
State-of-the-Art Overview on 3D Model Representations and Transformations

in the Context of Computer-Aided Design

Christoph Schinko1,2, Andreas Riffnaller-Schiefer1, Ulrich Krispel1,2, Eva Eggeling1,2, and Torsten Ullrich1,2

1Institute of Computer Graphics and Knowledge Visualization, Graz University of Technology &
2Fraunhofer Austria Research GmbH, Inffeldgasse 16c, 8010 Graz, Austria

{ christoph.schinko, ulrich.krispel, eva.eggeling, torsten.ullrich } @fraunhofer.at,
a.schiefer@cgv.tugraz.at

Abstract—Within a virtual world, either in virtual reality or in a
simulation environment, the digital counterparts of real objects
are described by mathematical and computational models. De-
pending on the purpose, the field of application, and the used tool-
chain a wide variety of model representations is established. As a
consequence, conversion methods and transformation algorithms
are becoming increasingly important. This article gives a state
of the art overview on model representations and on the most
important transformation techniques.

Keywords–3D Model Representations; 3D Transformations;
Computer-Aided Design

I. INTRODUCTION

Many different ways of model descriptions are available,
tailored to the requirements in their respective areas of re-
search. In the context of Computer-Aided Design (CAD), the
model description and representation of a digital counterpart
of a real object is called a shape description. An overview
on shape descriptions and their transformations has been
presented at the ninth International Conferences on Advances
in Multimedia. This article is based on the corresponding con-
ference contribution “3D Model Representations and Transfor-
mations in the Context of Computer-Aided Design: a State-of-
the-Art Overview” [1] and gives a more detailed state of the art
overview on shape representations and on the most important
model transformation techniques.

At this point, it is important to emphasize that there are
differences in the process of shape perception between human
beings and computers. Two important aspects have to be
mentioned in this context. On the one hand, there are sensory
differences. In their natural surrounding, human beings can
rely on their five senses to perceive a shape. Consequently, it is
often a combination of these senses that makes up the sensation
of a shape. While computers can be fitted with many different
sensors, adding up to far more different senses compared to
human beings, it usually boils down to a specific sensor being
used to perceive a shape. The reason for that circumstance
is directly related to the second aspect in this context – the
reasoning itself. The human brain is yet to find a matching
rival in the world of computer science. While computers are
programmed to outperform the human brain in various, but
rather specific tasks like number crunching, the computer is no
thinking machine. Interdisciplinary developments in all fields
of computer science over the recent years bring us ever closer
to creating the thinking machine. However, especially for a

computer, the task of shape classification heavily depends on
the underlying description. Even after successfully classifying
shapes, a computer is yet not aware of the meaning of shape,
as discussed by Sven Havemann et al. in their work [2]. For
the description of shape, it is important to be aware of these
differences, even if shape classification is not in the context of
this article.

The following two Sections describe the model represen-
tations (Section II) and the transformation techniques (Sec-
tion III). The model representations include point sets (Sec-
tion II-A), polygonal representations (Section II-B), parametric
surfaces (Section II-C), subdivision surfaces (Section II-D),
implicit surfaces (Section II-E), volumetric surfaces (Sec-
tion II-F), and generative models (Section II-G). The descrip-
tion of transformation techniques gives a general overview and
outlines important algorithms: level-of-detail techniques (Sec-
tion III-A), marching cubes (Section III-B), random sample
consensus (Section III-C), midsurfaces & isogeometry (Sec-
tion III-D), parametric subdivision surfaces (Section III-E),
and semantic enrichment (Section III-F). The final conclusion
summarizes the state-of-art overview and shows open questions
for future research directions (Section IV).

II. MODEL REPRESENTATIONS

In dictionaries, shapes are described by words forming a
textual definition:

bowl a rather deep, round dish or basin, used chiefly for
holding liquids, food, etc.

Dictionary.com

From a computer science point of view, this definition is
of a rather abstract nature representing a difficult basis for
creating detectors. A computer program relies on more formal,
mathematical definitions. For a human being, this description
is sufficient enough to easily recognize the described shape
when seeing it. The precondition for this accomplishment
of the human brain is a basic understanding of the terms
and definitions used in the description. Bootstrapping of the
basic concepts on a textual basis alone is hardly possible.
All available senses are used to create a mental image of
the surrounding environment, making it possible to establish
a connection between sensory input and concepts of shapes.
With this connection available, a single sensory input is enough
for the brain to be made aware of the related concepts. As an

446

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

example, the human visual system is capable of identifying
and categorizing objects. Not only real-world objects, but also
schematic drawings, pictures, paintings, etc. can serve as input.
The description itself can also be available in the form of an
image. This form of information is often found in biology, e.g.,
for describing animal or plant species.

Representation and description of shapes and objects in
images is one of the basic methods to describe image content.
However, similar to textual descriptions, image-based descrip-
tions are a rather informal definition of shape, thus representing
a difficult basis for creating algorithmic detectors. This is
due to the loss of one dimension of object information when
projecting a real-world object onto the 2D image plane. Shape
information in images is often also affected by noise, distortion
and occlusion. As a result, the shape extracted from the image
only partially represents the real-world object.

In the context of CAD and Computer-Aided Manufactur-
ing, a shape model has to be complete and has to comprehend
all needed information. For these purposes, volumetric and
boundary-/surface-based representations are used.

A. Point Sets
Points are a basic primitive to describe the surface of a

shape [3]. A point set is a list of points defined in a coordinate
system. While points are not the primitive of choice when
using 3D modeling software to create shapes, they are widely
used by 3D scanners due to the nature of their measurements.
A point set is the outcome when measuring a large number of
points on an object’s surface.

Figure 1. A laser scan of a soup bowl has been the basis of this point cloud.
The data set has been processed (cleansed and resampled) and consists of

62 500 points.

The data set in Figure 1 shows a point cloud of a soup
bowl consisting of 62 500 points. High resolution scans of
larger objects require special techniques and/or out-of-core
approaches due to the huge amount of data. For rendering
approaches of point sets, the literature survey by Markus Gross
and Hanspeter Pfister offers in-depth explanation [4]. The
creation of another shape representation from point set data
is called shape reconstruction.

B. Polygonal Faces
A very common representation to describe a shape’s sur-

face is to use a mesh of polygonal faces. The accuracy of the
representation heavily depends on the shape’s outline and is
directly affected by the number of faces. A cylinder, for exam-
ple, cannot be accurately represented by planar faces – it can
only be approximated. Curved surfaces, in general, cannot be

represented exactly, whereas objects having planar boundaries
obviously can be. This limitation is often outweighed by its
advantages in the field of CAD:

• Computer graphics hardware is tailored towards pro-
cessing polygonal faces – especially triangles. This
is the reason why many of the other shape represen-
tations are converted into polygonal meshes prior to
rendering.

• A lot of tools and algorithms exist to create, process
and display polygonal objects [5], [6].

The data structures for storing polygonal meshes are nu-
merous. In a very simple form, a list of coordinates (x,y,z)
representing the vertices of the polygons can be used. The
de-facto standard data interface between CAD software and
machines (e.g., milling machines, 3D printers, etc.) is the
stereolithography file format (STL). It simply consists of a
triangle list specifying its vertices. An illustrative STL-example
is shown in Figure 2.

Figure 2. The laser scan of the “soup bowl” example (see Figure 1) is the
input of a surface reconstruction algorithm, which returns a triangle mesh.

While this data structure is sufficient for some manufac-
turing purposes, it may not satisfy the needs of a 3D modeler
for editing. More sophisticated data structures reproducing
hierarchical structures (groups, edges, vertices) and adding ad-
ditional attributes like normals, colors and texture coordinates
provide a remedy. The problem of traversing a mesh can be
tackled by introducing vertex-, face- and half-edge-iterators.
They are typically, but not exclusively, used in combination
with the concept of half-edges. The idea is to represent an edge
between two vertices by two half-edges of opposite direction
(see Figure 3).

next face

vertexhalf-edge

Figure 3. The half-edge data structure stores four references to (i) an
associated vertex and (ii) an associated face. Furthermore, the half-edge data
structure has (iii) a reference to its edge mate and (iv) to the next half-edge

of the same face in counter-clockwise direction.

447

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A half-edge is a directed edge with references to its
opposite half-edge, its incident face, vertex and next half-edge.
By defining operations using this data structure, it is possible
to conveniently traverse a mesh [7].

