
A Non-Linear Method to Interpolate Binary Images Using Location and

Neighborhood Adaptive Rules

Pullat Joy Prabhakaran

International Institute of Information Technology –

Bangalore

Electronic city, Bangalore, India 560100

e-mail: joy@iiitb.ac.in

Palanganda Ganapathy Poonacha

International Institute of Information Technology –

Bangalore

Electronic city, Bangalore, India 560100

e-mail: poonacha.pg@iiitb.ac.in

Abstract— In this paper, we propose a new zooming technique

for binary images, using location and neighborhood adaptive,

non-linear interpolation rules. These rules are inspired by the

way an artist would draw an enlarged image. Using simple

examples, we show that the output generated by popular

interpolation techniques is very different from what a human

does. Our rules are based on such observations for simple

objects, and they try to mimic what an artist does. Using these

rules, we interpolate complex images and demonstrate the

impact. We compare our method with bicubic interpolation

and show that our method gives better visual quality. We also

show that, on an average, our method results in higher PSNR

and a lower MPSNR. The SSIM of the output images are

nearly the same for both methods. Our method overcomes a

number of problems associated with known interpolation

techniques, such as blurring and thickening of edges. Our

method uses a set of sixteen rules in five categories. Each pixel

in the interpolated image is computed by a chosen rule. The

choice depends on the location of the pixel and the content in

the neighborhood. The size of the neighborhood varies. Some

rules can be influenced by distant pixels in the input and can

impact distant pixels in the output. We present examples

showing the effectiveness of our method. The results are

visually appealing. We show that lines and dots, with single

pixel thickness, retain their thickness. Inclined lines and solids

don’t develop as much jaggedness as happens with bicubic

interpolation. Similarly, curves are also relatively smoother.

Keywords- resolution; interpolation; binary-image; thinnes;

location-adaptive; neighborhood-adaptiv; corner; slope.

I. INTRODUCTION

When High Resolution (HR) images are created by
interpolating Low Resolution (LR) images, unpleasant
artifacts are seen. Interpolation artifacts are errors introduced
into the HR image by the interpolation process. In [1], we
proposed an interpolation method for binary images that
generated visually appealing images. Popular methods like
nearest neighbor, bilinear and bicubic [2] interpolation,
generate more unpleasant artifacts like smoothing of edges
and pixelation. Figure 1 shows the artifacts that are created
when a dot and a line are interpolated using bicubic
interpolation and Average of Nearest Neighbors (ANN) [3]
interpolation. For clarity, the image shown is magnified by a
factor of 8, and some of the unchanging regions have been
removed. The interpolation is by a factor of 2. Figure 1B and
1D show the outputs of bicubic and ANN interpolation,
respectively. Interpolation introduces artifacts and these are

the intermediate shades of gray. To bring this out clearly, the
new shades have been assigned colors in Figure 1C and 1E.
Different colors represent different magnitudes of gray. The
specific colors have no significance here. We see that more
pixels are distorted by bicubic interpolation.

It can be seen that these kinds of errors will not be
introduced by an artist. Also, a human can identify and
eliminate many of the errors caused by popular interpolation
methods. Our method tries to encapsulate some of the things
that we feel an artist does to enlarge images.

Interpolation artifacts are most likely to arise at object
edges, on lines and curves that are one pixel thick, on
inclined and curved solids or object intersections. Popular
interpolation methods cause more unwanted artifacts in the
case of binary image zooming.

A large number of interpolation methods are available in
the literature [1]–[15]. Some of these, like Nearest Neighbor,
Bilinear and Bicubic [2] methods, use surface fitting
techniques with pre-defined constraints. These methods often
create undesirable artifacts in the output. Many methods
have been proposed to minimize such artifacts. In [4], an
orientation constraint is computed for each pixel to be
generated. The pixel value is computed as a function of this
constraint and the four surrounding neighbors. In an earlier
work [3], we proposed an interpolation method called
Average of Nearest Neighbors (ANN). This was based on
the idea that each pixel in the interpolated image should be
generated by using all the available nearest neighbors in the
original image and none of the other pixels.

In [5], curvature of the low resolution image is evaluated
and this curvature information is interpolated using bilinear
interpolation. The interpolated curvature information is used
as a driving constraint to interpolate the complete image. In
[6], the image is first interpolated using bilinear
interpolation. As a second step, the quality is improved using
a fourth order Partial Differential Equation (PDE) based
method. A directional bicubic scheme is proposed in [7].
Here, the strongest edge in each 7x7 neighborhood is
detected. If the edge strength is greater than a threshold, a
one-dimensional bicubic interpolation is done along the
edge. Our method shares some similarities with [7] because
it also tries to find and preserves local edges.

