
400

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Automated Continuous Data Quality Measurement with QuaIIe

Lisa Ehrlinger∗†
†Software Competence Center Hagenberg GmbH

Softwarepark 21, 4232 Hagenberg, Austria
email: lisa.ehrlinger@scch.at

Bernhard Werth∗, Wolfram Wöß∗
∗Johannes Kepler University Linz

Altenberger Straße 69, 4040 Linz, Austria
email: lisa.ehrlinger@jku.at, bernhard.werth@fh-hagenberg.at,

wolfram.woess@jku.at

Abstract—Data quality measurement is essential to gain knowl-
edge about data used for decision-making and to evaluate the
trustworthiness of those decisions. Example applications, which
are based on automated decision-making, are self-driving cars,
smart factories, and weather forecast. One-time data quality
measurement is an important starting point for any data quality
project to detect critical data that does not meet expectations and
to define improvement goals for data cleansing activities. The
complementary task of continuous data quality measurement is
essential to ensure that data continues to conform to requirements
and to detect unexpected changes in the data. However, most
existing data quality tools allow quality measurement at a specific
point in time while leaving the automation and scheduling to
the user. In this paper, we highlight the need for (1) domain-
independent ad hoc measurement, to provide a quick insight of
an information system’s qualitative condition, and (2) continuous
data quality measurement, to observe how data quality evolves
over time. Both requirements can be achieved with our data qual-
ity tool QuaIIe (Quality Assessment for Integrated Information
Environments, pronounced [’kvAl@]), which we developed to cal-
culate metrics for the quality dimensions accuracy, correctness,
completeness, pertinence, timeliness, minimality, readability, and
normalization on both data-level and schema-level. The quality
measurements can be either exported as a user- and machine-
readable quality report, or they can be periodically stored in a
database, which allows for long-term analysis. In this paper, we
demonstrate the application of QuaIIe for ad hoc and continuous
data quality measurement.

Index Terms—Data Quality; Measurement; Monitoring; Estima-
tion; Trust.

I. INTRODUCTION

Strategic decisions are usually based on data. Examples are
human-made decisions in enterprises whether to promote or to
suspend the production of a specific product due to sales data.
In the era of artificial intelligence, machine-based decisions
gain increasing relevance in applications like self-driving cars,
search engines, or industry robots. In order to trust such
data-driven decisions, it is necessary to measure and know
the quality of the underlying data with appropriate tools [1].
Despite the clear correlation between data and decision quality,
84 % of the CEOs in the US are concerned about their data
quality [2]. In addition to incorrect decision making, poor Data
Quality (DQ) may cause effects like cost increase, customer
dissatisfaction, and organizational mistrust [3]. According to
an estimation by IBM, the total financial impact of poor
quality data on business in the US was $3.1 trillion [4] in
2016. Thus, DQ is no longer a question of “hygiene”, but has
become critical for operational excellence and is perceived as
the greatest challenge in corporate data management [5].

We originally presented the Java-based DQ tool QuaIIe
in [1], which automatically performs domain-independent
quality measurement on both data-level and schema-level.
The name “QuaIIe” is not only an abbreviation for “Quality
Assessment for Integrated Information Environments”, but it is
also the German word for jellyfish. We consider this amazing
but yet not fully explored animal a proper representative for
our DQ tool, since its complex life cycle consists of two major
stages, which are divided by two different reproduction phases:
(1) the stationary polyp-phase, and (2) the free-swimming
medusa-phase [6]. In analogy to the jellyfish life cycle, the
two major aims of QuaIIe are:

(1) Initial ad hoc data quality measurement (stationary)
(2) Continuous data quality measurement (free-swimming)

Both phases are necessary to provide holistic DQ mea-
surement. In the stationary polyp-phase, a machine- and
human-readable XML (extensible markup language) quality
report is generated, which allows to grasp a first insight
into the qualitative condition of an information system (IS)
without requiring preparation activities or deeper domain-
knowledge. Initial ad hoc DQ measurement guides the path for
more detailed investigation and target-oriented data profiling.
The medusa-phase allows the long-term observation of an
IS’s quality in order to detect trends or outliers over time.
Continuous DQ measurement provides indications for further
DQ improvements and thus, increases the trustworthiness for
data-driven decisions. While the polyp-phase was originally
introduced in [1], the medusa-phase is the major contribution
of this paper. In addition, we present several implementation
extensions of QuaIIe: a new data source connector for Apache
Cassandra [7], new metrics for the DQ dimensions timeliness
and readability, and experiments with large and highly volatile
real-world data.

Jellyfish also contribute to science with their green fluores-
cent protein (GFP), which can be used as marker for gene ex-
pressions or as reporter for virus infections [8]. QuaIIe marks
DQ issues for the quality dimensions accuracy, correctness,
completeness, pertinence, timeliness, minimality, readability,
and normalization. Since data of enterprises and organizations
are usually stored in Integrated Information Systems (IISs) [9],
an important feature of a DQ tool is to estimate the quality
of different and often heterogeneous ISs on-the-fly to select
the most appropriate and most trustworthy source for a given
query. The jellyfish tentacles of QuaIIe allow virtual integra-
tion of different data sources or parts of data sources [1].

401

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

While a number of DQ tools has been proposed over the
years (cf. [10][11][12][13]), most domain-independent tools
focus on data cleansing and/or data integration. We want to
highlight that our focus is the quality measurement of an IIS
in productive use, and automatic data cleansing activities are
not in the scope of this research work. In order to understand
the degree and effectiveness of data cleansing and to define
goals for further cleansing activities, it is necessary to measure
and know the quality of the data [14]. To the best of our
knowledge, there exists no tool that offers (continuous and
ad hoc) DQ measurement for such a large number of different
DQ dimensions in a single application and comprises both data
and schema quality. Thus, the main contributions of QuaIIe in
contrast to other DQ tools can be summarized as follows:

• Domain-independent ad hoc DQ measurement
• Continuous data quality measurement
• Virtual data integration as basis for DQ estimation
• Combination of data and schema quality measurement

The remainder of this paper is organized as follows: in
Section II, we discuss the state-of-the-art into data quality,
clarify the concept of “continuous data quality measurement”
and differentiate QuaIIe from existing DQ tools. Section III
covers all data and schema quality dimensions and metrics,
which were applied in this research. In Section IV, we describe
the implementation of QuaIIe and demonstrate its application
in terms of ad hoc and continuous DQ measurement.

II. DATA QUALITY: STATE OF THE ART

Data quality is usually defined by the “fitness for use” prin-
ciple [15][16][17], which refers to the high subjectivity and
context-dependency of this topic. This definitions emphasizes
the fact that DQ cannot be evaluated without considering the
context (e.g., a specific application or service), in which the
data is used for. To grasp single qualitative aspects on the
data, DQ is typically described by a set of DQ dimensions
(e.g., accuracy, completeness, timeliness) and metrics, which
are specific formulas to calculate the dimensions [15][18].
A methodology for DQ can be divided into the following
activities [19][20]: (1) state reconstruction, (2) DQ measure-
ment, (3) data cleansing or improvement, and (4) continuous
DQ measurement or monitoring. Step (1) comprises the col-
lection of contextual information on the observed data and
the organization where a DQ project is carried out [19].
DQ measurement (2) is typically described by a set of DQ
dimensions and assigned metrics. Until now, there exists no
agreement on a standardized set of dimensions and metrics
for DQ measurement [14]. Data cleansing (3) is the process
of correcting erroneous data and includes tasks like customer
data standardization or data de-duplication. According to [20],
automated data cleansing methods are very valuable for Big
Data, but with the risk to insert new errors. Step (4) is
mainly used implicitly in literature in order to refer to the
ongoing observation of an IS’s quality and is discussed in
more detail in Section II-A. While we use the term “continuous
DQ measurement” to describe this DQ activity, synonymously

used terms are “recurrent DQ assessment” [20], “ongoing
DQ measurement” [14], or “automated DQ monitoring” [21].
The importance for automation in data quality projects is
highlighted in [14], for both, initial and ongoing DQ mea-
surement. Without automation, the volume and volatility of
data in complex real-world IS will quickly overwhelm any
DQ measurement efforts [14].

A. Continuous Data Quality Measurement

The term “continuous data quality measurement” (CDQM)
describes the calculation and storage of DQ metrics over
time, in order to ensure that the qualitative condition of the
data remains stable [22]. Sebastian-Coleman [14] distinguishes
between in-line measurement, periodic measurement, and
controls. In-line and periodic measurement are distinguished
by the measurement frequency, where in-line measurement
is applied to critical or highly volatile data, and periodic
measurement is used to monitor less frequently updated data
(e.g., master data) [14]. Our implementation QuaIIe allows to
apply both types: in-line as well as periodic DQ measurement.
Table I describes the most important requirements for CDQM
defined in [22] and how they are implemented in QuaIIe.

A control is understood as a built-in data check, which is
typically implemented in a data transformation (or integration)
process [14]. We want to point out that the majority of
DQ tools that state to offer monitoring functionality refer to
controls. Also Gartner [10] describe the term “monitoring”
as “the deployment of controls in order to ensure that data
continues to conform to business rules”. We explicitly want
to distinguish our understanding of CDQM (i.e., in-line and
periodic measurement), as it is implemented in QuaIIe, from
DQ monitoring using controls. A practical example of a
monitoring tool with controls in the physics domain is the
DQ monitoring framework for the ATLAS experiment at the
Large Hadron Collider at CERN [27]. Before the automatically
collected data is shipped to the data store, a number of pre-
defined quality checks are carried out in order to ensure that
the data is free of error and can be used for scientific data
analysis. This DQ tool is accompanied by human domain
experts, who inspect the generated visualization and take
action in case of problems.

In accordance with [14], we want to highlight that the
usefulness and application of CDQM depends on the volatility
of the data set. We distinguish between three volatility types:

(V1) Static data sets, which are very rarely or not modified, for
example, a list of planets in the solar system or countries
and their capitals.

(V2) Periodically or occasionally updated data, for example,
master data like products, customers, employees, or the
daily menu of a restaurant.

(V3) Highly volatile data, for example, stock exchange prices,
sales data from large vendors, streaming or sensor data.

All three types require different measurement strategies,
which are demonstrated with QuaIIe in Section IV. The

402

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I
REQUIREMENTS FOR CONTINUOUS DATA QUALITY MEASUREMENT

Requirement Description Implementation in QuaIIe

DQ measurement
functionality

To define how DQ should be actually measured is not trivial and
according to [14], one of the biggest challenges for DQ practi-
tioners. One reason is the ongoing discussion on DQ dimensions,
where until now, no agreement could be reached [14].

QuaIIe currently implements metrics for eight different DQ
dimensions on both data-level and schema-level. Since not all
published DQ metrics have been sufficiently evaluated so far
(cf. [23]), QuaIIe allows to evaluate metrics, e.g., whether they
are suited for CDQM or not.

Storage DQ measurements must be persisted to allow DQ analysis over
time and to compare current DQ measurements to older ones.

For the experiments in this paper, we used a MySQL database
to store CDQM results, but any kind of database might be used.

Automation DQ measurement should be performed automatically, based on
user-defined time periods.

We automated DQ measurements either directly in a Java
method, or with Windows Task Scheduler [24].

Analysis Visual as well as statistical (time-series) analysis is required to
present the DQ measurement results and to detect patterns and
changes in DQ measurements.

Since a graphical user interface for QuaIIe is currently under
development, we performed the analysis of CDQM with the
Python packages pandas [25] and matplotlib [26].

strategies differ in the measurement frequency (in-line versus
periodic), in the amount of data to be included in the mea-
surement, as well as in the automatically triggered action in
case a specific threshold is not met.

