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Abstract — This paper proposes Partial Order Multi-

Version Concurrency Control (POMVCC), which is a 

concurrency control technique based on partial order 

transaction processing. We claim that timestamp generation 

per transaction can be a critical section on multi-core for high-

throughput DataBase Management Systems (DBMSs), and 

POMVCC can execute multiple transactions using the same 

timestamp without losing consistency. In this paper, we change 

the order of transaction processing from total to partial on 

Multi-Version Concurrency Control (MVCC), which allocates 

a timestamp on partial order per multiple transactions. It helps 

the DBMS reduce the overall number of increments to the 

timestamp; therefore, improving its overall performance. We 

claim that a POMVCC-based system achieves 1.74 times 

higher throughput than that of a conventional MVCC-based 

system. We implemented a lock-free version of POMVCC on 

MPDB, which is in-memory DBMS. 

Keywords – Partial order transaction processing; Multi-

version concurrency control; Transaction; Timestamp; In-

memory DB. 

I.  INTRODUCTION 

We research to adapt new hardware technology or new 
software techniques to old DataBase Management Systems 
(DBMS) techniques [1][2][3]. For example, the number of 
Central Processing Unit (CPU) cores and memory size have 
recently increased due to the progress of hardware 
technology. For DBMSs, scalability technology [4][5][6] for 
multicore CPUs and large-scale and non-volatile in-memory 
technology [7][8] are advancing rapidly, and the 
performance of DBMSs is close to reaching one million 
Transactions Per Second (tps) [5][9]. 

A DBMS must guarantee the Atomicity, Consistency, 
Isolation and Durability (ACID) properties to maintain data 
consistency [10]. However, strictly doing so prevents a 
DBMS from improving performance because it needs to 
process Transactions (Tx) as serial processing in total order 
[11]. To improve performance, a DBMS generally uses the 
isolation level, which lessens ACID properties step by step; 
thus, improving parallel processing. 

Multi-Version Concurrency Control (MVCC) has recently 
been used for controlling the isolation level. It manages 
timestamps of both before and after updating a record and 
enables records to be referenced and updated simultaneously. 
As a result, it increases the performance of OnLine 
Transaction Processing (OLTP). Recent research has also 
clarified how SERIALIZABLE can be implemented. 
Therefore, DBMSs with MVCC are expected to become 
widespread in the near future [12][13]. 

There are two types of Timestamps (Ts) for MVCC, i.e., 
physical clock and logical clock. The physical clock is the 
time used in the real world, such as Coordinated Universal 
Time (UTC). The Network Time Protocol (NTP) is widely 
used as a protocol for synchronizing UTC among servers 
[14]. Implementation of a logical clock in DBMSs is 
common [15]. Spanner implemented a physical clock for 
DBMSs, but such an example is rare [16]. The larger the 
system is, the more difficult conventional timestamp 
management becomes using a logical clock. Because it is 
mandatory for timestamps to be numbered every 1 us to 
reach one million tps. In such an environment, large-scale 
mutual exclusion with a high CPU clock frequency may be 
problematic. In addition, the memory size and the number of 
CPU cores will increase, e.g., Hewlett Packard’s Memory-
Driven Computing, will further increase [17]. 

Silo was proposed to solve this problem [9]. Silo is the 
timestamp based on Epoch. It periodically updates the high-
order bits of the timestamp. Transaction threads update low-
order bits under the condition that they satisfy the order of 
dependence. As a result, Silo can reduce the number of 
updates for the timestamp. However, it cannot be easily 
adapted for conventional MVCC-based DBMSs because it 
requires lock processing and management of the Read-Set 
and Write-Set for concurrency control. 

Moreover, we must better understand the partial order 
model and low isolation levels because a user requires two 
advanced points. The first point is high-performance and 
high-scalability. NoSQL is very fast and executes 80–120 
million operations per second [18]. If we want to promote 
only DBMS to a data management system for simple 
management, the performance of DBMS needs to exceed the 
one of NoSQL. The second point is that we must understand 
the meaningless assumptions on industry, as shown in Figure 
1 [19]. High isolation levels and the stored procedures are 
not needed on industry. Not all transactions are executed as 
stored procedures only 47% of users (excluded 0% and 1-
10% on Figure 1.B), and almost all users do not set the 
isolation level of SERIALIZABLE. Read Committed is most 
frequently used; therefore, we need to develop a high-
performance DBMS on a low isolation level. 

From these reasons, we propose Partial Order Multi-
Version Concurrency Control (POMVCC), which is the 
partial order transaction processing based on the reduction in 
the conflict rate, which is caused by a large-scale DB. It 
mitigates the problems with simultaneous executable 
transactions on each isolation level. Specifically, it 
increments a timestamp during the abortion phase of a 
transaction. Thus, multiple transactions can be processed at 
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the same timestamp, and the number of timestamp updates 
can be reduced on any isolation levels. 

In summary, our contributions are as follows. 
1. We propose partial order transaction control based on 

reconsidering the isolation level of MVCC, called 
POMVCC. To update a timestamp during the abortion 
phase of a transaction, POMVCC can process multiple 
transactions at the same timestamp and reduce the 
number of timestamp updates. It is also easily 
implementable for DBMSs based on MVCC. 

2. We show the cause and solution of a new anomaly 
called “HISTORICAL READ” caused by POMVCC. 

3. We also show a lock-free implementation of POMVCC 
and discuss the implementation of mixed Pessimistic 
Concurrency Control (PCC) and Optimistic 
Concurrency control (OCC) to solve the problem of 
long-short transaction. 