In [8] and [9], a two-step super resolution process is
studied. In the first step, the low resolution image is
interpolated using Bicubic interpolation. Then, the HR image
is further processed to improve the quality at the edges. In
[8], the gradient profile of the LR image is used as a driving

526

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

gradient prior to change the gradient profile of the
interpolated image. This process makes the edges sharper. In
[9], this idea is extended by splitting the feature space into
multiple subspaces and generating multiple priors.

In some scenarios, a frame from a video sequence needs
to be interpolated. In [10] and [11], techniques to use
information from adjacent frames to improve quality are
discussed. The former uses an adaptive Wiener filter while
the later uses Delaunay triangulation.

A machine learning based approach is discussed in [12].
Unknown pixels in the interpolated image are generated
using the training data set that best matches the region near
the pixel. The patch around the unknown pixel is matched
with patches in the training set. Using the best matched
stored patch, the pixel is assigned a value. The algorithm to
do the matching takes into account the LR patch and the
neighboring patches. A training based method that
incorporates an explicit noise model is used to expand binary
text images in [13].

In [14], edges are found as a first step. The edges are
used to compute unknown pixels using cubic spline. In [15],
unknown pixels are assigned the value of the neighbor that is
closest to the value got by bilinear interpolation.

In this paper, we propose a Location and Neighborhood
Adaptive (LNA) interpolation for binary images to be scaled

by a factor of 2. Qualitatively, we show that the method
generates visually pleasing images. For quantitative
evaluation, we have compared LNA with bicubic
interpolation using three standard metrics. These are Peak
Signal to Noise Ratio (PSNR), Modified PSNR (MPSNR)
and Structural Similarity (SSIM) index. PSNR represents a
measure of the peak error while MPSNR is PSNR computed
after applying a low pass filter. SSIM tries to measure the
perceptual difference between two images.

PSNR is computed as:

Where Max is the maximum possible value of each pixel and
has the value 1 in our examples of binary images.

MPSNR is computed by passing the images being
compared through a low pass filter, and then finding the
PSNR of the filtered images. We have used a nine point,
mean filter for our computations.

SSIM is computed as follows:

where x and y are two windows of equal size, μx and μy are
the averages of the values in x and y, σx and σy their
variances and σxy the covariance of x and y. c1 and c2 are
constants of value (0.01 * L)

2
 and (0.03 * L)

2
 respectively,

where L is the maximum value of a pixel magnitude. For our
samples, the value of L is 1.

SSIM index can be computed for different windows. We
have divided the test images into equal blocks of size 8x8
and computed SSIM index for each block. The average of all
the block indices is the SSIM index of the image.

To explain the LNA method and also to demonstrate
some of its features, we have used a few synthetic images
that we have created. To validate the method, we have used
sixteen commonly used test images. These images are from
USC [16], Kodak [17] and Hlevkin [18].

The rest of this paper is organized as follows. Section II
explains the LNA process and gives an overview. Section III
describes the interpolation process and the five categories of
rules. Subsections A to E, in Section III, describe the
categories and associated rules. Experimental results are
given in Section IV. Conclusions and suggestions for further
extensions are given in Section V.

II. THE LNA APPROACH TO INTERPOLATION

LNA comprises of a set of rules. The rules try to mimic
what an artist would do to define each pixel in the
interpolated image. The outputs of a few popular
interpolation techniques are shown in Figure 1. We see that
the output is different from what an artist is likely to
generate. Some of these differences are because, in Figure 1,
the algorithms were allowed to generate pixels in grayscale,
i.e., each pixel could take any one of 256 shades of gray. In
Figure 2, we restrict the input and output to binary, i.e., each

Figure 1. Impact of interpolation by different methods. The input dot and

line are one pixel thick. The original image has two shades of gray.

Interpolation introduces pixels in shades of gray that were not present in

the original. In C and E, the shades introduced by interpolation are shown

in different colors for better visibility.

527

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

pixel can take one of two possible values. Figure 2 shows the
difference in result when a simple binary image is
interpolated using bicubic interpolation and when an artist
enlarges it.

Figure 2D overlays the results of the interpolation and the
exact differences are seen. The artist has retained thin
features as thin. As a result, the dot has remained a single
pixel in HR and the line has retained single pixel thickness.
Similarly, slopes are better formed when an artist enlarges an
image.

The rules of LNA try to mimic the interpolation process
of the artist. The rules required to interpolate a typical color
image with three color planes or a typical grayscale image
with 256 gray shades are very complex. In this paper, we
demonstrate the effectiveness of the LNA approach for
binary images. The rules for binary images cannot be directly
extended to grayscale or color images.

The method consists of a set of sixteen rules, grouped
into five categories. The rules are of widely varying
complexities. The choice of rule to assign value to a pixel
depends on its location and the content in the neighborhood.
The size of the neighborhood is dynamic and depends on the
content. Some rules can be influenced by distant pixels in the
input, and some rules can influence distant pixels in the
output. This can be seen in Rules 14 and 16, described in the
next section.