B. Data Quality Tools

Despite a continuous growth, the market of DQ tools is still
considered a niche market [10]. Gartner lists 39 commercial
DQ tools by 16 vendors in their “Magic Quadrant of Data
Quality Tools 2017” [10]. Most of the tools offer functionali-
ties to investigate the qualitative condition of different data
sources using data profiling techniques, manage DQ rules,
resolve DQ issues, enrich data quality by integrate external
data, validate addresses, standardize and cleanse data, and
link related data entries using a variety of techniques. The
aim of these commercial tools is usually the support of a
comprehensive DQ program that involves management, IT,
and business users. Thus, the application of such a tool usually
requires a domain expert and preparatory work to be effective.

In addition to commercial DQ tools, a number of scientific
tools have been proposed over the years, where the most im-
portant ones are compared and discussed in [11][12][13]. All
three surveys make clear that the focus of those tools is on the
detection and cleansing of specific DQ problems (e.g., name
conflicts, missing data) and none of the observed tools pro-
vide any monitoring functionality. Examples for typical data
cleansing tools are Potter’s Wheel [28] or Wrangler [29]. In
contrast to the tools observed in existing surveys [11][12][13],
QuaIIe focuses on the pure measurement (detection) of DQ
problems and does not cleanse data. The advantage of DQ
measurement without cleansing or manipulating data is the
potential for domain-independent automation, that is, it can be
performed unsupervised and ad hoc without any consequences
to insert new errors in the data.

Additionally, and in contrast to most existing DQ tools (ex-
cept for [30] and [31], which will be discussed in the following
paragraph) QuaIIe addresses the DQ topic from the dimension-
oriented view. While a lot of research on DQ dimensions and
their definitions has been proposed in literature [3][15][17],
there is no tool that implements generally-applicable metrics

for such a broad number of dimensions. QuaIIe fills this gap
and can thus be considered a vital complement in the section
of research-oriented DQ tools. Of course, more specialized
tools might outperform QuaIIe in specific implementations,
like distance calculation or string matching.

In terms of CDQM capabilities and the DQ dimension-
oriented view, we found two open source tools that can be
compared to QuaIIe: MobyDQ by Alexis Rolland [30] (for-
merly: “Data Quality Framework”) and Apache Griffin [31],
a project from the Apache Incubator. However, both tools
require an intensive configuration phase, where DQ metrics
and checks are defined depending on the observed domain and
data. No metrics for initial ad hoc measurement are provided.
While MobyDQ is easy to install, Apache Griffin is very
arduous to set up, because it depends on several other open
source tools that are still in the incubator status. We needed six
days for the installation until we were able to produce usable
DQ measurements.

III. DATA AND SCHEMA QUALITY DIMENSIONS

Data quality is usually described as multidimensional con-
cept, which is characterized by different aspects, so called
dimensions [15]. Those dimensions can either refer to the data
values (i.e., extension of the data), or to their schema (i.e.,
the intension or data structure) [18]. While the majority of
research into DQ focuses on the data values, QuaIIe imple-
ments DQ measurements for both schema and data values.
In fact, schema quality has a strong impact on the quality
of the data values [18]. An example are redundant schema
elements, which can lead to data inconsistencies. Thus, it is
essential to consider both topics in order to provide holistic
DQ measurement.

Since a wide variety of quality dimensions has been pro-
posed over the years (e.g., [15][17][32][33]), we focus in the
following paragraphs on the eight dimensions (1) accuracy, (2)
correctness, (3) completeness, (4) pertinence, (5) timeliness,
(6) minimality, (7) readability, and (8) normalization. Each
dimension can be quantified with one or several metrics,
which capture the fulfillment of a dimension in a numerical
value [34]. Heinrich et al. [23] defined five requirements a

403

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

data quality metric must fulfill. The implemented metrics in
QuaIIe can thus be evaluated by means of the requirements
in [23] or if they are suited for application in CDQM.

Some metrics require a reference or benchmark (gold stan-
dard) for their calculation. According to the Oxford Dictio-
nary, a Gold Standard (GS) is “the best, most reliable, or
most prestigious thing of its type” [35]. In the vast majority
of cases a gold standard does not exist, but if there is one, it
would be used in place of the IS under investigation. Thus, in
practice, an existing benchmark is employed as gold standard,
e.g., a single IS can be compared to the integrated data from
the complete IIS. Although in practice, there is usually no
complete gold standard for large data sets available, there are
often reference data sets of good quality for a subset of the
data. Examples are purchased reference data sets for customer
addresses or a manually cleaned part of the original data.
The quality estimation in QuaIIe (cf. Section III-H) allows
to extrapolate the exact measurement for a part of the data to
other parts that are required for a query but have not been yet
measured. For more details to the schema quality dimensions
applied in this paper, we refer to [36] and more information
on the data quality dimensions can be found in [37].

A. Accuracy and Correctness

The terms accuracy and correctness are often used synony-
mously in literature and a number of different definitions exist
for both terms [15][18][38]. In the DQ literature, accuracy can
be described as the closeness between an information system
and the part of the real-world it is supposed to model [18].
From the natural sciences perspective, accuracy is usually
defined as the magnitude of an error [38]. In this research
work, we refer to correctness for a calculation, which has
been presented by Logan et al. [39], who distinguish between
correct (C), incorrect (I), extra (E) and missing (M) elements
after comparing a data set to its reference:

Cor(c, c′) =
C

C + I + E
. (1)

Here, the data correctness of, for instance, a relational table
or class in an ontology, denoted as concept c, is measured
by comparing it to its “correct” version c′. In this notion,
C is the number of elements that correspond exactly to an
element from the reference c′. The incorrect elements I have
a similar element in the gold standard, but are not identical.
While M describes the number of missing elements in the
IS under investigation that exist in the gold standard, its
complement E is the number of extra elements that exist in
the investigated IS, but have no corresponding element in the
gold standard. We show below that metrics for correctness
and pertinence can be determined by the same basic element
counts (C, I, E, M – short CIEM), which allows an efficient
implementation. Algorithm 1 demonstrates how the element
counts are calculated.

On the data-level, QuaIIe implements an accuracy metric,
which has its origins in the field of machine learning and

Algorithm 1: Calculation of CIEM Counts
Input: Data set ds, its reference ds′, and threshold t.
Output: The number of correct C, incorrect I , extra E,

and missing M elements.
1 for each element e1 in ds do
2 for each element e2 in ds′ do
3 σ = calculateSimilarity(e1, e2);
4 if σ == 1.0 then
5 setUpCorrectAssignment(e1, e2); C++;
6 else if σ > t then
7 setUpIncorrectAssignment(e1, e2); I++;
8 else
9 E++;

10 end
11 end
12 end
13 for each element e2 in ds′ do
14 if e2 has no assignment then
15 M++;
16 end
17 end

is usually used to measure the accuracy of classification
algorithms [40]. This accuracy metric can also be mapped to
the notion by Logan et al. [39]:

Acc(c, c′) =
|c|
|c ∪ c′|

=
C

C + I + E +M
, (2)

where |c| gives the number of records in a data set or concept c.
In the rest of this paper, we refer to accuracy when discussing
quality metrics for data values (since QuaIIe implements the
metric for accuracy on data-level), and to correctness when
discussing the corresponding schema dimension.

On the schema-level, Vossen [41] describes a database (DB)
schema as correct, if the concepts of the related data model are
applied in a syntactically and semantically appropriate way,
effectively considering only the model as reference. In [18]
the authors distinguish between correctness with respect to the
model and with respect to requirements. Although the values
of an IS might also be erroneous, the content of an IS can be
added as third possibility to validate a schema. Three types of
validation are therefore possible:

• Validation of a schema against its conceptual model (e.g.,
Entity-Relationship model) assumes the correct represen-
tation of the modeled constructs within the schema.

• When a schema is validated against its requirements, the
requirements are expected to be represented correctly.
This is usually considered to be a manual task (cf. [42]),
because requirements are rarely available in machine-
readable form.

• Validation against the content of an information source
verifies whether the schema fits its values. This includes
for instance the correct usage of attributes (e.g., an

404

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

attribute first_name actually contains a person’s first
name and no numeric value).

In QuaIIe, the formula by Logan et al. [39] for data cor-
rectness is also employed as a metric for schema correctness
with Cs, Is, Es, and Ms denoting the correct, incorrect, extra,
and missing elements of a schema s:

Cor(s, s′) =
Cs

Cs + Is + Es
. (3)

B. Completeness

Completeness is broadly defined as the breadth, depth, and
scope of information contained in the data [17] and can
be divided into three subtypes. Schema completeness is the
degree to which concepts and their attributes are present in
a schema, column completeness defines the ratio of missing
values to all values in a variable, and population completeness
measures the missing values with respect to the real reference
population [18]. A number of authors [15][18] calculate data
completeness according to:

Com(c, c′) =
|c|
|c′|

. (4)

Despite differences in expressions, most existing complete-
ness metrics are correspondent to (4) and compare the number
of elements in a data set |c| to the number of elements in
the gold standard |c′|. In this metric, scope for interpretation
lies in selecting the gold standard or reference c′ and in the
similarity calculation (i.e., determining whether an element has
a reference element in c′). In QuaIIe however, extra records,
which exist in the gold standard, but have no counterpart in the
data set under investigation are excluded and therefore have no
influence on the completeness calculation. We use the formula
presented by Logan et al. [39]:

Com(c, c′) =
C + I

C + I +M
. (5)

In addition, QuaIIe provides a variant of (4) that explicitly
ignores duplicate entries:

Com(c, c′) =
|unique(c)|
|unique(c′)|

. (6)

Oliveira et al. [43] provide the only formal definition of
completeness (i.e., the missing value problem) for a relational
schema R(A) that contains a finite set of relations r(A), where
A is an attribute set (a1, a2, ..., am), t a tuple, and v(t, a) a
specific value for tuple t and attribute a:

Definition 1: Let S be a set of attribute names, defined
as: S = {a|a ∈ R(A) ∧ a is a mandatory attribute}, i.e.,
S ⊆ R(A). There is a missing value in attribute a ∈ S iff:
∃t ∈ r : v(t, a) = null.

In contrast to other approaches, Definition 1 is restricted
to null values and does not consider default or placeholder
values (e.g., “NA” or “-99”) as data incompleteness. Hinrichs

proposed a metric, which corresponds to Def. 1 for different
aggregation levels: attribute-value-level, record-level, concept-
level, and DB-level. While the completeness of an attribute
value Com(v) is either 0 (if v=null) or 1 (else), complete-
ness on record-level Com(r) is the arithmetic mean of all
attribute-value completeness measures for that record. The
completeness of a concept (relation in [44]) is defined as

Com(c) =

∑n
i=1 Com(ri)

|c|
, (7)

where n is the number of records in concept c. In addition,
DB-level completeness is defined as the arithmetic mean of
all concept-level completeness measures.

Schema completeness describes the extent to which real-
world concepts of the application domain and their attributes
and relationships are represented in the schema [18]. The
metric for schema completeness in QuaIIe corresponds to the
metric for data completeness in (5):

Com(s, s′) =
Cs + Is

Cs + Is +Ms
. (8)

Batista and Salgado [45] applied a schema completeness
metric, which is equivalent to the data completeness in (4).
In the calculation, the number of elements in the reference
schema |s′| is determined by counting the number of distinct
elements in all schemas of an IIS. While the authors in [45]
assume pre-defined schema mappings to be provided, QuaIIe
calculates the distance or similarity values between the schema
elements on-the-fly.