4. Finally, we discuss the implementation of POMVCC 
on an in-memory DBMS and the evaluation its 
performance. 

The rest of this paper is organized as follows. In Section II, 
we introduce research on concurrency control for DBMSs. In 
Section III, we reconsider the requirement of concurrency 
control for DBMSs and present a problem with performance 
and scalability. In Section IV, we propose POMVCC and 
discuss a new anomaly called “HISTORICAL READ” 
caused by POMVCC and its solution. In Section V, we 
describe a method for implementing our developed MPDB, 
which is an MVCC-based, lock-free, in-memory DBMS 
characterized by parallel logs and mixed PCC/OCC. In 
Section VI, we describe a method for implementing 
POMVCC that is lock-free. In Section VII, we discuss the 
evaluation of POMVCC’s performance and present the 
results. Finally, in Section VIII, we give concluding remarks 
and discuss our future work. 
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Figure 1.  Survey on frequency of use on DBMS functions 

II. RELATED WORK 

In this section, we discuss work related to concurrency 
control for DBMSs. The most notable viewpoint of 
concurrency control is the durability of an execution result 
and the concurrency control of transactions. 

Algorithms for Recovery and Isolation Exploiting 
Semantics (ARIES) involve general persistence processing 
[20]. ARIES is composed of analysis, REDO, and UNDO. 

Analysis pinpoints the starting point of a recovery, REDO 
re-executes a transaction on the basis of a REDO log, and 
UNDO deletes an uncommitted transaction on the basis of an 
UNDO log. During logging, Write-Ahead Logging (WAL), 
which can restore logs safely in the case of failure, is used. 
WAL has a problem in that the speed of writing a log to a 
storage device is slow. However, faster technology that uses 
distributed logging with non-volatile memory has recently 
been proposed for WAL [7]. 

Research on the concurrency control of transactions has 
been conducted since the 1980s. There are two types of 
concurrency control, i.e., PCC and OCC [21][22][23]. For 
PCC, concurrency control with a 2-Phase Lock (2PL) is 
mainly used. DORA [24], PLP [25], and Shore-MT [26] 
have been proposed as lock-based DBMSs [27]. However, 
DBMSs with MVCC, which enables OCC, have recently 
been proposed because the processing cost of locks and 
latches is high [28][29][30]. 

It was stated that an isolation level for SERIALIZABLE is 
not possible [31]. However, the proposal of 
SERIALIZABLE SNAPSHOT ISOLATION (SSI) has made 
this possible [12][13]. Using this technology, H-Store/ 
VoltDB [32][33], Hekaton [4][6], and SAP HANA [8] were 
proposed as MVCC-based DBMSs. H-Store creates 
transaction sites, the number of which is the same as the 
number of CPUs, and transaction threads that stick to the 
logical sites execute Structured Query Language (SQL). 
Such a mechanism enables in-memory and lock-free fast 
processing. To reduce the number of responses between 
interfaces, Hekaton compiles stored procedures into native 
codes. SAP HANA manages both the row store, the update 
efficiency of which is high, and column store, the reference 
efficiency of which is high. Many such MVCC-based 
DBMSs that have diverse characteristics have been proposed. 

Moreover, a Silo in-memory DBMS that manages Epoch-
based timestamps as a concurrency control has also been 
proposed [9]. In Silo, updates of timestamps are removed 
from the concurrency control of a transaction on Single-
Version Consistency Control (SVCC). Silo uses a special-
purpose thread for managing timestamps. As a result, it 
achieves high-performance. In addition, it creates temporary 
areas per transaction for references (Read-Set) and updates 
(Write-Set). Concurrency control with Read-Set and Write-
Set can use cache and memory efficiently. Using these 
technologies, Silo achieves 700,000 tps for the industry 
standard benchmark TPC BenchmarkTM C (TPC-C) [34]. 
Moreover, Silo-based transaction control is adopted by 
Intel’s Rack-Scale Architecture, which has become popular, 
and in-memory DBMS Foedus [5], which uses Hewlett 
Packard’s Memory-Driven Computing [17]. Therefore, Silo-
based concurrency control has become popular. 

Research on SVCC-based DBMSs is now advancing. Silo-
like concurrency control enables faster than conventional 
MVCC-based DBMSs. However, it is difficult to adopt it for 
MVCC-based DBMSs because many components, such as 
thread management, transaction control, and data 
management, must be modified. Therefore, we propose an 
easier implementation technique that is equivalent to Silo’s 
concurrency control for MVCC-based DBMSs. 
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III. RECONSIDERING ANOMALIES AND CONCURRENCY 

CONTROL ON MVCC 

In this section, we outline concurrency control on MVCC 
and reconsider the update conflict of timestamps, which is a 
problem in Silo, and solve this problem. 

A DBMS must maintain ACID properties, but to do so 
strictly, transactions must be serialized, which degrades 
performance. To avoid this phenomenon, an isolation level, 
in which ACID properties are lessened gradually, is used. 
The isolation level is defined as the allowable range for an 
anomaly, which occurs when transactions are executed in 
parallel. This mitigation achieves high-scalability enabled by 
the highly parallel and high-performance transactions of 
DBMSs. 

The isolation level differs between lock-based control and 
MVCC-based control [31]. We outline the relationship of the 
isolation level for MVCC and anomalies and clarify the 
order of transactions and mitigate the problem with 
scalability. 

We define B as the begin phase of a transaction, C as the 
commit phase of the transaction, A as the abort of the 
transaction, BTs as an allocated timestamp during the begin 
phase, CTs as an allocated timestamp during the commit 
phase, ATs as an allocated timestamp during the abort phase, 
R as the reference in the transaction, and W as the 
update/insert/delete in the transaction. We also define Tx.1, 
Tx.2, etc., as identifiers of transactions X, Y, etc. as a set of 
records and i, j, etc. as integers.  

A. Relationship between isolation level and anomalies 

The general anomalies are WRITE SKEW (WS), FUZZY 
READ (FR), READ SKEW (RS), and LOST UPDATE (LU) 
on MVCC [31]. Examples of these anomalies are listed in 
Table I. 

For example, LOST UPDATE occurs when Tx.1 and Tx.2 
update record X simultaneously and both are successful. This 
is a problem because the value of the record is either X' or X'', 
and the update history of the record is not uniquely 
determined. For one-side failure (W1 W2 C2 A1), LOST 
UPDATE may occur when Tx.2 updates record X to X', then 
Tx.1 aborts and record X' is roll-backed to X. 