If the neighborhood meets certain conditions, our method
implicitly tries to detect if an unknown pixel is part of an
edge, a line or a corner. Based on this, it applies appropriate
rules. To maintain smoothness of lines and edges, it both
adds and deletes pixels in the foreground color when

compared with simple pixel replication. The deletion ensures
that smoothing does not cause extra thickening.

The interpolation process and individual rules are
explained in Section III. The explanation is with reference to
simple geometric figures. In Section IV we show that by
applying the same rules to binary versions of standard test
images like Lena, Baboon, Monarch and Barbara, we get
good visual results.

Figure 3A shows the image used to explain our method.
Figure 3B shows the image, interpolated using bicubic

Figure 2. A comparison of simple figures interpolated using bicubic

interpolation and interpolated by an artist.

Figure 3. Comparison of our method with bicubic interpolation.

528

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

interpolation. The bicubic interpolation is done using Matlab.
Figure 3C shows the same image, magnified using our
method. As can be seen, the bicubic interpolation introduces
more distortion than our method. The region in Figure 3C,
shown in the red box, will be used to explain our method.

III. THE INTERPOLATION PROCESS

LNA categorizes unknown pixels in the HR canvas based
on their locations. This is shown in Figure 4. The circles in
the image represent individual pixels. At the start of the
interpolation process, all these pixels are unknown. We
categorize the pixels as O, H, V and D. Pixels on the even
rows and even columns are of type O. The O pixels are what
would be retained if the HR image is decimated by
subsampling, using a scale factor of 2. Pixels on even rows
and odd columns are of type H. Pixels on the odd rows and
even columns are of type V. Pixels on odd rows and odd
columns are of type D. Every pixel in the image falls into
one of these categories.

Our method comprises of a set of rules and a decision
tree to choose the rule for each pixel. Figure 5 shows a high
level flowchart of the interpolation process. The first part
depicts the initial setup. It starts with the LR image being
read in. After this, a two pixel wide empty margin is added
on all four sides of the LR image. This makes it possible for
LNA to process the boundary pixels in the LR image without
having additional logic to handle boundary conditions. After
the interpolation process, this empty margin is stripped from
the interpolated HR image.

After the margin is added, an empty HR canvas, with
twice the height and width of the LR image (including the
empty margin), is created. Then, a four pixel wide margin is
created in the canvas by setting all the pixels in this margin
to background color. This ends the setup process.

After setup, the HR canvas is scanned pixel by pixel. The
scan starts at the top left corner (0, 0), and ends at the bottom
right. We refer to the pixel at the current scan location as the
current pixel. The first two decision boxes in the flowchart
control the scan.

The third decision box checks if the current pixel has
already been assigned a value. This can happen if it is a part
of the empty margin, or if the current pixel was assigned a
value when the scan was at an earlier pixel. The latter is
possible because LNA can assign values to multiple pixels in
a single iteration. So, if the current pixel has already been
assigned a value, the scan continues to the next location.

The next three checks are to see if the current pixel is an
'O' pixel, 'H' pixel or 'V' pixel. The 'O' pixel is assigned a
value using the one rule in Category 1. This does not depend
on the neighborhood.

Some rules used to define ‘H’, ‘V’ and ‘D’ pixels, use
multiple pixels in the neighborhood to decide the value of a
single pixel. The number of pixels a rule considers and the
locations of the pixels considered, depend on the values of
the pixels, i.e., the image content. The logic used to choose
the relevant neighborhood for a rule is explained along with
the rules in the subsections III A to III E.

The 'H' pixel is assigned a value using Category 2 rules.
An 'H' pixel has two immediate LR neighbors, one on the left

and other to the right. Category 2 rules use the LR neighbors,
and, under certain conditions, may use a bigger
neighborhood. This is discussed in the next section when we
discuss individual rules.

 The 'V' pixel is assigned a value using Category 3 rules.
These are similar to Category 2 rules. The only difference is
that a 'V' pixel has LR neighbors above and below.

If the current pixel is not of type 'O', 'H' or 'V', it is a 'D'
pixel. These are assigned values using Category 4 rules.
Some of the Category 4 rules assign values to pixels that are
not in the current scan location. This is shown as the next
step in the flow chart. If this path is not taken, there is a
possibility that the neighborhood is such that Category 5
rules are to be applied. This is the next step shown.

After the rules pertaining to the current pixel and its
neighborhood are applied, the scan moves to the next pixel
and the process gets repeated. Once the scan completes, the
margin that was added in the beginning is removed and the
HR image is stored.

In all the examples, we have used a white foreground and
black background.

In the interpolation process, we say that a pixel in the LR
image is horizontally thin if its immediate horizontal
neighbors, on the left and right, are of different magnitude
from it. Similarly, we say that a pixel is vertically thin if the
pixel’s immediate vertical neighbors, above and below, are
of different magnitude from it.

