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Abstract—In this paper, we present the idea to use the nat-
ural language as the user interface for programming tasks.
Programming languages assist with repetitive tasks that involve
the use of conditionals, loops and statements. However, users
can easily describe tasks in their natural language. We aim to
develop a Natural Language User Interface that enables users to
describe algorithms, including statements, loops, and conditionals.
For this, we extend our current spreadsheet system to support
control flows. Although far from perfect, this research might
lead to fundamental changes in computer use. With natural
language, programming would become available to everyone. We
believe that it is a reasonable approach for end-user software
engineering and will, therefore, overcome the present bottleneck
of IT proficients.
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I. INTRODUCTION

Since their invention, digital computers have been pro-
grammed using specialized, artificial notations, called pro-
gramming languages. Programming requires years of training.
However, only a tiny fraction of human computer users can
actually work with those notations. With natural language and
end-user development methods, programming would become
available to everyone and enable end-users to program their
systems or extend it without any knowledge of programming
languages. This vision forms the basis for our natural language
user interface [1]. Already in 1987, Tichy discussed that AI
techniques are useful for software engineering, pointing out
the potential of natural language processing [2] and natural-
language help systems [3].

According to Liberman [4], the main question in the End-
User Development area of research is how to allow non-
programming users, who have no access to source code,
to program a computer system or extend the functionality
of an existing system. Similar to programming languages,
our natural language contains all necessary prerequisites to
describe an algorithm. However, although you already have
the required ability in its core, you have to go through a
lengthy learning process in order to master a programming
language. Our idea is that, in the future, it will no longer be
necessary. The goal is to create a way for the computer to
deal directly with natural language. Therefore its necessary to
identify and use these similarities between our natural language
and the programming language. In general, the system adapts
to us and we don’t have to go the tedious way through a

programming language anymore. Through this paradigm shift
natural language would enable almost anyone to program and
would thus cause a fundamental shift in the way computers are
used. Rather than being a mere consumer of programs written
by others, each user could write his or her own programs [5].
However, programming in natural language remains an open
challenge [6].

We are working on the Natural Language User Interface
(NLUI) that expects natural language input, interprets it in the
context of programming and delivers a valid output for this
via the dialog system (see Figure 1).

Figure 1. User Interface of the natural language dialog system

In our prototype, we decided to address spreadsheets for
several reasons:

• a lot of open data available [7]

• easy to manipulate data

• well-known and well-distributed

In general, spreadsheets have been used for at least 7000
years [8]. Myers [9] and Scaffidi [10] compared the number of
end users and professional programmers in the United States.
Nearly 90 million people use computers at work and 50 million
of them use spreadsheets. In a self-assessment 12 million
considered themselves as programmers, but only 3 million
people are professional programmers. The created spreadsheets
are not only the traditional tabular representation of relational
data that convey information space efficiently, but also allow a
continuous revision and formula-based data manipulation. It is
estimated that users create hundreds of millions of spreadsheets
each year [11].
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Our paper is structured as following: Section II presents
related work in the research areas of programming in natural
language, End-User Programming and natural language dialog
systems. Section III describes our work on NLUI: pilot study,
dialog system, data representation, analysis of data, and finally,
control flows. Section IV evaluates latest prototype in an user
study. Finally, Section V presents a conclusion of our topic
and future work.

II. RELATED WORK

The idea of programming in natural language was first pro-
posed by Sammet in 1966 [12], but enormous difficulties have
resulted in disappointingly slow progress. One of the difficul-
ties is that natural language programming requires a domain-
aware counterpart that asks for clarification, thereby overcom-
ing the chief disadvantages of natural language, namely am-
biguity and imprecision. In recent years, significant advances
in natural language techniques have been made, leading, for
instance, to IBM’s Watson [13] computer winning against the
two world champions in a quiz game called Jeopardy!, where
general knowledge is presented in the form of answers and
the candidates must phrase the belonging questions, Apple’s
Siri routinely answering wide-ranging, spoken queries, and
automated translation services such as Google’s becoming
usable [14][6]. In 1979, Ballard et al. [15][16][17] introduced
their Natural Language Computer (NLC) that enables users to
program simple arithmetic calculations using natural language.
Although NLC resolves references as well, there is no dialog
system. Metafor introduced by Liu et al. [18] has a different
orientation. Based on user stories the system tries to derive
program structures to support software design. A different
approach regarding software design via natural language is
taken by RECAA [19]. RECAA can automatically derive UML
models from the text and also keep model and specification
consistent through an automatic feedback component. A lim-
ited domain end-to-end programming is introduced by Le.
SmartSynth [20] allows synthesizing smartphone automation
scripts from natural language description. However, there is
no dialog interaction besides the results output and error
messages.