The isolation level is defined as the allowable range for 
anomalies. SSI has the strictest requirement of consistency. 
The second strictest is READ COMMITTED and READ 
UNCOMMITED is the least strict. Table II lists the 
relationships between the isolation level and anomalies. For 
example, for READ COMMITED, WRITE SKEW or 
FUZZY READ may occur. READ UNCOMMITTED is 
hardly used because user-unallowable anomalies occur. 

TABLE I.  ANOMALIES ON MVCC 

Anomaly Formula

LOST UPDATE (LU) W2[X → X'] W1[X → X'']

READ SKEW (RS) W2[X → X', Y → Y'] R1[X', Y]

FUZZY READ (FR) R1[X] W2[X → X'] R1[X']

WRITE SKEW (WS) R1[X] R2[Y] W1[Y → Y'] W2[X → X']
 

TABLE II.  ISOLATION LEVELS ON MVCC 

Isolation Level LU RS FR WS

SERIALIZABLE - - - -

SNAPSHOT ISOLATION - - - v

READ COMMITTED - - v v

READ UNCOMMITTED v v v v
 

B. Concurrency control 

MVCC controls records and transactions by using a 
timestamp. MVCC manages the update history of records by 
allocating a timestamp at the commit to the records. 
Transactions refer to a timestamp at the begin phase or when 
SQL executes and to the latest record whose timestamp is 
smaller than BTs. The references of transactions maintain 
consistency with this method. How BTs is treated differs 
depending on the isolation level. SERIALIZABLE and 
SNAPSHOT ISOLATION use a timestamp that is referred to 
at the begin phase. READ COMMITTED uses a timestamp 
that is referred to at SQL execution. Figure 2 shows the 
difference between Tx.2 as SNAPSHOT ISOLATION and 
Tx.3 as READ COMMITTED. They execute the SQL at the 
same time. However, Tx.2.SQL2 reads X, but Tx.3.SQL2 
reads X'. Such concurrency control protects SNAPSHOT 
ISOLATION from FUZZY READ. Similarly, READ SKEW 
is prevented. 

The update conflicts at the validation of the commit 
process generally use First Committer Win (FCW), which is 
an OCC. It executes transactions in the order in which the 
commit command is executed. It maintains consistency by 
aborting subsequent conflicting transactions. 

The concurrency control explained above cannot prevent 
WRITE SKEW from occurring. This occurs when references 
and updates of multiple transactions mutually conflict (RW-
Conflict). SSI was proposed to find such a condition and 
avoid WRITE SKEW [12][13]. SSI adds a read flag and 
write flag to the conventional MVCC algorithm and detects 
RW-Conflict. It aborts at least one of the RW-Conflict 
transactions and avoids WRITE SKEW. Therefore, 
SERIALIZABLE is enabled. SSI enables SERIALIZABLE 
with the same performance of SNAPSHOT ISOLATION 
[12][13]. Thus, we can prevent anomalies from occurring by 
using these concurrency controls on MVCC. 

 

SQL Formula

Tx.1 SQL1
B1[BTs=10] W1[X→X']
C1[CTs=10, Ts=11]

Tx.2
SQL1 B2[BTs=10] R2[X]

SQL2 R2[X] C2

Tx.3
SQL1 B3[BTs=10] R2[X]

SQL2 B3[BTs=11] R2[X'] C3time

SQL1   SQL2

Tx.2

Tx.1 SQL1

SQL1   SQL2

Tx.3

 

Figure 2.  Difference between SNAPSHOT ISOLATION (Tx.2) 

and READ COMMITTED (Tx.3) 
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C. Problem of scalability 

To strictly maintain ACID properties, it is necessary for 
transactions to be processed in total order. Scalability is low 
in this case. Table III defines D1 as total order, D2 as weak 
order, and D3 as the order of transactions for MVCC. 

The CTs of MVCC must be different between the 
allocation times of the transactions; one of the transactions 
must be the reference transaction. That is, multiple update 
transactions cannot be committed at the same time due to D3. 
Thus, the transactions of MVCC are in total order in the case 
of update transactions only, or it is in weak order when 
transactions include reference transactions. 

As described above, MVCC increases scalability; however, 
it is applicable only for transactions including reference 
transactions. In the case of update transactions only, 
scalability is low because the conditions of the order are the 
same as D1. Therefore, we must mitigate the order of update 
transactions under D3. ii in order to improve the scalability 
for DBMS. 

 

TABLE III.  DEFINITION OF MVCC 

D1. Total Order

i < j <==> i≦j and i≠j

D2. Weak Order

i ≦ j <==> i<j or i=j
 

D3. MVCC for write tx.

CTs(Tx.i) < CTs(Tx.j) <==> ⅰ and ⅱ

ⅰ CTs(Tx.i) ≦ CTs(Tx.j)

ⅱ CTs(Tx.i) ≠ CTs(Tx.j)
 

IV. PROPOSAL OF POMVCC 

In this section, we propose POMVCC, which mitigates the 
order of update transactions and enables high-scalability. We 
also consider a new anomaly caused by POMVCC. 

We define DBC as the content of a database, and the 

execution order of transactions is shown as (→). 

A. Basic idea 

Transactions can be controlled in partial order on the basis 
of the consistency of a DBC. For example, if the 
concurrency control of DBMS exchanges the execution order 
of one transaction with another transaction and the result 
does not change, these transactions can be executed in non-
order, and consistency is maintained. Thus, we do not need 
to update the timestamp per transaction update and can share 
one timestamp among multiple update transactions. 
Therefore, we propose POMVCC as a new concurrency 
control focused on the partial order of transactions. 
POMVCC provides the same timestamp to two update 
transactions if they have no dependency. This technique 
mitigates condition D3. ii, so scalability can increase. 