C. Parametric Surface Representations
A parametric representation of a shape’s surface is defined

by a vector-valued parametrization function f : Ω → S
mapping a 2D parameter domain Ω ⊂ IR2 to the surface
S = f(Ω) ⊂ IR3. This representation is a general way to spec-
ify a surface. The approximation theorem by Karl Weierstrass
states, that finding an explicit formulation with a single func-
tion approximating a more complex function (shape) can be
achieved by using polynomials.

Weierstrass Approximation Theorem Let f be a con-
tinuous real-valued function on the closed interval [a, b].
Then f can be uniformly approximated by polynomials.

A constructive proof of the theorem is given by Sergi
Bernstein through his work on Bernstein polynomials. As any
surface can be approximated by polynomials, the concept of
polynomial surface patches has gained currency in the CAD
domain [8], [9]. The idea is to split the function domain into
smaller regions. Each surface patch, henceforth called patch,
is described by a distinct parametric function approximating
the local geometry of the patch. To obtain a good overall
approximation of the surface, it is necessary to carefully chose
the layout of the patches (form, size, number) and to deal
with possible discontinuities on patch borders depending on
the representation [10].

1. Bézier Surfaces
A Bézier surface is a two-dimensional surface in 3D gen-

erated from the Cartesian product of two Bézier curves [11].
A Bézier surface of degree (m,n) is defined as a parametric
function

f(u, v) =

m∑
i=0

n∑
j=0

bijB
m
i (u)Bn

j (v).

It is evaluated over the unit square (u, v) ∈ [0, 1]× [0, 1] with
the control points bij ∈ R3 and two Bernstein polynomials
Bn

j (v). A Bernstein polynomial is defined by

Bn
i (t) =

(
n

i

)
ti(1− t)n−i

of degree n for t ∈ [0, 1].
In CAD, Bézier surfaces are often used in the form of bi-

cubic Bézier patches, i.e., a set of 4× 4 points represents the
control mesh and is responsible for the shape of the surface
as illustrated in Figure 4.

In all cases, Bézier curves and the corresponding Bézier
surfaces have important properties:

• Bézier curves and surfaces fulfill the partition of unity
property as

n∑
i=0

Bn
i (u) = 1.

Thus the relationship between a Bézier curve / surface
and its control mesh is invariant under affine transfor-
mations.

• A Bézier curve / surface is contained within the convex
hull of its control mesh. Furthermore, the start and end
points (of a curve) resp. the four corner points (of a
surface) are interpolated by the Bézier curve / surface.

• A Bézier surface exhibits four boundary curves being
Bézier curves themselves and their control points are
the boundary points of the control mesh.

• The control points do not exert local control alone.
Moving a single control point affects the whole sur-
face. Geometric continuity (e.g., G1, G2) between
patches can only be achieved by satisfying constraints
on the control points’ positions.

Figure 4. A tensor product surface is based on a curve representation.
Consequently, this Bézier surface shares many properties (end point

interpolation, convex hull property, etc.) with its corresponding curve type.
A negative aspect of tensor product surfaces is the limitation to strictly

rectangular topology (control mesh in red).

2. Rational Bézier Surfaces

The idea behind rational Bézier surfaces is to add ad-
justable weights to extend the design space of shapes [12].
In contrast to a Bézier surface, which can only approximate
spheres and cylinders, the rational Bézier Surfaces can describe
them exactly – a very important property in CAD. A rational
Bézier surface of degree (m,n) is defined with the control
points bij ∈ R3, the weights wij ∈ R, and the Bernstein
polynomials Bn

i (u) as

f(u, v) =

m∑
i=0

n∑
j=0

(
wijbij

wij

)
Bm

i (u)Bn
j (v)

=

∑m
i=0

∑n
j=0 wij bij B

m
i (u)Bn

j (v)∑m
i=0

∑n
j=0 wij Bm

i (u)Bn
j (v)

.

Rational Bézier surfaces are a special case of non-uniform,
ration B-spline (NURBS) surfaces, which are a generalization
of B-spline Surfaces.

448

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3. B-spline Surfaces

B-spline surfaces exhibit advantages when joining patches
under continuity requirements. Let m,n, k, l ∈ N with m ≥ k
and n ≥ l. Then, a B-spline surface of degree (k, l) is defined
as

f(u, v) =

m∑
i=0

n∑
j=0

dij N
k
i (u)N l

j(v),

with the basis functions

N0
i (t) =

{
1, if ti ≤ t < ti+1

0, otherwise

and

Nr
i (t) =

t− ti
ti+r − ti

Nr−1
i (t) +

ti+1+r − t
ti+1+r − ti+1

Nr−1
i+1 (t)

for 1 ≤ r ≤ n and a non-decreasing sequence of knots, a so-
called knot vector,

T = {t0 ≤ · · · ≤ tn ≤ · · · ≤ tn+m+1}.

It can be evaluated over (u, v) ∈ [uk, um+1[×[vl, vn+1[with
the control points dij ∈ R3 and the polynomials Nk

i (u) and
N l

j(v). The control points dij forming the control polygon are
called de Boor points.

In computer graphics, B-spline surfaces are typically used
in the form of bi-cubic B-spline patches. A single cubic B-
spline curve segment is defined by four control points, as a
consequence, 4 × 4 control points define a bi-cubic B-spline
patch segment. By choosing appropriate knot vectors, a B-
spline surface can become a Bézier surface. B-splines with
knots ti satisfying the conditions

t0 = 0

and

ti+1 = ti or ti+1 = ti + 1,

for i = 0, . . . , n+m are called uniform B-splines.

B-spline curves and surface satisfy properties similar to
Bézier curves and surfaces [11]:

1) The relationship between a B-spline curve / surface
and its control mesh is invariant under affine trans-
formations.

2) A B-spline surface is contained within the convex hull
of its control mesh: f(u, v) ∈ convex hull {dkl|i ≤
k ≤ i+m, j ≤ l ≤ j + n}.

3) In contrast to Bézier surfaces, the control points exert
local control; i.e., if a control point is moved, only
the local neighborhood is affected and

4) a B-spline surface can become a Bézier surface by
choosing appropriate knot vectors.

Higher order geometric continuity (e.g., G1, G2) at borders
of combined B-spline patches can be achieved by satisfying
constraints on boundary control points and by appropriate
choice of knot vectors.

4. NURBS Surfaces
The combination of rational Bézier techniques and B-spline

techniques leads to non-uniform, rational B-splines, NURBS
for short [13]:

Let m,n, k, l ∈ N with m ≥ l and n ≥ k. Additionally, let

u = (u0, . . . , um+k+1)T

and
v = (v0, . . . , vn+l+1)T

be two knot vectors and

w00, . . . , wmn ∈ R,

d00, . . . ,dmn ∈ R3.

Then, a non-uniform, rational B-spline (NURBS) surface of
degree (k, l) is defined as

f(u, v) =
m∑
i=0

n∑
j=0

(
wijbij

wij

)
Nk

i (u)N l
j(v)

=

∑m
i=0

∑n
j=0 wij bij N

k
i (u)N l

j(v)∑m
i=0

∑n
j=0 wij Nk

i (u)N l
j(v)

.

over (u, v) ∈ [ul, um+1[×[vk, vn+1[with the polynomials
Nk

i (u) and N l
j(v), the knot vectors u and v, the control points

dij with weights w00, . . . , wmn. Similar to B-spline patches,
NURBS surfaces are commonly used in computer graphics in
the form of bi-cubic NURBS patches.

B-spline surfaces and Bézier surfaces are special cases of
NURBS surfaces [14]. If all weights are equal, a NURBS
surface becomes a B-spline surface. Additionally, when all
knot vectors are chosen appropriately, the B-spline surface
becomes a Bézier surface.

Figure 5. A trimmed Bézier / B-spline / NURBS surface consists of a
parameter domain (upper left) and a set of control points. Furthermore, a

closed curve (blue) within the parameter domain separates the domain into
two parts: a valid part and an invalid part. The final surface in 3D only

consists of those points whose parameters are valid [15].

449

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A common way to model arbitrarily complex smooth
surfaces is to use a mesh of bi-cubic NURBS patches. Regular
meshes consisting of bi-cubic patches formed by vertices
of valence four can be seen as connected planar graphs. A
direct consequence of the Euler characteristic for connected
planar graphs with the aforementioned properties is that such
meshes must be topologically equivalent to an infinite plane,
a torus, or an infinite cylinder – all other shapes cannot be
constructed unless using trimming or stitching as illustrated in
Figure 5. The resulting surfaces offer precise feature control
at the cost of computational complexity due to trimming and
stitching [16].

