximum Linkage + Squared Euclidean 36 21 63.2 78 199 28.2
Maximum Linkage + Canberra 36 21 63.2 82 195 29.6

Dataset 4 a Dataset 4 b
Algorithm Cpos Cneg Qalg4a

Cpos Cneg Qalg4b
Plain Mapping 2 2 (354) 1 0.6 0 0 (195)1 0
Statistical Filter 86 203 (69) 1 24.0 5 147 (43)1 2.6
String Matching + Jaccard 10 7 (341) 1 2.8 0 3 (192) 1 0
String Maching + Levenshtein 88 270 24.6 3 192 1.5
Hausdorff + Manhattan 60 298 16.8 4 191 2.0
Hausdorff + Chebychev 72 286 20.1 0 195 0
Hausdorff + Euclidean 75 283 21.0 2 193 1.0
Hausdorff + Squared Euclidean 75 283 21.0 2 193 1.0
Hausdorff + Canberra 71 287 19.8 3 192 1.5
Average Linkage + Manhattan 44 314 12.3 2 193 1.0
Average Linkage + Chebychev 45 313 12.6 0 195 0
Average Linkage + Euclidean 48 310 13.4 0 195 0
Average Linkage + Squared Euclidean 50 308 14.0 1 194 0.5
Average Linkage + Canberra 87 271 24.3 0 195 0
Single Linkage + Manhattan 45 313 12.6 3 192 1.5
Single Linkage + Chebychev 57 301 15.9 3 192 1.5
Single Linkage + Euclidean 48 310 13.4 1 194 0.5
Single Linkage + Squared Euclidean 48 310 13.4 1 194 0.5
Single Linkage + Canberra 85 273 23.7 1 194 0.5
Maximum Linkage + Manhattan 54 304 15.1 1 194 0.5
Maximum Linkage + Chebychev 78 280 21.8 2 193 1.0
Maximum Linkage + Euclidean 47 311 13.1 0 195 0
Maximum Linkage + Squared Euclidean 47 311 13.1 0 195 0
Maximum Linkage + Canberra 57 301 15.9 1 195 0

1The first value is the number of wrong recommendations. The value in parentheses is the amount of cases in which the algorithm is unable to find a
recommendation. For scoring both numbers are added, i.e., Cneg = Val + (Val).

177

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XI. DATASET 1: EVENT SEQUENCES AND OPERATOR SEQUENCES

EventSequence Operator Sequence Frequency Learnable
Empty1 Loop1_3_SP_225 1 no

Loop1_3_SP_250 2 no
AOUT1_1_OutValue_29 1 no
Loop1_3_SP_170 2 yes
Loop1_2_SP_170#Loop1_3_SP_170 1 yes
Loop1_2_SP_250#Loop1_3_SP_250 1 no
AOUT1_1_OutValue_10 1 no

Loop1_4_PV_B#Loop1_4_PV_X Loop1_4_SP_170 1 yes
Loop1_3_SP_0.0 Loop1_3_SP_170 28 yes

Loop1_2_SP_170#Loop1_3_SP_170 6 yes
Loop1_4_PV_H#Loop1_4_SP_50.0# Loop1_4_SP_170 1 yes
Loop1_4_PV_G#Loop1_4_PV_F
Loop1_4_SP_0.0 Loop1_4_SP_170 2 yes
Loop1_2_SP_0.0#Loop1_4_SP_0.0 Loop1_3_SP_170#Loop1_4_SP_170 1 no