 
 

The concept and definition of POMVCC are shown in 
Figure 3 and Table IV. By controlling the partial order of 
transaction processing, POMVCC eliminates the need to 
update the timestamp every time transaction process is ended. 
POMVCC updates the timestamp when it detects an anomaly. 
For example, in Figure 3, since LOST UPDATE occurred 
between Tx.1 and Tx.3, POMVCC will update the 
timestamp. Even if the execution order of all transaction 
processes within the same timestamp is changed, POMVCC 
permits simultaneous execution if the content of the database 
is the same. 

We show the allowable conditions of transaction 
processing on the same timestamp for MVCC and POMVCC 
in Table V, which shows that POMVCC has more conditions 
that can be executed simultaneously than MVCC. Therefore, 
POMVCC can reduce the update frequency of timestamps. 
This means that the scalability of POMVCC is better than 
that of MVCC. We discuss the difference in isolation levels 
between MVCC and POMVCC, as shown in Figure 4. 

 

MVCC POMVCC

Tx.1

W [X → X']

Tx.4
W [Z → Z']

Tx.2
W [Y → Y']

Tx.3

W [X' → X'']

Tx.1

W [X → X']

Tx.4
W [Z → Z']

Tx.2

W [Y → Y']

Tx.3
W [X' → X'']

Tx.3

W [X → X'']

Ts1

Ts2

Ts3

Ts4

 
Figure 3.  Difference between MVCC and POMVCC 

TABLE IV.  DEFINITION OF POMVCC 

D4. POMVCC for write tx.

CTs(Tx.i) ≦ CTs(Tx.j) <==> Ⅰ or Ⅱ 

Ⅰ CTs(Tx.i) < CTs(Tx.j)

Ⅱ CTs(Tx.i) = CTs(Tx.j) and
DBC(Tx.i → Tx.j) = DBC(Tx.j → Tx.i)

 

TABLE V.  ALLOWABLE CONDITIONS OF TRANSACTION PROCESSING 
 ON SAME TIMESTAMP  FOR MVCC AND POMVCC  

Formula MVCC POMVCC

R1[X] R2[X] Success Success

R1[X] W2[X] Success Success

W1[X] R2[X] Success Success

W1[X] W2[Y] Failure Success

W1[X] W2[X] Failure Failure
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SERIALIZABLE

MVCC

Snapshot Isolation

Read Committed

Read Uncommitted

RS, LU

FR

WS

Snapshot Isolation

Read Committed

FR
HR

HR

WS,

HR

POMVCC

RS,

LU
 

Figure 4.  Diagram of isolation levels and relationships 

B. How to control POMVCC 

The trigger to update a timestamp of POMVCC differs 
from that of MVCC. MVCC updates a timestamp during the 
commit phase of a transaction, but POMVCC updates it 
during the abort phase of a transaction. Thus, multiple update 
transactions can be executed at the same timestamp on 
POMVCC. 

The protocol of POMVCC is shown in Figure 5. The 
conflict of LOST UPDATE occurs between Tx.1 and Tx.3 
on record X. In the case of MVCC, a timestamp is updated at 
the commit of Tx.1, but in the case of POMVCC, a 
timestamp is not updated. Therefore, Tx.3 refers to old 
record X, and conflict occurs. POMVCC updates a 
timestamp at the abort of Tx.3. Record X can be updated 
when Tx.3 is retried. Because a timestamp is updated at the 
abort of a transaction caused by an anomaly, partial order 
transaction control is possible. 

 

begin

update

time

Tx.

Tx1

Management Record

Read BTs

X→X'

Val idation
Al locate CTs

commit

Tx2

Tx3

begin

update
X→X'

Val idation
commit

Retry

Update CTs

Read BTs

abort

Tx3'

Read BTs
begin

update
X'→X''

・・・
 

Figure 5.  Concurrency control of POMVCC 

 

 

C. New anomaly: HISTORICAL READ 

The partial order transactions of POMVCC enable highly 
scalable concurrency control. However, the execution order 
of transactions is limited by an application or user. For 
example, consider that the succeeding transaction refers to 
the result of the preceding transaction. In this case, the 
HISTORICAL READ, in which the succeeding transaction 
cannot refer to the result of the preceding transaction, occurs. 
It is necessary for POMVCC to provide the result of the 
preceding transaction to the succeeding transaction when the 
application requires the result of the preceding transaction. 

Table VI and Figure 6 provide the definition of 
HISTORICAL READ. The Tx.2 cannot refer to record X', 
which Tx.1 updates after the commit of Tx.1. This is a new 
anomaly. If Tx.1 and Tx.2 are independent transactions, such 
an anomaly does not occur. However, when the application 

assumes that the execution order is Tx.1 →  Tx.2, an 

unexpected response occurs. This anomaly of HISTORICAL 
READ does not occur on MVCC. 

 

TABLE VI.  DEFINITION OF HISTORICAL READ 

Anomaly Formula

Historical Read (HR) W1[X → X'] C1 B2 R2[X]
 

 

MVCC POMVCC

Tx.1

W [X → X']

Tx.2

R [X']

Tx.1

W [X → X']
Tx.2

R [X]

Ts1

Ts2

 
Figure 6.  Anomaly of HISTORICAL READ 

D. How to avoid HISTORICAL READ 

HISTORICAL READ is avoidable if the BTs of the 
succeeding transaction is larger than the CTs of the 
preceding transaction. That is, when the same user (DB 
connection) or the same application executes transactions, 
the value that is larger than the CTs of the preceding 
transaction is assigned to the BTs of the succeeding 
transaction. Therefore, HISTORICAL READ can be avoided. 

The avoidance method for the same user (connection-
based method) may include false positives. Figure 7 shows 
the solution of HISTORICAL READ for the connection-
based approach. In the worst case, timestamps are updated at 
every commit. For example, timestamp updates are 
unnecessary in the independent transactions. However, in the 
connection-based method, timestamps are always updated 
during the begin phase of the transactions. As a result, 
performance degradation is a concern due to there being 
many false-positive cases. 