Initially, Cypher [21] used unstructured text for their re-
search. But later found out that the unstructured approach
caused too many false interpretations. Their approach, called
sloppy programming, uses a specific grammar, based on an
existing set of scripts and allows users to enter something
simple and natural. Controlled natural language (CNL) is
similar, in that it is simple and natural enough, yet it restricts
the grammar, and requires the user to learn the restrictions
from examples and by feedback. Gordon [22][23] works on
scenario-based programming directly in a controlled natural
language. They also believes that a natural language interface
to an intuitive programming language may play a major role in
programming. [24] translates use-case templates written a CNL
to process algebra. Similar to our work, they have implemented
the prototype in a Microsoft Word plug-in. It checks adherence
of use-case specifications to a CNL grammar and translates
them into process algebra. Understanding of natural language
by a computer system is a complicated problem and has been
studied widely [25]. Command & control systems [26] [27]
can retrieve answers that may be given in natural language,
or sometimes in more appropriate forms. Smarter applications

can take into account the moving speed of the mobile phone
and provide a more relevant answer. These Activities like
schedule dinner in a restaurant, however, are not programming.
Such natural language interactions [28] can be carried out
using voice or natural text interfaces. Vadas et al. [29] create
runnable programs code from unrestricted natural language.
It is inspired by [18] and uses deep semantics derived by
a parser for combinatory categorical grammars (CCG). As
with NaturalJava, the user must know the target programming
language. Furthermore, Mihalcea et al. [30] handles effectively
some aspects of procedural programming, e.g., steps and loops.

Paternò [31] introduces the motivations behind end-user
programming defined by Liberman [4] and discusses its basic
concepts, and reviews the current state of art. Various ap-
proaches are discussed and classified in terms of their main
features and the technologies and platforms for, which they
have been developed. In 2006, Myers [9] provides an overview
of the research in the area of End-User Programming. As he
summarized, many different systems for End-User Develop-
ment have already been realized [32][33][34]. However, there
is no system such as our prototype that can be controlled with
natural language. During a study in 2006, Ko [32] identi-
fies six learning barriers in End-User Programming: design,
selection, coordination, use, understanding and information
barriers. In 2008, Dorner [35] describes and classifies End-
User Development approaches taken from the literature, which
are suitable approaches for different groups of end-users.
Implementing the right mixture of these approaches leads
to embedded design environments, having a gentle slope of
complexity. Such environments enable differently skilled end-
users to perform system adaptations on their own. Sestoft [36]
increases expressiveness and emphasizing execution speed of
the functions thus defined by supporting recursive and higher-
order functions, and fast execution by a careful choice of
data representation and compiler technology. Cunha [37] real-
izes techniques for model-driven spreadsheet engineering that
employs bidirectional transformations to maintain spreadsheet
models and synchronized instances. Begel [38] introduces
voice recognition to the software development process. His
approach uses program analysis to dictate code in natural
language, thereby enabling the creation of a program editor
that supports voice-based programming.

