
Effects of an Apriori-based Data-mining Algorithm

for Detecting Type 3 Clones

Yoshihisa Udagawa

Computer Science Department, Faculty of Engineering,

Tokyo Polytechnic University

Atsugi-city, Kanagawa, Japan

e-mail: udagawa@cs.t-kougei.ac.jp

Abstract—A code clone is a fragment of source code that

appears at least twice in software source code. Code clones

introduce difficulties in software maintenance because an error

in one fragment is reproduced in code clones. It is significant to

detect every code clones for making software maintenance easy

and reliable.

This paper describes software clone detection techniques

using an Apriori-based sequential data mining algorithm. The

Apriori-based algorithm is used because it is designed to find

all frequent items that occur no less than a user-specified

threshold named the minimum support (minSup). Since clones

are slightly modified by adding, removing, or changing source

code in general, the algorithm for detecting code clones has to

deal with both match and mismatch portions of source code.

The essential idea of the proposed approach is a combination

of a partial string match using the longest-common-

subsequence (LCS) and an Apriori-based algorithm for finding

frequent sequences.

Generally, Apriori-based algorithms extract vast numbers of

frequent sequences especially when the minSup is small,

creating an obstacle to the detection of code clones. The

novelties of our approach include pruning processes that

depend on characteristics of a programming language,

techniques to reduce the number of frequent sequences, and

functions to control repetitive subsequences. We evaluate the

effectiveness of the proposed algorithm based on experimental

results using the source code of the Java SDK SWING graphics

package. The results show that the proposed sequential data

mining algorithm maintains the performance at a practical

level until the minSup reaches two. This paper also shows some

mined sequences and source code to demonstrate that the

proposed algorithm works from short sequences to long ones.

Keywords—Code clone; Apriori-based algorithm; Maximal

frequent sequence; Longest common subsequence(LCS)

algorithm; Java source code.

I. INTRODUCTION

Two or more fragments of source code that are identical or
similar to each other are named code clones. Programmers
can reuse software code to speed up development, especially
when similar functionality is already implemented in
programs. Code clones are very common in large software,
because they can significantly reduce programming effort
and shorten programming time. However, code clones are
believed to be harmful in the quality management across the

software life cycle, especially in the maintenance phase.
Code clones complicate software maintenance, because an
error in a cloned fragment is reproduced in every copy. In
other words, if there are many code clones in software source
code, and a bug is found in one code clone, a programmer
must check and update all of its instances consistently.

Techniques detecting similar code patterns including code
clones help programmers understand the software code with
less pain. Accumulated code patterns can lead to
programming knowledge about a particular application.
Techniques to detect code clones can be an essential part of
programming knowledge extraction. The programming
knowledge can enhance the performance of a project team
enabling to provide high-quality software on schedule.

Since code clones are a set of similar fragments that
appear at least twice in source code, the problem of finding
code clones is essentially the detection of a set of string
sequences that partially match and appear at least twice. The
previous studies of Udagawa [1][2] propose a sequential data
mining algorithm for string sequences based on an Apriori
principle [3]. This paper enhances the previous studies
through applying the algorithm to a large scale software, i.e.,
the Java SDK SWING graphics package.

A number of approaches have been developed to detect
code clones based on textual similarity, three types of cloned
code have been identified [4]. Type 1 is an exact copy
without modification, with the exception of layout and
comments. Type 2 is a slightly different copy typically
resulting from renaming of variables or constants. Type 3 is
a copy with further modifications typically resulting from
adding, removing, or changing code units. Since Type-3
clones are generated by modifying original code units, there
are mismatch portions of code when the clones and its
original code units are compared. The mismatch portion is
referred to as a “gap” in this paper.

Research on Type 3 clones has been conducted in recent
decades, because there are substantially more significant
clones of Type 3 than those of Types 1 or 2 in software for
industrial applications. Our approach also focuses on finding
Type 3 clones.

The following issues have to be addressed in finding this
type of clone.
(1) How to handle gaps in pattern matching.

There are many algorithms that are tailored to handle
gaps in similarity measures, such as sequence alignment,

477

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

dynamic pattern matching, tree-based matching, and
graph-based matching techniques [4][5].

(2) How to find frequently occurring patterns.
The detection of frequently occurring patterns in a set of
sequence data has been researched thoroughly, as
reported in the sequential pattern-mining literature
[3][6]-[10]. There are several studies [11]-[13] using an
Apriori-based algorithm to discover code clones in
source code.

Code clones are defined as a set of syntactically and/or
semantically similar fragments of source code [4][5]. Since
source code consists of a sequence of statements, finding
clone code can be achieved by finding similar sequences that
occur at least twice. Apriori-based sequential pattern-mining
algorithms are worth studying, because they are especially
designed to detect a set of frequently occurring sequences.
The algorithms take a positive integer threshold set by a user
called “minimum support” or “minSup” for short. The choice
of minSup controls the level of frequency [3][10].

In previous studies [1][2], Udagawa shows that repeated
structures in a method adversely affect the performance,
especially when the minSup is two or three using Java SDK
1.8.0_101 awt [1] and Apache Struts 2.5.2 Core [2]. This
paper builds on those studies using the large-scale software
Java SDK 1.8.0_101 SWING and analyzes to what extent the
minSup affects the number of retrieved sequences and time
performance. For this purpose, the proposed Apriori-based
sequential mining algorithm is properly revised to deal with
the repeated structures in a method.

The contributions of this paper are as follows:
(I) design and implementation of a code transformation

parser that extracts code matching statements, including
control statements and typed method calls;

(II) design and implementation of a sequential data-mining
algorithm that maintains performance at a practical level
until the threshold minSup reaches two;

(III) evaluation of the proposed algorithm using the Java
SDK 1.8.0_101 SWING graphics package with respect to a
minSup of two to ten and a gap size of zero to three. In
addition to time performance, the number of mined
sequences is analyzed for each length of sequences
showing that the number of repeated structures in a
method accounts for a large part of the mined sequences,
especially in the case when the minSup is two.
The remainder of the paper is organized as follows. After

presenting some basic definitions and terminology on
frequent sequence mining techniques in Section II, we gave
an overview of the proposed approach in Section III. Section
IV describes the proposed algorithm for discovering clone
candidates using an Apriori-based maximal frequent
sequence mining technique. Section V presents the
experimental results using the Java SDK 1.8.0_101 SWING
package with some mined sequences and source code.
Section VI presents some of the most related work. Section
VII concludes the paper with our plans for future work.