With the avoidance method for the same application 
(request-based method), minimum increments of the 
timestamp, which would preferably be referred to, are set 
when the application issues transactions. This method can 
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avoid HISTORICAL READ efficiently because false 
positives are excluded. However, the interface of a DBMS, 
such as begin and commit, must be modified, which is a 
disadvantage of this method. Figure 8 shows the solution of 
the connection-based method. POMVCC returns a CTs at the 
commit of Tx.1, and a BTs (= CTs) is set at the begin of Tx.2. 
As a result, Tx.1.CTs < Tx.2.BTs is established, and Tx.2 
can refer to the execution result of Tx.1. We implemented 
the request-based method shown in Figure 8. 

 

begin

update

time

Tx.

Tx1

Management Record

Read BTs

X→X'

Val idation
Al locate CTs

commit

Tx2

update
X→X'

Check&Update
BTs

・・・

USER, CTs

BTs  ≧ CTs

Cl ient manager

USER, CTs

begin

 
Figure 7.  Solution of HISTORICAL READ on connection-based method 

begin

update

time

Tx.

Tx1

Management Record

Read BTs

X→X'

Val idation
Al locate CTs

commit

Tx2

begin(CTs)

update
X→X'

Check&Update
BTs

・・・

CTs

BTs  ≧ CTs

 
Figure 8.  Solution of HISTORICAL READ on request-based method 

V. IMPLEMENTATION OF MPDB 

We developed an in-memory DBMS called “MPDB” to 
compare the performance of MVCC and POMVCC. We 
implemented MVCC and POMVCC on MPDB and 
evaluated their performance. MPDB is an MVCC-based, 
lock-free, in-memory DBMS characterized by parallel logs 
and mixed PCC/OCC [1][2][3]. In this section, we introduce 
the implementation of MVCC and POMVCC on MPDB. 

 

A. Technical issues 

From evaluating the breakdown of TPC-C to organize the 
DBMS issues on OLTP, buffering (30%), locking (29%) and 
logging (21%) accounted for 80% of the whole process [11] 
[26]. The buffering manages temporary data on a DBMS to 
achieve high-performance by reducing the number of storage 
accesses. Locking is mainly used for updating when 
maintaining DBMS consistency by transaction processing. 
Logging writes log sets to storage to make the transaction 
results persistent. We aimed to solve these problems on 
MPDB. 

The number of CPU cores and memory size have been 
increasing. Although the number of cores per CPU has 
increased rapidly, the CPU frequency is converging to about 
3 GHz [35]. Therefore, we must develop high-parallelism for 
improving performance of tps in line with the technical trend. 
The memory capacity is also increasing with the momentum 
exceeding DB size. The data set of OLTP is often several TB 
or less, and in-memory processing that does not acquire data 
from storage has become possible. Therefore, we developed 
an in-memory DBMS called “MPDB” for sustainable and 
high-performance DBMSs. 

B. Design overview 

MPDB implements MVCC-based architecture using lock-
free on an in-memory DBMS for high-performance and 
high-scalability OLTP. We implemented lock-free control to 
avoid degradation of scalability on lock control due to the 
increased number of CPU cores. 

Figure 9 shows a design overview of MPDB. Transaction 
processing is organized into three phases on MPDB. The 
first phase is the begin processing and the transaction 
processing of read and write. The DBMS allocates a 
timestamp for reference to the transaction during the begin 
phase and the transaction reads/writes the records using a 
BTs. The second phase is the validation phase during the 
commit phase. The processing details are given in Sections 
V.D and VI. The third phase is the durability phase during 
the commit phase. The DBMS writes log sets to storage to 
make the transaction results persistent. 

During in-memory processing, client communication and 
log processing increase in proportion to performance, and 
interrupt handling becomes a bottleneck. However, load 
balancing is easy for client communication. The load of 
interrupt handling can be generally distributed by Receive 
Side Scaling (RSS) or “irqbalance”. The number of 
interrupts can be reduced by changing the interrupt handling 
to polling processing. Log processing must manage the log 
file sequentially to guarantee the ACID. However, it is not 
necessary to manage log files physically in one dimension 
along the time series. A one-dimensional log file is sufficient 
to produce a logical log file at recovery. Therefore, MPDB 
implements a mechanism that allows log processing to be 
executed in parallel by the assigned TxID and timestamp to 
the transaction log. We implemented asynchronous 
input/output (I/O) using “libaio” for efficient log processing 
[36]. 
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The group commit may be a cause of hindering the 
scalability of log management. We do not implement group 
commit since random write performance does not become a 
bottleneck due to the appearance of a high-performance 
storage such as a solid-state drive or storage class memory. 

Ph.1 Begin & Tx. processing

Ph.2 Commit: Validation Ph.

Ph.3 Commit: Durability Ph.

Allocate_CTs (Increment TsPC)

Timestamp management

Allocate_BTs (Ts)

Read / Write record on read-set / write-set

Write / Read validation using write-set / read-set

Release CTs (Increment TsCC)

Asynchronous I/O

Early abort

Abort

Abort

Transaction management

Abort

 
Figure 9.  Design orverview of MPDB. Ts = Timestamp 

C. Data structure 

We have to construct the data structure considering the 
non-uniformity of memory latency by Non-Uniform 
Memory Access (NUMA) [37]. We divide the data 
allocation into thread areas, i.e., local areas and a global area 
in consideration of NUMA on MPDB. Figure 10 shows the 
overview of data allocation on MPDB. As a premise, MPDB 
allocates threads of transaction processing to CPU cores. 

The thread area manages a work area and log area for 
transaction processing. Each thread has its own thread area to 
execute transactions and references/updates another thread 
area when it executes the validation process, but this is 
infrequent. Therefore, the thread area should be built in the 
local area. 

We assigned a local area for each CPU. A local area has 
log-management information to perform log processing for 
each CPU and is used to expand the thread area. 

MPDB assigns common data, such as tables, indexes, and 
system information, with no locality in the global area. It 
creates the global area by the NUMA option of “—
interleave” to allocate this area and multiple memory to load 
balance the memory access. 