D. Subdivision Surfaces
Subdivision surfaces are the generalization of spline sur-

faces to arbitrary topology. Instead of evaluating the surface
itself, the refinement of the control polygon represents the
subdivision surface. There are many different subdivision
schemes, e.g., Catmull-Clark [17], Doo-Sabin [18], Loop [19],
Kobbelt [20], etc.

The subdivision scheme presented by Edwin Catmull and
Jim Clark is a generalization of bicubic B-spline surfaces to
arbitrary topology [17]. The set of 4 × 4 control points pij

forms the starting mesh for an iterative refinement process
where each step results in a finer mesh. One iteration of such
a subdivision process is shown in Figure 6.

Figure 6. The Catmull-Clark subdivision scheme is based on the idea to
describe a subpatch of a bicubic B-spline patch by a bicubic B-spline patch.

The starting point is a bicubic patch (red), which generates a surface
(wireframe in black), if evaluated over the domain (u, v) ∈ [0, 1]× [0, 1].

Then the subsurface belonging to [0, 1/2]× [0, 1/2] is inspected and its
corresponding control mesh (blue) is determined. The correspondences

between the original mesh (red) and its subdivided version (blue) are the
B-spline refinement rules. The Catmull-Clark subdivision scheme generalizes

theses rules to arbitrary meshes.

Subdivision surfaces are invariant under affine transfor-
mations. They offer the benefit of being easy to implement
and computationally efficient. Only the local neighborhood is
used for the computation of new points. A major advantage
of subdivision surfaces is their repeated refinement process –
level-of-detail algorithms are always “included” by design.

Most commonly-used subdivision schemes, like those men-
tioned previously, only support non-rational surfaces of low

degree, i.e., quadratic or cubic, with an uniform parameteriza-
tion. This limits their use in the context of CAD. For example,
due to the missing rational representation, conic sections like
cylinders cannot be exactly represented by such surfaces. Also,
a non-uniform parameterization is often required, e.g., to define
Bézier-like interpolating boundaries, as is commonly done with
NURBS surfaces. And higher degree surfaces provide addi-
tional advantages like higher continuity for smooth surfaces
or improved convergence in the context of analysis.

Ideally, a CAD surface representation would provide the
precise control of NURBS without the need for trimming
and stitching. To achieve this, Cashman et al. [21] extended
the Catmull-Clark subdivision scheme to non-uniform, higher
degree, and rational surfaces. This subdivision scheme is
compatible with odd degree NURBS in regular regions, away
from extraordinary vertices with a valence other than four, but
generalizes to arbitrary topology control meshes. It therefore
combines the advantages of NURBS and subdivision surfaces
in a single surface representation.

Figure 7. For the NURBS compatible subdivision scheme, the two local knot
vectors, indicated by arrows, defining the parameterization of a face (shaded
in gray) are derived from the knot spacings k associated with each edge of

the control mesh.

Similar to rational Bézier surfaces or NURBS, each control
point of a NURBS compatible subdivision surface gets an
additional weight to provide a rational representation. To
allow for a non-uniform parameterization, a knot spacing k is
associated with each edge in the control mesh, defining the
interval between two knot values in the knot vector. Knot
spacings are required to be equal on opposite edges of a
quadrilateral face. Therefore, a knot spacing is always defined
for a strip of faces, similar to NURBS. This definition leads to
each face of the control mesh having two associated local knot
vectors u and v, visualized as two colored arrows in Figure 7.

Subdivision is then performed in two stages. During the
initial refine stage, edges and faces are split according to the
subdivision rules [21], which depend on the valence of control
points and the local knot vector. The refinement is followed
by multiple smoothing steps, depending on the degree of the
surface, in which all control points are moved to their new,
updated position. This results in a smooth surface that is
equivalent to the corresponding NURBS surface for regular

450

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

regions of the control mesh and is at least C1 continuous in
all other regions.

E. Implicit Surface Representations
In contrast to the parametric surface representations de-

scribed above, implicit surfaces, are defined as isosurfaces by
a function R3 → R [22]. Therefore, similar to voxels, a surface
is only indirectly specified. A simple 3D example of an implicit
surface is the following definition of a torus with major radius
R and minor radius r

f(x, y, z) = (x2 + y2 + z2 +R2 − r2)2 − 4R2(x2 + y2) = 0.

Inside and outside of the surface is defined by f(x, y, z) < 0,
respectively f(x, y, z) > 0. While a parametric description of
the torus exists, many implicit surfaces do not have a closed,
parametric form. In terms of expressiveness, implicit surfaces
are more powerful than parametric surfaces [23].

Drawbacks of implicit surfaces are the inherent difficulty
of describing sharp features (unless trimming is used) or
finding points on the surface. However, this representation
has several advantages. Efficient checks whether a point is
inside a shape or not are possible. Since the surface is not
represented explicitly, topology changes are easily possible.
Surface intersections, as well as boolean set operations (the
basis of constructive solid geometry) can also be implemented
efficiently. Using implicit functions the operations of construc-
tive solid geometry can be mapped to simple, mathematical
terms:

If g1, g2, . . . , gn are implicit functions, then the CSG
operations are:

• union ⋃
i=1,...,n

gi(p) = min
i=1,...,n

gi(p)

• intersection ⋂
i=1,...,n

gi(p) = max
i=1,...,n

gi(p)

For a smooth blending Alexander A. Pasko and Vladimir
V. Savchenko [24] suggest the blending function [25]⋃
i=1,...,n

(g1, g2) =
1

1 + α

(
g1 + g2 −

√
g21 + g22 − 2αg1g2

)
.

Implicit surfaces can be described in algebraic form (see
the example of the torus), as a sum of spherical basis functions
(so called blobby models), as convolution surfaces (skeletons),
procedurally, as variational functions, or by using samples. The
latter approach directly relates to volumetric shape descrip-
tions.

F. Volumetric Shape Descriptions
Volumetric approaches can be used to indirectly describe

a shape’s surface. In contrast to surface-based descriptions,
they define the surface to be a boundary between the interior
and the exterior of a shape. However, the idea behind these
approaches is not so much a description of a shape’s surface,
but a description of the entire volume. Such representations
are frequently used in visualization and analysis of medical
and scientific data.

1. Voxels

Data sets originating from measurements do not have
continuous values and are limited to the points in space where
measurements have been collected. It is very common that data
points form a uniform regular grid. Such data points in 3D are
known as voxels, a name related to their 2D counterparts: the
pixels. Since a voxel represents only a single point in a grid, the
space between voxels is not represented. Depending on the area
of application, the data point can be multi-dimensional, e.g., a
vector of density and color. Due to the fact that position and
size of a voxel are pre-defined, voxels are good at representing
regularly sampled spaces. The approximation of free-form
shapes suffers from this inherent property. Figure 8 illustrates
the approximation artifacts of a free-form shape represented
by voxels.

Figure 8. The “voxelized” soup bowl data set shows the typical
approximation artifacts of a grid-based representation.

Voxel representations do not suffer from numerical insta-
bilities as they are typically defined on an integer grid. A
major drawback of voxel representations is the amount of data
needed for storage. For example, a 512 × 512 × 512 voxel
grid storing 32-bit floating point values occupies 512MB of
memory. Depending on the intended use, the memory footprint
may be too high and it may appear rather coarse.

Typical use cases are the visualization and analysis of med-
ical data (medical imaging) acquired from sources like com-
puted tomography (CT), magnetic resonance imaging (MRI),
or 3D ultrasonography.

2. Convex Polytopes

Shapes can be described as geometric objects with flat
sides – so called polytopes. They are defined in any dimension
as n-dimensional polytopes or n-polytopes. Two-dimensional
polygons are called 2-polytopes and three-dimensional poly-
topes are called 3-polytopes. A special case of a polytope is
a convex polytope having the additional property of being a
convex set of points in n-dimensional space Rn, respectively
in n-dimensional Euclidean space En. Convex polytopes can
be defined over their convex hull, or by the intersection of
half-spaces.

Branko Grünbaum and Geoffrey C. Shephard define a con-
vex polytope as the convex hull of any finite set of points in
Euclidean space En (n ≥ 1) [26]. A set S ⊆ En is convex, if
for any pair of points x,y ∈ S, the line segment

λ · x + (1− λ) · y

451

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

with 0 ≤ λ ≤ 1, lies entirely in S. For any set S, the smallest
convex set containing S is called the convex hull of S. A
definition relying on the convex hull of a set of points is called
a vertex representation.