II. BASIC DEFINITIONS

Definition 1 (sequence and sequence database). A

sequence is an enumerated collection of items in which

repetitions are allowed. A sequence database is a set of the

sequences. Formally, they are defined as follows.

Let I = { i1, i2,…, ih } be a set of items (symbols). A

sequence sx is an ordered list of items sx = xj1→ xj2 →…→

xjn such that xjk ⊆ I (1 ≤ jk ≤ h). A sequence database

(SDB) is a set of sequences SDB = <s1, s2, …, sp> having

sequence identifiers (SIDs) 1, 2, …, p.

Definition 2 (sequence containment). The notion of

containment between two sequences is a key concept to

characterize matching of the sequences. The sequence

containment is defined by the identical or match items that

are consecutively paired between two sequences. The

concept of sequence containment is formalized as follows.

A sequence sa = a1→a2 →…→ an is said to be contained

in a sequence sb = b1→ b2→…→ bm (n ≤ m) iff there exists

a strictly increasing sequence of integers q taken from [1, n],

1 ≤ q[1] < q[2] < … < q[n] ≤ m such that a1 = bq[1], a2 = bq[2],

…, an = bq[n] (denoted as sa ⊑ sb).

Definition 3 (gapped sequence containment). A gap is a

non-identical or mismatch item that consists either or both of
the sequences. The concept of a gapped sequence
containment is essential for detecting Type-3 clones because
they are generated through modifications of adding,
removing, or changing code units that cause gaps between
two sequences. The gapped sequence containment is
formally defined using a threshold, i.e., maxGap, that
specifies the maximum length of non-identical or mismatch
items.

Let maxGap be a threshold set by a user. A sequence sa =

a1 → a2 → … → an is said to be contained in a sequence sb =

b1 → b2 → … →bm with respect to maxGap iff a1 = bq[1], a2

= bq[2], …, an = bq[n] and q[j]–q[j–1]–1 ≤ maxGap for all 2 ≤ j
≤ n.
Definition 4 (prefix and postfix with respect to maxGap).
A sequence can be divided into two subsequences, i.e., prefix
and postfix, according to the concept of the gapped sequence
containment.

A sequence sa = a1 → a2 → … → an is called a prefix of a

sequence sb = b1 → b2→ … → bm (n ≤ m) iff sa is a gapped

sequence containment of sb with maxGap. A subsequence s'b

= bn + 1 → … → bm is called a postfix of sb with respect to

prefix sa, denoted as sb = sa → s'b.

Definition 5 (support count with respect to maxGap).
The support count of a sequence is defined by the number of

its occurrences that appear in a sequence database. Since

gaps in a sequence increase the chance of matching, the

support count depends on maxGap.

Given a value of maxGap, the support count of a

sequence sb in a sequence database SDB with respect to

maxGap is defined as the number of sequences s ∊ SDB

such that sb is a gapped sequence containment of s with

respect to maxGap and is denoted by supmaxGap(sb).

Definition 6 (multi-occurrence mode and single-

occurrence mode). Given a value of maxGap and a

sequence sb = b1 → b2 → … → bm with a prefix sa, the

478

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

sequence sb has a support of supmaxGap(sb) that is greater than

zero.

When the prefix sa is contained in a postfix of sb, i.e., s'b =

bn + 1 → … →bm, the support is calculated as supmaxGap(sb) +

1.

This calculation is applied recursively for each postfix of

sb to determine the support number. The support number

calculated recursively is referred to as the support number in

multi-occurrence mode in this paper. This mode is critical

when dealing with long sequences, such as nucleotide DNA

sequences [6][7], and periodically repeated patterns over

time [8]. The support number without the calculation of the

postfix of sb is referred to as the support number in single-

occurrence mode. The algorithm proposed in the paper

supports both of these modes.

Definition 7 (frequent sequences with maxGap). Let

maxGap and minSup be thresholds set by a user. A

sequence sb is referred to as a frequent sequence with

respect to maxGap iff supmaxGap(sb) ≥ minSup. The problem

of sequence mining on a sequence database SDB is to

discover all frequent sequences for given integers maxGap

and minSup.

Definition 8 (closed frequent sequence). A closed frequent

sequence is defined to be a frequent sequence for which

there exists no super sequence that has the same support

count as the original sequence [10][14].

Definition 9 (maximal frequent sequence). A maximal

frequent sequence is defined to be a frequent sequence for

which none of its immediate super sequences are frequent

[9][10]. The maximal frequent sequence is valuable,

because it provides the most compact representation of

frequent sequences [14].

The closed frequent sequence is widely used when a

system is designed to generate an association rule [10] that

is inferred from a support number of a frequent sequence.

Figure 1. Overview of the proposed approach

III. OVERVIEW OF PROPOSED APPROACH

Fig. 1 provides an overview of the proposed approach.
According to the terminology in the survey [4], our approach
can be summarized in three steps, transformation, match
detection, and aggregation.

A. Extraction of code matching statements

Under the assumption that method calls and control
statements characterize a program, the proposed parser
extracts them in a Java program. Generally, the instance
method is preceded by a variable whose type refers to a class
object to which the method belongs. The proposed parser
traces a type declaration of a variable and translates a
variable identifier to its data type or class identifier as
follows. The translation allows us to deal with Type 2 clones.

<variable>.<method identifier>
is translated into

 <data type>.<method identifier> or
 <class identifier>.<method identifier>.
The parser extracts control statements with various levels

of nesting. A block is represented by the “{” and “}”
symbols. Thus, the number of “{” symbols indicate the
number of nesting levels. The following Java keywords for
15 control statements are processed by the proposed parser;

if, else if, else, switch, while, do, for, break, continue,
return, throw, synchronized, try, catch, finally.

We selected the Java SDK 1.8.0_101 SWING package as
the target of our study. The total number of lines is 372,186,
qualifying the SWING package as a kind of large-scale
software in the industry.