In addition, Nauman et al. [46] proposed a comprehensive
IIS completeness metric, which incorporates the coverage (i.e.,
data completeness of the extension of an IS), and density (i.e.,
schema completeness of the intension of an IS). The authors
use the entire IIS as gold standard. The density of a schema is
calculated according to the population of attributes with non-
null values [46]. In contrast, the schema completeness metric
in QuaIIe implements a data-value-independent calculation,
which considers the existence of specific schema elements
(e.g., relations in a relational DB).

C. Pertinence

Pertinence on the data-level equates to the notion of preci-
sion (in contrast to recall [40]) from the information retrieval
field and complements data completeness. Data pertinence
describes the prevalence of unnecessary records in the data.
The classic precision metric is defined as the probability to
select a correct element from a list [40] and in terms of correct,
incorrect, extra, and missing records, is defined as:

Per(c, c′) =
C + I

C + I + E
. (9)

Schema pertinence describes a schema’s relevance, which
means that a schema with low pertinence has a high number
of unnecessary elements [18]. A schema that is perfectly

405

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

complete and pertinent represents exactly the reference schema
(i.e., its real world representation), which means that the
two dimensions complement each other. In accordance to (9),
schema pertinence is calculated in QuaIIe as

Per(s, s′) =
Cs + Is

Cs + Is + Es
, (10)

where the number of schema elements with a (correct or
incorrect) correspondence in the gold standard is divided by
the total number of elements in the schema under investigation.

D. Timeliness

An important aspect of many types of data is that the data
values may change over time, for example, product pricing or
customer addresses. In terms of time-related DQ dimensions,
it can be distinguished between currency and timeliness [18].
According to [18], currency describes how promptly data is
updated compared to changes in the real world. Ballou et
al. [47] proposed the following metric for the currency of a
single record r:

Cur(r) = (DeliveryT ime(r)− InputT ime(r)) +Age(r),
(11)

which requires meta information about each record. Delivery-
Time is the time when the data is delivered to the customer,
InputTime describes the time when the data is entered in the
IS, and Age is the age of the data prior to system entrance.
Since the age is rarely available and the delivery time would
require in-depth domain knowledge, currency is calculated in
QuaIIe as

Cur(c) =

∑
r∈cNow − InputT ime(r)

|c|
. (12)

Here, Age is assumed to be 0 and the delivery time is
assumed to be the timestamp of the data quality assessment.
Additionally, the record-wise currency values are aggregated
via average to assess the currency of a data set (i.e., concept).
According to [18], timeliness describes how current the data
is for a task at hand, which takes into account the specific
use of a data value. An example would be the program
of a cinema, which could be current because it contains
the most recent data, but it is not timely if it is available
after the start of the desired movie. Since QuaIIe focuses on
the objectively measurable quality dimensions, timeliness is
calculated according to:

Tim(c) = max
(
0, 1− Cur(c)

V ol(c)

)
, (13)

omitting the aspect of the data usage. V ol(c) is the volatility
of a data set, which is a domain-specific value that describes
how fast records become irrelevant [47]. Stock exchange prices
(V3) that are updated by the second are considered highly
volatile, while customer addresses display a low volatility as

customers move every few years at maximum. Some types of
data like birth dates have a volatility of 0, because they never
become obsolete, therefore infinite timeliness is assumed in
QuaIIe.

While schema evolution might cause a schema to become
outdated, to the best of our knowledge, no approaches for
measuring the outdatedness of schemas exist. Therefore, the
current version of QuaIIe considers schemas to be time-
invariant. It should be pointed out that this would be an
interesting topic to be considered as future work.

E. Minimality

Information sources are considered minimal if no parts
of them can be omitted without losing information, that
is, the IS is without redundancies and no duplicate records
exist [18]. The detection of duplicate records is a widely
researched field that is also referred to as record linkage, data
deduplication, data merging, or redundancy detection [48]. In
order to determine which records of a data set are duplicates,
different approaches exist. The most prominent approaches can
be assigned to one of the following types [48]: (1) probabilistic
assignment using the Fellegi-Sunter model [49], (2) machine
learning techniques like support vector machines, clustering
algorithms, or decision trees, (3) distance-based methods,
which are based on a function that calculates the distance
between two objects, and (4) rule-based methods, which are
usually based on the work of domain experts.

In QuaIIe, duplicate detection is done by hierarchical clus-
tering, which requires a distance function between the records.
A distance function δ : o × o → [0, 1] is a function from
a pair of elements to a normalized real number expressing
the distance or dissimilarity between the two elements [50].
Analogous, some techniques calculate the similarity σ : o ×
o → [0, 1] between two elements, which can be transformed
to a distance value using the formula δ = 1− σ. All distance
and similarity values produced by QuaIIe can be assumed to
be normalized over the unit interval of real numbers [0,1].

Since each data record consists of multiple attribute
values, the distance function is a weighted-average
of individual attribute distance functions. QuaIIe
offers the following distance functions for data
values: AffineGapDistance, CosineDistance,
LevenshteinDistance, and SubstringDistance
for strings, AbsoluteValueDistance for double values,
EqualRecordDistance for entire records, as well as
EnsembleDistance for any data type. The latter one
combines an arbitrary number of other distances and adds a
weight for each one. Thus, it allows the creation of distances
that are adjusted to a specific IS schema, for example, to
calculate the distance between persons by applying a string
distance to the first and last name and a distance for numeric
attributes to the age, and giving higher weights to the name
than the age.

The main advantage of clustering in our approach is the
automatic resolution of multiple correspondences. It thus,

406

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

however, requires a threshold to be defined. QuaIIe sets a
predefined clustering threshold, which has been evaluated
in experiments presented in [36]. In an automated test run,
similarity matrices with different parameter combinations have
been compared to a similarity matrix created by a domain
expert using the mean squared error (MSE). The parameter
combination yielding the closest similarity results (having a
MSE of 0.0102) were used as standard parameters. However,
QuaIIe also allows to overwrite those values by the user to
adjust for specific domains. Hierarchical clustering initially
creates one cluster for each observed record and continuously
combines different clusters until all records are subsumed into
one large cluster. QuaIIe offers seven different linkage strate-
gies (single linkage, complete linkage, median linkage, mean
linkage, pair group method with arithmetic mean, centroid
linkage, and Ward’s method). We refer to [51] for further
information on hierarchical clustering.

Following, the minimality metric in QuaIIe is based on a
three-step approach, which is used for the data values and
the schema elements likewise. Consequently, we refer to the
observed objects as “elements”, using the more generic term
for both, records, as well as schema elements.

1) Element-wise distance calculation. All elements are com-
pared to each other, which yields a distance matrix.

2) Clustering. All elements are hierarchically clustered ac-
cording to their distance values. In a perfectly minimal IS,
the number of elements |c| should be equal to the number
of clusters |clusters|. If two or more elements are grouped
together into one cluster, the minimality score drops to a
value below 1.0.

3) Minimality calculation. Finally, the minimality can be
calculated according to

Min(c) =

{
1.0, if |c| = 1
|clusters|−1
|c|−1 , else

. (14)

Schema minimality is of particular interest in the con-
text of IIS, where redundant representations are com-
mon. The minimality of a schema is an important in-
dicator to avoid redundancies, anomalies and inconsis-
tencies. QuaIIe calculates schema minimality according
to the three-step approach described above. For the
schema similarity, the following distance functions are
available: DSDAttributeDistance on attribute-level,
DSDConceptAssocDistance on concept- or association-
level, and SimilarityFloodingDistance on schema-
level. DSD (data source description) is a vocabulary to se-
mantically describe IS schemas [21] and is explained in more
detail in Section IV-B. The first two distances are ensemble
distances, which are adjusted to the DSD representation of
attributes or concepts and associations respectively. In addi-
tion, we implemented the Similarity Flooding (SF) algorithm
proposed in [52], which calculates the similarity between
nodes in a graph-based schema representation, and can thus
only be applied to a complete DSD schema (in contrast to

single concepts). Subsequently, (14) can be reformulated for
schema minimality according to

Min(s) =

{
1.0, if |s| = 1
|clusters|−1
|s|−1 , else

, (15)

where |s| is the number of elements (concepts and associa-
tions) in a schema s.

F. Normalization

Normal Forms (NFs) can be used to measure the quality of
relational DBs, with the aim of obtaining a schema that avoids
redundancies and resulting inconsistencies as well as insert,
update, and delete anomalies [41]. In contrast to all other
schema quality dimensions listed in this paper, normalization
requires access to the extension of the information source, i.e.,
the data values themselves. Although this quality dimension
refers to relational data only, it is included in QuaIIe, because
of the wide spread use of relational DBs in enterprises. Several
modern DBs use denormalization deliberately to increase read
and write performance. Hence, depending on the type of IS,
a NF evaluation is not always helpful in deducing the quality
of its schema. It can however, serve as checking mechanism
to ensure that only controlled denormalization exists.

Identifying functional dependencies (FDs) forms the basis
for determining the NF of a relation. A FD α→ β, where α
and β are two attribute sets of a relation R, describes that two
tuples that have the same attribute values in α must also have
the same attribute values in β. Thus, the α-values functionally
determine the β-values [53].

In QuaIIe, the second, third, and Boyce Codd normal
form (2NF, 3NF, and BCNF, respectively) can be determined.
The applied algorithm can be classified as a bottom-up
method [54], in which the FDs of a relation are analyzed
by comparing all attributes’ tuple values with all other at-
tributes’ tuple values. Then, the minimal cover is determined
by performing left- and right-reduction so that all FDs are in
canonical form and without redundancies [41]. Following, all
attributes are classified as key or non-key attributes and based
on all information gathered, the correct NF is determined. Each
schema element is annotated with quality information about its
NF, key attributes, and minimal cover.

G. Readability

The current version of QuaIIe supports readability on
schema-level only. Although we did not find any discussion
on readability on data-level, the current implementation of the
readability could be used to evaluate the readability of string
values on content-level likewise.

A schema should be readable, which means it should
represent the modeled domain in a natural and clear way
so it is self-explanatory to the user [41]. Good readability
supports semantic expressiveness and enables automatic map-
pings to other domains that are based on dictionary approaches

407

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(e.g., by using publicly available online dictionaries such
as WordNet [55] or DBpedia [56]). While the readability
of a conceptual schema in its graphical representation also
includes aesthetic criteria, such as the arrangement of entities
or crossing lines, the readability of a logical schema is limited
to the actual naming of entities and relationships. Since clarity
is subjective, no generally valid formal definition for this
quality dimension exists [18].

We suggest two core measures to guarantee a sufficient level
of readability. The fist measure is based on a validation of all
schema element names using a dictionary approach, where we
selected WordNet [55] for the implementation in QuaIIe. As a
general rule, concepts should usually be described by singular
nouns, while relationships should be described in present tense
verbs or by a combination of two nouns [57]. A user should
be permitted to add company-specific abbreviations that are
widely used in practice and are usually not contained in
public dictionaries. This is currently allowed in form of a
CSV (comma-separated values) file. The second measure is
a mandatory set of readability rules with which a rule checker
can verify compliance. Both, readability rules and compliance
with the online dictionary, can be formulated in criteria crit.
Those criteria are applied to “words”, which are extracted from
schema element labels (e.g., an attribute name). A word can
be either the complete name of an element, or part of it. If a
schema uses delimiters like underscores () or hyphens (-), one
string is split into several words. For example, first_name
is split into “first” and “name”. The following list contains a
set of exemplary criteria, which can be used as a starting point
and extended by additional domain-specific criteria.