Figure 11 shows the detailed structure of the tables and B-
tree index on MPDB. We adopted the linked list for all data 
structures to implement a lock-free DBMS. MPDB inserts 
records to update/delete/insert the records for MVCC. We 
define the rows of the table as a record and the record of 
update history as a row. 

The B-tree index includes nodes and edges. The nodes are 
arranged in descending order, and edges are arranged in 
ascending order. MPDB enables bidirectional search by 
using this index structure. This structure is lock-free since it 
is made of the linked list. 

MPDB also allows the possibility that the index does not 
refer to the latest record to enable early commit. As shown in 
Figure 11, transaction processing does not positively change 
the record pointer of the leaf edge to the pointer of new 
record when delete Row.1’, so that index.col.2 does not 
necessarily indicate the latest Row.1’’. We define this 
processing method as LATE UPDATE. Therefore, the thread 
can shorten the serialization point and improve scalability 
during the commit phase. However, the thread changes the 
pointer of the record to the latest pointer when referring with 
the index on LATE UPDATE. The thread can reduce the 
number of chains of the linked list and achieve fast record 
access. 

C
P

U
…

Memory

Global Area

Index

Common

Local Area

Thread Area
work log

Ts.
log management

Table

Local Area
  

Figure 10.  Overview of data structure on MPDB 

Index for col.2

Key Ts. Lower
A 100 ＊

Table Row.1 Row.1' Row.1''

Col.1 1 2 -

Col.2 A A -

Ts. 100 111 132

Next ＊ ＊ -

Prev. - ＊ ＊

update to
either the pointer

Index for col.1

Key Ts. Lower
2 100 ＊

Key Ts. Lower
1 111 ＊

insert & delete
for update

 
Figure 11.  Detailed structure of tables and indexes 

D. Transaction management 

We now explain the procedure of transaction processing. 
The state of the transaction is illustrated in Figure 12. MPDB 
manages the four typical states of transactions. The 
transaction states can be classified into ACTIVE during the 
begin phase, PRE-COMMIT at the validation phase during 
the commit phase, COMMIT at the durability phase during 
the commit phase and ABORT during the abort phase, as 
shown in Figures 9 and 12. 



459

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

 

Table VII shows the transaction state for each transaction 
method on MPDB. MPDB implemented mixed OCC/PCC to 
provide six transaction methods. Generally, long transactions 
are easily aborted by short transactions; therefore, long 
transactions can reduce the frequency of the abort when short 
transactions set OCC and long transactions set PCC. 

OCC and PCC are illustrated in Figures 13 and 14, 
respectively. On OCC, the initial state of the transaction is 
ACTIVE and the database performs begin processing in the 
first phase and commit processing in the second–fifth phases. 
However, on PCC, the initial state of the transaction is PRE-
COMMIT and the database performs begin processing in the 
first phase and the commit processing in the second and third 
phases. The processing equivalent to write lock is executed 
with the third phase on OCC and first phase on PCC. That is, 
since threads can execute write lock during transaction 
processing on PCC, it is possible to perform record update 
reservation earlier than OCC. Because of this, MPDB 
enables the coexistence of long and short transactions. 
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Figure 12.  States of transaction 

Record

Tx.state (Active)

New record

1. Create new record. (Insert for update)
2. Change Tx.state (Active → Pre-commit)

3. Connect the pointer of record to Tx.
# write validation (write lock)

4. Check the conflict graph of Tx. for SERIALIZABLE.
# read validation

5. Connect the pointer of record to new one.

 
Figure 13.  Tx. processing on OCC 

Record

New record

1. Create new record. (Insert for update)
Connect the pointer of record to Tx.
# write validation (write lock)

2. Check the conflict graph of Tx. for SERIALIZABLE.
# read validation

3. Connect the pointer of record to new one.

Tx.state (Pre-commit)

 
Figure 14.  Tx. processing on PCC 

TABLE VII.  MEHTODS OF TRANSACTION PROCESSING  

ISOLATION BTs. Allocation Tx.state

PCC.RC each SQL
state(pre-commit)

at begin

PCC.SI each Tx.
s tate(pre-commit)

at begin

PCC.SERIALIZABLE each Tx.
state(pre-commit)

at begin

OCC.RC each SQL
state(active) at begin,

state(pre-commit)
at va l idation

OCC.SI each Tx.
state(active) at begin,

s tate(pre-commit)
at va l idation

OCC. SERIALIZABLE each Tx.
s tate(active) at begin,

s tate(pre-commit)
at va l idation

 

VI. IMPLEMENTATION OF POMVCC 

The lock used in parallel processing may degrade 
scalability [6]. In this section, we introduce a lock-free 
implementation for scalable POMVCC to reduce this 
degradation. 

A. Implementation 

We implemented POMVCC to solve the problem of 
critical section. Previously, the critical section is that the 
transaction increments a CTs, adapts the CTs to the newest 
versions and unlocks it during the commit phase. Therefore, 
Tx.2 waits until the end of Tx.1 to allocate the CTs. 
Therefore, we divide a timestamp into a BTs and CTs to 
solve this problem. This is similar to speculative execution. 
A BTs is the timestamp used for referring to a record. This 
technique is very common. Table VIII and Figure 15 show 
the timestamp management and data structure on POMVCC. 

We solve the problem of lock for scalability. Generally, 
transactions increment a CTs during the commit phase in 
parallel. Therefore, the lock is necessary to obtain the 
sequential and unique CTs on MVCC. However, POMVCC 
does not require a unique CTs. That is, a transaction does not 
increment a CTs during the commit phase on POMVCC. The 
transaction manager reads a CTs, and the timestamp manager 
updates it, as shown in Figure 15. On POMVCC, timestamp 
control is divided into a read process by the transaction 
manager and a write process by the timestamp manager for 
lock-free. 