Convex polytopes can also be defined as the intersection of
a finite number of half-spaces [27]. Because of the fact that the
intersection of arbitrary half-spaces need not be bounded, this
property must be explicitly required. An algebraic formulation
for convex polytopes consists of the set of bounded solutions
to a system of linear inequalities. Hence, a closed convex
polytope can be written as a system of linear inequalities.

a11x1+ a12x2+· · ·+ a1nxn≤ b1
a21x1+ a22x2+· · ·+ a2nxn≤ b2

...
...

...
...

am1x1+am2x2+· · ·+amnxn≤bm
with m defining the number of half-spaces of the polytope.
Open convex polytopes are defined similarly with strict in-
equalities instead of non-strict ones [28].

A limitation of convex polytopes is the inherent restriction
to represent convex geometry only. The representation of non-
convex geometry is possible through composition of convex
polytopes. Topologically, convex polytopes are homeomorphic
to a closed ball.

Convex polytopes are a subject of mathematical study since
ancient Greek times. There is a number of special polytopes in
three-dimensional space admitting a particularly high degree
of symmetry – the so-called Platonic solids, tetrahedron,
hexahedron, octahedron, dodecahedron and icosahedron. They
are bounded by congruent regular polygonal faces exhibiting
a consistent vertex valance over all vertices.

3. Constructive Solid Geometry
Constructive solid geometry (CSG) is a technique to create

complex shapes out of primitive objects. These CSG primi-
tives typically consist of cuboids, cylinders, prisms, pyramids,
spheres and cones. Complex geometry is created by instantia-
tion, transformation, and combination of the primitives. They
are combined by using regularized boolean set operations like
union, difference and intersection that are included in the
representation. A CSG object is represented as a tree with inner
nodes representing operators and primitives in the leaves.

In order to determine the shape described by a CSG tree,
all operations have to be evaluated bottom-up until the root
node is evaluated. Depending on the representation of the leaf
geometry, this task can vary in complexity. Some implemen-
tations rely on representations that require the creation of a
combined shape for the evaluation of the CSG tree, others do
not create a combined representation. In that sense, CSG is not
as much a representation as it is a set of operations that need to
be implemented for the underlying shape representation [29].

As a consequence, CSG can also be performed on other
shapes and shape representations. Two different approaches
can be used to evaluate CSG objects: object-space approaches
and image-space approaches. The main difference between the
two approaches is that object-space approaches create shapes,
while image-space approaches “only” create correct images.

Object-space CSG approaches using primitives described
implicitly can be calculated accurately. Performing CSG on

other shape representations (like polygonal meshes) typically
introduces accuracy problems, due to the finite precision of
floating-point numbers. A common representation used for
CSG operations are binary space partitioning (BSP) trees.
BSP is a method for subdividing a space into convex cells
yielding a tree data structure. This data structure can be used
to perform CSG operations using tree-merging as described by
Bruce Naylor et al. [30]. The algorithm is relying on accurate
information of inside and outside of a shape (or, in case of
planes, above and below).

G. Generative Shape Descriptions & Design Automation
Algorithmic shape descriptions are also called generative,

procedural, or parametric descriptions. However, there are dif-
ferences between the three terms. Parametric descriptions are
loop-computable programs (the functions it can compute are
the primitive recursive functions), and therefore they always
terminate [31]. On the other hand, procedural descriptions offer
additional features (like arbitrary recursion), are structured in
procedures, and are not guaranteed to terminate. Compared
to procedural descriptions, generative descriptions are a more
general term, including, for example, functional languages.

In this context, algorithmic descriptions are henceforth
referred to as generative descriptions. The process of creating
such descriptions is referred to as generative modeling and de-
sign automation. In contrast to many other descriptions, which
are only describing a shape’s appearance, generative shape
descriptions represent inherent rules related to the structure
of a shape. In simple terms, it is a computer program for the
construction of the shape. It typically produces a surface-based
or volumetric shape description for further use. In the article
“Modeling Procedural Knowledge – A Generative Modeler
for Cultural Heritage” [32] by Christoph Schinko et al., the
authors state that all objects with well-organized structures
and repetitive forms can be described in such a way. Many
researchers enforce the creation of generative descriptions due
to its many advantages [33].

Its strength lies in the compact description compared
to conventional approaches, which does not depend on the
counter of primitives but on the model’s complexity itself [34].
Particularly large scale models and scenes – such as plants,
buildings, cities, and landscapes – can be described efficiently.
Generative descriptions make complex models manageable as
they allow identifying a shape’s high-level parameters.

Another advantage is the included expert knowledge within
an object description, e.g., classification schemes used in
architecture, archaeology, civil engineering, etc. can be mapped
to procedures. For a specific object only its type and its in-
stantiation parameters have to be identified. This identification
is required by digital library services: markup, indexing, and
retrieval [35]. The importance of semantic meta data becomes
obvious in the context of electronic product data management,
product lifecycle management, data exchange and storage or,
more general, of digital libraries.

A disadvantage of generative shape descriptions is their
dependency to (1.) a programming language, in which the
shape is implemented and to (2.) a primitive geometry repre-
sentation (point sets, meshes, etc.), which is the return type of
the implemented shape function. As a consequence, generative
descriptions can be realized in many different ways [33] and

452

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the conversion between different kinds of generative descrip-
tions relies on translation techniques developed in the field of
compiler construction [36].

Generative descriptions have been developed in order to
generate highly complex shapes based on a set of formal
construction rules. They represent a whole family of shapes,
not just a single shape. A specific exemplar is obtained by
defining a set of parameters, or a sequence of processing steps:
Shape design becomes rule design [37].

Because such descriptions already belong to a specific class
of shapes, there is no need for detectors. However, with a
generative description at hand, it is interesting to enrich other
descriptions and representations. What is the best generative
description of one or several given instances of an object class?
This question is regarded as the inverse modeling problem [38].

(x, y, z)

(α, β, γ)

r

h

h1
h2A h2B

h3A h3B
h4

fin(x) = 1
25 (x+ 1

10)2+shape

fout(x) = x3+shape

Figure 9. The generative model takes several parameters: (x, y, z) is the
base point of the bowl and (α, β, γ) define its orientation. Its shape is
defined by an inner fin and outer fout shape function with one free

parameter shape. These functions are rotated around the cup’s main axis
and scaled with the parameters r and h. The handles are defined via control

points of a Bézier curve.

In order to continue the example of the soup bowl men-
tioned before, Figure 9 sketches an automated design of a
bowl. The generative model is implemented as a function M
that takes several parameters x = (x0, . . . , xn) and which
returns a 3D model of a bowl. Automatic fitting routines [38]
are able to register the generative design with the STL input
data set (see Figure 2) and to determine the optimal input
parameters (see Figure 10).

In detail, the registration algorithm converts the STL input
data set into a point cloud P . For each instance of the
generative model description M(x); i.e., for each evaluation of
a specific parameter set x, the geometric distance d(M(x), P)
between the two 3D models is calculated [39]. An optimization
algorithm minimizes this distance d by evaluating different
parameter sets x1,x2, . . . i.e., it minimizes the error function

f(x) = d(M(x), P)
!
= min

x
. (1)

As the parameter domain may be a mixture of discrete and
continuous spaces, the optimization routine should be able to
handle both; for example using the combination of an evolution
strategy with an integrated gradient approach [40].

Figure 10. The “generative” soup bowl represents an ideal soup bowl. It is a
“clean” quad mesh; in contrast to the “noisy” triangle mesh, which is the
input of the generative fitting routine. The fitting calculates the optimal
parameters so that the generative soup bowl fits its noisy counterpart.

Showing input and output data in the same visualization outlines the quality
of the fitting process.

III. MODEL TRANSFORMATION

In a product life cycle, the digital counterpart of a future,
real-world object has to pass several stages of a multi-step
pipeline. First sketches of a product are represented in a
different representation than the final CAD production-ready
data set. Furthermore, virtual product tests and simulations
require special purpose model representation as well. As a
consequence, each transformation between two possible model
representations has a field of application. For the presented
representations Table I lists the conversion methods and al-
gorithms. Furthermore, the following paragraphs describe the
conversion ideas that have a wide-spread field of applications.

A. Level-of-Detail Techniques
Managing level of detail is at once a very current and

a very old topic in computer graphics. As early as 1976
James Clark described the benefits of representing objects
within a scene at several resolutions. Recent years have seen
many algorithms, papers, and software tools devoted to gen-
erating and managing such multiresolution representations of
objects automatically [70].