• Dictionary existence: whether the word can actually be
found in WordNet.

• Consistent naming: check if the naming style is consis-
tent, e.g., only upper case, initial upper case, lower case,
camel case, with or without blanks and/or hyphens.

• Hypernyms: if the word has hypernyms in the schema.
• Synonyms: if the word has synonyms in the schema.
• Dates: if the term “date” occurs in an attribute name, its

data type must be dateTime.
• Identifier: if the term “ID” or “Identifier” occurs in an

attribute name, the attribute must be a primary key or at
least unique.

• Foreign keys: the naming of a foreign key and its corre-
sponding primary key must be equivalent.

Based on these criteria, we suggest calculating a readability
score according to

Red(s) =

∑|w|
i=1 #fcriti/#crit

|w|
, (16)

where |w| is the total number of words considered, #crit is
the number of considered criteria, and #fcriti is the number
of fulfilled criteria per word wi.

H. Estimation of Integrated Quality Values

In Big Data applications there is usually no gold standard
for the entire data set, which makes it impossible to calculate
DQ metrics that require a GS in the formula. However, there
exist often reference data sets of good quality, for example,
purchased customer addresses or a manually cleaned subset of
the data. In such cases, DQ can be estimated by extrapolating
exact measurements for parts of the data to the entire data
set. An estimated quality rating allows to draw conclusions
whether to include a data source in a query result or not.

QuaIIe provides a heuristic estimation of DQ values for a
number of query results, views, and integrated record sets.
Assuming a composite record set can be defined by applying
only relational algebra operators (projection π, selection σ,
rename ρ, union ∪, set difference −, and cross product × [53])
to existing data, queries can be treated as relational syntax
trees. From these trees, estimations about the DQ metrics of
the composite set can be made without actually evaluating DQ
again. Hence, a gold standard is only required for the exact
measurement of the leaf components and the DQ estimation
for larger (integrated) data is possible without further need
of a gold standard [37]. Currently, estimates for the DQ
dimensions accuracy, completeness, and pertinence have been
implemented in QuaIIe. The DQ metrics of the composite set
are estimated by traversing the relational algebra syntax tree
in a bottom up fashion utilizing the formulas we present in
Tables II and III. Here, D(c) is the proportion of records in a
data set c, for which at least one duplicate entry exists in c,
and p is a selection-specific factor denoting |selected records|

|original records| .

IV. IMPLEMENTATION ARCHITECTURE AND
DEMONSTRATION

Fig. 1. Implementation Architecture of QuaIIe

Fig. 1 shows the architecture of our modular Java-based tool
QuaIIe for measuring IIS data-level and schema-level quality
ad hoc and continuously. The tool consists of three abstract
components: (a) data source connectors to establish an IS
connection and to load schema information in form of DSD
elements, (b) quality calculators that perform schema and data

408

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II
DATA QUALITY ESTIMATION - COMPLETENESS AND PERTINENCE

Operator Composite Completeness of Composite Pertinence of Composite

Projection π(c) Com(c) Per(c)
Selection σ(c) p ∗ Com(c) Per(c)

Union c1 ∪ c2 Com(c1) + Com(c2) − D(c1 ∪ c2) ∗
Com(c1) + Com(c2)

2

Per(c1) ∗ |c1|+ Per(c2) ∗ |c2|
|c1|+ |c2|

Set Difference c1 − c2 Com(c1)−D(c1∪c2)∗
Com(c1) + Com(c2)

2

2 ∗ Per(c1) ∗ |c1| −D(c1 ∪ c2) ∗ (Per(c1) ∗ |c1|+ Per(c2) ∗ |c2|)
2 ∗ |c1| −D(c1 ∪ c2) ∗ (|c1|+ |c2|)

Cross Product c1× c2 Com(c1) ∗ Com(c2) Per(c1) ∗ Per(c2)

TABLE III
DATA QUALITY ESTIMATION - ACCURACY

Operator Composite Accuracy of Composite

Projection π(c) Acc(c)

Selection σ(c)
Com(c) ∗ p ∗Acc(c)

Com(c) ∗ p+ (1− p) ∗Acc(c)

Union c1 ∪ c2

(
1−

D(c1 ∪ c2)
2

)
∗ (Com(c1) + Com(c2))

1 +

(
1−

D(c1 ∪ c2)
2

)
∗
(
Com(c1) ∗

(1

Acc(c2)
− 1

)
+ Com(c2) ∗

(1

Acc(c2)
− 1

)
− 1

)
Set Difference c1 − c2

2 ∗ Com(C1)−D(c1 ∪ c2) ∗ (Com(c1) + Com(c2))

2 ∗
Com(c1)

Acc(c1)
−D(c1 ∪ c2) ∗

(
Com(c1)

Acc(c1)
−
Com(c2)

Acc(c2)

)
Cross Product c1× c2

Com(c1) ∗ Com(c2)

1 + Com(c1) ∗
(
Com(c2)

Acc(c2)
− 1

)
+ Com(c2) ∗

(
Com(c1)

Acc(c1)
− 1

)
+

(
Com(c1)

Acc(c1)
− 1

)
∗
(
Com(c2)

Acc(c2)
− 1

)

quality measurement and annotate this information to the DSD
elements, and (c) reporters, which either generate a human-
and machine-readable quality report, or persist the continuous
DQ measurements in a DB for later analysis. The tool has
been implemented with a focus on maximum flexibility and
extensibility, which makes it easy to add new connectors,
calculators, or reporters, due to a standardized interface for
each component.

In addition to a pre-configured automatic execution, QuaIIe
also allows user input in form of rules and parameters for
specific quality calculations. The DSD runtime environment,
which is described in more detail in Section IV-B, holds
schema information on the loaded data sources in form of DSD
elements along with assigned quality ratings and annotations.
The DSD runtime environment exists only during the Java
runtime, that is, during the execution of one (initial) DQ mea-
surement procedure. In order to persist the DQ measurements
for later analysis, they need to be exported to the CDQM store
using one of the the reporters. In the following paragraphs, the
selection of data sources used for our demonstration is justified
and explained, and each component (a), (b), and (c), as well
as the DSD runtime environment and the CDQM store are
described in more detail.

A. Demonstration Data Sources

Recently, a call for more empiricism in DQ research has
been made in [58], promoting (1) the evaluation on synthetic
data sets to show the reproducibility of the measurements,
and (2) evaluations on large real-world data sets. In order to
cover both requirements, we used curated demo data sources
of known quality, which allow manual verification of quality
measurements, as well as real-world data sources of unknown
quality. We selected those data sources also in a way to
demonstrate the usage of all three volatility types (V1-3), from
highly volatile, to completely static. All six used data sets are
described in the following paragraphs in more detail.

a) Employees: The “employees” DB contains six tables
with about three million records in total (300,024 in the
table “employees” alone) and models the administrations of
employees in a company [59]. Since it is a curated demo DB
of known quality, we load the original employees DB into
the Datasource object dsEmpGS, which is used as gold
standard for our demonstration. In addition, we created two
variants that have been automatically populated with randomly
inserted errors in the original data: dsEmp1 (501 records from
the main table “employees”) and dsEmp2 (4,389 records).
Table IV shows the error types that were used in the script. The
added noise n is an absolute error that is normally distributed.

b) Sakila: The Sakila DB has 16 tables and models the
administration of a film distribution [60]. While the employees

409

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV
ERROR TYPES

Error type Domain Example

LetterSwap String “Bernhard” → “Bernhrad”
LetterInsertion String “Bernhard” → “Bernnhard”
LetterDeletion String “Bernhard” → “Bernhrd”
LetterReplacement String “Bernhard” → “Burnhard”
AddedNoise Numeric a→ a+ n, where n ∼ N(0, 1)
NullFault Any “Bernhard” → NULL
RecordDuplication Record {(“Werth”, 9)} → {(“Werth”, 9),

(“Werth”, 9)}
RecordDeletion Record {(“Werth”, 9)} → ∅
RecordInsertion Record {(“Werth”, 9)} → {(“Werth”, 9),

(“Ehrlinger”, 5)}
RecordCrossOver Record {(“Werth”, 9), (“Wöß”, 2)} →

{(“Werth”, 2), (“Wöß”, 9)}

DB contains a large number of records for quality measure-
ment on the data-level, Sakila consists of a more advanced
schema and is thus used for schema quality measurement
that requires a GS (again, because of the known quality of
the DB). We employed the Datasource object dsSakilaGS,
which represents the original Sakila DB, as GS. In addition,
we created three modified versions of the Sakila DB: one
with minor modifications, but without removing or adding
elements to affect correctness (dsSakila1), a second one where
attributes and tables have been removed to affect completeness
(dsSakila2), and a third one where attributes and tables have
been added to affect pertinence (dsSakila3).

c) Northwind: The well-known Northwind DB from
Microsoft (dsNorthwind) can be downloaded from [61] and
demonstrates a comprehensive company DB, including 12
tables for e.g., customers, employees, products, order details.
In addition to the original Northwind DB, we use an updated
version published by dofactory [62] (dsNorthwindNew) with
more recent dates, but only five tables.

d) CD CSV: We also used a CSV file (dsCD), which
contains real-world music CD data that was originally pub-
lished on the repeatability website by Felix Naumann [63].
The dataset contains information on the artist, title, genre,
year, and contained tracks of 9,763 records, including 299
duplicates and was randomly extracted from freeDB.

e) Metadynea: To demonstrate data model independence
of schemas investigated with QuaIIe, we also employed a
Cassandra DB in productive use called “metadynea” (dsMeta-
dynea). It contains five column families (tables) with about 60
GB of chemometrics data, which is distributed on three nodes.

f) Stock Exchange Data: In order to demonstrate the
quality measurement of highly volatile data sets, we used
real stock data (open, high, low, close, and volume) since
the year 2000 from the equities of IBM, Microsoft, and
Apple, accessed through the Alphavantage API (Application
Programming Interface) [64]. The connected and analyzed data
set is called dsStockdata.

As supplement to the demonstration in this paper, we
published an executable (QuaIIe.jar) on our project web-

site [65], which allows to reconstruct the schema quality
measurement described in this section. The program takes one
mandatory and one optional command line parameter: (1) the
path to the DSD schema to be observed and (2) the path to
the GS schema, and generates a quality report in XML format.
Schema descriptions for all four versions of the Sakila DB, as
well as a description for the employees DB are provided in
form of DSD files.

B. Data Source Connectors and DSD Environment

A connector’s task is to guarantee data model independence
by accessing a data source and transforming its schema into
a harmonized schema description, which is based on the
DSD vocabulary. The transformation process from various
data models and details of the DSD vocabulary are described
in [21]. The transformation from schema elements to DSD
elements is a prerequisite for performing cross-schema calcu-
lations and obtaining information about a schema’s similarity
to other schemas in the IIS. In QuaIIe, DSD elements are
represented as dynamically created objects in the Java runtime
environment. Below we list the most important terms of the
DSD vocabulary that are used in this paper.

• A Datasource s represents one schema in an IIS
and has a type (e.g., relational DB, spreadsheet) and an
arbitrary number of concepts and associations, which are
also referred to as schema elements.

• A Concept c is a real-world object type and is usually
equivalent to a table in a relational DB or a class in an
object-oriented DB.

• An Association is a relationship between two or
more concepts. There are three types of association: (i)
a reference association describes a general relationship
between two concepts (e.g., employment of a person with
a company); (ii) an inheritance association represents an
inheritance hierarchy (e.g., specific types of employees
are inherited from a general employee concept); and (iii)
an aggregation association describes the composition of
several concepts (components) to an aggregate.