Finally, the commit phase is divided into pre-commit and 
commit. The DBMS must manage committed transactions at 
the same timestamp on partial order for consistency. 
Therefore, MPDB implements double counters to manage 
the state of many transactions at each timestamp. The double 
counters are Pre-commit Counter at each Timestamp (Ts.PC) 
and Commit Counter at each Timestamp (Ts.CC).  The 
DBMS can determine the transaction state from the 
difference between the Ts.PC and Ts.CC. We show the 
commit process as follows. The Tx.1 reads a CTs, 
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increments the Ts.PC of the CTs, and adapts the CTs to the 
newest versions of record during the pre-commit phase. It 
then increments the Ts.CC of the CTs when the log is 
completed during the commit phase. Then, Tx.2 does not 
wait for Tx.1 to execute the commit process. Therefore, 
POMVCC is highly scalable. Strictly, the atomic processing 
has critical section for incrementing the Ts.PC or Ts.CC; 
however, it is very short. The timestamp manager can 
increment a BTs or CTs anytime when it has detected an 
anomaly or requirement. For example, if the Ts.PC and 
Ts.CC are the same, the timestamp manager updates a RTs. 
That is, the record can be referred to by using this timestamp 
while maintaining consistency. Table VIII lists the 
timestamp-management rules on POMVCC.  

 

TABLE VIII.  TIMESTAMP-MANAGEMENT RULES 

D5. CTs management

CTs[a] → CTs[a+1] <==> ⅰ or any time

ⅰ DB(Tx.i → Tx.j) ≠ DB(Tx.j → Tx.i)

D6. BTs management

BTs[b] → BTs[b+1] <==> Ⅰ and Ⅱ 

Ⅰ BTs[b+1] < CTs[b+1]

Ⅱ Ts.PC[b+1] = Ts.CC[b+1]
 

Ts. Ts.PC Ts.CC

10 5 5

11 12 8

12 4 0

BTs CTs

10 12

Ts. management

update BTs or CTs

read

write

Tx. management

BTs allocation at begin

CTs allocation at commit

CTs release at commit

CTs incrementation at abort
write

read

 
Figure 15.  Timestamp management and data structure on POMVCC 

B. Log management 

Table IX lists the general log-management rules. We 
define the I/O completion as Completion (Comp). Log 
management must complete the transaction processing of all 
CTs (10) if it can complete transaction processing of CTs 
(11), as shown in Table IX. This rule corresponds to the 
general cascading protocol for recovery processing. 

As a result of separating timestamps into BTs and CTs, 
this rule became unnecessary on MPDB because the BTs 
manager guarantees that all readable records persisted, as 
shown in Table VIII. Log management does not need to 
control the log execution order, so it can maintain high-
scalability. 

 

TABLE IX.  LOG-MANAGEMENT RULES 

D7. Log management

Comp(Ts[a]) → Comp(Ts[a+1]) <==>
∀a (Logged(Ts[a]) ≦ Logged(Ts[a+1])

 

C. Interface of request-based approach 

Figures 16, 17, 18 and 19 illustrate POMVCC. Figure 16 
and 17 show the user interface with which a user requests 
begin, commit or abort to the DBMS, and Figure 18 and 19 
show the timestamp interface with which the transaction 
thread requests any timestamp allocation. 

The thread performs the initialization of the data structure 
and numbering of a BTs during the begin phase. At this time, 
if the user instructs a transaction to use a timestamp, the 
timestamp manager increments a CTs up to Ts + 1 and 
increments the BTs up to the timestamps at Allocate_BTs. 
The timestamp manager stores the transaction-history log 
when it increments a CTs. 

The thread changes the transaction state from ACTIVE to 
PRE-COMMIT and allocates a CTs from the timestamp 
manager. When allocating the CTs, the thread increments the 
Ts.PC to determine the number of transaction processes in 
the CTs. After that, the thread changes the transaction state 
from PRE-COMMIT to COMMIT through the validation 
phase. If the transaction state is COMMIT, the thread stores 
the log and increments the Ts.CC. If the transaction state is 
ABORT, the thread decrements the Ts.PC through the abort 
phase. After completion of the commit phase, the thread 
provides the result and the CTs to the user. 

The thread performs the initialization of the data structure 
for aborting and incrementing the CTs during the abort phase 
and provides the result and CTs to the user because the 
thread increments the CTs to avoid the abort due to 
refer/update conflict. A transaction must increment a BTs 
after incrementing a CTs to avoid conflict. Therefore, the 
user gives the CTs during the begin phase during the retry 
process. Thus, the transaction can at least avoid the same 
conflict problem as the previous one. 

Finally, the timestamp manager updates the BTs and CTs 
periodically and asynchronously with transaction processing. 
This solves the problem in which a user cannot reference 
update records even after a long time. 

 

// DBMS aborts the Tx.
AbortTx ( ) {

・・・ abort phase ・・・
if ( /*DBMS identifies the cause of Ts. on abort.*/ )

CTs = Update_CTs ( ) ;
return ( CTs ) ;

}
 

Figure 16.  POMVCC interface 1 
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// DBMS begins the Tx.
BeginTx ( Ts ) {

・・・ begin phase ・・・
BTs = Allocate BTs ( Ts ) ;
return () ;

}

// DBMS commits the Tx.
CommitTx ( ) {

Change Tx.state ( Pre-commit ) ;
CTs = Allocate CTs ( ) ;
・・・ write validation phase ・・・
・・・ read validation phase ・・・
Change Tx.state ( Commit / Abort ) ;
if ( Tx.state = Commit ) {  // DBMS can commit the Tx.
・・・ durable phase ・・・
Increment_TsCC ( CTs ) ;

} else if ( Tx.state = Abort ) {  // DBMS detects the Anomaly.
CTs = AbortTx ( ) ;
Decrement_TsPC ( CTs ) ;