Fig. 2 shows an example of the extracted structure of the
paintContentBorderBottomEdge(Graphics g, int tabP, int
sIndex, int x, int y, int w, int h) method in the
BasicTabbedPaneUI.java file of the javax.swing.plaf.basic
package. The three numbers preceded by the # symbol are
the numbers of comments, blank lines, and code lines,
respectively. Fig. 3 shows the source code of the
paintContentBorderBottomEdge() method whose matching
statements are shown in Fig. 2.

Figure 2. Example of an extracted structure

479

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Source code corresponding to Fig. 2

In this study, we deal only with Java. However, a slight

modification of the parser allows us to apply the proposed
approach to other languages such as C/C++ and Visual Basic.

B. Encoding statements in three base-32 digits

The conventional longest-common-subsequence (LCS)
algorithm [15] takes two given strings as input and returns
values depending on the number of matching characters of
the strings. Because the length of statements in program code
differs, the conventional LCS algorithm does not work
effectively. In other words, for short statements, such as if
and try statements, the LCS algorithm returns small LCS
values for matching. For long statements, such as
synchronized statements or a long method identifier, the LCS
algorithm returns large LCS values.

We have developed an encoder that converts a statement to
three base-32 digits (to cope with 32,768 identifiers),
resulting in a fair base for a similarity metric in clone
detection. Fig. 4 shows the encoded statements that
correspond to the matching statements shown in Fig. 2. Fig.
5 shows a portion of the mapping table between three base-
32 digits and the matching statements extracted from the
original source files.

Figure 4. Encoded statements corresponding to Fig. 2

Figure 5. Mapping table between three base-32 digits and a code
 matching statement used to encode statements in Fig. 4

C. Apriori-based mining algorithm for finding frequent

sequences with gaps

We have developed a mining algorithm to find frequent
sequences based on the Apriori principle [3][10], i.e., if an
itemset is frequent, then all of its subsets must be frequent.

Frequent sequence mining is essentially different from
itemset mining, because a subsequence can repeat not only in
different sequences but also within each sequence. For

example, given two sequences C→C→A and B→C→A→B

→A→C→A, there are three occurrences of the subsequence

C→A. The repetitions within a sequence [6]-[8] are critical

when dealing with long sequences such as protein sequences,
stock exchange rates, or customer purchase histories.

Note that the proposed algorithm is implemented to run in
two modes, i.e., multi-occurrence mode to find all
subsequences included in a given sequence, and single-
occurrence mode to find a subsequence in a given sequence
even if there exist several subsequences. As described in
Section V, the multi-occurrence mode detects so many code
matchings that it has an adverse effect on performance,
especially when the minSup is two, and the maxGap is one
to three.

The LCS algorithm is also tailored to match three base-32

digits as a unit. That algorithm can match two given

sequences even if there is a “gap.” Given two sequences of

matching strings S1 and S2, let |lcs| be the length of their

longest common subsequence, and let |common (S1, S2)| be

the common length of S1 and S2 from a back trace

algorithm. The “gap size” gs is defined as gs = |common (S1,

S2)| – |lcs|.

D. Mining maximal frequent sequences

Frequent sequence mining tends to result in a very large

number of sequential patterns, creating difficulty for users in

analyzing the results. Closed and maximal frequent

sequences are two representations for alleviating this

drawback. A closed frequent sequence needs to be used in

the case in which a system under consideration is designed

to deal with an association rule [3][10][14] that plays an

important role in knowledge discovery.

A maximal frequent sequence is a sequence that is

frequent in a sequence database and that is not contained in

any other longer frequent sequences. Maximal frequent

BasicTabbedPaneUI::paintContentBorderBottomEdge(Graph

ics g:int tabPlacement:int selectedIndex:int x:int y:int w:int

h)→001→4F2→07F→002→07G→07F→07G→005→009

→07G→07F→07G→002→07F→07G→07F→07G→005→

005→005

protected void paintContentBorderBottomEdge(Graphics g,

int tabPlacement,

 int selectedIndex,

 int x, int y, int w, int h) {

 Rectangle selRect = selectedIndex < 0? null :

 getTabBounds(selectedIndex, calcRect);
 g.setColor(shadow);

 // Draw unbroken line if tabs are not on BOTTOM, OR

 // selected tab is not in run adjacent to content, OR

 // selected tab is not visible (SCROLL_TAB_LAYOUT)

 //

 if (tabPlacement != BOTTOM || selectedIndex < 0 ||

 (selRect.y - 1 > h) ||

 (selRect.x < x || selRect.x > x + w)) {
 g.drawLine(x+1, y+h-2, x+w-2, y+h-2);

 g.setColor(darkShadow);

 g.drawLine(x, y+h-1, x+w-1, y+h-1);

 } else {

 // Break line to show visual connection to selected tab

 g.drawLine(x+1, y+h-2, selRect.x - 1, y+h-2);

 g.setColor(darkShadow);
 g.drawLine(x, y+h-1, selRect.x - 1, y+h-1);

 if (selRect.x + selRect.width < x + w - 2) {

 g.setColor(shadow);

 g.drawLine(selRect.x + selRect.width, y+h-2, x+w-2, y+h-2);

 g.setColor(darkShadow);

 g.drawLine(selRect.x + selRect.width, y+h-1, x+w-1, y+h-1);

 }

 }
}

480

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

sequences comprise a subset of the closed frequent

sequences. Such a sequence is representative in the sense

that all sequential patterns can be derived from it. Because

we are interested only in finding a set of frequent sequences

that are representative of a code clone, we developed an

algorithm to discover the maximal frequent sequences.

IV. PROPOSED FREQUENT SEQUENCE MINING ALGORITHM

We have developed two algorithms for detecting code

clones with gaps. The first is for mining frequent sequences,

and the second is for extracting the maximal frequent

sequences from a set of frequent sequences.

A. Proposed Frequent Sequence Mining Algorithm

The proposed approach is based on frequent sequence
mining. A subsequence is considered frequent when it occurs
no less than a user-specified minimum support threshold (i.e.,
minSup) in a sequence database. Note that a subsequence is
not necessarily contiguous in an original sequence since the
proposed algorithm deals with Type-3 clones.