The idea of “Level of Detail”, or LOD for short, is an
important topic in computer graphics as it is one of the key
optimization strategies that would help 3D graphical programs,
such as modeling software to run faster and reliably rendered
across all the new and old hardware.

B. Marching Cubes
Marching cubes is a computer graphics algorithm by

William E. Lorensen and Harvey E. Cline for extracting a
polygonal mesh of an isosurface from a three-dimensional
discrete scalar field.

The algorithm proceeds through the scalar field, taking
eight neighbor locations at a time (thus forming an imaginary
cube), then determining the polygon(s) needed to represent
the part of the isosurface that passes through this cube. The
individual polygons are then fused into the desired surface.

This is done by creating an index to a precalculated array
of 256 possible polygon configurations (28 = 256) within the
cube, by treating each of the 8 scalar values as a bit in an 8-bit

453

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

integer. If the scalar’s value is higher than the iso-value (i.e.,
it is inside the surface) then the appropriate bit is set to one,
while if it is lower (outside), it is set to zero. The final value,
after all eight scalars are checked, is the actual index to the
polygon indices array.

Finally, each vertex of the generated polygons is placed
on the appropriate position along the cube’s edge by linearly
interpolating the two scalar values that are connected by that
edge.

The gradient of the scalar field at each grid point is also the
normal vector of a hypothetical isosurface passing from that
point. Therefore, it is reasonable to interpolate these normals
along the edges of each cube to find the normals of the
generated vertices, which are essential for shading the resulting
mesh with some illumination model.

C. Random Sample Consensus
A simple and elegant conceptual framework to estimate

parameters is the Random Sample Consensus (RANSAC)
paradigm by Martin A. Fischler and Robert C. Bolles [71].
This technique is capable of extracting a variety of different
models out of unstructured, noisy, sparse, and incomplete data.
In the context of computer-aided design it is often used to fit
geometric primitives such as planes, spheres, etc. to a point
cloud [72].

RANSAC-based algorithms proceed by randomly taking
(ideally few) samples, calculating the free parameters of a
model (for example the four parameters of a plane). Then
all samples of the input data set “vote”, whether they agree
with the hypothesis (if they are close enough to the suggested
plane). This procedure is repeated a few times, and the hy-
pothesis with the highest acceptance rate wins by “consensus”.
Samples, which agreed to a hypothesis, can be removed from
the input data set and the process can be started again, basically
until no samples remain.

The number of iterations, which are needed until a “good”
hypothesis is found, can be determined stochastically. Let
the input data set consist of (r + s) elements, of which r
belong to a model, which shall be identified. If n samples are
needed to generate a model instance, the probability that k
randomly chosen samples belong to this model is distributed
hypergeometrically; that means P (X = k) can be calculated
via the formula

P (X = k) =

(
r
k

)(
s

n−k
)(

r+s
n

) .

Therefore, the probability that at least one sample does not
belong to this model is 1−P (X = n). If the process of model
generation and testing is done in j times, the probability that
always at least one sample does not belong to the current model
is (1−P (X = n))j . If p is the probability that the RANSAC
algorithm returns the correct result, the probability of a failure
is 1 − p. The probability of such a failure is described by
the term (1− P (X = n))j . Therefore, this term has to equal
1−p. Solving the resulting equation for j returns the expected
number of needed iterations:

j =
ln(1− p)

ln

(
1− (r

n)
(r+s

n)

)

For example, if 20% of all points belong to a plane and the
remaining points are distributed randomly, then the noise is
at a level of 80%. In this case, the algorithm will need 373
iterations to detect this plane with a probability p = 0.95;
respectively 574 iterations to ensure a probability of p = 0.99.

D. Midsurfaces & Isogeometry

Thin objects such as papers or metal sheets often appear
in various contexts. Non-zero structural thickness is a factor
that influences their dynamic movements. Nevertheless, those
objects are often abstracted as two-dimensional entities, so-
called thin shells. The simulation of 3D solids has been studied
for a long time. Since thin shells are special cases of 3D solids,
one may apply the techniques developed for 3D solids to the
simulation of thin shells. Unfortunately, this approach does not
produce satisfactory results; modeling thin shells as 3D elastic
solids requires very fine FEM meshes to correctly capture the
global bending behavior.

A thin shell is a 3D elastic solid, of which one dimension
is small with respect to the others. This particular geometry
covers a wide range of engineering designs common in the
automotive and aerospace industries, but also in everyday life
in the form of, e.g., objects made of metal sheet or thin plastic
materials. For analysis this geometry is formulated in terms of
the middle surface / midsurface of the shell.

The creation of a thin shell representation of an arbitrary
object is an open question. Nevertheless, approaches to identify
pairs of opposite patches, which can be merged to a single
patch, and volume thinning techniques [73], [74] often lead to
sufficient results.

As typical product development consists of several stages
– mainly design in CAD system and analysis / simulation in
computer aided engineering (CAE) systems – CAD models
often have to be converted and transformed.

Isogeometric analysis (IGA) refers to analysis based di-
rectly on the geometry representation used in CAD. It therefore
avoids transforming the designed geometry into an approx-
imated simulation mesh for analysis. Isogeometric analysis
was introduced by Hughes et al. [75] for NURBS based
surfaces, but has also been successfully applied to other surface
representations like subdivision surfaces [76], [77]. With IGA,
the same basis functions used to define the CAD geometry
are also used to represent the simulation geometry and the
fields of unknowns for analysis. Because isogeometric analysis
does not require the creation of a separate simulation mesh,
it bridges the gap between CAD and CAE and facilitates an
ideal integration of modeling and analysis.

While the main focus of IGA is to more closely link design
and analysis in engineering, this technique is also used in other
fields; for example, physics-based modeling tools based on
IGA have been integrated into a modeling application [78].
The designed subdivision geometry is directly used to compute
deformations based on an isogeometric thin shell analysis. The
results are immediately available in the modeling application.
Another example are soft-body deformations for virtual reality
environments [79], which are computed interactively based
on isogeometric analysis of the subdivision surfaces used for
visualization.

454

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

E. Parametric Subdivision Surfaces
As subdivision surfaces are defined by an iterative refine-

ment algorithm, they generally cannot be directly evaluated
as a parametric surface. While regular regions often define a
known parametric surface, like bi-cubic B-splines in the case
of Catmull-Clark subdivision, this does not apply to irregular
regions near extraordinary vertices.

How to exactly evaluate irregular regions of a subdivision
surface at arbitrary parameter values has been shown by
Stam, first for Catmull-Clark [59] and later also for Loop
subdivision [60]. The evaluation is based on a set of eigenbasis
functions, derived from the subdivision matrix of the particular
subdivision scheme. This idea has also been extended to the
higher degree NURBS compatible subdivision scheme [77].
These approaches therefore provide a parametric mapping of
parameter values to points on the subdivision surface.

Another approach to convert a subdivision surface to an
approximate parametric surface is to extract regular B-spline
patches from the subdivision surface. For example, while
regular regions of a Catmull-Clark surface can be directly
mapped to bi-cubic B-spline patches, irregular regions need
to be approximated to get C1 continuous patches [61].

F. Semantic Enrichment
The problem of extracting semantic information from 3D

data can be formulated simply as What is the point? [80] A-
priori it is not clear whether a given point of a laser-scanned
3D scene, for example, belongs to a wall, to a door, or to
the ground [81]. To answer this question is called semantic
enrichment and it is always an act of interpretation [2].

The idea of generalized documents is to treat multimedia
data, in particular 3D data sets, just like ordinary text docu-
ments, so that they can be inserted into a digital library. For any
digital library to be able to handle a given media type, it must
be integrated with the generic services that a digital library
provides, namely markup, indexing, and retrieval. This defines
a digital library in terms of the function it provides [82], [83].
Like any library, it contains meta-information for all data sets.
In the simplest case, the metadata are of the Dublin Core type
(title, creator/author, and time of creation, etc.) [84]. This is
insufficient for large databases with a huge number of 3D
objects, because of their versatility and rich structure. Scanned
models are used in raw data collections, for documentation
archival, virtual reconstruction, historical data analysis, and
for high-quality visualization for dissemination purposes [85].
Navigating and browsing through the geometric models must
be possible not only in 3D, but also on the semantic level.
The need for higher-level semantic information becomes im-
mediately clear when considering typical questions users might
want to ask when a large database of 3D objects is available.

• How many different types of chairs are stored in the
library?

• I want to compare the noses of all these statues, can
you extract them?

• . . .