Some rules can assign values to pixels ahead of the
current scan location. Some rules can override or pre-empt
other rules, depending on the neighborhood conditions.

Depending on the neighborhood of the pixel, one of the
rules in the chosen category is invoked. The rules, in each
category, have an order of precedence. If one rule is applied,
the rules with lower precedence are not considered. In the
following subsections, the rules are described in the order of
their decreasing precedence.

Category 5 has one rule and it can change values
assigned by other rules.

Figure 4. A representation of the HR image showing the types of pixels

that need to be generated through interpolation.

529

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. High level flowchart of the LNA process flow and decision tree.

530

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The method is implemented as a single pass. It starts at
the top left corner and scans through the image, row by row.
For each pixel, it chooses the appropriate rule and applies it.

We describe the method as a set of rules. Corresponding
to each rule or a group of rules, we have a figure showing
impact of the rule or group of rules. For example, Figure 6A
represents the output if only Category 1 rules are applied and
Figure 6B shows the output if both Category 1 and Category
2 rules are applied. The change from Figure 6A to Figure 6B
is the impact of the Category 2 rules.

A. Category 1 rule

This category has one rule and applies to all pixels of the
type O. In Figure 4, these pixels are shown as filled, black
circles. The rule maps all pixels in the LR image to the HR
image.

1) Rule 1: Assign the value of the pixel at location (x, y)

in the original image (LR) to the pixel at location (2x,2y) in

the interpolated (HR) image.
For example, pixels at locations (4,4) and (6,4) in the HR

image are assigned values of pixels at locations (2,2) and
(3,2) respectively in the LR image. Figure 6A shows the
enlarged portion of the HR canvas and it depicts how the
empty canvas gets partially populated.

B. Category 2 rules

The three rules in this category apply to unknown pixels
of the type H. H pixels have a known horizontal neighbor
each on the left and right. In Figure 4, the neighbors of pixel
H are shown connected to it by black lines. The values of
these neighbors are known because they are the values in the
LR image.

1) Rule 2: If the neighbors on the left and right are equal,

assign the value of the neighbors to the unknown pixel.

2) Rule 3: If the neighbors on the left and right differ

and if only one of them is horizontally thin, assign the value

of the pixel that is not thin to the unknown pixel.

3) Rule 4: If none of the preceding rules assigned a value

to the unknown pixel, set it to the background color.

Figure 6B is generated by applying Rules 1 to 4. The
changes from Figure 6A are caused by the category 2 rules.
We see that the horizontal lines, in both colors, have become
better formed. We also see that unknown pixels on either
side of known pixels, in a vertical line in the foreground
color, have been set to the background color.

C. Category 3 rules

These rules are similar to the category 2 rules but apply
to unknown pixels of the type V. Such pixels have vertical
neighbors with known magnitudes. In Figure 4, the
neighbors of pixel V are shown connected to it by black
lines. Here we will use the concept of vertical thinness that
was defined earlier.

1) Rule 5: If the neighbors above and below are equal,

assign their value to the unknown pixel.

2) Rule 6: If the neighbors above and below differ and if

only one of them is vertically thin, assign the value of the

pixel that is not thin to the unknown pixel.

3) Rule 7: If none of the preceding rules assigned a value

to the unknown pixel, set it to the background color.
Figure 6C shows the impact of these rules. The changes

from Figure 6B to Figure 6C are caused by the category 3
rules. We see that the vertical lines have become well-
formed and more unknown pixels near horizontal lines have
been assigned values.

D. Category 4 rules

The eight rules in this category apply to the unknown
pixels of the type D. Such pixels have four diagonal
neighbors whose magnitudes are known. In Figure 4, the
four neighbors of pixel D are shown connected to it by red
lines. Unlike the rules in the preceding categories, some of
the rules here impact more than one pixel. However, they do
not change any pixel that was assigned value by Rule 1.

1) Rule 8: If all four diagonal neighbors are equal, assign

the value of the neighbors to the unknown pixel.
Figure 6D is generated by applying Rules 1 to 8. The

change from Figure 6C to Figure 6D is caused by Rule 8. We
see that most of the unknown pixels have been resolved and
solids are well-formed. Most of the unknown pixels that
remain are at the edges.

2) Rule 9: If all four neighbors are not equal and

diagonally opposite neighbors are equal, then attempt to

resolve as follows. If one and only one diagonal pair is both

horizontally and vertically thin, then assign its value to the

unknown pixel. Else, if all neighbors are horizontally and

vertically thin, then assign it the foreground color.
Figure 7A shows the impact of this rule. We see that the

diagonal lines are better formed. Unknown pixels adjacent to
the diagonal line and also at its end remain unresolved.

3) Rule 10: If all four neighbors are not equal but the

diagonally opposite neighbors are equal and the two

diagonally opposite pixels in the foreground color are end

points of two horizontal or two vertical line segments,

assign the foreground color to the unknown pixel. After

doing this, apply Rule 16.