We assume that a sequence is “a list of items,” whereas
several algorithms for sequential pattern mining [6]-[9] deal
with a kind of sequence that consists of “a list of sets of
items.” Our assumption is reasonable, because we focus on
detecting code clones that consist of “a list of statements.” In
addition, the assumption simplifies the implementation of the
proposed algorithm, enabling it to achieve high performance
as described in Section V.

The proposed frequent sequence-mining algorithm
contains two methods, GProbe (Fig. 6) and Retrieve_Cand
(Fig. 7). It follows the key idea behind the Apriori principle;

if a sequence S in a sequence database appears N times,
so does every subsequence R of S at least.

The algorithm takes two arguments, minSup and maxGap
(the allowable maximal number of gaps).

Fig. 6 shows the pseudocode of the algorithm GProbe.
The algorithm takes two arguments, minSup and maxGap
(the allowable maximal number of gaps). Let Sk be the set of
frequent sequences of size k, and Ck the set of pairs of
candidate sequences with frequency k. Let CSynk be the set

of gap-synonyms of a candidate sequence c ∈ Ck. The gap-

synonym of a candidate sequence c is a sequence that
matches c with no more than maxGap gaps.

 The algorithm initializes k = 1 and ANS = Φ. S1 is

initialized to hold 15 control statements of Java, based

on the assumption that an important code clone is

preceded by at least one control statement (lines 2 and 3).

 Next, the algorithm iteratively generates candidate k-

sequences using the frequent (k–1)-sequences found in

the previous iteration (line 5). Candidate generation is

implemented using the function, Retrieve_Cand (Sk)，
which is described in Fig. 7.

 Then, the algorithm eliminates all candidate sequences

whose support counts are less than minSup (line 8)．

 If the support count of a candidate sequence c satisfies

the minSup condition, then c is merged into ANS, which

always contains all frequent sequences discovered thus

far (line 9).

 Sk is reconstructed by merging c and its gap-synonym

CSynk (line 10).

 The algorithm terminates when there are no new

frequent sequences generated, i.e., Sk ＝ Φ (line 13).

Figure 6. Pseudocode of the algorithm to find frequent sequences

Briefly, the Retrieve_Cand(Sk) method in Fig. 7 works

as follows:

 C and CSyn are initialized to empty (line 2).

 The three for loops examine all possible matches

between a sequence sk in Sk and sequences in a sequence

database (lines 3, 4, and 5).

 The LCS algorithm is executed to compute the match

and gap counts (line 6).

 The if statement screens a sequence based on the match

and gap counts (line 7).

 If a sequence sk satisfies the match- and gap-count

conditions, then a sequence sk + 1, i.e., a sequence sk

extended by one statement of program code, is merged

into the candidate sequences C (line 8). Line 8 also

implies counting the frequency of a sequence sk + 1.

 A gap-synonym of the candidate sequence sk + 1 is

maintained (line 9).

 The Retrieve_Cand (Sk) method returns C and CSyn as

the results of execution for Sk (line 15).

Figure 7. Pseudocode of the algorithm for retrieving

candidate sequences for the next repetition

481

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Extracting Frequent Sequences

In our approach, we assume that a program structure is
represented as a sequence of statements preceded by a class-
method ID. Each statement is encoded as three base-32 digits
to enable the LCS algorithm to work correctly, regardless of
the length of the original program statement.

The proposed algorithm is illustrated for the given sample
sequence database in Fig. 8. MTHD# is an abbreviated
notation for a class-method ID.

Figure 8. Example sequence database

Fig. 9 shows the result for the frequent sequences in the
multi-occurrence mode for a gap of zero and a minSup of
two, which can be expressed as a minSup of 50% since the
total number of sequences is 4. “005” is a frequent sequence
with a minSup count of six, because “005” occurs once in
the first and second sequences and twice in the third and
fourth sequences. The proposed algorithm maintains an ID-
List, which indicates the positions at which a frequent
sequence appears in a sequence database. The ID-List for
“005” is 1|2|3+3|4+4.

Similarly, 005→003→ is a frequent sequence with a

minSup count of three, i.e., the ID-List for 005→003→ is

1|3+3.

Figure 9. Result of the frequent sequences (gap, 0; minSup, 2)

Fig. 10 shows the result of the frequent sequences for a

gap of one and minSup of two. “005” is a frequent sequence
with a minSup count of six, which is the same in the case of
a gap of zero.

Similarly, 005→003→ is a frequent sequence with a

minSup count of five. In addition to the consecutive

sequence 005 → 003 → , the proposed algorithm detects

gapped sequences. In the case of 005→003→, the algorithm

detects 005→00A→003→ in the second sequence and 005

→006→003→ in the fourth sequence. Thus, the ID-List for

005→003→ is 1|2|3+3|4.

Figure 10. Result of the frequent sequences (gap, 1; minSup, 2).

Fig. 11 shows the result of the frequent sequences for a

gap of two and a minSup of two. In addition to 005→ and

005→003→, 005→006→ is detected as a frequent sequence

because 005→003→00F→006→ in the third sequence

matches 005→006→ with a gap of two, and 005→006→ in

the fourth sequence with a gap of zero. Thus, the ID-List for

005→006→ is 3|4.

Figure 11. Result of the frequent sequences (gap, 2; minSup, 2)

C. Extracting Maximal Frequent Sequences

A frequent sequence is defined to be a maximal frequent
sequence if it has no super (or longer) sequence that is a
frequent sequence. Such a sequence is representative,
because it can be used to recover all frequent sequences.
Several algorithms for finding the maximal frequent
sequences and/or itemsets use sophisticated search and
pruning techniques to reduce the number of sequence and/or
item set candidates during the mining process [9].

However, we wish to compare the effects of a maximal
frequent sequence with those of a frequent sequence;
therefore, the proposed algorithm first mines a set of frequent
sequences and then extracts the maximal frequent sequences.

Screening maximal frequent sequences from frequent
sequences with a gap of zero is fairly simple. Given a set of
frequent sequences Fs, the set of maximal frequent
sequences MaxFs is defined by the following formula:

MaxFs = {x∈Fs ｜ ∀y∈Fs (x ⊄ y) ∧ (|x| + 1 = |y|)}.

x ⊄ y says that a sequence x is not included in a sequence y.
Since a gap has length zero, the length of the immediate
super sequence is |x| + 1.