• An Attribute is a property of a concept or an asso-
ciation; for example, the column “first name” provides
information about the concept “employees”.

Fig. 2 shows an example of a transformation of two
relations from the employees DB: employees {emp_no:
int, birth_date: date, first_name: string,
last_name: string} and dept_emp {emp_no:
int, dept_no: int, from_date: date, to_da-
te: date} into a DSD file in Turtle syntax (cf. [66]). The
attribute descriptions are omitted for brevity. The example
shows that a relational table can be transformed into a concept
or an association, for example, dept_emp is a reference
association since it models the assignment of an employee to
a department.

While this harmonization step enables comparability and
quality measurement of schemas from different data models, it

410

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 ex:employees a dsd:Concept ;
2 rdfs:label "employees" ;
3 dsd:hasAttribute ex:employees.emp_no, ex:employees

.birth_date, ex:employees.first_name, ex:
employees.last_name;

4 dsd:hasPrimaryKey ex:employees.pk .
5

6 ex:dept_emp a dsd:ReferenceAssociation ;
7 rdfs:label "dept_emp" ;
8 dsd:hasAttribute ex:dept_emp.emp_no, ex:dept_emp.

dept_no, ex:dept_emp.from_date, ex:dept_emp.
to_date;

9 dsd:hasPrimaryKey ex:dept_emp.pk ;
10 dsd:referencesTo ex:employees, ex:departments .

Fig. 2. Example Schema Description

does not guarantee access to the original information sources’
content after transformation. Consequently, the schema quality
metrics in QuaIIe primarily use the schema’s metadata instead
of the IS content. An exception is the determination of the
normal form, which is impossible without considering the
semantics of the attributes that can be derived from the content.

There are two different types of connectors in QuaIIe: (1)
data source connectors (DSConnector), which load the meta
data of an IS to describe its schema, and instance connec-
tors (DSInstanceConnector), which additionally provide
access to the data values of an IS. The interface-oriented
design of QuaIIe allows new connectors to be added by
implementing one of the two abstract classes DSConnector
or DSInstanceConnector. Currently, five different con-
nectors are supported:

• ConnectorMySQL creates a connection to a MySQL
DB as representative for relational DBs by using the
functionality of the MySQL Java Connector (cf. [67]).
This connector allows access to the DB data values.
Information on the selected DB schema is retrieved from
the data dictionary, including all tables, columns, foreign
keys and column properties.

• ConnectorCSV allows to access CSV files and is also
a subclass of DSInstanceConnector. Due to little
meta data that is available in plain CSV files, schema
information is solely extracted from the given file (i.e.,
column headers as attribute names).

• ConnectorOntology uses the Apache Jena frame-
work (cf. [68]) to access a DSD file. Since DSD files
hold only schema information and not a connection to
the original database, this connector does not provide any
possibilities for accessing the DB content and can be used
for schema quality measurement only.

• ConnectorCassandra uses the Datastax Java driver
(cf. [69]) to access a Cassandra DB. This connector
currently operates on schema-level only to evaluate the
DQ measurements not only on relational data, but also
on denormalized wide-column-store schemas.

• ConnectorAlphavantage is a domain-specific con-
nector to crawl and load stock market data from the
Alphavantage API [64].

Fig. 3 shows an example instantiation for each of the

domain-independent connector types. In addition to opening a
connection, it is necessary to load the schema and thus trigger
the conversion of schema elements to DSD elements in the
Java DSD environment. For our demonstration, we created
a connection to all data sources described in Section IV-A,
adhering to the same naming standard. For example, for the
employees DB we created the connectors connEmp1 and
connEmp2 to access the MySQL databases with the inserted
errors, and load their schema in form of two Datasource
objects dsEmp1 and dsEmp2 into the DSD environment.

1 // Opening and loading a MySQL data source
2 DSInstanceConnector connEmpGS = ConnectorMySQL.

getInstance("jdbc:mysql://localhost:3306/", "
employees", "user", "pw");

3 Datasource dsEmpGS = connEmpGS.loadSchema();
4

5 // Opening and loading a DSD schema description
6 DSConnector connSakilaGS = new ConnectorOntology("

filepath/sakila_gs.ttl", "Sakila_Goldstandard");
7 Datasource dsSakilaGS = connSakilaGS.loadSchema();
8

9 // Opening and loading a CSV file
10 DSInstanceConnector connCD = new ConnectorCSV("

filepath/cd.csv", ",", "\n", "CD");
11 Datasource dsCD = connCD.loadSchema();
12

13 // Opening and loading a Cassandra data source
14 DSConnector connMeta = new ConnectorCassandra("

hostname", "metadynea", "user", "pw");
15 Datasource dsMeta = connMeta.loadSchema();

Fig. 3. Data Source Connectors

In QuaIIe, each data source connector also offers at least
one gold standard implementation, in order to allow the calcu-
lation of reference-based DQ dimensions (e.g., completeness).
Fig. 4 shows the creation of two different gold standards: (1)
empGS, which can be used for quality measurement at the
data-level, and (2) sakGS1, a DSDSchemaGS that is solely
used for schema quality measurement. Since specific gold
standard implementations might have different tasks, each im-
plementation requires a different set of parameters. However,
all gold standards in QuaIIe inherit from the abstract class
GoldStandard, which offers methods to retrieve referenced
records or schema elements. The object empGS in Fig. 4 shows
the instantiation of a gold standard object for a single concept
(table), for DQ calculations on different aggregation levels
(i.e., when only parts of the content of a data source should
be analyzed).

The DSDSchemaGS for schema quality calculations ex-
tends the idea of simply representing a perfect reference to
an information source; rather it is a “container” that holds
the reference to another information source and calculates the
similarity or dissimilarity between schema elements on-the-fly.
Thus, it is, for example, possible to compare one MySQL DB
schema to a DSD description as shown in Fig. 4, to overcome
data model heterogeneity.

C. Data Quality Calculators

Each DQ calculator is dedicated to one of the quality dimen-
sions described in Section III and links the measurements to

411

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 // Creation of a gold standard from a single concept
2 GoldStandard empGS = new StrictConceptMySQLGS(

dsEmpGS.getConcept("employees"), connEmpGS);
3

4 // Creation of a schema gold standard
5 GoldStandard sakGS1 = new DSDSchemaGS(dsSakila1,

dsSakilaGS);

Fig. 4. Gold Standards

the corresponding DSD elements in the DSD runtime environ-
ment. Quality measurements in the DSD runtime environment
can be used for reporting or reused by other calculators, and
can be divided into two different types: quality ratings or
quality annotations. A rating is a double value between 0.0 and
1.0, which is calculated by a specific metric that is assigned
to a quality dimension. An example for a DQ rating is a value
of 0.85 for the dimension “completeness” on data-level using
the metric “ratio”. A quality annotation can be an arbitrary
object that is linked to a DSD element in order to provide
additional information about the quality. An example would be
the annotation of functional dependencies to a concept. In the
following, we summarize all DQ calculators that are currently
implemented in QuaIIe and link them to the respective metrics
from Section III, grouped by dimension:

• Accuracy / Correctness
– RefCorrectnessCalculator (1) - data
– RatioAccuracyCalculator (2) - data
– DSDCorrectnessCalculator (3) - schema

• Completeness
– RatioCompletenessCalculator (4) - data
– UniqueRatioCompletenessCalculator (6) -

data
– FilledCalculator (7) - data
– DSDCompletenessCalculator (8) - schema

• Pertinence
– RatioPertinenceCalculator (9) - data
– DSDPertinenceCalculator (10) - schema

• Timeliness
– AverageCurrencyCalculator (12) - data
– AverageTimelinessCalculator (13) - data

• Minimality / Duplicity
– RecordMinimalityCalculator (14) - data
– SchemaMinimalityCalculator (15) - schema

• Readability
– SchemaReadabilityCalculator (16) - schema

• Normalform
– NormalFormCalculator - schema

Fig. 5 shows the application of all non-time-related DQ
calculators that are implemented in the current version of
QuaIIe. Initially, the concept “employees” from the erroneous
Datasource dsEmp1 is selected for closer investigation.
As an example for a distance function, which is required
for the minimality calculation, line 5-7 cover the creation of
an EnsembleDistance, which is a weighted combination

of an arbitrary number of specific distance functions. In the
demonstration, we use a combination of two string distances
for the attributes first_name and last_name in the
“employees” table. However, QuaIIe allows the creation of
arbitrary complex distance functions for each record. Finally,
ratings for the DQ dimensions accuracy, completeness, per-
tinence, and minimality are calculated. Line 16 shows how
to programmatically retrieve those stored DQ values from the
DSD runtime environment. One data quality rating or annota-
tion is uniquely identifiable by a reference to the DSD element
(e.g., a reference to the concept “employees” in dsEmp1),
the DIMENSION_LABEL of the measured quality dimension
(e.g., “completeness”) as well as a METRIC_LABEL (e.g.,
“ratio”), which describes the metric used for calculating the
dimension.

1 // Select concept "employees" from employees DB
2 Concept c = dsEmp1.getConcept("employees");
3

4 // Create a custom distance measure
5 EnsembleDistance<Record> dist = new EnsembleDistance

<Record>();
6 dist.addDistance(new StringRecordDistance(c.

getAttribute("first_name"), new
LevenshteinDistance()), 0.5);

7 dist.addDistance(new StringRecordDistance(c.
getAttribute("last_name"), new
LevenshteinDistance()), 0.5);

8

9 // Perform quality calculations
10 RatioAccuracyCalculator.calculate(c,empGS,connEmp1);
11 RatioCompletenessCalculator.calculate(c,empGS,

connEmp1);
12 RatioPertinenceCalculator.calculate(c, empGS,

connEmp1);
13 RecordMinimalityCalculator.calculate(c, dist, 0.1,

connEmp1);
14

15 // Retrieve DQ measurements from the DSD runtime
environment (formerly ’’Data Quality Store’’)

16 DataQualityStore.getDQValue(c,
RatioPertinenceCalculator.DIMENSION_LABEL,
RatioPertinenceCalculator.METRIC_LABEL)

Fig. 5. Data Quality Calculations

In addition to the measurement of dsEmp1 (501 records),
we applied the same calculations on the “employees” table
of dsEmp2 (4,389 records). The results can be compared in
Table V. The low quality values for accuracy and completeness
result from the small subsets of the erroneous tables in contrast
to the original employees table with 300,024 records.

TABLE V
DQ MEASUREMENT OF ERRONEOUS DATA SOURCES

Dimension Metric dsEmp1 dsEmp2

Accuracy Ratio 0.0013 0.0116
Completeness Ratio 0.0013 0.0116
Pertinence Ratio 0.7725 0.7938
Minimality Record 0.7180 0.7532

The time-related DQ dimensions currency and timeliness
require information about the last update of a tuple, which is
not available in the employees DB, but offered by Sakila DB in

412

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

form of an attribute last_update. We show the calculation
in Fig. 6, which leads to a rating of 3.7156 for currency and
0.9988 for timeliness. Both calculators require information
about the attribute that holds the update information. In
addition, the timeliness calculation requires a parameter for
the volatility. In the demonstration, the volatility is set to a
value of 10 years for actor names, since it is very unusual that
a name for an actor changes within that time frame.