NLyze [39], an Add-In for Microsoft Excel that has been
developed by Gulwani, Microsoft Research, at the same time as
our system. It enables end-users to manipulate spreadsheet data
by using natural language. It uses a separate domain-specific
language for logical interpretation of the user input. Instead of
recognizing the tables automatically, it uses canonical tables,
which should be marked by the end-user. Another Gulwani’s
tool QuickCode [40] deals with the production of the program
code in spreadsheets through input-output examples provided
by the end-user [34]. It automates string processing in spread-
sheets using input-output examples and splits the manipula-
tions in spreadsheet by entering examples. The focus of his
work is on the synthesizing of programs that consist of text
operations. Furthermore, many dialog systems have already
been developed. Commercially successful systems, such as
Apple’s Siri, actually based on active ontology [41], and
Google’s Voice Search [42][43] cover many domains. Refer-
ence resolution makes the systems act natural. However, there
is no dialog interaction. The Mercury system [44] designed by
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the MIT research group is a telephone hotline for automated
booking of airline tickets. Mercury guides the user through
a mixed initiative dialog towards the selection of a suitable
flight based on date, time and preferred airline. Furthermore,
Allen [45] describes a system called PLOW developed at
Stanford University. As a collaborative task agent PLOW can
learn to perform certain tasks, such as extracting specific
information from the internet, by demonstration, explanation,
and dialog.

III. NATURAL LANGUAGE USER INTERFACE

In 1979, Ballard et al. [15][16][17] introduced the Natural
Language Computer (NLC) that enables end-users to program
simple arithmetic calculations using natural language. This
section describes different research steps of our work on NLUI
prototype.

A. Pilot Study

Initially, we needed to see how real users would interact
with spreadsheets in natural language. For this purpose, we
recruited subjects and asked them to describe how to solve
problems with the aid of a spreadsheet. Spreadsheets with
data were provided together with the problems. The subjects
were asked to imagine explaining to a human partner how to
solve a given problem and to write down what they would say.
Even though there were no suggestions to ask the imaginary
partner for help, many participants did just that. The problems
to be solved were selected from the first four chapters of the
textbook Excel 2013 Step by Step [46]. The study consists
of 35 questions, six of, which are mathematical problems
(i.e., calculation of sum and average, rounding decimal val-
ues, copying an existing formula to other cells, conditional
functions) and six are data and document manipulation tasks
(i.e., inserting and sorting of columns, creating tables and
diagrams, labeling cells). Other questions dealt with experience
with spreadsheets and familiarity with certain functions.

Figure 2. Architecture Overview.

B. Dialog System

Motivated by our pilot study on the natural language
prototype, it became clear that a dialog between humans and
the computer is required. Suendermann [47] states that in
a natural-language dialog system, language perception, and
speech production interact with a number of other components.
A dialog system is able to communicate with a software system
in another language, called meta-language. In general, a dialog
system consists of a series of three units, a speech analysis
unit for the perception of the natural language input, a dialog
management unit for controlling the dialog process, and a
speech synthesis unit.

In 2015, first prototype of an assistant has been presented
that uses natural language understanding and a dialog man-
agement system to allow inexperienced users to manipulate
spreadsheets with natural language [48]. The system requests
missing information and is able to resolve ambiguities by
providing alternatives to choose from. Furthermore, the dialog
system must resolve references to previous results, allowing the
construction of complex expressions step-by-step. The system
architecture consists of a user interface responsible for human
interaction, as well as a natural language understanding and
a dialog management unit (see Figure 2). In a first step, the
natural language understanding unit (NLU) performs essential
language analysis relying on a basic vocabulary specifically
built to cover the system’s domain. Synonyms are substituted
using a handcrafted synonym database. Mathematical terms
and numerical values as well as references to regions within
the spreadsheet are tagged. In the following step, the system
groups elements representing a sentence or clause to enable
subsequent analysis to perform their work sentence by sen-
tence. With all these adjustments the given example yields
a single sentence illustrated in Figure 3 is mapped to a tree
structure.

Please(Request) calculate(Calculation) the(Article)

sum(Operator) of(Possession) column(Positioning)

FinalExam(ReferenceTableColumn) divided(Operator)

by(Specification) 11(Number)

Figure 3. Example of an annotated user input.