The proposed algorithm is described using the sample
sequence database in Fig. 12.

Figure 12. Example frequent sequences

Fig. 13 shows a set of maximal frequent sequences. The

frequent sequence 001→ is not a maximal frequent
sequence, because there is a frequent sequence 001→002→
that includes a sequence 001 and whose length is two. In the
same manner, we see that the sequences 002→, 003→, and
004→ are not maximal frequent sequences. 001→002→ is
not a maximal frequent sequence, because the sequence 001

→002→004→ includes 001→002→.

MTHD1→005→003

MTHD2→005→00A→003→003

MTHD3→005→003→00F→006→005→003

MTHD4→005→006→003→005→00C

005→ N=6（1|2|3+3|4+4）

005→003→ N=3（1|3+3）

005→ N=6（1|2|3+3|4+4）

005→003→ N=5（1|2|3+3|4）

005→ N=6（1|2|3+3|4+4）

005→003→ N=5（1|2|3+3|4）

005→006→ N=2（3|4）

001→
002→
003→
004→
001→002→
004→003→
001→002→004→
004→002→003→001→
001→008→002→055→004→

482

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

On the other hand, the sequence 004 → 003 → is a

maximal frequent sequence, because there are no frequent
sequences that exactly include this sequence. In the same
manner, we see that the sequences 001→002→004→, 004

→002→003→001→ and 001→008→ 002→055→004→

are maximal frequent sequences.

Figure 13. Result of maximal frequent sequences (gap, 0)

Now, we extend the definition of maximal frequent

sequences for gaps greater than zero. Let maxGap be the
maximal gap under consideration.

MaxFs maxGap =

 { x∈Fs ｜ ∀y∈Fs (x ⊄ maxGap y) ∧ |x| + 1 + maxGap = |y| }

x ⊄ maxGap y says that a sequence x is not included in a
sequence y under the gap constraint maxGap.

Fig. 14 shows a set of maximal frequent sequences for a
maxGap of one. 004→003→ is not a maximal frequent
sequence because 004→003→ is included in the sequence
004→002→003→001→ for a maxGap of one.

Figure 14. Result of maximal frequent sequences (gap, 1)

Fig. 15 shows a set of maximal frequent sequences for a

maxGap of two. In this case, 001→002→004→ is not a

maximal frequent sequence, because 001→002→004→ is

included in 001→008→002→055→004→ for a maxGap of

two.

Figure 15. Result of maximal frequent sequences (gap, 2)

V. EXPERIMENTAL RESULTS

This section presents a statistical evaluation of
experimental results. Java provides a wide range of
functions including GUI, network, security, image and
sound programming. Among them, Java SDK 1.8.0_101
SWING is a set of program components that provide the
capability to process image data in various formats, to create
graphical user interface (GUI) components, to handle events
generated from a user, and to paint graphics of various
shapes, etc. Because GUI components such as buttons, text
fields, etc., and events such as mouse action, keystroke

handling, etc., share functional commonalities, the SWIMG
package is expected to include various code clones.

The source code of Java SDK 1.8.0_101 SWING package
is input to the proposed parser to extract matching
statements, i.e., method calls and control statements. Then,
they are encoded to translate matching statements to three
base-32 digits, making match detection successful. A
statement sequence is generated for each method.

The total number of source code lines is 372,186. The
extracted statement sequences comprise 9,234 lines that
roughly correspond to the number of methods calls. The
number of extracted unique IDs is 6,310. Since method calls
in Java source code are preceded by a data type and/or a
class identifier, the methods with the same method
signatures that are defined in different classes are treated as
distinguished ones. The method calls preceded by a data
type and/or a class identifier allow Java to implement the
overriding of methods that play an important role in object-
oriented programming.

We performed the experiments using the following PC
environment:

CPU: Intel Core i7-6700 (3.40 GHz)

Main memory: 8 GB

OS: Windows 10 HOME 64 Bit

Programming Language: Java 1.8.0_101.

The experiments are performed for minSup of two to ten,
and maxGap of zero to three. minSup of two means that all
possible clones are detected, if a code clone is defined as a
fragment of source code that appears at least twice in the
package. maxGap of zero means identical or un-gapped
sequence matching. Comparison with the results of
experiments on maxGap of zero to three shows the
functionality and performance of the proposed algorithm.

A. Numbers of Retrieved Frequent Sequences

Fig. 16 compares the number of retrieved frequent
sequences with respect to maxGap (zero to three) and
minSup (two to ten). For comparison, Fig. 16 shows the
number of retrieved frequent itemsets of the Java
implementation of the Apriori algorithm [16]. The proposed
algorithm for a maxGap of zero is comparable to the Apriori
algorithm for a minSup of five to ten. The Apriori algorithm
fails to generate frequent itemsets for a minSup of two,
because it never completes the process within six hours.

As expected, the number of retrieved frequent sequences
increases as maxGap increases and minSup decreases. The
proposed algorithm can find frequent sequences that occur at
least twice (minSup of two) in the sequence database, which
is necessary for finding all possible code clones. One of the
important findings of the experiment is that the effect of
repetitions within a sequence becomes conspicuous when the
minSup equals two. A detailed analysis of the retrieved
frequent sequences is discussed in Subsection “C. Sequence
Length Analysis w.r.t minSup and maxGap.”

004→003→
001→002→004→
004→002→003→001→
001→008→002→055→004→

001→002→004→
004→002→003→001→
001→008→002→055→004→

004→002→003→001→
001→008→002→055→004→

483

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 16. Numbers of retrieved frequent sequences (gap size, 0 and 1–3;

minSup, 2–10) and frequent itemsets for the Apriori algorithm

Fig. 17 shows the ratio of the number of maximal frequent
sequences to the number of frequent sequences. In most of
the cases, the ratio decreases as minSup values decrease.
This can be explained by the fact that decreasing minSup
values probably have a negative effect on the relevance of
frequent sequences. Thus, redundant frequent sequences are
likely mined as minSup values decrease, resulting in the low
ratio of the number of maximal frequent sequences to the
number of frequent sequences.

The ratios are generally smaller in the multi-occurrence
mode than in the single-occurrence mode. This might be
because the single-occurrence mode suppresses extraction of
frequent subsequences caused by repetitions within a
sequence.