We want to point out that due to their definition and in
contrast to the other DQ dimensions, it is not possible to assess
the time-related dimensions without prior knowledge, which
does not align with the objective of QuaIIe to be domain-
independent. However, we included those two DQ calculators
in order to provide comprehensive DQ measurement and think
it is worth investigating both dimensions in more detail in
order to come up with automatically suggested parameters
(e.g., for the volatility).

1 Concept actor = dsSakila1.getConcept("actor");
2 double volatility = 10 * MILLIS_IN_SEC * SEC_IN_MIN

* MIN_IN_HOUR * HOUR_IN_DAY * DAY_IN_YEAR;
3

4 AverageCurrencyCalculator.calculate(connSakila1,
actor, r -> (Date) r.getField("last_update"));

5 AverageTimelinessCalculator.calculate(connSakila1,
actor, r -> (Date) r.getField("last_update"),
volatility);

Fig. 6. Time-Related Data Quality Calculations

For the schema quality calculations, we employed a DSD
description of the original Sakila DB as gold standard and ac-
cessed the three additional data sources (dsSakila1, dsSakila2,
dsSakila3) through the MySQL connector. Each data source
contains schema modifications that tackle one of the schema
quality dimensions correctness, completeness, and pertinence,
and are justified in the following paragraphs. For the demon-
stration using QuaIIe.jar on our project website [65], we
provided all four schemas as DSD files in order to facilitate
data exchange and reproduction.

The 16 tables from Sakila were transformed into 14
DSD concepts and two DSD reference associations (film_-
category and film_actor). For the DSD similarity, stan-
dard parameters have been used with a less restrictive attribute
similarity threshold of 0.8. The determination and evaluation
of the schema similarity standard parameters is explained
in [36]. Fig. 7 shows the application of the schema quality
calculators correctness, completeness, pertinence, minimality,
and normalization.

1 DSDCorrectnessCalculator.calculate(dsSakila1, sakGS1
);

2 DSDCompletenessCalculator.calculate(dsSakila2,
sakGS2);

3 DSDPertinenceCalculator.calculate(dsSakila3,sakGS3);
4 RatioMinimalityCalculator.calculate(dsSakilaGS);
5 NormalFormCalculator.calculate(dsSakilaGS,

connSakilaGS);

Fig. 7. Schema Quality Calculations

The results of the schema quality measurements applied to
Sakila DB, employees DB, stock data, Northwind DB and

Metadynea DB are provided in Table VI. The results are
discussed in more detail in the following subsections.

TABLE VI
SCHEMA QUALITY MEASUREMENT RESULTS

Schema Cor Com Pert
dsSakilaGS 1.0 1.0 1.0
dsSakila1 0.813 1.0 1.00
dsSakila2 0.929 0.813 0.929
dsSakila3 0.824 0.938 0.882

Min NF (t.=tables)
dsSakilaGS 1.0 6 t.: BCNF, 9 t.: 2NF, 1 t.: 1NF
dsEmpGS 0.8 All BCNF
dsStockdata 1.0 1 t.: BCNF
dsNorthwind 1.0 6 t.: BCNF, 4 t.: 2NF, 1 t.: 1NF
dsMetadynea 0.667 Not applicable for Cassandra

a) Schema Correctness: In order to demonstrate the
correctness dimension, we performed changes in the ob-
served schema but did not remove or add new schema
elements. The corresponding DQ report can be gener-
ated by executing java -jar QuaIIe.jar sakila_-
correctness.ttl sakila_gs.ttl. First, the concept
film was renamed to “movie”, which did not change the
ratings for pertinence and completeness, but decreased cor-
rectness slightly to 0.938 due to the additional incorrect
element. Second, all occurrences of film (e.g., film_id)
in the DB were replaced with “movie”. While completeness
and pertinence retained a rating of 1.0, because all concepts
and associations were assigned (even if incorrectly) to their
original correspondences in the GS, correctness achieved only
a rating of 13

13+3+0 = 0.813.

b) Schema Completeness: The completeness calculation
was performed by removing schema elements. The DQ re-
port for this demonstration can be generated by assess-
ing sakila_completeness.ttl. Initially, the two tables
category and film_category were removed, which
resulted in a completeness rating of 14+0

14+0+2 = 0.875 because
two elements were classified as missing. Then, the attribute
picture was deleted from the table staff. Removals at
the attribute-level did not directly affect the result of the com-
pleteness calculation, since staff is still correctly assigned to
its gold standard representation due to the tolerance of the dis-
tance calculation. Concluding, three additional attributes were
removed from staff, which resulted in a similarity rating
of 0.692 between staff and its correspondence in the GS.
Consequently, both tables were not mapped because they were
too different and completeness dropped to 13+0

13+0+3 = 0.813.

c) Schema Pertinence: For the demonstration of per-
tinence, we added additional elements to the schema and
the quality report can be generated by assessing the file
sakila_pertinence.ttl. In a first step, the “employ-
ees” table from the employees DB was added to dsSakila3,
dropping pertinence to 0.941. This demo correctly classifies
the concept employees as an extra element, although the
new concept has a relatively low distance to the concept

413

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

actor. Second, we modified the concept actor in dsSak-
ila3, such that no assignment to its corresponding concept
in the GS was created and the pertinence rating dropped to
15+0

15+0+2 = 0.882. Following, the newly added employees
table was aligned with the actor concept in the GS by
removing and altering attributes. This resulted in a similarity
value of 0.833 between employees and the concept actor
from the GS and increased completeness to 1.0 (all elements
could be assigned to the GS). However, the pertinence di-
mension (0.941) indicated the extra actor concept in the
observed schema, which did not match any of the GS elements.

We conclude that an examination of all three dimensions
(correctness, completeness, and pertinence) is advisable when
measuring the quality of a schema. Note that the correctness
metric is particularly strict, because it is decreased by every
incorrect element in the schema, whereas completeness and
pertinence do not distinguish between correct and incorrect.

The results of all four schema quality measurement results
are summarized in Table VI and elaborated in more detail in
the following paragraphs.

d) Schema Minimality: Analogous to the data minimal-
ity, schema minimality requires a distance function. Currently,
two schema distance functions are offered: the similarity
flooding algorithm introduced in [52] and DSD similarity,
which we use in the following calculations with standard
parameters that have been evaluated in [36]. The schemas of
the Sakila DB (sakila_gs.ttl), the Northwind DB and
stock data achieve an ideal minimality rating of 1.0, because
all schema elements are sufficiently different to each other.
For the Sakila DB with 16 schema elements, minimality is
calculated according to 16−1

16−1 = 1.0.
However, the minimality ratings of the employees DB and

metadynea are clearly below 1.0. This rating is expected for a
Cassandra DB schema like metadynea, where denormalization
(and thus, redundancy at the schema-level) is an intended
design decision. In order to investigate the reason behind the
minimality rating for the employees schema in more detail,
we observe the similarity matrix from the DSD similarity
in Table VII. Interestingly, the two associations dept_emp
and dept_manager achieve a very high similarity of 0.875,
which reduces the minimality rating to 5−1

6−1 = 0.8. In
practice, this rating indicates an IS architect that the two
associations should be further analyzed. However, in our case,
no further action is required since the employees schema
contains a special modeling concept of parallel associations
(i.e., two different roles), which does not represent semantic
redundancy, but leads to very similar relations in the schema
model (cf. [59]). Since it is known that this modeling con-
struct yields high similarity values (e.g., also for schema
matching applications), it was specially suited to demonstrate
our minimality metric. The full quality report for this demo
can be generated by executing “java -jar QuaIIe.jar
employees.ttl”.

e) Normal Form Calculation: The NF calculator was
applied to the employees DB and yields BCNF for each

TABLE VII
SIMILARITY MATRIX FOR EMPLOYEES SCHEMA

depts* dept emp dept mgr* employees salaries titles

depts* 1.0 0.125 0.125 0.1 0.125 0.125
dept emp 0.125 1.0 0.875 0.1818 0.2222 0.1
dept mgr* 0.125 0.875 1.0 0.1818 0.2222 0.1
employees 0.1 0.1818 0.1818 1.0 0.1818 0.1818
salaries 0.125 0.2222 0.2222 0.1818 1.0 0.375
titles 0.125 0.1 0.1 0.1818 0.375 1.0

*Departments is abbreviated with “depts” and dept manager with “dept mgr”.

concept. The minimal cover of the FDs is shown in Table VIII.
Due to the considerable number of records in the employees
database, calculating these results took about 22 minutes and
45 seconds on a Macbook Pro with an Intel Core i7 processor
with 2.2 GHz and 16 GB main memory. In addition to FDs,
candidate keys are also annotated to the observed schema
elements, and attributes are annotated with a Boolean value
that indicates whether they are classified as key or non-
key. Note that, particularly in terms of performance, more
sophisticated methods of discovering FDs exist [54]. However,
since the main aim of our work was to provide a compre-
hensive approach to data and schema quality measurement,
the normalization dimension was included to support full FD
discovery (i.e., without approximation).

TABLE VIII
NF CALCULATION - EMPLOYEES SCHEMA

Concept Functional Dependencies

departments {dept no}→{dept name}, {dept name}→{dept no}
dept emp {emp no, dept no}→{from date, to date}
dept manager {emp no}→{dept no, from date, to date}
employees {emp no}→{first name, last name, gender, birth date,

hire date}
salaries {emp no, from date}→{to date, salary}
titles {emp no, title, from date}→{to date}

D. Data Source Integration

In IIS, it is often necessary to estimate the quality
of data stemming from different IS. QuaIIe supports the
virtual integration of different concepts, which is real-
ized with the Java classes IntegratedDatasource and
IntegratedConcept. Fig. 8 shows an example integra-
tion, where all records from the table “employees”, which is
present in both erroneous data sources dsEmp1 and dsEmp2,
are unified. The data is stored in form of a virtual integrated
data source (ids), which exists only during runtime.

An integrated concept contains an operator tree, which
specifies the data sources, concepts, connectors, and integra-
tion transformations that are required for its creation. After
generating such an integrated concept, it can be assessed
likewise to an ordinary concept from a single data source in
QuaIIe (cf. lines 3-6 in Fig. 9). Additionally, it is possible
to estimate the quality (cf. Section III-H), which is not a
complete measurement of the new integrated concept, but

414

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 IntegratedDatasource ids = DSDFactory.
makeIntegratedDatasource("integratedEmp");

2

3 ISQLIntegrator integrator = new ISQLIntegrator(ids);
4 integrator.add(dsEmp1, connEmp1);
5 integrator.add(dsEmp2, connEmp2);
6

7 IntegratedConcept ic = integrator.
makeIntegratedConceptFromString("SELECT * FROM
dsEmp1.employees UNION SELECT * FROM dsEmp2.
employees", "integratedEmployees");

Fig. 8. Data Integration

is based on the prior quality ratings of each IS. Thus, an
estimation requires the prior measurement of each IS that takes
part in the integration.

1 DSInstanceConnector integrConn = new
IntegratedInstanceConnector(ic);

2

3 RatioCompletenessCalculator.calculate(ic, gsEmp,
integrConn);

4 RatioAccuracyCalculator.calculate(ic, gsEmp,
integrConn);

5 RatioPertinenceCalculator.calculate(ic, gsEmp,
integrConn);

6

7 RatioCompletenessCalculator.estimate(ic);
8 RatioAccuracyCalculator.estimate(ic);
9 RatioPertinenceCalculator.estimate(ic);

Fig. 9. DQ Estimation of an Integrated Concept

The ratings for the DQ calculations and estimations from
Fig. 9 are compared in Table IX and show high conformance.
In the current version of QuaIIe, quality estimation is only
available for the dimensions accuracy, completeness, and per-
tinence. However, an extension of the DQ estimators to other
dimensions, like minimality, is planned as future work.

