
Intelligent Software Development Method Based on Model Driven Architecture

Keinosuke Matsumoto, Kimiaki Nakoshi, and Naoki Mori
Department of Computer Science and Intelligent Systems

Graduate School of Engineering, Osaka Prefecture University
Sakai, Osaka, Japan

email: {matsu, nakoshi, mori}@cs.osakafu-u.ac.jp

Abstract—Recently, Model Driven Architecture (MDA) has
attracted attention in the field of software development. MDA
is a software engineering approach that uses models to create
products such as source code. On the other hand, executable
Unified Modeling Language (UML) consists of activities,
common behavior, and execution models; however, it has not
been effectively transformed into source code. This paper
proposes a method for transforming executable UML and class
diagrams with their associations into source code. Executable
UML can describe a system’s behavior well enough to be
executed; however, it is very difficult for executable UML to
handle system data. Therefore, the proposed method uses class
diagrams for this purpose. The method can create models
independent of platforms, such as programming languages.
The proposed method is applied to a system, where Java and
C# code was generated from system models, which were
generated using an executable UML model; in addition,
development costs are evaluated. As a result, it is confirmed
that this method can significantly reduce costs when models
are reused.

Keywords—executable UML; activity diagram; model driven
architecture; UML.

I. INTRODUCTION
This paper is based on the study presented at INTELLI

2017 [1]. In today's software development environment,
software reuse, modification, and migration of existing
systems have increased at a greater pace than new
development. According to an investigative report [2] by
the Information-Technology Promotion Agency (IPA),
reuse, modification, and migration of existing systems
account for approximately 73.3% of software development
and new development accounts for 26.2% as shown in Fig.
1. Many software bugs enter the upper processes, such as
requirement specification, system design, and software
design. However, bugs are mostly discovered in lower
processes, such as the testing process. The need to detect
bugs upstream is gaining priority. Under such a situation,
software developers require a development technique that is
easy to reuse and that adjusts to changes in implementation
technique. Model driven architecture (MDA) [3] is
attracting attention as an approach that generates source
code automatically from models that are not influenced by
implementation [4–6]. Its core data are models that serve as
design diagrams of software. It includes a transformation to
various types of models and automatic source code

generation based on the models. Therefore, it can directly
link software design and implementation.

The final goal of MDA is to generate automatically
executable source code for multiple platforms. For that
purpose, it is necessary to make the architecture and behavior
of a system independent from platforms, e.g., a Platform
Independent Model (PIM) that does not depend on platforms,
such as programming languages. Executable Unified
Modeling Language (UML) [7][8] is advocated as this type
of model as it expresses all actions for every type of
processing, and expresses input and output data by a pin in
activity diagram, which is one of various UML [9] diagrams.
The source code for various platforms can be generated from
one MDA-type model because processing and data can be
transformed for every platform if executable UML is used.

In this study, a method is proposed that generates source
code automatically from executable UML. It is very difficult
for executable UML to handle a system’s data. To solve this
problem, this paper proposes a modeling tool that associates
an executable UML with class diagrams and acquires data
from them. It can treat not only data, but can introduce the
hierarchical structure of class diagrams in executable UML.
If the platform of future systems, such a programing
language, is changed, software developers cannot reuse
existing source code, but they can reuse UML models to
automatically generate source code in the new programming
language.

Figure 1. Percentage of software development projects.

New development
26.2％

Reuse,
modification,

and migration of
existing systems

73.3％

Others
0.5％

88

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The contents of this paper are as follows. In Section II,
background of this study is described. In Section III, the
proposed method is explained. In Section IV, the results of
application experiments confirm the validity of the proposed
method. Finally, in Section V, the conclusions and future
work are presented.

II. BACKGROUND
This section describes background of this study that

makes use of Acceleo and executable UML.
MDA’s core data are models that serve as software

design drawings. The models are divided into platform
dependent and independent models. Auto source code
generation tools (for example, Acceleo [10]) transform
models from PIM to a Platform Specific Model (PSM) that
depends on a platform, and generates source code
automatically. Transformation of the PIM is important and
can generate source code in various platforms by applying
different transformation rules to each platform. Acceleo is a
plug-in of the integrated development environment Eclipse
[11], and a code generator that translates MetaObject Facility
(MOF) [12] type models into source code on the basis of
code transformation rules called a template. Almost all
source code generation tools like Acceleo can translate the
models directly, but the tools have many constraints. For
example, they can only generate skeleton code. In addition,
they cannot hold and calculate data. Therefore, they cannot
recognize what types of model elements have been read. It is
impossible to search the connections between nodes by using
graph theory. When branches and loops of activity diagrams
are transformed, the generation tools have a problem in that
they cannot appropriately transform them because they do
not understand the environment.