The results show that the gap size affects the ratio by
approximately 8.0% for a minSup of two.

Figure 17. Ratio of the number of maximal frequent sequences to the

number of frequent sequences (gap size, 0 and 1–3; minSup, 2–10)

B. Time Analysis

Fig. 18 shows the elapsed time in seconds for retrieving

frequent sequences for a minSup of two to ten. The

proposed algorithm for a maxGap of zero is comparable to

the Apriori algorithm for a minSup of three to ten as for

performance. However, the Apriori algorithm fails to find

frequent itemsets for a minSup of two within six hours.

The proposed algorithm can retrieve frequent sequences

fairly efficiently. For example, it takes 1,437 seconds to

identify 31,825 frequent sequences for a maxGap of one and

a minSup of two in the single-occurrence mode. Note that

elapsed time increases as maxGap increases. This tendency

is obvious especially for a minSup of two and three for a

maxGap of zero to two, and a minSup of two to six for a

maxGap of three. As for differences between the multi-and

single-occurrence modes, the ratios of elapsed time range

from 1.27 (for a maxGap of zero) to 3.06 (for a maxGap of

one). Some reasons for performance degradation are

analyzed in the next subsection.

Figure 18. Elapsed time for retrieving frequent sequences (gap size, 0–3;

minSup, 2–10) and frequent itemsets for the Apriori algorithm

Fig. 19 shows the elapsed time in seconds (Y-axis) for
extracting maximal frequent sequences. The result shows
that the elapsed time for extracting maximal frequent
sequences obviously increases when maxGap is one to three.
This can be explained by the observation that the number of
maximal frequent sequences increases as maxGap increases,
as expected from the expression |x| + 1 + maxGap = |y| in
the definition of maximal frequent sequences, MaxFs maxGap,
defined in Section IV.

484

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 19. Elapsed time for extracting maximal frequent sequences

C. Sequence Length Analysis w.r.t minSup and maxGap

Fig. 20 shows the number of retrieved maximal frequent
sequences the first time for each minSup for a maxGap of
zero to three. For example, S2-S3 in Fig. 20 indicates the
difference between the results of a minSup of two and those
of a minSup of three. The vertical axis of Fig. 20 for S2-S3
indicates the number of maximal frequent sequences that is
found the first time when the minSup is two.

The numbers are mostly affected by the modes of the
proposed algorithm, i.e., multiple or single occurrences with
a minSup of two. The ratios of the number of sequences in
multi-occurrence to single-occurrence modes for a minSup
of two are 1.3 (for a maxGap of zero), 3.3 (for a maxGap of
one), 4.4 (for a maxGap of two), and 5.4 (for a maxGap of
three).

Figure 20. Number of frequent sequences first found for each minSup

Fig. 21 shows the number of maximal frequent sequences
for each sequence length (two to 30) in the multi-occurrence
mode and a maxGap of three with a minSup ranging from
two to five. The maximum length of a sequence is 150 in the
multi-occurrence mode. Note that Fig. 21 omits the results
on sequences of length 31–150. The number of maximal
frequent sequences for each length reaches a peak around a
sequence length of eight to ten for each minSup of two to
five. This suggests that code clones of length eight to ten
occur most frequently.

Figure 21. Number of retrieved sequences for each length in multi

occurrence mode and a maxGap of three

Fig. 22 shows the number of maximal frequent sequences
for each length in the single-occurrence mode. The
maximum length of the sequences is 54 in the single-
occurrence mode. The number of sequences is substantially
decreased owing to the suppression of repetitive
subsequences, analyzed in the following section.

Figure 22. Number of retrieved sequences for each length in single-

occurrence mode and a maxGap of three

D. Source Code Findings

TABLE I shows two sample sequences that include key
sequences repetitively. The subsequences in bold and
underlined text indicate the key sequences.

The first sequence in TABLE I includes the key sequence
002→4NM→002→4MI→005→005→ twice. The sequence
is mined only in multi-occurrence mode with a minSup of
two and with gap of one. The second sequence in TABLE I

485

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

includes the key sequence 065→04Q→4HU→4HV
→4HV→065→04Q→ three times. The first subsequence
04Q→4HU→4HV →4HV→065→04Q→ matches the key
sequence with gap of one, i.e., the first 065→ is mismatched.
In the second subsequence, 065→04Q→ appears as the
heads of the second subsequence, i.e., 065→04Q→4HU→
4HV→4HV →065→04Q→, which fully matches the key
sequence. The third subsequence follows after the second
subsequence sharing 065→04Q→ at the top of the third
subsequence.

The results of the experiments show that there are many
repetitive subsequences of statements in a method. Since
these repetitive subsequences are found in a method,
programmers are expected to find them easily in the screen
of a program editor. Based on this observation, it can be
safely said that the single-occurrence mode is preferable to
clone mining from the programmer’s point of view.

TABLE I. SAMPLE SEQUENCES INCLUDE KEY SEQUENCE REPETITIVELY

TABLE II shows a sample set of methods that include the

key sequence 002→07F→07J→07F→07G→07G→ in

single-occurrence mode with gap of two. Actually, 07F, 07G,
and 07J are symbols for the methods setColor(), drawLine(),
and drawRect(), respectively. All of these methods are
concerned with paint graphics.

The third and fourth methods are fairly said to be code
clones, because their entire statement sequences are
completely matched, and they are defined in the same
BasicTabbedPaneUI.java file. The third method in TABLE
II, i.e., the paintContentBorderBottomEdge() method, is the
method shown in Figs. 2 and 3.

The other methods cannot be safely said to be clones,
because they are defined in different files, and they are
partially matched with the key sequence. However, the
sequence patterns of setColor(), drawLine(), and drawRect()
are informative to programmers for implementing paint
graphics. The proposed mining algorithm can serve to find
all of the related sequence patterns within a specified gap,
viz., maxGap. In addition, these methods are worth checking
in the event of bug fixes.

TABLE II. SAMPLE SET OF METHODS

TABLE III shows a pair of methods that share a rather
long key sequence:
1T2→1SB→1T3→002→1T4→05Q→002→1T5→005→0
BC→005→005→015→1T6→002→1T7→005→005→017
→005→017→005→017→005→002→015→005→017→0
05→005→002→17K→005→1SD→002→006→005→.