Figure 6. Impact of different rules. The captions show the additional

category of rules or specific rule applied.

531

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7B shows the impact of this rule. This rule
connects line segments forming longer lines or curves.

4) Rule 11: If diagonally opposite neighbors are equal

and the preceding rules did not resolve the unknown pixel,

assign it the foreground color.
Figure 7C shows the impact is similar to that of Rule 10.

5) Rule 12: If the unknown pixel has three diagonal

neighbors of the background color, set it to the background

color.
This rule makes corners of solids and dots better formed.

The impact can be seen in Figure 7D.
The next three rules use the following definitions. These

are applicable when only three neighbors are equal to the
foreground color. These pixels form two perpendicular
segments. Each of these has a length of two pixels or is part
of a longer segment. The lengths are from the LR image.

Corner: If both the perpendicular arms have a length of
two or if both of them are parts of longer segments.

Slope: If one perpendicular arm is of length two and the
other is part of a longer segment.

Well-formed slope: If the longer arm of a slope does not
have any adjacent pixel, on the same side as the shorter arm,
having the foreground color.

6) Rule 13: If the unknown pixel has three neighbors that

are a part of a corner, set it to the background color.
Figure 8A shows the impact of this rule. The corners

formed by intersecting segments become better formed.

7) Rule 14: If three neighbors are part of a slope, set the

unknown pixel to the foreground color. If the slope is well-

formed, extend the unknown pixel in the direction of the

longer arm by the length of the longer arm in the original

image. Flag the extension to prevent overwriting.
Figure 8B shows the impact of the rule. Rule 14 differs

from the preceding rules as it can impact pixels far removed
from the unknown pixel. It makes inclines smoother, as seen
on the inclined edge of the solid element in the figure.

This smoothness in the feature is achieved by converting
each step like feature into two steps. This makes transitions
smaller. This rule can impact pixels about half way across in

the image, in either horizontal or vertical directions. The new
step drawn is always on an odd numbered row or column. So
it does not change any pixel that was assigned a value from
the original image by Rule 1.

8) Rule 15: If none of the preceding rules assigned a

value to the unknown pixel, set it to the background color.
Figure 8C shows the impact of this rule. After Rule 15 is

applied, no pixel remains unknown.

E. Category 5 rule

Category 5 has one rule. It is categorized separately
because of its unique behavior. It is invoked whenever Rule
10 is applied. If Rule 10 assigns a value to the unknown
pixel, two of the diagonal neighbors of the pixel are end
points of two horizontal or two vertical segments in the
foreground color.

1) Rule 16: Draw two segments from the unknown pixel,

parallel to the two segments whose endpoints are diagonal

neighbors. The length of the new segments should be half the

lengths of the corresponding segments in the original image.

Set the pixels corresponding to the two original segments

that are now adjacent to the new segments, to the

background color. Flag all the impacted pixels so that they

are not changed later when subsequent pixels are considered.
Figure 8D shows the impact of Rule 16. It is the only rule

that changes pixels that were assigned values by Rule 1. Rule
16 helps better interpolate inclined lines where the
inclination is not 45 degrees. The impact is seen on curves
also because curves are formed using segments and points.

Figure 9 shows another comparison of our method with
bicubic interpolation. The differences are clearly visible and
the output of LNA is more pleasing.

IV. EXPERIMENTAL RESULTS

In this section we compare LNA with bicubic
interpolation, with some recently reported work and with the
ideal reference for simple geometric figures. We compare the
computation time and interpolation quality. The comparisons
are for standard test images and also simple geometric

Figure 7. Impact of applying Rules 9-12. The captions show the

additional rule and the red call outs show its impact.

Figure 8. Impact of Rules 13-16. The captions show the additional rule

and the red call outs show its impact.

532

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

shapes. The experiments are on a general purpose computer.
Since the execution time for the same process and inputs
vary, the experiment is done ten times and the minimum and
average time taken is shown. To evaluate the output, we
examine visual quality as well as three standard metrics
namely PSNR, MPSNR and SSIM. The experiments are
performed on 16 different test images from standard sources.

A. Computation time

Table I shows the execution time for LNA and bicubic
interpolation. The time shown is from ten executions. The
time was measured on a computer with an Intel i5-3210M
CPU @ 2.50GHz, 4.00 GB RAM and 64 bit Windows 8. The
bicubic and LNA interpolations were implemented using
Visual C++ in Visual Studio 2010. While measuring time, no
other user processes were running. The results show that
LNA is faster.

B. Visual comparison between LNA and bicubic

interpolation

In Figures 10 and 11, we compare the outputs when
standard test images are interpolated. The figures shown are
Lena, Baboon, Barbara and Monarch. Only a portion of the
original images are shown in the figures. This is to ensure
that the artifacts are clearly visible. The figures show the
portion of the original, low-resolution, color image and its
binary version in the first row. The second row shows the
output of bicubic interpolation and the third row the output
of LNA interpolation.