Executable UML is a model based on activity diagrams,
as shown in Fig. 2. It has the following features:

• An action is properly used for every type.
• Input and output data of each action are processed as

a pin, and they are clearly separated from the action.
• A model library that describes the fundamental

operations in a model is prepared.

Each type of action has respectively proper semantics,
and transformation with respect to each action becomes
possible by following the semantics. The type and semantics
of an action used in executable UML are as follows.

1) ValueSpecificationAction: Outputs a value of
primitive type data such as an integer, real number,
character string, or logical value.

2) ReadStructuralFeatureAction: Reads certain
structural characteristics. For example, it is used when the
property of class diagrams is read.

3) ReadSelfAction: Reads itself.
4) CallOperationAction: Calls methods in class

diagrams.
5) CallBehaviorAction: Calls behaviors in behavior

diagrams.

6) AddVariableValueAction: Adds a value to the
variable or replaces the variable with its value.

7) ReadVariableAction: Reads a variable or generates
one.

8) CreatObjectAction: Creates a new object.
The model library consists of the Foundational Model

Library, Collection Classes, and Collection Functions. The
contents of the model library are shown below.

1) Foundational Model Library: Offers primitive type
data, and their behaviors (four arithmetic operations,
comparison, etc.) and all input-output relationships.

2) Collection Classes: Offers the collection classes of
Set, Ordered Set, Bag, List, Queue, Dequeue, and Map.

3) Collection Functions: Offers the methods (add, delete,
etc.) of the collection class.

The model library is used by calling CallOperationAction
or CallBehaviorAction.

III. PROPOSED METHOD
This section explains the technique of transforming

executable UML to source code. Although executable UML
is useful, this model has not been used effectively for
automatic generation of source code. Moreover, the handling
of data is inadequate if using only executable UML. To solve
this problem, a method is proposed for generating source
code automatically from executable UML. The method
utilizes a modeling tool that associates executable UML with
class diagrams. If executable UML requires data, the method
retrieves the data from associated class diagrams.

The outline of the proposed method is shown in Fig. 3.
Skeleton code is transformed from class diagrams by using
Acceleo templates [13] for classes. The skeleton code
consists only of class names, fields, and methods that do not
have specific values of data. Data and a method to

Figure 2. Example of executable UML.

89

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

manipulate the data are automatically generated from
executable UML afterward. Since data is associated with
class diagrams, other methods and data in the classes are
acquirable using this association. Papyrus UML [14] was
used for the associations among these models.

A. Transformation from Class Diagrams to Skeleton Code
UML to Java Generator [15] was used to convert the

transformation rules from class diagrams to skeleton code.
These rules generate the following.

• Connection of inheritance or interface
• Field variables and methods (e.g., getter and setter)
• Names and parameters of member functions
This is a template for Java. When transforming models to

C#, several additional changes are required, such as deletion
of constructors and addition of “:” for the inheritance
relationship.

B. Transformation from Executable UML to Source Code
Executable UML is based on activity diagrams, which

consist of actions, data, and their flows. Although transform
rules of actions and data differ from platform to platform, the
flows are fundamentally the same. Therefore, transformation
of flows is separated from transformation of actions and data
as shown in Fig. 4. Flows decide the order of transformation
of actions and data. This separation can flexibly transform
one model to the source code of multiple platforms. The
transformation flow of executable UML is described as
follows.

1) Transformation of flows
A flow of executable UML is shown by connecting

nodes, which include actions and data, with an edge.
However, neither a branch nor loop is transformed by only
connecting nodes along the flow. On transforming a decision
or merge node used for a branch or loop, the proposed

method searches a part of the executable UML near the node
and provides an appropriate keyword to a connecting node
and edge. The method transforms them according to
keywords. The keywords given to model elements are shown
below.

a) finish: Indicates a node or edge whose processing
has finished.

b) loop: A decision node in the entrance or exit of a
loop.

c) endif: A merge node at the end of a branch.

Figure 3. Schematic diagram of the proposed method.
Figure 4. Separation of executable UML.

Figure 5. Search algorithm.

90

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. MODEL LIBRARY ELEMENTS AND THEIR APPLICATIONS.

Model
Library Java C#

ReadLine
(new BufferedReader(new

InputStreamReader(System.
in))).readLine()

Console.ReadLine()

WriteLine System.out.println(value) Console.WriteLine(value)

List.size <target>.size() <target>.Count

List.get <target>.get(<index>) <target>[<index>]

List.add <target>.add(<data>) <target>.Add(<data>)

Primitive
Functions <x><function><y> <x><function><y>

TABLE I. ACTIONS AND THEIR APPLICATIONS TO EACH LANGUAGE.