The length of the key sequence is 37. This epitomizes the
effectiveness of a minSup of two, because there are only two
methods that share this key sequence in the Java SDK
1.8.0_101 SWING package. Though their statement
sequences are not fully matched, they are considered to be
clones, because they are defined in the same Java file and
they share a large amount of functionality.

486

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. METHODS SHARING A KEY SEQUENCE OF LENGTH 37

TABLE IV shows a pair of methods that share the longest
key sequence of length 54 in single-occurrence mode with a
minSup of two and with gap of zero. 001→ is not a
component of the key sequence, because 001→ corresponds
to the statement “{” that is not a control statement and thus is
excluded from the statement at the initialization process of
the proposed algorithm. Though they are defined in the
different Java files, they are considered to be code clones,
because they have entirely the same statement sequences in
the same context of similar SWING components, i.e., Button
and Label.

TABLE IV. METHODS SHARING THE LONGEST KEY

SEQUENCE OF LENGTH 54

Fig. 23 shows the source code of the getAfterIndex()
method in the javax/swing/AbstractButton.java file. It is
somewhat surprising that the two methods share not only the
statements corresponding to the key sequence, but also every
character of the comments.

Figure 23. Source code of getAfterIndex() method
.

VI. RELATED WORK

Zhu and Wu [6] propose an Apriori-like algorithm to mine
a set of gap-constrained sequential patterns that can be found
in a long sequence, such as stock exchange rates, DNA, and
protein sequences. Ding et al. [7] discuss an algorithm for
mining repetitive gapped subsequences and apply the
proposed algorithm to program execution traces. Kiran et al.
[8] propose a model for mining periodic-frequent patterns
that occur at regular intervals or gaps in long sequences.
Fournier-Viger et al. [9] discuss the importance of maximal

 /**

 * Returns the String after a given index.

 *

 * @param part the AccessibleText.CHARACTER, AccessibleText.WORD,

 * or AccessibleText.SENTENCE to retrieve

 * @param index an index within the text >= 0

 * @return the letter, word, or sentence, null for an invalid

 * index or part

 * @since 1.3

 */

 public String getAfterIndex(int part, int index) {

 if (index < 0 || index >= getCharCount()) {

 return null;

 }

 switch (part) {

 case AccessibleText.CHARACTER:

 if (index+1 >= getCharCount()) {

 return null;

 }

 try {

 return getText(index+1, 1);

 } catch (BadLocationException e) {

 return null;

 }

 case AccessibleText.WORD:

 try {

 String s = getText(0, getCharCount());

 BreakIterator words = BreakIterator.getWordInstance(getLocale());

 words.setText(s);

 int start = words.following(index);

 if (start == BreakIterator.DONE || start >= s.length()) {

 return null;

 }

 int end = words.following(start);

 if (end == BreakIterator.DONE || end >= s.length()) {

 return null;

 }

 return s.substring(start, end);

 } catch (BadLocationException e) {

 return null;

 }

 case AccessibleText.SENTENCE:

 try {

 String s = getText(0, getCharCount());

 BreakIterator sentence =

 BreakIterator.getSentenceInstance(getLocale());

 sentence.setText(s);

 int start = sentence.following(index);

 if (start == BreakIterator.DONE || start > s.length()) {

 return null;

 }

 int end = sentence.following(start);

 if (end == BreakIterator.DONE || end > s.length()) {

 return null;

 }

 return s.substring(start, end);

 } catch (BadLocationException e) {

 return null;

 }

 default:

 return null;

 }

 }

487

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

sequential pattern mining and propose an efficient algorithm
for finding the maximal patterns.

Wahler et al. [11] propose a method for detecting clones
of Types 1 and 2 that are represented as abstract syntax trees
in the Extensible Markup Language (XML) by applying a
frequent itemset mining technique. Their tool uses the
Apriori algorithm to identify features as frequent itemsets in
large numbers of software program statements. They devise
an efficient link structure and a hash table for achieving
efficiency in practical applications.

Li et al. [12] propose a tool, CP-Miner, which uses the
closed frequent patterns mining technique [10][14] to detect
frequent subsequences including statements with gaps. CP-
Miner shows that a frequent subsequence mining technique
can avert redundant comparisons, leading to improved time
performance.

El-Matarawy et al. [13] propose a clone detection
technique based on sequential pattern mining. Their method
treats source code lines as transactions and statements as
items. Their algorithm is applied to discover frequent
itemsets in the source code that exceed a given frequency
threshold, viz., minSup. Finally, their method finds the
maximum frequent sequential patterns [9][10][14] of code
clone sequences.

Their approach deals with each program statements
including variable declaration, arithmetic calculation, etc, to
detect code clones. Each non-reserved word in the source
code is replaced by the same letter “X”. In addition, any data
types are replaced by the same letter “T”. Thus the identity
of the statements seem to be greatly lessen. They don't
discuss the effect of the transformation of replacing by the
same letters in their experiments. In this study, because we
extract method calls preceded by a data type and/or a class
identifier, the matching statements extracted from source
code reserve full identity of them. The method calls with a
data type and/or a class identifier code enable the overriding
of methods that is essential in Java as an object-oriented
programming language. The results of experiments, Fig. 23
for instance, show that identified method calls and control
statements provides sufficient information for detecting code
clones.

As for calculation of gaps, El-Matarawy et al. don’t
clearly describe processes and parameters on gaps.
According to the paper [13], their Apriori-based algorithm
generates candidate code clones of length i+1 by using

Cartesian product of CCi × F, where CCi is a set of code

clones of length i, and F is a set of frequent statements of
length one. Then, the dedicated check process examines the
presence of code clones, which seems to handle gaps. In this
study, we use an LCS algorithm for systematic handling of
gaps of similar sequences as described in Section IV.

Accurate detection of near-miss intentional clones
(NICAD) [17] is a text-based code clone detection technique.
NICAD uses a parser that extracts functions and performs
pretty-printing to standardize code format and an LCS
algorithm [15] to compare potential clones with gaps. Unlike
an Apriori-based approach, NICAD compares each potential
clone with all of the others. Regarding LCS, Iliopoulos and
Rahman [18] introduce the idea of a gap constraint in LCS to

address the problem of extracting multiple sequence
alignments in DNA sequences.