Loop1_3_SP_170 2 yes
Loop1_3_SP_10.0 Loop1_3_SP_170 1 yes
Loop1_4_PV_H#Loop1_5_PV_H# Loop1_7_SP_250 1 no
Loop1_6_PV_H#Loop1_7_SP_50.0
Loop1_3_SP_60.0 Loop1_3_SP_170 3 yes
AIN2_1_Value_G#MP1_Value_G#MT1_Value_F#
MP1_Value_F#AIN2_1_Value_F#MP1_Value_B# AOUT1_2_OutValue_9 1 no
MT1_Value_E#MP1_Value_C
MP1_Value_E#MP1_BandMin_E#MP1_BandMax_E#
Loop1_6_PV_E#Loop1_6_PV_F#Loop1_6_PV_E#
Loop1_6_PV_D#Loop1_6_PV_C#Loop1_6_PV_B# AOUT1_1_OutValue_50 1 no
Loop1_6_PV_A#MP1_BandMax_F#MP1_Value_H#
MP1_BandMax_H#MP1_BandMin_F

1In our simulation empty event sequences can occur when an alarm is generated by changing the alarm condition. This happens during testing or demonstration.

178

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XII. DATASET 2: AMBIGIOUS EVENT SEQUENCES

Event- Operator- Frequency Learnable Event- Operator- Frequency Learnable
Sequence Sequence Sequence Sequence
1 AOut1_1_84# 2 yes 18 AOut1_1_86# 2 yes

AOut1_1_82# 1 yes AOut1_1_87# 1 yes
2 AOut1_1_86# 3 yes 19 AOut1_1_85# 5 yes

AOut1_1_87# 1 yes AOut1_1_85#AOut2_1_98# 1 no
AOut1_1_85# 1 yes AOut1_1_84# 1 yes

3 AOut1_1_86# 2 yes 20 AOut1_1_82# 1 yes
AOut1_1_87# 1 yes AOut1_1_81# 1 yes

4 AOut1_1_84# 5 yes 21 AOut1_1_85# 1 yes
AOut1_1_85# 4 yes AOut1_1_87# 1 yes

5 AOut1_1_83# 2 yes 22 AOut1_1_87# 3 yes
AOut1_1_85# 2 yes AOut1_1_85# 1 yes
AOut1_1_84# 1 yes AOut1_1_86# 1 yes

6 AOut1_1_80# 2 yes 23 AOut1_1_83# 1 yes
AOut1_1_79# 1 no AOut1_1_81# 1 yes

7 AOut1_1_87# 1 yes 24 AOut1_1_81# 2 yes
AOut1_1_86# 1 yes AOut1_1_80# 1 yes

8 AOut1_1_85# 1 yes 25 AOut1_1_85# 1 yes
AOut1_1_84# 1 yes AOut1_1_86# 1 yes

9 AOut1_1_83# 1 yes 26 AOut1_1_80# 3 yes
AOut1_1_84# 1 yes AOut1_1_81# 1 yes

10 AOut1_1_84# 2 yes 27 AOut1_1_84# 1 yes
AOut1_1_83# 1 yes AOut1_1_85# 1 yes

11 AOut1_1_82# 1 yes 28 AOut1_1_77# 3 no
AOut1_1_83# 2 yes AOut1_1_78# 1 no

12 AOut1_1_86# 2 yes 29 AOut1_1_85# 1 yes
AOut1_1_88# 1 yes AOut1_1_86# 1 yes
AOut1_1_87# 1 yes AOut1_1_84# 2 yes

13 AOut1_1_87# 1 yes 30 AOut1_1_82# 1 yes
AOut1_1_86# 1 yes AOut1_1_81# 1 yes

14 AOut1_1_86# 2 yes 31 AOut1_1_85# 1 yes
AOut1_1_87# 1 yes AOut1_1_86# 1 yes

15 AOut1_1_85# 2 yes 32 AOut1_1_83# 1 yes
AOut1_1_86# 2 yes AOut1_1_85# 1 yes

16 AOut1_1_84# 1 yes 33 AOut1_1_84# 1 yes
AOut1_1_83# 1 yes AOut1_1_83# 1 yes
AOut1_1_85# 1 yes AOut1_1_85# 2 yes
AOut1_1_82# 1 yes

17 AOut1_1_83# 1 yes
AOut1_1_85# 7 yes
AOut1_1_84# 3 yes

179

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