These questions cannot be answered, if the library simply treats
3D objects as binary large objects (BLOB) as it is done quite
often. For a heap of geometric primitives without semantics,
it is hard – if not impossible – to realize the mandatory

services required by a digital library, especially in the context
of electronic data exchange, storage and retrieval.

In the context of CAD, the processes of markup, indexing,
and retrieval are a challenge with many open problems [86],
[87].

IV. CONCLUSION

Model representations and their transformation into each
other have been a challenge in the past and will remain a
future challenge as well. The search for a comprehensive
model representation combining the advantages of the various,
different approaches is still on-going.

Especially the semantic question remains unanswered.
Adding semantics to shapes is an important, if not the vital,
step towards the great vision of visual computing: To not
only capture reality by sampling the world with 2D and
3D acquisition devices, but also to represent reality within a
computer in a meaningful, ideally even in an editable form.
Qualitative leaps can only be expected, if this open problem is
solved, and the semantic gap is eventually closed in a reliable
and sustainable way.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of the Aus-
trian Research Promotion Agency, the Forschungsförderungs-
gesellschaft (FFG) for the research project AEDA (K-Projekt
“Advanced Engineering Design Automation”).

455

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. TRANSFORMATION BETWEEN MODEL REPRESENTATIONS.

M
od

el
Tr

an
sf

or
m

at
io

n

fr
o
m
\t

o

Po
in

t
Se

ts
Po

ly
go

na
l

Fa
ce

s
Pa

ra
m

et
ri

c
Su

rf
ac

es
Su

bd
iv

is
io

n
Su

rf
ac

es
Im

pl
ic

it
Su

rf
ac

es
Vo

lu
m

et
ri

c
Sh

ap
es

G
en

er
at

iv
e

Sh
ap

es

Po
in

t
Se

ts
Po

is
so

n
R

ec
on

st
ru

ct
io

n
[4

1]
,[

42
]

Su
rf

ac
e

Fi
tti

ng
an

d
R

e-
gr

es
si

on
[1

0]
Su

rf
ac

e
Fi

tti
ng

[4
3]

Su
rf

ac
e

Fi
tti

ng
[4

4]
,

G
au

ss
ia

n
D

en
si

ty
C

om
-

pu
ta

tio
n

[4
5]

D
ir

ec
t

E
va

lu
at

io
n

[4
6]

,
G

au
ss

ia
n

D
en

si
ty

C
om

-
pu

ta
tio

n
[4

5]

G
en

er
at

iv
e

Fi
tti

ng
[3

8]

Po
ly

go
na

l
Fa

ce
s

M
on

te
C

ar
lo

Sa
m

pl
in

g
[4

7]
,[

48
]

M
es

h
Pr

oc
es

si
ng

[5
]

Su
rf

ac
e

Fi
tti

ng
[4

9]
Su

rf
ac

e
Fi

tti
ng

[5
0]

,
[5

1]
V

ar
ia

tio
na

l
In

te
r-

po
la

-
tio

n
[5

2]
Sc

an
-l

in
e

Fi
lli

ng
[5

3]
G

en
er

at
iv

e
Fi

tti
ng

[3
8]

Pa
ra

m
et

ri
c

Su
rf

ac
es

M
on

te
C

ar
lo

Sa
m

pl
in

g
[4

7]
,[

48
]

Tr
ia

ng
ul

at
io

n
[1

1]
,[

13
]

C
on

ve
rs

io
n

[1
2]

,[
11

]
E

xt
en

de
d

Su
bd

iv
is

io
n

Su
rf

ac
es

[5
4]

,N
U

R
B

S-
co

m
pa

tib
le

Su
bd

iv
is

io
n

[2
1]

,C
on

ve
rs

io
n

[5
5]

Sp
he

ri
ca

l
C

oo
rd

in
at

es
[5

6]
Fo

rw
ar

d
D

iff
er

en
ci

ng
[5

3]
In

ve
rs

e
(P

ro
ce

du
ra

l)
M

od
el

in
g

[3
7]

Su
bd

iv
is

io
n

Su
rf

ac
es

M
on

te
C

ar
lo

Sa
m

pl
in

g
[4

7]
,[

48
]

E
va

lu
at

io
n

[5
7]

,
Te

ss
e-

la
tio

n
[5

8]
E

xa
ct

E
va

lu
at

io
n

[5
9]

,
[6

0]
,P

at
ch

in
g

[6
1]

,E
x-

te
nd

ed
Su

bd
iv

is
io

n
Su

r-
fa

ce
s

[5
4]

E
va

lu
at

io
n

[5
7]

/
Te

s-
se

la
tio

n
[5

8]
w

ith
Fo

r-
w

ar
d

D
iff

er
en

ci
ng

[5
3]

In
ve

rs
e

(P
ro

ce
du

ra
l)

M
od

el
in

g
[6

2]

Im
pl

ic
it

Su
rf

ac
es

Po
in

t
E

va
lu

at
io

n
[6

3]
M

ar
ch

in
g

C
ub

es
[6

4]
,

[6
5]

Sp
he

ri
ca

l
co

or
di

na
te

[5
6]

In
te

rp
ol

at
io

n
[6

6]
Vo

xe
liz

at
io

n
[6

7]
In

ve
rs

e
(P

ro
ce

du
ra

l)
M

od
el

in
g

[6
8]

Vo
lu

m
et

ri
c

Sh
ap

es
Po

in
t

Sa
m

pl
in

g
/

Is
o-

Su
rf

ac
e-

E
xt

ra
ct

io
n

[6
9]

M
ar

ch
in

g
C

ub
es

[6
4]

vi
a

po
ly

go
na

l
fa

ce
s

re
pr

es
en

ta
tio

n
(m

ar
ch

in
g

cu
be

s
[6

4]
)

vi
a

po
ly

go
na

l
fa

ce
s

re
pr

es
en

ta
tio

n
(m

ar
ch

in
g

cu
be

s
[6

4]
)

vi
a

po
ly

go
na

l
fa

ce
s

re
pr

es
en

ta
tio

n
(m

ar
ch

in
g

cu
be

s
[6

4]
)

G
en

er
at

iv
e

Fi
tti

ng
[3

8]
,

In
ve

rs
e

(P
ro

ce
du

ra
l)

M
od

el
in

g
[6

8]

G
en

er
at

iv
e

Sh
ap

es
E

va
lu

at
io

n
[3

3]
E

va
lu

at
io

n
[3

3]
E

va
lu

at
io

n
[3

3]
E

va
lu

at
io

n
[3

3]
E

va
lu

at
io

n
[3

3]
E

va
lu

at
io

n
[3

3]
E

uc
lid

es
[3

6]

456

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] C. Schinko, U. Krispel, E. Eggeling, and T. Ullrich, “3d model
representations and transformations in the context of computer-aided
design: a state-of-the-art overview,” Proceedings of the International
Conference on Advances in Multimedia (MMedia), vol. 9, 2017, pp.
10–15.

[2] S. Havemann, T. Ullrich, and D. W. Fellner, “The Meaning of Shape
and some Techniques to Extract It,” Multimedia Information Extraction,
vol. 1, 2012, pp. 81–98.

[3] M. Zwicker, M. Pauly, O. Knoll, and M. Gross, “Pointshop 3D: an
interactive system for point-based surface editing,” Proceedings of 2002
ACM Siggraph, vol. 21, 2002, pp. 322–329.

[4] M. Gross and H. Pfister, Point-Based Graphics. San Francisco,
California, USA: Morgan Kaufmann Publishers Inc., 2007.

[5] M. Botsch, L. Kobbelt, and M. Pauly, Polygon Mesh Processing.
Natick, Massachusetts, USA: AK Peters, 2010.

[6] M. Attene, D. Giorgi, M. Ferri, and B. Falcidieno, “On converting
sets of tetrahedra to combinatorial and pl manifolds,” Computer Aided
Geometric Design, vol. 26, 2009, pp. 850–864.

[7] M. Botsch, S. Steinberg, S. Bischoff, and L. Kobbelt, “Openmesh –
a generic and efficient polygon mesh data structure,” Proceedings of
OpenSG Symposium, vol. 1, 2002, pp. 1–5.

[8] G. Farin, Curves and Surfaces for Computer Aided Geometric Design,
G. Farin, Ed. Academic Press Professional, Inc., 1990.

[9] H. Pottmann and S. Leopoldseder, “Geometries for CAGD,” Handbook
of 3D Modeling, G. Farin, J. Hoschek, and M.-S. Kim (editors), vol. 1,
2002, pp. 43–73.