Action Java C#

CreateObjectAction new <object> new <object>

ReadSelfAction this this

ValueSpecification
Action <value> <value>

ReadStructural
FeatureAction

<object>.<variable> <object>.<variable>

(<resultType>)
<object>

<resultType>.Parse
(<object>)

CallOperationAction <target>.<operation>
(<parameter>)

<target>.<operation>
(<parameter>)

AddVariableValue
Action <variable>=<value> <variable>=<value>

d) read: An edge is being searched.
The flow of the search is shown in Fig. 5 and its

algorithm is as follows.

(1) Follow an edge that is not searched in the reverse

direction of its arrow.
(2) If an edge and node have not been searched, issue the

keyword 'read'.
(3) If a node has the keyword 'read', replace the keyword

with 'loop'. If the node is a decision node, assign the
keyword 'loop' to a searched edge going out from the
decision node.

 (4) Repeat the processing of (1) –(3) until there is no edge
remaining to be searched.
(5) Remove 'read' after the last edge. If there is a merge node
that does not have keyword 'loop', 'endif' will be assigned to
it.

2) Transformation of actions and data
Transformation rules of actions and data are prepared for

every platform. In executable UML, an action is properly
used for every type of processing, and a transformation rule
may be defined per action. The flow of transformation
processing is as follows.
(1) If a node is an action, it will be transformed and

assigned the keyword ‘finish’. Processing will move to
the next node. If the action has an input pin, its flow
will return and the objects and actions at the starting
point of this flow will be transformed.

(2) If a node is a decision node and it has the keyword
‘loop’, it will be transformed by rules for a loop. If the
decision node has no keyword, it will be transformed
by the rules for a branch. In addition, the nodes and
conditional expressions are retrieved from the
connecting edges. When ‘finish’ keywords are assigned
to these nodes and edges, processing will move on to
the next nodes.

(3) If a keyword is assigned to a merge node, it will be
transformed according to the rules of the keyword.

Corresponding relationships of actions between Java and
C# are shown in Table I. The upper row of ReadStructural
FeatureAction in Table I is the case where <variable> is
specified, and the lower row is the case where it is not
specified.

In addition, corresponding relationships of model
libraries between Java and C# are shown in Table II.
ReadLine and WriteLine are model libraries for input and
output. List.size, List.get, and List.add are prepared by
Collection Functions, and they are used for output of list
capacity, extraction of list elements, and addition of list
elements, respectively. Primitive Functions are operations
prepared in the primitive type. Collection Functions are used
by calling CallOperationAction, and all other functions are
used by calling CallBehaviorAction. Variables inputted by
pins and operators defined in the library are shown in italics
surrounded by < >.

IV. APPLICATION EXPERIMENTS
As an experiment that verifies operation and the

development costs of created templates, the system shown

below (Figures 6 and 7) was developed using the proposed
method. The system receives three commands for adding
data to a list, sorting list elements, and outputting data. This
system was described by executable UML and class

Figure 6. Class diagram of example system.

91

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As class

Figure 9. Generated C# code of Class1. Figure 8. Generated Java code of Class1.

Figure 7. Total system behavior of example system.

92

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Executable UML of sortData.

93

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. A portion of the template for Java.

Figure 12. A portion of the template for C#.

94

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV. COMPARISON OF DEVELOPMENT COSTS.

Languages Production
rate

New
development

cost

Development
cost by
reusing

Java 96% 131% 4%

C# 92% 152% 8%

diagrams. The source code of Java and C# was generated
automatically. The same models as described by the
previous processes were used for the model transformation
of both languages. Operations were checked by evaluating
the source code. Figures 6 and 7 show the class diagram and
the behavior model of the system, respectively.

The generated source code in Java and C# for Class1 is
shown in Figures 8 and 9, respectively. In addition, Fig. 10
shows the behavior model of Sortcommand, and Figures 11
and 12 show portions of the templates for Java and C#. The
generated source code in Java and C# for Sortcommand is
shown in Figures 13 and 14, respectively.

The development cost is evaluated according to [16]. It
assumes that workload to add one node in UML diagrams
equals that to describe one line of source code. Table III
shows the number of model nodes, the number of lines of
added or modified lines, and finished source code for each
language. The added and modified lines correspond to parts
that cannot be expressed by executable UML such as
package, import, and so on. Table IV shows the rate of
automatically generated code to the finished code. In
addition, it shows the rate of cost of new development and
reuse as compared with manual procedures starting from
scratch to completion. The calculation formulas used in
Table IV are shown below.