Following this, the semantic meaning of any annotated
sentence is derived. For this purpose patterns were designed
with each pattern consisting of a sequence of keywords and
placeholders. The latter can either take a single column, row,
cell, number, or arbitrary elements of any type. All patterns
are compared with each clause matching the keyword. As part
of the given example the pattern sum matches the first clause,
with keywords add and to, and placeholders any (see Figure 4).
The placeholders are filled with the respective elements (4 and
A1). By successively matching additional patterns within the
placeholder elements, more complex sentences can be trans-
formed into a semantic representation. It builds a tree structure
consisting of operators and operands which makes it easy
to determine whether a valid arithmetic expression has been
provided (see Figure 5). Entirely identified patterns are mapped
onto spreadsheet formulas, with the respective placeholders
serving as operands, while others have to be processed by the
dialog management unit. Incompletely matched patterns are
handled by the DMU.
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Figure 4. Examplary pattern matching

The purpose of the dialog management unit (DMU) is to
deal with the tree structure that has been created by the NLU
unit, resolve references, create a valid spreadsheet formula and
generate a human-like response to the user input.

Reference

Product

7 Sum

4 A1

Product

7

4

Sum

A1

Figure 5. Reference resolution to the previous calculation

Figure 6 shows the process of each user input through
three dialog system interpretation stages: contextual, general
and fallback. The contextual interpretation runs if the system
expects an user answer for missing information or for state-
ment of insert the formula into the spreadsheet. It is always
executed before the general interpretation and tries to find
a match to the previously posed question within the current
user input. For this purpose a set of values from the current
conversational context stores all information that might help
with dialog decisions. The current context together with any
information on previous dialog iterations is presented by a
history that keeps track during prolonged conversations with
multiple iterations.

Figure 6. Dialog Management Unit.

Each time a new request is entered by the user, the history
is extended by a new context representing the new input. If
the user input is not directly related to an earlier iteration,
the general interpretation module tries to interpret the entire
NLU data structure concerning mathematical operations. If no
mathematical topic could be identified, a rudimental fallback
interpretation module tries to decide whether the user posed

a question or stated a request. Based on the result a universal
output is generated that attempts to guide the user towards a
well-interpreted input. The main task of the general interpre-
tation is to interpret the roughly structured NLU data structure
and to generate a well-formed representation. Since the NLU
result might consist of multiple possible ways of understanding
the input, this step should be performed independently for each
interpretation.

Figure 7. Resolution of references.

Furthermore, the interpretation process deals with resolving
references to other clauses inside one sentence or to the topics
of previous inputs. In a conversation between humans words
like this, that or it usually refer to the most recent subject (see
Figure 7). The systems approach works in a similar way and
tries to replace a reference by information that fits the con-
versational context. In order to prevent extensive ambiguities,
only elements that turned out to represent a valid formula are
taken into account. If multiple results are interpreted as valid,
the user has to choose the required calculation.

Besides the interpretations stages, the DMU performs gen-
eration of a result and command execution. Furthermore, it
responses to the user input as a human-like dialog system.
If the operation tree structure found in the current context
contains one or more valid operations, the module hands
all those over to the response generation module, which
will then generate a suitable answer. The response planning
module handles the generation of a set of abstract response
segments that will be phrased in natural language. In this
connection a response phrasing database is used to support the
automated phrasing process. A single sentence is represented
by a response segment that abstractly specified all required
parameters. Those parameters will be later integrated at a
certain position in the response. As seen in Figure 8, each
segment consists of one or more rules indicated by ’*’. A rule
consists of one or more alternative phrases that are picked
randomly. The same applies for vocabulary entries representing
a single word that are indicated by ’#’.

Figure 8. Response Phrasing Database.
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Finally, the response phrasing module takes care of generat-
ing a string from prepared segments. In case of one valid result
without target specification our system choose the segment
OutputSingleFormula. This segment uses the formula and its
natural language expression as parameters and applies the two
rules SingleValidFormula and TargetingQuestion.

The rules choose randomly the vocabulary entries calcu-
lating and need:

For calculating the sum of column FinalGrade divided by 11
you need the formula (SUM(Grades[FinalGrade])/11).

Should I put that to the worksheet?

The evaluation of the prototype exceeded expectations.
80% of 170 tasks have been solved successfully. The system
helped users to solve tasks and received positive feedback
from nearly two thirds of the users. Inspired by the Turing
Test [49], the authors asked 17 independent spreadsheet users
to formulate requests for particular calculation tasks. Each
task was answered by both, the prototype and a human,
independently. Afterwards, the participants were encouraged to
identify the computer generated response. This however turned
out to be surprisingly hard to decide. With 34 decisions made
in total, 47.1% falsely identified the dialog system answer as
human.