[10] J. Hoschek and D. Lasser, Grundlagen der Geometrischen Datenverar-
beitung (english: Fundamentals of Computer Aided Geometric Design),
J. Hoschek and D. Lasser, Eds. Teubner, 1989.

[11] H. Prautzsch, W. Boehm, and M. Paluszny, Bézier and B-Spline
Techniques, H. Prautzsch, W. Boehm, and M. Paluszny, Eds. Springer,
2002.

[12] G. Aumann and K. Spitzmüller, Computerorientierte Geometrie (en-
glish: Computer-Oriented Geometry), G. Aumann and K. Spitzmüller,
Eds. BI-Wissenschafts-Verlag, 1993.

[13] L. Piegl and W. Tiller, The NURBS book, L. Piegl and W. Tiller, Eds.
Springer-Verlag New York, Inc., 1997.

[14] J. Fisher, J. Lowther, and C.-K. Shene, “If you know b-splines well,
you also know NURBS!” Proceedings of the 35th SIGCSE technical
symposium on Computer science education, vol. 35, 2004, pp. 343–
347.

[15] B. Hamann and P.-Y. Tsai, “A tessellation algorithm for the represen-
tation of trimmed NURBS surfaces with arbitrary trimming curves.”
Computer Aided Design, vol. 28, 1996, pp. 461–472.

[16] G. Farin, NURBS for Curve and Surface Design from Projective
Geometry to Practical Use, G. Farin, Ed. AK Peters, Ltd., 1999.

[17] E. Catmull and J. Clark, “Recursively generated B-spline surfaces on
arbitrary topological meshes,” Computer-Aided Design, vol. 10, 1978,
pp. 350–355.

[18] D. Doo and M. Sabin, “Behavior of Recursive Division Surfaces near
Extraordinary Points,” Computer Aided Design, vol. 10, no. 6, 1978,
pp. 356–360.

[19] C. Loop, “Smooth Subdivision Surfaces Based on Triangles,” Master’s
Thesis, University of Utah, USA, vol. 1, 1987, pp. 1–74.

[20] L. Kobbelt, “Interpolatory Subdivision on Open Quadrilateral Nets with
Arbitrary Topology,” Computer Graphics Forum, vol. 15, no. 3, 1996,
pp. 409–420.

[21] T. J. Cashman, U. H. Augsdörfer, N. A. Dodgson, and M. A. Sabin,
“Nurbs with extraordinary points: High-degree, non-uniform, rational
subdivision schemes,” ACM Transactions on Graphics, vol. 28, no. 3,
Jul. 2009, pp. 46:1–46:9.

[22] E. Sultanow, “Implizite Flächen (english: Implicit surfaces),” Technical
Report at Hasso-Plattner-Institut, vol. 1, 2004, pp. 1–11.

[23] A. Knoll, Y. Hijazi, C. Hansen, I. Wald, and H. Hagen, “Interactive
Ray Tracing of Arbitrary Implicits with SIMD Interval Arithmetic,”
Proceedings of IEEE Symposium on Interactive Ray Tracing, vol. 7,
2007, pp. 11–18.

[24] A. A. Pasko and V. V. Savchenko, “Blending Operations for the Func-
tionally Based Constructive Geometry,” Set-theoretic Solid Modeling:
Techniques and Applications / Information Geometers, vol. 94, 1994,
pp. 151–161.

[25] G. I. Pasko, A. A. Pasko, and T. L. Kunii, “Bounded Blending
for Function-Based Shape Modeling,” IEEE Computer Graphics and
Applications, vol. 25, 2005, pp. 36–45.

[26] B. Grünbaum and G. C. Shephard, “Convex polytopes,” Bull. Lond.
Math. Soc., vol. 1, 1969, pp. 257–300.

[27] U. Krispel, T. Ullrich, and D. W. Fellner, “Fast and Exact Plane-Based
Representation for Polygonal Meshes,” Proceeding of the International
Conference on Computer Graphics, Visualization, Computer Vision and
Image Processing, vol. 8, 2014, pp. 189–196.

[28] W. Thaller, U. Krispel, R. Zmugg, S. Havemann, and D. W. Fellner,
“Shape Grammars on Convex Polyhedra,” Computers & Graphics,
vol. 37, 2013, pp. 707–717.

[29] Y. Hijazi, A. Knoll, M. Schott, A. Kensler, C. Hansen, and H. Hagen,
“CSG Operations of Arbitrary Primitives with Interval Arithmetic and
Real-Time Ray Casting,” Scientific Visualization: Advanced Concepts,
vol. 978-3-939897-19-4, 2010, pp. 78–89.

[30] B. Naylor, J. Amanatides, and W. Thibault, “Merging bsp trees yields
polyhedral set operations,” ACM Transactions on Graphics, vol. 24,
no. 4, 1990, pp. 115–124.

[31] U. Schöning, Theoretische Informatik - kurz gefasst, 5th ed. Heidel-
berg: Spektrum Akademischer Verlag, 2008.

[32] C. Schinko, M. Strobl, T. Ullrich, and D. W. Fellner, “Modeling
Procedural Knowledge – a generative modeler for cultural heritage,”
Proceedings of EUROMED 2010 - Lecture Notes on Computer Science,
vol. 6436, 2010, pp. 153–165.

[33] U. Krispel, C. Schinko, and T. Ullrich, “A Survey of Algorithmic
Shapes,” Remote Sensing, vol. 7, 2015, pp. 12 763–12 792.

[34] R. Berndt, D. W. Fellner, and S. Havemann, “Generative 3D Models:
a Key to More Information within less Bandwidth at Higher Quality,”
Proceeding of the 10th International Conference on 3D Web Technology,
vol. 1, 2005, pp. 111–121.

[35] D. W. Fellner and S. Havemann, “Striving for an adequate vocabulary:
Next generation metadata,” Proceedings of the 29th Annual Conference
of the German Classification Society, vol. 29, 2005, pp. 13–20.

[36] C. Schinko, M. Strobl, T. Ullrich, and D. W. Fellner, “Scripting
technology for generative modeling,” International Journal on Advances
in Software, vol. 4, no. 3-4, 2011, pp. 308–326.

[37] U. Krispel, C. Schinko, and T. Ullrich, “The Rules Behind – Tutorial
on Generative Modeling,” Proceedings of Symposium on Geometry
Processing / Graduate School, vol. 12, 2014, pp. 21–249.

[38] T. Ullrich and D. W. Fellner, “Generative Object Definition and Se-
mantic Recognition,” Proceedings of the Eurographics Workshop on
3D Object Retrieval, vol. 4, 2011, pp. 1–8.

[39] T. Ullrich, V. Settgast, U. Krispel, C. Fünfzig, and D. W. Fellner,
“Distance Calculation between a Point and a Subdivision Surface,”
Proceedings of 2007 Vision, Modeling and Visualization (VMV), vol. 1,
2007, pp. 161–169.

[40] T. Ullrich, V. Settgast, and D. W. Fellner, “Semantic Fitting and
Reconstruction,” Journal on Computing and Cultural Heritage, vol. 1,
no. 2, 2008, pp. 1201–1220.

[41] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruc-
tion,” Symposium on Geometry Processing, vol. 4, 2006, pp. 61–70.

[42] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” IEEE
International Conference on Robotics and Automation (ICRA), vol. 28,
May 9-13 2011, pp. 1–4.

[43] K.-S. D. Cheng, W. Wang, H. Qin, K.-Y. K. Wong, H. Yang, and
Y. Liu, “Fitting Subdivision Surfaces to Unorganized Point Data using
SDM,” Proceedings of 12th Pacific Conference on Computer Graphics
and Applications, vol. 1, 2004, pp. 16–24.

[44] P. Keller, O. Kreylos, E. S. Cowgill, L. H. Kellogg, and M. Hering-
Bertram, “Construction of implicit surfaces from point clouds using a
feature-based approach,” Dagstuhl Publishing, vol. 2, 2011, pp. 129–
143.

[45] R. Preiner, O. Mattausch, M. Arikan, R. Pajarola, and M. Wimmer,

457

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

“Continuous projection for fast l1 reconstruction,” ACM Transactions
on Graphics, vol. 20, no. 9, 2014, pp. 1280–1292.

[46] S. Muraki, “Volumetric shape description of range data using ‘blobby
model’,” SIGGRAPH Comput. Graph., vol. 25, no. 4, Jul. 1991, pp.
227–235.

[47] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli,
and G. Ranzuglia, “Meshlab: an open-source mesh processing tool,”
Eurographics Italian Chapter Conference, vol. 3, 2008, pp. 129–136.