The original color images were converted to grayscale
using the formula:

GRAY = 0.2989 * R + 0.5870 * G + 0.1140 * B
The R (red), G (green) and B (blue) values were in the

range 0 to 255 and the resultant GRAY value also is in the
same range. The binary image was generated by setting all
pixels with grayscale value greater than 127 to white and the
rest to black.

The figures clearly show the sharp edges that LNA is
able to generate. In these images, the notion of foreground
color and background color is difficult to define. Because of
this, in certain situations, some of the rules in LNA do not

perform the intended function fully. In spite of this, the
visual quality is better than bicubic interpolation. The
difference between the outputs generated by bicubic and
LNA interpolation can be clearly seen at the edges, inclined
lines and curves. We can also see that fine features are
retained by LNA. This is particularly noticeable in the
Monarch and Barbara images in Figure 11.

C. PSNR and MPSNR

When a reference image is available, PSNR and
Modified PSNR (MPSNR) are often used as measures of
interpolation quality. Table II shows the PSNR and MPSNR
of sixteen standard test images, after they were interpolated
using LNA and bicubic interpolation.

The data in Table II is for the complete test image, and
not portions of the image, as shown in Figures 10 and 11.

We see that LNA gives better PSNR, while bicubic
interpolation gives better MPSNR.

It should be noted that some of the LNA rules, like rule
16, reduce PSNR. However, as seen in Figures 10 and 11,
this results in better visual quality.

D. SSIM

Table II also shows the SSIM index of sixteen standard
test images after they were interpolated. We see that the
SSIM index, for both LNA and bicubic interpolation, is
similar.

TABLE I. COMPARISON OF EXECUTION TIME

 Time in milliseconds

 Bicubic LNA

 Min Ave Min Ave

lena 38.0 47.1 28.6 36.8

baboon 37.3 43.0 29.8 34.9

peppers 36.2 42.6 27.7 32.4

airplane 39.4 47.1 27.0 33.9

house 9.5 15.9 7.8 11.4

splash 35.6 42.0 30.8 41.3

jellybeans 8.8 11.7 6.9 9.5

car 36.2 42.8 29.2 39.4

sailboat 37.2 45.0 27.2 37.7

san_diego 38.0 41.3 28.7 33.8

earth 36.5 39.8 27.7 34.2

kodim23 53.1 62.7 40.3 49.0

tree 10.2 16.0 7.2 12.2

monarch 54.8 62.5 41.0 51.5

barbara 56.6 70.2 44.3 54.8

goldhill 56.2 63.9 43.7 51.7

Average 40.3 43.4 34.0 35.3

Figure 9. Comparison of zooming. The first image is the input; the second

is generated by our method and the third by bicubic interpolation.

533

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Comparison using Lena and Baboon. Row 1: Original and binary version. Row 2: Output of bicubic. Row 3: Output of LNA.

534

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Comparison using Monarch and Barbara. Row 1: Original and binary version. Row 2: Output of bicubic. Row 3: Output of LNA.

535

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

E. PSNR comparison using ideal reference

In this section, we evaluate our method using geometric
shapes. This allows us to specify the desired result of
interpolation and generate reference images in HR for
comparison.

The reference HR images, for a scale factor of two, are
defined as follows. For a line thickness of one, a line of
length l in LR should produce a line length 2l in HR, a circle
of radius r should produce a circle of radius 2r and a
rectangle of dimension h x w should produce a rectangle of
size 2h x 2w. Each of the interpolated images should retain a
line thickness of one pixel.

If the source image has thickness, then the thickness is
also to be doubled. A line of n pixel thickness and length l,
should produce a line of thickness 2n and length 2l, if n > 1.

The input images and reference images were drawn using
Visual C++. Lines, rectangles and circles were drawn using
the LineTo, Ellipse and Rectangle functions in the CDC
class. Line thickness was set using the CreatePen function in
the CPen class.

Figure 12 shows the comparison of LNA with bicubic
interpolation. In the figure, the first test case is a filled circle.
The reference image was drawn as a filled circle of radius
80. The input to bicubic interpolation and to our method was
a filled circle of radius 40. The same approach was used to
generate reference images for other shapes also. The Bicubic
interpolation was done using Matlab.