C. Data & Knowledge Representation

In early 2016, the natural language dialog system has
been extended with a natural language dialog system based
on active ontologies, which enables the user to create and
manipulate excel sheets without having to know the complex
formula language of excel [50]. Our system is able to resolve
references, detect and help resolve ambiguous statements and
ask for missing information if necessary. While already quite
powerful, this system was not able to handle conditions prop-
erly or understand statements involving loops or instructions
affecting multiple cells. In this paper, we will present an
approach on how to attack these weaknesses.

By adding additional information to an ontology, such
as a rule evaluation system and a fact store, it becomes an
execution environment instead of just being a representation
of knowledge. Sensor nodes register certain events and store
them in the fact store. An evaluation mechanism tests the new
facts against the existing rules and performs the associated
action if one or more rules apply to the stored facts.

In our system, each rule is represented by a separate node
in the active ontology. By connecting nodes the developer
decides, which type of facts are relevant to which node. In
[50], we presented four different types of nodes:

1) Selection-Nodes: These nodes gather all information
of their children and pass on the most fitting accord-
ing to some score, e.g., Instruction node in Figure 9.

2) Gather-Nodes: These nodes gather the information of
all children nodes and only create a new fact if all
necessary children facts exist, e.g., Binary operation
node or Unary operation in Figure 9.

3) Pass-Nodes: These nodes bundle all obtained infor-
mation of their children into 1 new fact.

4) Sensor-Nodes: These nodes are the ”leaves” of the
ontology and react directly to the user input.

Each node-type can be seen as one possible evaluation
mechanism. While with these types a developer is able to
cover most parts of standard domains of dialog systems one
can think of far more complex ones. This is where our new
system comes into play. By allowing the developer to use his
own evaluation mechanisms, we created an infinite amount of
new possibilities what our system is capable of.

Figure 9. Example of an Active Ontology for mathematical tasks.

Our system consists mainly of two active ontologies:
Natural Language Understanding ontology, to interpret the user
input, and Natural Language Generation (NLG) ontology, to
generate answers (see Figure 10).

Figure 10. Overview of the active ontology-based dialog system.

The active ontologies recognize several mathematical op-
erations by searching the input, and then recursively building
an entire instruction. This instruction is the input to the second
active ontology that, based on the type and content of the built
instructions, generates a response. When a node gets triggered
it builds an answer based on patterns stored in its children.
Thus, the answer can be built recursively from reusable prede-
fined patterns. The response generator carries out the process
of speech generation in six basic tasks according to Reiter [51]:

• Content determination: the basic planning of what
should be communicated in the output

• Discourse planing: process of imposing the order and
structure over the set of messages

• Sentence aggregation: grouping of information that
should be processed in the response sentence

290

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



• Lexicalization: choice of words for the sentence

• Referring expression generation: insertion of
anaphoras to shorten the output

• Linguistic realization: bringing the selected words and
phrases in a grammatically correct form

Our system roughly follows these steps to generate the
answers. Sentence aggregation is almost irrelevant for our use
case since the answers of the system are most likely just one
or two sentences. The content determination is covered by the
use of the input of the NLU ontology. This way the system
always knows that information should be communicated in
the coming answer. Discourse planning and lexicalization are
implicitly stored in the structure and the content of the NLG
ontology. The structure of the ontology defines the structure of
the generated output and the saved words in the nodes provide
this output with the necessary vocabulary. Since the content
of the answer is already very specific and very short, referring
expressions can be inserted in the sentence structure and do not
need to be added in a separate processing step. The structure
of the NLG ontology also guarantees a grammatically valid
output.

D. Analysis of Data

Interactive Spreadsheet Processing Module (ISPM) [52] is
an active dialog management system that uses machine learn-
ing techniques for context interpretation within spreadsheets
and connects natural language to the data in the spreadsheets.
First, the rows of a spreadsheet are divided into different
classes and the table’s schema is made searchable for the dialog
system (see Figure 11).