[48] D. P. Kroese, T. Brereton, T. Taimre, and Z. I. Botev, “Why the monte
carlo method is so important today,” Wires – Computational Statistics,
vol. 6, 2014, pp. 386–392.

[49] W. Ma and J. P. Kruth, “Nurbs curve and surface fitting for reverse
engineering,” The International Journal of Advanced Manufacturing
Technology, vol. 14, no. 12, 1998, pp. 918–927.

[50] X. Ma, S. Keates, Y. Jiang, and J. Kosinka, “Subdivision surface fitting
to a dense mesh using ridges and umbilics,” Computer Aided Geometric
Design, vol. 32, 2015, pp. 5–21.

[51] D. Panozzo, M. Tarini, N. Pietroni, P. Cignoni, and E. Puppo, “Auto-
matic construction of quad-based subdivision surfaces using fitmaps,”
IEEE Transactions on Visualization & Computer Graphics, vol. 17, no.
undefined, 2011, pp. 1510–1520.

[52] G. Yngve and G. Turk, “Robust creation of implicit surfaces from
polygonal meshes,” IEEE Transactions on Visualization and Computer
Graphics, vol. 8, no. 4, 2002, pp. 346–359.

[53] A. Kaufman, “Efficient algorithms for 3d scan-conversion of parametric
curves, surfaces, and volumes,” Proceedings of the annual conference
on computer graphics and interactive techniques, vol. 14, 1987, pp.
171–179.

[54] K. Mueller, L. Reusche, and D. W. Fellner, “Acm transactions on
graphics,” Extended subdivision surfaces: Building a bridge between
NURBS and Catmull-Clark surfaces, vol. 25, 2006, pp. 268–292.

[55] J. Shen, J. kosinka, M. Sabin, and N. Dodgson, “Computer aided
geometric design,” Converting a CAD model into a non-uniform sub-
division surface, vol. 48, 2016, pp. 17–35.

[56] C. Ünsalan and A. Erçil, “Conversions between parametric and implicit
forms using polar/spherical coordinate representations,” Computer Vi-
sion and Image Understanding, vol. 81, no. 1, 2001, pp. 1–25.

[57] W. Ma, “Subdivision surfaces for cad: an overview,” Computer-Aided
Design, vol. 37, no. 7, 2005, pp. 693–709.

[58] K. Müller and S. Havemann, “Subdivision surface tesselation on the
fly using a versatile mesh data structure,” Computer Graphics Forum,
vol. 19, 2000, pp. 151–159.

[59] J. Stam, “Exact evaluation of Catmull-Clark subdivision surfaces at
arbitrary parameter values,” Proceedings of the annual conference on
computer graphics and interactive techniques, vol. 25, 1998, pp. 395–
404.

[60] ——, “Evaluation of Loop subdivision surfaces,” Proceedings of the
annual conference on computer graphics and interactive techniques
(Course Notes), vol. 26, 1999, pp. 1–15.

[61] J. Peters, “Patching Catmull-Clark meshes,” Proceedings of the Annual
Conference on Computer Graphics and Interactive Techniques, vol. 27,
2000, pp. 255–258.

[62] C. Schinko, U. Krispel, T. Ullrich, and D. W. Fellner, “Built by
Algorithms – State of the Art Report on Procedural Modeling,” Pro-
ceeding of the International Workshop on 3D Virtual Reconstruction
and Visualization of Complex Architectures (3D-ARCH), vol. 6, 2015,
pp. 469–479.

[63] P. Ning and J. Bloomenthal, “An evaluation of implicit surface tilers,”
IEEE Computer Graphics and Applications, vol. 13, no. 6, 1993, pp.
33–41.

[64] T. S. Newman and H. Yi, “A survey of the marching cubes algorithm,”
Computers & Graphics, vol. 30, 2006, pp. 854–879.

[65] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel, “Feature
sensitive surface extraction from volume data,” International Conference
on Computer Graphics and Interactive Techniques, vol. 28, 2001, pp.
57–66.

[66] X. Jin, H. Sun, and Q. Peng, “Subdivision interpolating implicit
surfaces,” Computers & Graphics, vol. 27, no. 5, 2003, pp. 763–772.

[67] N. Stolte and A. Kaufman, “Novel techniques for robust voxelization
and visualization of implicit surfaces,” Graphical Models, vol. 63, no. 6,
2001, pp. 387–412.

[68] C. Schinko, U. Krispel, and T. Ullrich, “Know the Rules – Tutorial
on Procedural Modeling,” Proceedings of the International Joint Con-
ference on Computer Vision, Imaging and Computer Graphics Theory
and Applications (GRAPP Tutorial Notes), vol. 10, 2015, p. 27ff.

[69] R. U. Lobello, F. Dupont, and F. Denis, “Out-of-core adaptive iso-
surface extraction from binary volume data,” Graphical Models, vol. 76,
2014, pp. 593–608.

[70] D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and
R. Huebner, Level of Detail for 3D Graphics, 1st ed. Heidelberg,
Germany: Morgan Kaufmann, 2002.

[71] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
1981, pp. 381–395.

[72] R. Schnabel, R. Wahl, and R. Klein, “Efficient RANSAC for Point-
Cloud Shape Detection,” Computer Graphics Forum, vol. 26, no. 2,
2007, pp. 214–226.

[73] T. Itoh, Y. Yamaguchi, and K. Koyamada, “Fast isosurface generation
using the volume thinning algorithm,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 7, 2001, pp. 32–46.

[74] T. Fujimori, Y. Kobayashi, and H. Suzuki, “Separated medial surface
extraction from ct data of machine parts,” Proceedings of the inter-
national conference on Geometric Modeling and Processing (GMP),
vol. 4, 2006, pp. 313–324.

[75] T. J. R. Hughes, J. Cottrell, and Y. Bazilevs, “Isogeometric analysis:
CAD, finite elements, NURBS, exact geometry and mesh refinement,”
Computer Methods in Applied Mechanics and Engineering, vol. 194,
2005, pp. 4135–4195.

[76] F. Cirak, M. Ortiz, and P. Schröder, “Subdivision surfaces: A new
paradigm for thin-shell finite element analysis,” International Journal
for Numerical Methods in Engineering, vol. 47, no. 12, 2000, pp. 2039–
2072.

[77] A. Riffnaller-Schiefer, U. H. Augsdörfer, and D. W. Fellner, “Isoge-
ometric shell analysis with NURBS compatible subdivision surfaces,”
Applied Mathematics and Computation, vol. 272, 2016, pp. 139–147.

[78] ——, “Isogeometric analysis for modelling and design,” Proceedings
of EUROGRAPHICS – Short Papers, vol. 34, 2015, pp. 17–20.

[79] ——, “Interactive physics-based deformation for virtual worlds,” Pro-
ceedings of the International Conference on Cyberworlds, 2017 (to
appear).

[80] S. Biasotti, B. Falcidieno, D. Giorgi, and M. Spagnuolo, Mathematical
Tools for Shape Analysis and Description. Morgan & Claypool
Publishers, 2014.

[81] M. Attene, F. Robbiano, M. Spagnuolo, and B. Falcidieno, “Charac-
terization of 3d shape parts for semantic annotation,” Computer-Aided
Design, vol. 41, 2009, pp. 756–763.

[82] D. W. Fellner, “Graphics Content in Digital Libraries: Old Problems,
Recent Solutions, Future Demands,” Journal of Universal Computer
Science, vol. 7, 2001, pp. 400–409.

[83] D. W. Fellner, D. Saupe, and H. Krottmaier, “3D Documents,” IEEE
Computer Graphics and Applications, vol. 27, no. 4, 2007, pp. 20–21.

[84] Dublin Core Metadata Initiative, “Dublin Core Metadata Initiative,”
http://dublincore.org/ [retrieved: Feb. 2017], 1995.

[85] V. Settgast, T. Ullrich, and D. W. Fellner, “Information Technology for
Cultural Heritage,” IEEE Potentials, vol. 26, no. 4, 2007, pp. 38–43.

[86] C. Schinko, T. Vosgien, T. Prante, T. Schreck, and T. Ullrich, “Search
& retrieval in cad databases – a user-centric state-of-the-art overview,”
Proceedings of the International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications (GRAPP
2017), vol. 12, 2017, pp. 306–313.

[87] H. Laga, M. Mortara, and M. Spagnuolo, “Geometry and context for
semantic correspondences and functionality recognition in man-made
3d shapes,” ACM Transactions on Graphics, vol. 32, 2013, p. 150ff.

458

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