Murakami et al. [19] propose a token-based method. Their
method detects gapped code clones using a well-known local
sequence-alignment algorithm, the Smith-Waterman
algorithm [20]. They discuss a sophisticated backtracking
algorithm tailored for code clone detection.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an attempt to identify Type 3
code clones. Our approach consists of four steps, extraction
of code matching statements, encoding statements in base-32
digits, detecting frequent sequences with gaps, and mining
the maximal frequent sequences. The paper deals primarily
with the last two steps.

Experiments using Java SDK 1.8.0_101 SWING package
source code show that the proposed algorithm works
successfully for finding clones with respect to a maxGap of
zero through three and a minSup of two through ten.

As long as code clones are defined syntactically as similar
code segments that occur at least twice, the proposed
algorithm achieves 100% recall and 100% precision [13] as a
result of the nature of Aprior-based data mining with a
minSup of two.

In this study, all matching statements, i.e., control
statements and typed method calls, are treated equally
because we focus on the detection of code clones. In practice,
however, each statements should be weighted to reflect their
relative importance from the programmer’s point of view.

Future work is planned to develop functions to cluster
code clones according to the weighted parameters set to each
matching statements. The functions aim at providing
practical guidance and insights to facilitate understanding
and maintenance of large scale software.

ACKNOWLEDGMENT

The authors would like to thank the anonymous
reviewers for their invaluable feedback. This research is
supported by the JSPS KAKENHI under grant number
16K00161.

REFERENCES

[1] Y. Udagawa, “On the Effect of Minimum Support and
Maximum Gap for Code Clone Detection － An Approach
Using Apriori-based Algorithm －", Proc. 3rd international
Conference on Advances and Trends in Software Engineering
(SOFTENG 2017), April 23 - 27, 2017, pp. 66-73.

[2] Y. Udagawa, “Maximal Frequent Sequence Mining for
Finding Software Clones,” Proc. 18th International
Conference on Information Integration and Web-based
Applications & Services (iiWAS 2016), Nov. 2016, pp. 28-35.

[3] R. Agrawal, T. Imielinski, and A. Swami “Mining association
rules between sets of items in large databases,” Proc. ACM
SIGMOD International Conference on Management of Data,
June 1993, pp. 207-216.

[4] C. K. Roy and J. R. Cordy “A survey on software clone
detection research,” Queen's Technical Report:541 Queen's
Uni-versity at Kingston, Ontario, Canada, Sep. 2007, pp. 1-
115.

488

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[5] A. Sheneamer and J. Kalita. “A survey of software clone
detection techniques,” International Journal of Computer
Applications, vol.v137, issue 10, Mar. 2016, pp. 1-21.

[6] X. Zhu, and X. Wu “Mining complex patterns across
sequences with gap requirements,” Proc. 20th International
Joint Conference on Artifical Intelligence(IJCAI'07), Jan.
2007, pp. 2934-2940.

[7] B. Ding, D. Lo, J. Han,and S-C. Khoo “Efficient Mining of
Closed Repetitive Gapped Subsequences from a Sequence
Database,” Proc. 25th IEEE International Conference on Data
Engineering (ICDE 2009), March 2009, pp. 1024-1035.

[8] R. U. Kiran, M. Kitsuregawa, and P. K. Reddy “Efficient
discovery of periodic-frequent patterns in very large
databases,” Journal of Systems and Software, vol. 112, issue
C, Feb. 2016, pp. 110-121.

[9] P. Fournier-Viger, C-W. Wu, A. Gomariz, and V. S-M. Tseng
“VMSP: Efficient Vertical Mining of Maximal Sequential
Patterns,” Proc. 27th Canadian Conference on Artificial
Intelligence (AI 2014), May 2014, pp. 83-94.

[10] P-N. Tan, M. Steinbach, and V. Kumar “Introduction to Data
Mining,” Addison-Wesley, March 2006.

[11] V. Wahler, D. Seipel, J. Wolff, and G. Fischer “Clone
detection in source code by frequent itemset techniques,” Proc.
IEEE International Workshop on Source Code Analysis and
Manipulation, Oct. 2004, pp. 128-135.

[12] Z. Li, S. Lu, S. Myagmar, and Y. Zhou “CP-Miner: A tool for
finding copy-paste and related bugs in operating system
code,” Proc. 6th Symposium on Operating System Design and
Implementation, Dec, 2004, pp. 289-302.

[13] A. El-Matarawy, M. El-Ramly, and R. Bahgat “Code clone
detection using sequential pattern mining,” International
Journal of Computer Applications, vol. 127, issue 2, Oct.
2015, pp. 10-18.

[14] R. Verma, “Compact Representation of Frequent Itemset,”
http://www.hypertextbookshop.com/dataminingbook/public_v
ersion/contents/chapters/chapter002/section004/blue/page001.
html, 2009.

[15] J. Hunt, W. and Szymanski, T. G. “A fast algorithm for
computing longest common subsequences,” Comm. ACM,
vol. 20, issue.5, May 1977, pp. 350-353.

[16] M. Monperrus, N. Magnus, and S. Yibin “Java
implementation of the Apriori algorithm for mining frequent
itemsets,” GitHub, Inc., https://gist.github.com/monperrus/
7157717, 2010.

[17] C. K. Roy and J. R. Cordy “NICAD: Accurate detection of
near-miss intentional clons using flexible pretty-printing and
code normalization,” Proc. 16th IEEE International
Conference on Program Comprehension, June 2008, pp. 172-
181.

[18] C. S. Iliopoulos and M. S. Rahman “Algorithms for
computing variants of the longest common subsequence
problem,” Theoretical Computer Science vol. 395, issues 2–3,
May 2008, pp. 255–267.

[19] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and S.Kusumoto
“Gapped code detection with lightweight source code
analysis,” Proc. IEEE 21st International Conference on
Program Comprehension (ICPC), May 2013, pp. 93-102.

[20] “Smith–Waterman algorithm,” https://en.wikipedia.org/wiki
/Smith%E2%80%93Waterman_algorithm, Aug. 2016.

489

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