A B C

1 Table 1: persons CAPTION

2 name SUPER HEADER

3 first name last name age HEADER

4 group A GROUP HEADER

5 Sloane Morgan 37 DATA

6 Dustin Brewer 33 DATA

7 Valentine Yates 38 DATA

8 Michael Gregori 50 DATA

9 group B GROUP HEADER

10 Ina Hoffman 40 DATA

11 Oliver Hopkins 27 DATA

12 Damon Vasquez 22 DATA

13 Mark Richards 25 DATA

Figure 11. A spreadsheet table annotated with row labels.

In the case of a user input, it searches for headers, data
values from the table and key phrases for operations. Implicit
cell references like ”people of age 18” are then resolved to
explicit references using the schema. Using the ISPM, end-
users are able to search for values in the schema of the table
and to address the data in spreadsheets implicitly, e.g., What
is the average age of people in group A? (see Figure 12).

persons name last name age

first name

group B

group A

Figure 12. Context detection of user input.

Furthermore, the system enables users to select (88%
successfully solved), sort (88%), group (75%) and aggregate
(63%) the spreadsheet data by using natural language for end-
user software engineering.

E. Action Sets

In 2017, we introduced an interface for natural language
dialog system and the Microsoft Excel API [53]. This inter-
face enables users to describe actions in unrestricted natural
language interactively and run these actions in the technical
domain like Microsoft Excel. We implemented a hybrid system
that supports natural language interactions similar as a chat
bot and gesture control to follow the users showing actions.
For this purpose and also to avoid the lack of inconsistent
code documentation, we dynamically export the provided
documentation for coding in Visual Studio and provide it in
the xml-format to the hybrid system. Users can use already
existing actions and provide new action sets to the hybrid
system at runtime. For our first prototype of the hybrid system,
we concentrate on extending for handling graphs and charts.
Evaluated by a user study the hybrid system can successfully
resolve more that 80 % of the given user tasks.

Due to the potential complexity and dimensions, the hy-
brid system extends the consisting natural language approach
that manages the interaction through the dialog system and
introduces a new graphical user interface providing a better
overview and more interaction choices. During runtime, users
can switch at any time between these systems. Each interac-
tion increases the associated probability that is used for an
assumption about interactions. On each interaction, the dialog
system presents the user a limited amount of options, chosen
regarding to its probability. To simplify the process for the
user only interactions with the last object are available, so no
reference is needed. After each interaction the user is asked,
if more interactions are welcome, and if so another iteration
will be started. If there are no new interaction, the recent set
of actions can be saved using an arbitrary name. To avoid
duplicate action sets, the module compares the current one
with saved sets. If it is duplicate, the user is informed, but still
able to save it under new name.

Using the graphical user interface users have access to all
options of each object. We defined action sets as arbitrary
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sets of API calls learned and executed during runtime (see
Figure 13). The system can learn a new action set during
runtime from the user via two options: the established dialog
system and a graphical user interface. Both systems have the
same basic functionality, although the dialog system reduces
the options for interactions in each iteration. The dialog
system target group are unexperienced users who need more
advice from the system and who are quicker using natural
language. Advanced users can pick the next interaction freely
or users who are quicker by clicking the system are provided
a graphical user interface. In case of user input Please, draw a
chart, the system tries to detect some implicit steps and asks
user for data and chart type to execute this command.

Figure 13. Action set for a simple use input.

F. Control flows

Also in 2017, two new modules have been developed to
extend the current system for support of control flows [1]. The
first module is capable of handling conditional instructions and
the second is able to understand statements that contain loops.

1) Conditional Statements: Conditional instructions are
often hard to understand due to their complex grammatical
and contextual structure. Also references are complicated to
resolve in this kind of sentences. The advantage of conditions
is that they have a small set of key-words (such as if, in case of,
etc. ) that indicate that the user uses a conditional statement. In
domain of spreadsheet manipulation to be able to understand,
the condition has to result in a boolean operation. These two
facts enable us to develop a specialized service dealing with
conditional statements. We react to the keywords and try to
find a boolean value in the user input. If we can not find any
boolean operation, the dialog system asks the user directly for
it. After user answers, it is just recognizing, which action the
user wants to perform. Unconditional statements were already
supported in our older system, so we can rely on it to find
the proper action. As already noted, if gets recognized as a
condition keyword. The system already knows that it is dealing
with a conditional statement. A1 is greater than 3 is a boolean
operation and may be used as condition. The trivial statement
save 5 in B1 can be easily recognized as unconditional action
and handled by our system (see Figure 14).