TABLE IX
DQ CALCULATION OF AN INTEGRATED CONCEPT

Dimension Metric Measurement Estimation

Accuracy Ratio 0.0129 0.0130
Completeness Ratio 0.0129 0.0128
Pertinence Ratio 0.7916 0.7916

E. Data Quality Reports

In order to present the quality ratings and annotations
contained in the DSD runtime environment in a human- and
machine-readable way, QuaIIe offers several reporter classes
that generate a quality report. The most comprehensible end-
user report is XMLTreeStructureDQReporter, which is
created in Fig. 10 and exports a description of all connected
data sources with their DSD elements, quality ratings and
annotations. Since such a report tends to be large and verbose
for large IIS, the hierarchical structure of the XML document
allows to drill-down and roll-up on different aggregation levels
by using a suitable viewer. In addition, languages like XSLT,
XQuery, or XPath allow a user to search within such a report.
The advantage of an XML report in our use case is the

fact that it can be reused automatically for further analysis
and benchmarking (e.g., for data quality monitoring). When
measuring the quality of the published DSD schemas with
QuaIIe.jar (cf. [65]), the output is such a report.

1 XMLTreeStructureDQReporter reporter = new
XMLTreeStructureDQReporter();

2 reporter.buildReport();
3 reporter.writeReport("path/DQReport.xml");

Fig. 10. Data Quality Report Generation

The exemplary quality report in Fig. 11 shows an excerpt
of the assessed data source dsEmp1, which illustrates possible
quality ratings and annotations on schema (here: completeness,
minimality, and normalization) and on the data-level (here:
accuracy and pertinence).

1 <DataQualityReport>
2 <Datasource label="employees" URI="http://example.

com/dsEmp1">
3 <Quality>
4 <Ratings>
5 <Completeness>
6 <DSDSchema>1.0</DSDSchema>
7 </Completeness>
8 <Minimality>
9 <Ratio>0.8</Ratio>

10 </Minimality>
11 </Ratings>
12 </Quality>
13 <Concept label="employees" URI="http://example.com

/dsEmp1/employees">
14 <Quality>
15 <Ratings>
16 <Accuracy>
17 <Ratio>0.0013</Ratio>
18 </Accuracy>
19 <Pertinence>
20 <Ratio>0.7725</Ratio>
21 </Pertinence>
22 </Ratings>
23 <Annotations>
24 <Candidate_Key>[{emp_no}]</Candidate_Key>
25 <Normal_Form>BCNF</Normal_Form>
26 </Annotations>
27 </Quality>
28 <Attribute label="emp_no" URI="http://example.

com/dsEmp1/employees/emp_no">
29 <Quality>
30 <Ratings>
31 <Key_Attribute>
32 <Pseudo_Boolean>1.0</Pseudo_Boolean>
33 </Key_Attribute>
34 <Ratings>
35 </Quality>
36 </Attribute>
37 ...
38 </Concept>
39 ...
40 </Datasource>
41 ...
42 </DataQualityReport>

Fig. 11. XML Data Quality Report

The first level below the root node lists all connected
data sources that contain quality ratings for the entire
Datasource as well as concepts and associations as child
nodes. Concepts and associations are further subdivided into
their comprising attributes and again, quality ratings and

415

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

annotations on concept- or association-level, respectively. At-
tributes constitute the deepest level in the schema-level hier-
archy and can contain quality information on their own, e.g.,
whether an attribute is a key attribute or not.

F. Continuous Data Quality Measurement

In order to demonstrate the practical application of CDQM
with QuaIIe, we assume the following use cases, ordered
by data volatility type: (V1) monitoring the conformance of
Wikipedia data to a static gold standard, (V2) measuring the
quality of sales data that is loaded on a daily basis with
an ETL job into a Data Warehouse, and (V3) continuous
measurement of stock data to support data analytics. All three
use cases are fictional stories, fueled by real-world data, in
order to provide demonstrative examples how CDQM can be
applied to different types of data. Fig. 12 depicts the Entity-
Relationship diagram of our CDQM store, which follows the
suggestion for such a store proposed in [22]. Each CDQM
measurement is uniquely identified by the respective DSD
element ID (which is an URI), the metric ID, and a timestamp
when the measurement was taken. Thus, for a specific CDQM
chart, it is only necessary to query for the desired element,
metric, and time-range to plot the information for a user.

Fig. 12. ER Diagram of the CDQM Store

1) CDQM for Static Data: Assume a Wikipedia adminis-
trator wants to automatically monitor the state of the articles
about Municipal districts in Ireland [70]. The list in [70] pro-
vides him with a gold standard in terms of completeness, since
it contains all names of Municipal districts in Ireland. This
data set is considered static (type V1), because the addition,
removal, or merging of Municipal districts is an extremely rare
event. In an idealized state (completeness= 1.0), there exists a
Wikipedia article for each district. The administrator monitors
the completeness of these articles between the years 2000 and
2010 and experiences a typical completeness development for
static data, illustrated in Fig. 13. The completeness grows
strictly monotonous, which is due to the fact that articles
are never removed or outdated and the gold standard remains
constant (no new Municipal districts arise). This use case also
shows that CDQM can be applied to semi-structured data.

2) CDQM of Incoming Sales Data: In a large company,
sales data (here a derivative of the Northwind DB [61]) is
collected every batch-wise from different sales persons to be
loaded into the central Data Warehouse (DWH). The DWH
administrator wants to monitor the quality of each incoming
file and the central DWH. Fig. 14 shows the currency of the

Fig. 13. Completeness of Data extracted from Wikipedia

DWH, which achieves constantly higher values, because the
average age of a sale increases as time progresses and the
DWH contains more and more older sales. However, intu-
itively the quality of the DWH is not deteriorating as the sales
data does not get less trustworthy. This indicates that currency
is probably a too naive measure in the context of accumulating
data. In the lower half of Fig. 14, the completeness of the
DWH and the average completeness of collected data per day
are shown. While the variance of the completeness of the
newly arriving data is consistently high, the variance of the
completeness for the DWH decreases and almost converges
around 0.95.

Fig. 14. Currency and Completeness of Sales Data

3) CDQM for Data Analytics: Assume, a stock market data
analyst creates a machine learning (ML) model that uses the
last 50 records of 5-minute-interval stock data, which is of
volatility type V3. The model is always built 2 minutes after
a new record arrives and predicts the further development for
a specific equity (in our example we used IBM). In order
to ensure the validity of the model result, we continuously
measure the quality of the employed data, each time the model
is created. Fig. 15 shows metrics for the DQ dimensions
completeness and currency for 10 days between July 10th and
20th, 2018. While the completeness rating remains constantly
at 1.0, i.e., all records are constantly delivered, the currency
varies. This is an example for intended variation in the quality
chart. Since currency describes how up-to-date the data is at
hand, and the stock market is closed over the weekend (big

416

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

peak) and after 4 pm (small peaks), the model prediction with
respect to currency is poor when the market closes and reaches
a stable phase during the day. Since during one day only 78 5-
minute records are delivered, the data analyst can create only
about 28 models where the data has the best currency.

Fig. 15. Currency and Completeness of Stock Data for ML Model

V. CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated how to measure data
quality (1) ad hoc and without preparation activities, and (2)
continuously over time, using our previously developed DQ
tool QuaIIe [1]. QuaIIe covers metrics for the DQ dimensions
accuracy, correctness, completeness, pertinence, timeliness,
minimality, readability, and normalization on both, data-level
and schema-level of an IS. In addition, it is possible to estimate
the quality of integrated IS. To the best of our knowledge,
there exists no other DQ tool that implements such a large
number of different dimensions and supports ad hoc as well
as continuous DQ measurement in a single application. The
major contribution in this paper is to highlight the importance
for initial ad hoc DQ measurement to get a first insight into
DQ, as well as continuous DQ measurement over time, which
allows to observe how DQ evolves and to detect unexpected
changes in the data.

As has been seen in Section IV-F, the time-progression
of some DQ measures can diverge from an intuitive under-
standing of data quality, e.g., the currency of aggregated data.
Consequently, a need for specialized metrics for different types
of data in CDQM arises.

Our ongoing work includes long-term evaluations of
QuaIIe’s continuous measurement functionality. In addition,
a connector for Oracle DBs and a graphical user interface
to visualize the DQ measurements are currently under de-
velopment. We also plan to implement connectors for other
NoSQL DB types like document stores and graph DBs to
further evaluate the comparability of DQ measurements on
different schema models.

ACKNOWLEDGMENT

The research reported in this paper has been partly sup-
ported by the Austrian Ministry for Transport, Innovation and
Technology, the Federal Ministry for Digital and Economic
Affairs, and the Province of Upper Austria in the frame of
the COMET center SCCH. In addition, the authors would
like to thank Gudrun Huszar for the implementation of the
readability calculator and Julia Hilber for her research work
on the Cassandra connector.

REFERENCES

[1] L. Ehrlinger, B. Werth, and W. Wöß, “QuaIIe: A Data Quality Assess-
ment Tool for Integrated Information Systems,” in Proceedings of the
Tenth International Conference on Advances in Databases, Knowledge,
and Data Applications (DBKDA 2018). International Academy, Re-
search, and Industry Association (IARIA), 2018, pp. 21–31.

[2] KPMG International, “Now or Never: 2016 Global CEO Outlook,” 2016.
[3] T. C. Redman, “The Impact of Poor Data Quality on the Typical

Enterprise,” Communications of the ACM, vol. 41, no. 2, Feb. 1998,
pp. 79–82.

[4] T. C. Redman, “Bad Data Costs the U.S. $3 Trillion Per Year,” Harvard
Business Review, 2016, https://hbr.org/2016/09/bad-data-costs-the-u-s-3-
trillion-per-year [retrieved: November 2018].

[5] B. Otto and H. Österle, Corporate Data Quality: Prerequisite for
Successful Business Models. Berlin, Germany: Springer Gabler, 2016.

[6] E. E. Ruppert, R. D. Barnes, and R. S. Fox, Invertebrate Zoology: A
Functional Evolutionary Approach, 7th ed. Cengage Learning, 2003.

[7] The Apache Software Foundation, “Apache Cassandra,” Online,
http://cassandra.apache.org [retrieved: November 2018].

[8] D. C. Baulcombe, S. Chapman, and S. Santa Cruz, “Jellyfish Green
Fluorescent Protein as a Reporter for Virus Infections,” The Plant
Journal, vol. 7, no. 6, 1995, pp. 1045–1053.

[9] F. Naumann, U. Leser, and J. C. Freytag, “Quality-driven Integration
of Heterogenous Information Systems,” in Proceedings of the 25th
International Conference on Very Large Data Bases, ser. VLDB ’99.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999, pp.
447–458.

[10] M. Y. Selvege, S. Judah, and A. Jain, “Magic Quadrant for Data Quality
Tools,” Gartner, Tech. Rep., October 2017.

[11] J. Barateiro and H. Galhardas, “A Survey of Data Quality Tools,”
Datenbank-Spektrum, vol. 14, no. 15-21, 2005, p. 48.

[12] V. Pushkarev, H. Neumann, C. Varol, and J. R. Talburt, “An Overview
of Open Source Data Quality Tools,” in Proceedings of the 2010
International Conference on Information & Knowledge Engineering,
IKE 2010, July 12-15, 2010, Las Vegas Nevada, USA, 2010, pp. 370–
376.

[13] V. S. V. Pulla, C. Varol, and M. Al, Open Source Data Quality Tools:
Revisited. Springer International Publishing, 2016, pp. 893–902.