TABLE II. COMPARISON OF LNA AND BICUBIC INTERPOLATION USING PSNR, MPSNR AND SSIM

 PSNR in dB MPSNR in dB SSIM Index

 Height Width Bicubic LNA Bicubic LNA Bicubic LNA

lena 512 512 14.26 14.63 21.64 21.33 0.84 0.84

baboon 512 512 8.73 8.75 16.2 15.14 0.55 0.53

peppers 512 512 15.21 15.59 22.34 22.05 0.85 0.86

airplane 512 512 15.76 15.53 22.93 21.64 0.89 0.88

house 256 256 11.22 13.07 17.8 19.62 0.71 0.74

splash 512 512 20.58 21.73 27.48 28.19 0.95 0.95

jellybeans 256 256 15.63 15.61 22.55 21.78 0.89 0.88

car 512 512 13.13 12.76 20.5 18.92 0.81 0.81

sailboat 512 512 14.79 14.84 22.15 21.24 0.82 0.82

san_diego 512 512 9.69 9.9 17.3 16.57 0.58 0.56

earth 512 512 13.67 13.34 21.34 19.73 0.79 0.77

kodim23 512 768 17.48 17.71 25.13 24.37 0.91 0.92

tree 256 256 12.84 12.97 19.94 19.2 0.79 0.78

monarch 512 768 16.28 16.64 23.7 23.34 0.89 0.89

barbara 576 720 11.61 11.77 19.16 18.64 0.77 0.77

goldhill 576 720 14.18 15.12 21.06 21.54 0.82 0.83

Average 14.07 14.37 21.33 20.83 0.80 0.80

Figure 12. Comparison in Decibel (dB) of interpolation with

ideal.reference.

536

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. COMPARISON OF PSNR AND MPSNR

 Thickness PSNR in dB MPSNR in dB

 LR

HR
 Our

method
Bicubic

Our

method
Bicubic

Rectangle 1 1 match 22.98 match 27.33

Circle 1 1 21.94 18.93 36 24.33

Line - 45 degree 1 1 46.02 26.54 56.16 31.92

Line - 10 degree 1 1 24.35 23.11 35.43 27.98

Rectangle 3 6 22.37 21.10 27.57 25.13

Circle 3 6 21.46 19.96 29.19 25.27

Line - 45 degree 3 6 25.19 27.40 32.14 34.68

Line - 10 degree 3 6 23.98 23.70 30.09 28.12

Filled Rectangle NA NA match 26.49 match 30.85

Filled Circle NA NA 25.23 22.03 33 26.76

TABLE IV. COMPARISON OF OUR METHOD WITH OTHER METHODS

Percentage of PSNR (dB) improvement over Bicubic

Our Method

CIM

[5]

Gradient

Orientation [14]

NNV

[15] PSNR MPSNR

Lena 2.59 12.90 2.35 0.92

Peppers 2.50 14.12 1.09

1.71

Table III shows the comparison for more simple images

using both PSNR and MPSNR. We see good PSNR
improvement by both measures. Table III also shows a
PSNR decrease for a three pixel thick line at 45 degrees. In
Figure 13, this image is analyzed. The figure shows a portion
of the image, marked in red, magnified 8 times. In the
magnified region, a set of colored squares with the same size
as a pixel, have been shown just below the line. Using these
pixels to help count, we see that the reference line is 8 pixels
wide along the x axis, while our method has generated a line
of width 7 pixels. This happens because, in many situations,
our method assigns the background color when other rules
don’t resolve an unknown pixel. This biases images towards
thinness and the bias is of one pixel. This helps the image
look sharp but the difference in thickness is reflected in the
lower PSNR.

F. Comparison with some similar, recent work

A direct comparison of our method with results available
in [1]-[15] is difficult because our method is only formulated
for binary images. To do a comparison, we converted two of
the commonly used images, Lena and Peppers, to binary and
used these as the reference images. We decimated these
images by a factor of 2 and then interpolated them back to
original size. We compared the interpolated images with the
reference. The results are shown in Table II. The results have
to be viewed keeping in mind the fact that the input for our
experiments is binary while the input to the other methods is
a grayscale image.

In [13], a text super-resolution is considered. Here the
input is binary. It uses text images for training. It achieves an
improvement between 0% and 19% in Mean Square Error
(MSE), when compared with pixel replication. The results
are for different text symbols. Our method improved MSE
by 5.7% for Lena and 2.1% for Peppers.

G. Analysis of the results

The results presented in this section show that LNA is
computationally more efficient than bicubic interpolation.
The amount of processing required in LNA depends on the
image content.

Visual comparison shows that LNA generates visually
pleasing output. This is true for the geometric shapes and
also the standard test images. This is because LNA is
designed to maintain sharpness and to generate smooth lines
in the interpolated image.

Quantitative quality comparison shows that LNA is better
in terms of PSNR while bicubic is better in terms of
MPSNR. This is because LNA is designed to keep features
sharp and so, on an average, the error in pixels is lower. This
reflects in the higher PSNR. LNA is inferior in terms of
MPSNR because it is computed after passing the images
through a low pass filter. This blurs the image edges. LNA is
designed to keep the edges sharp and so when the PSNR is
computed after filtering both the reference and target, the
result is inferior.