2) Loop Statements: Dealing with statements that affect
more than one cell can be seen as a looped instruction. In that
case, the target of the instruction is the loop variable. Knowing
this, we can handle it in a similar way we used for conditional
statements. In contrast to conditions, loop do not necessarily
have to contain clear keywords. Often times these keywords
are hidden within the sentence like for all, for each, as long
as. However, there may also be explicit instruction like do
something three times.

Ifstart A1 is greater than 3 save 5 in B1

Condition Keyword Boolean Statement Unconditional Action

Figure 14. Example for a conditional statement.

Once any of these keywords are recognized, the system has
to find the corresponding action and execute it for the given
range of cells. In order for our active ontology to be able
for recognizing the proper action, we introduced a Looptarget.
This is an operator that acts like a normal cell and is able to
be recognized by normal actions (such as save, multiply), but
at the same time indicates that it can be executed on a range of
cells. Once activated by a loop keyword, the loop service reacts
to actions containing the regarding targets. In this case, next
step is to split input into several instructions for each cell of
the given range. This may also be combined with conditional
instructions. User input add 2 to B2 for each cell of column A,
which is greater than B2 is correctly handled by our system
(see Figure 15).

Save 3 instart each cell of column A

Non-loop action Loop Keyword Range

Figure 15. Example for a loop statement.

3) Sample Dialog: To demonstrate the extended features,
we present a short dialog between the NLUI and user. For
each iteration of the dialog we listed the user input (User), the
operation the system executed as consequence of this input
(NLU) and the response generated by the system (DMU):

User: Write 30 in all cells of column A

NLU: save(30, A:A)

DMU: Already done. Is there anything else i can do?

User: Subtract 10 from each cell between A1 and A10

NLU: save(A1:A10 - 10, A1:A10)

DMU: Ok, I did that for you.

Can I do something else for you?

User: No

DMU: Alright

. . . After a break, user turns back to the NLUI

User: For each cell of column A which is greater than 25

add 2 to B2

NLU: conditionalAction(A:A>25, save(B2 + 2, B2))
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User: If A3 is greater than A2 write 2 in A3 else in B3

NLU: conditionalAction(A3>A2, save(2, A3), save(2, B3))

DMU: Ok, I did that for you.

User: If A5 is greater than B5

NLU: NoAction

DMU: I see you used a condition.

What do you want to do if the condition is true?

User: Save 4 in B3

NLU: conditionalAction(A5 > B5, save(4, B3))

DMU: Everything done as you wished.

IV. EVALUATION

In this section, the system will be evaluated in terms of its
ability to recognize control structures. The detailed evaluations
of previous versions of the system described in III-A and III-B
can be found in [48], III-C in [50], III-D in [52], and finally
III-E in [53]. To evaluate the quality of control flows solution
described in III-F, we conducted an user study. We asked
12 participants to solve given tasks by using our system and
recorded their experience with it. In detail, we asked for each
task:

• whether they were able to solve the task,

• if the system was helping them to solve the task,

• if the system output was natural,

• and if the system was able to understand their input.

The participants were Non-native English speakers and the
majority of them have never used our system before. Most of
them stated that they knew and already used excel before, but
not on a regular basis.

Since we already evaluated our system for standard arith-
metic tasks, response time as well as scalability in our last
paper [50], we specifically designed the tasks to test the
discussed control flow features, e.g.:

• Insert the specified value 10 into all cells of a column.

• Multiply all cells in a range (between A1 and A10)
that are greater than 2 by 3.

• If the value in cell A3 is greater than A2, they should
add 2 to B1, else to B2.

The results show that the users where able to solve more
than 60% of the tasks at least partially and found our system as
useful in over 60% of the cases (see Figure 16). Additionally
nearly 70% of the system outputs were considered as natural
by the participants. The participants stated in over 50% of
the cases that the system did not understand their input. The
improvement of the systems output has to be worked on.
Overall, the system’s quality was rated at 3.33 out of 5 stars,
and except for one participant all participants said that they
would use our system.