Production rate = (finished code lines – added and
 modified lines) *100 / finished code lines (1)

New development cost rate = (model nodes + added and
modified lines) *100 / finished code lines (2)

Reuse cost rate = (added and modified lines) *100 /

finished code lines (3)

Cost of the proposed method is about 130 –160% in

developing new software, but it is reduced to less than 10%
if reusing the models. According to the investigative report
of IPA, ~70% of software development is reuse,
modification, and migration of existing systems and new
software development is ~30%. If a system is developed by
the proposed method, the cost is

 10*0.7+160*0.3=55% (4)

Although the proposed method is more expensive than
manual procedures in new development, it can be less
expensive when reusing the model(s) created for a system.
Previously-created templates can be used in other projects
and the cost declines further by repeating reuse. In the
present software development environment, where reuse is
common, a large cost reduction can be expected. Systems
can be hierarchically divided into several (reusable) classes
for every function.

TABLE III. COMPARISON OF MODEL NODES AND GENERATED LINES.

Number
of model

nodes
Languages

Number of
added or
modified

lines

Number of
finished lines

94

Java 3 74

C# 5 65

Figure 13. Generated Java code of Sortcommand.

95

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. CONCLUSION
Based on the trend where the rate of reuse, modification,

and migration of existing systems is increasing in software
development, an MDA method that uses executable UML
jointly with class diagrams was proposed in this paper. The
key idea and objective of the proposed method are to
automatically generate source code that skeleton code does
not have. As the result, the proposed method associates class
operations with executable UML. Source code in Java and
C# was generated from system models, and development
costs were evaluated.

If the platform of a system is changed in the future,
software developers cannot reuse existing source code, but
they can reuse UML models to automatically generate source
code in the new programming language. As a result, the
proposed method can significantly reduce costs when models
are reused. The proposed method can transform models into
source code written in any type of programming language if

there is an appropriate template. However, the method
cannot correspond to a large scale of activity diagrams that
contain a lot of classes and methods.

As future work, we believe it will be necessary to decide
on a standard of model partitioning and a notation system for
objects. In addition, an important future task will be to
investigate what types of problems will occur when models
are changed.

ACKNOWLEDGMENT
This work was supported in part by JSPS KAKENHI

Grant Number JP16K06424.

REFERENCES
[1] K. Matsumoto, K. Nakoshi, and N. Mori, “Intelligent software

development method by model driven architecture,” Proc. of the
Sixth International Conference on Intelligent Systems and
Applications (INTELLI 2017), IARIA, July 2017, pp. 7-12, Nice,
France.

[2] Information-Technology Promotion Agency, “Actual condition
survey on software industry in the 2011 fiscal year,” (in Japanese)
[Online]. Available from: https://www.ipa.go.jp/files/000004629.pdf,
2018.05.22.

[3] S. J. Mellor, K. Scott, A. Uhl, and D. Weise, MDA distilled: Principle
of model driven architecture. Addison-Wesley Longman Publishing
Co., Inc. Redwood City, CA, 2004.

[4] T. Buchmann and A. Rimer, “Unifying modeling and programming
with ALF,” Proc. of the Second International Conference on
Advances and Trends in Software Engineering, pp. 10-15, 2016.

[5] M Usman, N. Aamer, and T. H. Kim, “UJECTOR: A tool for
executable code generation from UML models. In Advanced
Software Engineering and Its Applications, ASEA 2008, pp. 165-170,
2008.

[6] Papyrus User Guide, [Online]. Available from:
http://wiki.eclipse.org/Papyrus_User_Guide, 2018.05.22.

[7] Object Management Group, “Semantics of a foundational subset for
executable UML models,” [Online]. Available from:
http://www.omg.org/spec/FUML/1.1/, 2018.05.22.

[8] Object Management Group, “List of executable UML tools,” [Online].
Available from: http://modeling-languages.com/list-of-executable-
uml-tools/, 2018.05.22.

[9] Object Management Group, “Unified modeling language
superstructure specification V2.1.2,” 2007.

[10] Acceleo: [Online]. Available from: http://www.eclipse.org/acceleo/,
2018.05.22.

[11] F. Budinsky, Eclipse modeling framework: A developer's guide.
Addison-Wesley Professional, 2004.

[12] Object Management Group, “Metaobject facility,” [Online].
Available from: http://www.omg.org/mof/, 2018.05.22.

[13] Acceleo template: [Online]. Available from:
https://wiki.eclipse.org/Acceleo/User_Guide#Extract_as_Template,
2018.05.22.

[14] A. Lanusse et al. “Papyrus UML: An open source toolset for MDA,”
Proc. of the Fifth European Conference on Model-Driven
Architecture Foundations and Applications, pp. 1-4, 2009.

[15] UML to Java Generator [Online]. Available from:
https://marketplace.eclipse.org/content/uml-java-generator, 2018.05.
22.

[16] K. Matsumoto, T. Maruo, M. Murakami, and N. Mori, “A graphical
development method for multiagent simulators,” Modeling,
Simulation and Optimization - Focus on Applications, Shkelzen
Cakaj, Eds., pp. 147-157, INTECH, 2010.

Figure 14. Generated C# code of Sortcommand.

96

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