V. CONCLUSIONS

To generate visually pleasing, magnified images, we
have proposed a new technique for binary images. It uses
non-linear zooming rules that are Location and
Neighborhood Adaptive (LNA). These rules are inspired by
the way an artist would enlarge an image. The method
overcomes a number of problems, such as blurring and
thickening of edges that are associated with known
interpolation techniques. The results are visually appealing.
Lines and dots, with single pixel thickness, retain their
thickness. Inclined lines, curves and solids look much better
compared to other interpolation methods.

In LNA, some rules need the foreground color as an
input. Some other rules assign a default color because the
method could not determine a pixel’s color based on the
inputs it considered. Furthermore, a study is required to
improve these rules. Studies are required to analyze the

Figure 13. Magnified comparison of the outputs of interpolation.

537

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

possibility of using larger neighborhoods as input, to further
improve the quality of interpolation.

A consequence of LNA is that it may change relative
sizes of some objects. Objects without thickness remain
without thickness while those with thickness, increase in
thickness. So, if an object is formed using both these kinds of
components, the change in relative thickness becomes
visible. Also, a study is required to devise mechanisms to
scale all components of an object consistently.

In the future, a study is needed to extend this method to
grayscale and color images. A solution that is usable could
probably be built by working with ranges of color values,
and using functions to specify values for unknown pixels.

REFERENCES

[1] P. J. Prabhakaran, and P. G. Poonacha, “A Novel Location
and Neighborhood Adaptive Method for Binary Image
Interpolation,” SIGNAL 2017: The Second International
Conference on Advances in Signal, Image and Video
Processing, pp. 14-20, 2017.

[2] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes in C, 2nd ed. Cambridge
University Press, pp. 125-127, 1992.

[3] P. J. Prabhakaran and P. G. Poonacha, "A new decimation and
interpolation algorithm and an efficient lossless compression
technique for images," Communications (NCC), 2015 Twenty
First National Conference on, pp. 1-6, 2015.

[4] H. Jiang and C. Moloney, “A new direction adaptive scheme
for image interpolation,” International Conference on Image
Processing, Vol. 3, pp. 369-372, 2002.

[5] H. Kim, Y. Cha, and S. Kim, “Curvature Interpolation
Method for Image Zooming,” IEEE Transactions on Image
Processing, Vol. 20, No. 7, pp. 1895-1903, July 2011.

[6] R. Gao, J. P. Song, and X. C. Tai, “Image zooming algorithm
based on partial differential equations technique,”
International Journal of Numerical Analysis and Modelling,
Vol. 6, No. 2, pp. 284-292, 2009.

[7] L. Jing, Z. Gan, and X. Zhu, "Directional Bicubic
Interpolation-A New Method of Image Super-Resolution,"
3rd International Conference on Multimedia Technology
(ICMT-13). Atlantis Press, pp. 470-477, November 2013.

[8] J. Sun, Z. Xu, and H. Y. Shum, "Image super-resolution using
gradient profile prior," 2008 IEEE Conference on Computer
Vision and Pattern Recognition, Anchorage, AK, pp. 1-8,
2008.

[9] C. Y. Yang and M. H. Yang, "Fast Direct Super-Resolution
by Simple Functions," 2013 IEEE International Conference
on Computer Vision, Sydney, NSW, pp. 561-568, 2013.

[10] R. Hardie, “A fast image super-resolution algorithm using an
adaptive Wiener filter,” IEEE Transactions on Image
Processing, Vol. 16, No. 12, pp. 2953-2964, 2007.

[11] S. Lerttrattanapanich and N. K. Bost, “High resolution image
formation from low resolution frames using delaunay
triangulation,” IEEE Transaction on Image Processing, Vol.
11, No. 12, pp. 1427-1441, 2002.

[12] W. T. Freeman, T. R. Jones, and E. C. Pasztor, “Example-
Based Super-Resolution,” IEEE Comput. Graph. Appl. 22, 2,
pp. 56-65, 2002.

[13] G. Dalley, B. Freeman, and J. Marks, "Single-frame text
super-resolution: a Bayesian approach," Image Processing,
2004. ICIP '04. 2004 International Conference on, 2004, Vol.
5, pp. 3295-3298, 2004.

[14] S. Ousguine, F. Essannouni, L. Essannouni, and D.
Aboutajdine, "A new image interpolation using gradient-

orientation and cubic spline interpolation," ISSR-Journals,
vol. 5, no. 3, 2014.

[15] O. Rukundo and C. Hanqiang, "Nearest Neighbor Value
Interpolation," in 2014 International Conference on Computer
Vision Theory and Applications (VISAPP), 2012.

[16] The University of Southern California – Signal and Image
Processing Institute (USC-SIPI) image database.
"http://sipi.usc.edu/database/database.php". [Online; accessed
31-July-2017].

[17] Kodak lossless true color image suite.
http://r0k.us/graphics/kodak/". [Online; accessed 31-July-
2017].

[18] Index of testimages. "http://www.hlevkin.com/TestImages/".
[Online; accessed 31-July-2017].

538

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