0 20 40 60 80 100

The system shows good natural language quality

I will use this dialog system frequently

The response speed of the system is good

Overall rating of the system is good

Strongly agree Agree Neither agree nor disagree Disagree Strongly disagree

Figure 16. Overall results in %.

While this result demonstrates that our system is far from
perfect it also shows that there is added value when using the
system especially for inexperienced users. Knowing that nearly
half of the unsolved tasks stemmed from the same question and
the most common problem were synonym problems, which are
easy to fix the results we achieved are auspicious. Since our
system will most likely only improve in coming versions due
to the growing number of services and the size of our word
databases we consider this a promising approach.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented the new idea to use the natural
language as the user interface. Users can easily describe tasks
and delegate it to the system. Often these descriptions contains
conditionals, loops and statements (see Section III). To enable
the system for end-user development, these parts should be
recognized correctly by the system. In the current version
of our prototype, the system supports control flows, such as
conditionals and loops.

The next goal is to implement valid scripts from natural
language input that describes some algorithm like:

• Find the maximum element of a set:
Use an auxiliary variable. Initialize the variable with
an arbitrary element of the set. Then, visit all the
remaining elements. Whenever an element is larger
than the auxiliary variable, store it in the auxiliary
variable. In the end, the maximum is in the auxiliary
variable.

• Switching sort of an array:
If there are two elements out of order, switch them.
Continue doing this until there are no more elements
out of order. Out of order means that an element is
larger than its right neighbor. The right neighbor of
an element x[i] in a vector x is x[i+1].

The challenge is not only the identification of control
structures and statements but the recognition of the correct
sequence of the given instructions. For considering the re-
lations between user inputs, it is also essential to develop
a contextual knowledge. This allows the users to place new
statements at any point in the process at runtime and combine
several statements into a function, which can be executed at a
later time by the system.
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In addition to the development of contextual knowledge,
the analysis of the input has to be extended by various
programming concepts in order to be able to recognize decla-
rations and actions in them. Therefore, the system should (i)
enable end-users to give instructions step-by-step, to avoid the
complexity in full descriptions and give directly feedback of
success (ii) create an abstract meta model for user input during
the linguistic analysis and (iii) independently interpret meta
model to code sequences that contains loops, conditionals, and
statements.

Input : A sequence of n numbers (a1, ..., an)

↓

User Input: the result is a vector. Initially it is empty. Find
the minimal element of the set and append it to the vector.
Remove the element form the set. Then, repeatedly find the
minimum of the remaining elements and move them to the
result in order, until there are no more elements in the set.

↓

Algorithm 1
1: procedure SELECTIONSORT( input as a set of numbers )
2: result← empty set
3: while input IsNotEmpty do
4: n← length (input) - 1
5: tmpMin← 0
6: for i← 0→ n do
7: if input[i] < input[tmpMin] then
8: tmpMin← i

9: Add input[tmpMin] at the end of result.
10: Remove element at index tmpMin from input.

↓

Output : A permutation (b1, ..., bn) with b1 ≤ b2, ...,≤ bn

The second step after achieving the recognition of algo-
rithms is to allow object-based modeling with natural language.
In this case, the system should be able to assign these algo-
rithms as methods to a class. Concepts such as inheritance and
relationships between objects should also be identified on the
basis of natural language input. With regard to spreadsheets,
there are many areas of application that can make the user’s life
much easier. If you assign value ranges within a spreadsheet
to a class, the data can be linked with knowledge from the real
world. Through additional assignment of individual methods,
questions like ”Which cars were built before 2011 and sold
more than 5 million times?” can be answered without having
to refer to the different areas of the open spreadsheet. The
application ranges and extension possibilities of an interface
that allows such a mapping between natural language and
programming are almost unlimited. However, we are still in
the early stages of this development and present the first
developments in this direction.

We are also exploring ways to extend the system func-
tionality with the help of the dialog. The system needs to be
extended for handling graphs, and charts. Furthermore, there
are some properties of tables, which are not considered in the
current system and can potentially lead to problems.
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