[14] L. Sebastian-Coleman, Measuring Data Quality for Ongoing Improve-
ment: A Data Quality Assessment Framework. Newnes, 2012.

[15] Y. Wand and R. Y. Wang, “Anchoring Data Quality Dimensions in
Ontological Foundations,” Communications of the ACM, vol. 39, no. 11,
Nov. 1996, pp. 86–95.

[16] N. R. Chrisman, “The Role of Quality Information in the Long-Term
Functioning of a Geographic Information System,” Cartographica: The
International Journal for Geographic Information and Geovisualization,
vol. 21, no. 2, 1983, pp. 79–88.

[17] R. Y. Wang and D. M. Strong, “Beyond Accuracy: What Data Quality
Means to Data Consumers,” Journal of Management Information Sys-
tems, vol. 12, no. 4, Mar. 1996, pp. 5–33.

[18] C. Batini and M. Scannapieco, Data and Information Quality: Concepts,
Methodologies and Techniques. Switzerland: Springer International
Publishing, 2016.

[19] C. Batini, C. Cappiello, C. Francalanci, and A. Maurino, “Methodologies
for Data Quality Assessment and Improvement,” ACM Computing
Surveys (CSUR), vol. 41, no. 3, 2009, p. 16.

[20] A. Maydanchik, Data Quality Assessment. Bradley Beach, NJ, USA:
Technics Publications, LLC, 2007.

417

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[21] L. Ehrlinger and W. Wöß, “Semi-Automatically Generated Hybrid On-
tologies for Information Integration,” in Joint Proceedings of the Posters
and Demos Track of 11th International Conference on Semantic Systems
– SEMANTiCS2015 and 1st Workshop on Data Science: Methods,
Technology and Applications (DSci15). CEUR Workshop Proceedings,
2015, pp. 100–104.

[22] L. Ehrlinger and W. Wöß, “Automated Data Quality Monitoring,” in
Proceedings of the 22nd MIT International Conference on Information
Quality (MIT ICIQ 2017), J. R. Talburt, Ed., UA Little Rock, Arkansas,
USA, 2017, pp. 15.1–15.9.

[23] B. Heinrich, D. Hristova, M. Klier, A. Schiller, and M. Szubartowicz,
“Requirements for Data Quality Metrics,” Journal of Data and Infor-
mation Quality, vol. 9, no. 2, Jan. 2018, pp. 12:1–12:32.

[24] Microsoft Inc., “Task Scheduler,” 2018, https://docs.microsoft.com/en-
us/windows/desktop/taskschd/task-scheduler-start-page [retrieved: Nov-
ember 2018].

[25] AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData
Development Team, “Python Data Analysis Library - pandas,” 2018,
https://pandas.pydata.org [retrieved: November 2018].

[26] J. Hunter, D. Dale, E. Firing, and M. Droettboom, “Matplotlib,” 2018,
https://matplotlib.org [retrieved: November 2018].

[27] J. Adelman, M. Baak, N. Boelaert, M. D’Onofrio, J. A. Frost, C. Guyot,
M. Hauschild, A. Hoecker, K. J. C. Leney, E. Lytken, M. Martinez-Perez,
J. Masik, A. M. Nairz, P. U. E. Onyisi, S. Roe, S. Schaetzel, and M. G.
Wilson, “ATLAS Offline Data Quality Monitoring,” Journal of Physics:
Conference Series, vol. 219, no. 4, 2010, p. 042018.

[28] V. Raman and J. M. Hellerstein, “Potter’s Wheel: An Interactive Data
Cleaning System,” in Proceedings of the 27th VLDB Conference, Roma,
Italy, vol. 1, 2001, pp. 381–390.

[29] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer, “Wrangler: Interactive
Visual Specification of Data Transformation Scripts,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, ser.
CHI ’11. New York, NY, USA: ACM, 2011, pp. 3363–3372.

[30] A. Rolland, “MobyDQ,” 2018, https://github.com/mobydq/mobydq [re-
trieved: November 2018].

[31] Apache Software Foundation, “Apache Griffin,” 2018,
https://griffin.incubator.apache.org [retrieved: November 2018].

[32] L. L. Pipino, Y. W. Lee, and R. Y. Wang, “Data Quality Assessment,”
Computing Surveys (CSUR), vol. 45, no. 4, Apr 2002, pp. 211–218.

[33] D. P. Ballou and H. L. Pazer, “Modeling Data and Process Quality in
Multi-Input, Multi-Output Information Systems,” Management Science,
vol. 31, no. 2, 1985, pp. 150–162.

[34] “Standard for a Software Quality Metrics Methodology,” Institute of
Electrical and Electronics Engineers, IEEE 1061-1998, 1998.

[35] Oxford University Press, “Definition of Gold Standard in English,”
Online, 2017, http://www.oxforddictionaries.com/definition/american-

english/gold-standard [retrieved: November 2018].
[36] L. Ehrlinger, “Data Quality Assessment on Schema-Level for Integrated

Information Systems,” Master’s thesis, Johannes Kepler University Linz,
2016.

[37] B. Werth, “Identifikation von Datenqualitätsproblemen in integrierten
Informationssystemen [Identification of Data Quality Issues in Integrated
Information Systems],” Master’s thesis, Johannes Kepler University
Linz, 2016.

[38] T. Haegemans, M. Snoeck, and W. Lemahieu, “Towards a Precise
Definition of Data Accuracy and a Justification for its Measure,” in
Proceedings of the International Conference on Information Quality
(MIT ICIQ 2016), 2016, pp. 16.1–16.13.

[39] J. R. Logan, P. N. Gorman, and B. Middleton, “Measuring the Quality
of Medical Records: A Method for Comparing Completeness and
Correctness of Clinical Encounter Data,” in AMIA 2001, American
Medical Informatics Association Annual Symposium, Washington, DC,
USA, November 3-7, 2001, 2001, pp. 408–4012.

[40] G. Salton and M. J. Mcgill, Introduction to Modern Information Re-
trieval. New York, NY, USA: McGraw-Hill, Inc., 1986.

[41] G. Vossen, Datenmodelle, Datenbanksprachen und Datenbankmanage-
mentsysteme [Data Models, Database Languages, and Database Man-
agement Systems]. Oldenbourg Verlag, 2008.

[42] O. Herden, “Measuring Quality of Database Schema by Reviewing
– Concept, Criteria and Tool,” in Proceedings of 5th International
Workshop on Quantitative Approaches in Object-Oriented Software
Engineering, 2001, pp. 59–70.

[43] P. Oliveira, F. Rodrigues, and P. R. Henriques, “A Formal Definition
of Data Quality Problems,” in Proceedings of the 10th International
Conference on Information Quality (MIT ICIQ 2005), 2005.

[44] H. Hinrichs, “Datenqualitätsmanagement in Data Warehouse-Systemen
[Data Quality Management in Data Warehouse Systems],” Ph.D. thesis,
Universitt Oldenbourg, 2002.

[45] M. C. M. Batista and A. C. Salgado, “Information Quality Measurement
in Data Integration Schemas,” in Proceedings of the Fifth International
Workshop on Quality in Databases, QDB 2007, at the VLDB 2007
Conference, Vienna, Austria. ACM, September 2007, pp. 61–72.

[46] F. Naumann, J.-C. Freytag, and U. Leser, “Completeness of Integrated
Information Sources,” Information Systems, vol. 29, no. 7, Sep. 2004,
pp. 583–615.

[47] D. Ballou, R. Wang, H. Pazer, and G. K. Tayi, “Modeling Information
Manufacturing Systems to Determine Information Product Quality,”
Management Science, vol. 44, no. 4, 1998, pp. 462–484.

[48] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate
Record Detection: A Survey,” IEEE Transactions on Knowledge and
Data Engineering, vol. 19, no. 1, 2007, pp. 1–16.

[49] I. P. Fellegi and A. B. Sunter, “A Theory for Record Linkage,” Journal of
the American Statistical Association, vol. 64, no. 328, 1969, pp. 1183–
1210.

[50] J. Euzenat and P. Shvaiko, Ontology Matching. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2007.

[51] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data Clustering: A Review,”
ACM Computing Surveys (CSUR), vol. 31, no. 3, 2000, pp. 264–323.

[52] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity Flooding: A
Versatile Graph Matching Algorithm and its Application to Schema
Matching,” in Proceedings of the 18th International Conference on Data
Engineering, ser. ICDE ’02. Washington, DC, USA: IEEE Computer
Society, 2002, pp. 117–128.

[53] E. F. Codd, “A Relational Model of Data for Large Shared Data Banks,”
Communications of the ACM, vol. 13, no. 6, 1970, pp. 377–387.

[54] J. Liu, J. Li, C. Liu, and Y. Chen, “Discover Dependencies from Data
– A Review,” IEEE Transactions on Knowledge and Data Engineering,
vol. 24, no. 2, 2012, pp. 251–264.

[55] C. Fellbaum, “WordNet and Wordnets,” in Encyclopedia of Lan-
guage and Linguistics, A. Barber, Ed. Elsevier, pp. 2–665,
https://wordnet.princeton.edu [retrieved: November 2018].

[56] DBpedia Association, “DBpedia,” 2018, http://wiki.dbpedia.org [re-
trieved: November 2018].

[57] S. Hoberman, Data Model Scorecard. Technics Publications, LLC,
2015.

[58] S. Sadiq, T. Dasu, X. L. Dong, J. Freire, I. F. Ilyas, S. Link, M. J. Miller,
F. Naumann, X. Zhou, and D. Srivastava, “Data Quality: The Role of
Empiricism,” ACM SIGMOD Record, vol. 46, no. 4, 2018, pp. 35–43.

[59] Oracle Corporation, “Employees Sample Database,” Online,
https://dev.mysql.com/doc/employee/en [retrieved: November 2018].

[60] Oracle Corporation, “Sakila Sample Database,” Online,
https://dev.mysql.com/doc/ sakila/en [retrieved: November 2018].

[61] Microsoft Inc., “Northwind and pubs Sample Databases
for SQL Server 2000,” 2018, https://www.microsoft.com/en-
us/download/details.aspx?id=23654 [retrieved: November 2018].

[62] dofactory, “SQL Tutorial Sample Database,” 2018, https://
www.dofactory.com/sql/sample-database [retrieved: November 2018].

[63] F. Naumann, “CD Datasets,” 2018, https://hpi.de/naumann/projects/
repeatability/datasets/cd-datasets.html [retrieved: November 2018].

[64] Alpha Vantage Inc., “ALPHA VANTAGE,” 2018, https://
www.alphavantage.co [retrieved: November 2018].

[65] L. Ehrlinger, “Data Quality Assessment for Heterogenous Information
Systems,” Online, http://dqm.faw.jku.at [retrieved: November 2018].

[66] W3C Working Group, “RDF 1.1 Turtle,” Online, 2014,
https://www.w3.org/TR/turtle [retrieved: November 2018].

[67] Oracle Corporation, “MySQL Connectors,” Online, https://
www.mysql.com/products/connector [retrieved: November 2018].

[68] The Apache Software Foundation, “Apache Jena,” Online,
https://jena.apache.org [retrieved: November 2018].

[69] DataStax, “Datastax Java Driver for Apache Cassandra,” 2018,
https://docs.datastax.com/en/developer/java-driver/3.0/ [retrieved:
November 2018].

[70] Wikipedia, “Municipal District (Ireland),” 2018, https://
en.wikipedia.org/wiki/Municipal district (Ireland) [retrieved: November
2018].