｝
return ( CTs ) ; // Ts. for historical read

}
 

Figure 17.  POMVCC interface 2 

// Tx. is allocated the BTs. at begin for read.
Allocate BTs ( Ts ) {

CTs = Read_CTs ( ) ;
while ( CTs ≦ Ts ) {

CTs = Update_CTs ( ) ;
}
do {

BTs = Update_BTs ( ) ;
} while ( BTs < Ts ) ;
return ( BTs ) ;

}

// Tx. is allocated the CTs. at commit
Allocate CTs ( ) {

atomic {
CTs = Read_CTs ( ) ;
Increment_TsPC ( CTs ) ;

}
return ( CTs )

}

// This function updates the CTs. 
Update_CTs ( ) {

CTs = Increment_CTs () ;
Log_CTs ( CTs-1, Read_TsPC (CTs-1) ) ;
return ( CTs ) ;

}
 

Figure 18.  Ts-management interface 1 

// This function checks & updates the BTs. 
Update_BTs ( ) {

BTs = Read_BTs ( ) ;
CTs = Read_CTs ( ) ;
// It reads the Ts.Pre-commit Counter (Ts.PC).
PC = Read_TsPC ( BTs + 1 ) ;
// It reads the Ts.Commit Counter (Ts.CC).
CC = Read_TsCC ( BTs + 1 ) ;
if ( BTs < CTs - 1 && PC = CC )

BTs = Increment_BTs () ;
return ( BTs ) ;

}
 

Figure 19.  Ts-management interface 2 

VII. EVALUATION OF PROTOTYPE IMPLEMENTATION 

In this section, we compare the performance of MVCC and 
POMVCC. We implemented MVCC and POMVCC on 
MPDB and evaluated their performance. In this experiment, 
we used the industry standard benchmark TPC-C and 
repeatedly executed the stored procedure calls that model 
New Order [34]. 

A. Experimental Environment 

Figure 20 depicts the system configuration. Four blade 
servers were used, i.e., symmetric multiprocessors, and had 8 
CPUs (80 cores), 1 TB of memory, and 8 ports of an 8-Gb 
Fiber Channel (FC). The servers and storage were connected 
via an FC switch and communicated with FC communication. 

In the OS (CentOS 6.5) settings, FC ports were assigned to 
each CPU to distribute the interrupt overhead of FC 
communication. Hyper-threading was disabled. 

For the MPDB settings, one thread was assigned to one 
core. This means that MPDB used a maximum of 80 threads. 
One log file was assigned to one CPU to load balance the 
logs. The isolation level was SNAPSHOT ISOLATION. 

The DB was created on the basis of TPC-C. The number of 
warehouses was 16 and the size of the DB was 0.72 GB. The 
item, stock, and order_line tables were used in TPC-C. 
Indexes were also created for the i_id of the item table, 
s_w_id and s_i_id of the stock table, and ol_o_id and 
ol_w_id of the order_line table. 

Server

BLADE (BS2000)

Blade BS2000

CPU Xeon(R) E7 8870 x 2

Memory 256GB (16GB x 16)

PCIe 2 Port HBA (8Gb)

Storage
Hitachi Unified

Storage VM (HUS-VM)

Cache 54GB Memory

Disk
6.4TB (1.6TB x 4)

Hitachi Accelerated Flash

RAID RAID5 (3D + 1P)

System Configuration

x4

x8

Storage

FC Switch

x8

 
Figure 20.  System Configuration 
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B. Workload 

The workload shown in Figure 21 was created on the basis 
of TPC-C’s New Order. The workload simulates the 
repeatedly executing part of New Order. The processing in 
Figure 21 was repeated ten times per transaction on average. 

1 SELECT i_price, i_name, i_data

INTO :i_price, :i_name, :i_data

FROM item

WHERE i_id = :ol_i_id

2 SELECT s_quantity, s_data, s_dist_...

INTO :s_quantity, :s_data, :s_dist_...

FROM stock

WHERE
s_i_id = :ol_i_id AND

s_w_id = :ol_supply_w_id
3 UPDATE stock

SET s_quantity = :s_quantity

WHERE
s_i_id = :ol_i_id AND
s_w_id = :ol_supply_w_id

4 INSERT

INTO order_l ine (,,,,,)

VALUES (,,,,,,)

While ( Repeats 5 ~ 15 times, Ave. 10)
 

Figure 21.  Experiment Workload 

C. Experimental Results and Consideration for MPDB 

We evaluated MPDB before evaluating POMVCC. We did 
not use POMVCC to evaluate the basic performance of 
MPDB. MPDB has various mechanisms but the one most 
contributing to performance improvement is log 
parallelization. Therefore, we verified the effects of 
performance and scalability using parallel log processing. 
We compared single log processing and parallel log 
processing and measured the performance and scalability of 
DBMS with increasing CPU for each log processing. 

We compared the performance of single log processing 
and parallel log processing corresponding to the number of 
threads. In Figure 22, the x-axis represents the number of 
threads, and the y-axis represents transactional performance 
(tps). The performance of parallel log processing increased 
as the number of threads increased. However, the 
performance of single log processing decreased as the 
number of threads increased more than 40 threads. We 
confirmed that parallel log processing can perform 5.02 
times better than single log processing. We also found that 
I/O interrupt is focused on a specific CPU core by analyzing 
single log processing with “mpstat” of Linux, as shown in 
Figure 23. In this figure, the x-axis represents the id of CPU 
core (0–79), and the y-axis represents time. We confirmed 
that parallel log processing distributes the load of I/O 
interrupt. 

We also compared the scalability of single log processing 
and parallel log processing corresponding to the number of 
threads. In Figure 24, the x-axis represents the number of 
threads, and the y-axis represents the performance rate on 
Figure 22 when the performance at 10 threads was assumed 
as that at 100. In single log processing, the scalability 

suddenly deteriorated at 40 threads. However, parallel log 
processing maintained scalability degradation at less than 
15% even with 80 threads. 

We confirmed that if the number of CPUs exceeds 2, it is 
necessary to parallelize log processing. 
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Figure 22.  Performance evaluation for log processing 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0:00:06 55 25 26 21 19 3 26 19 14 27 64 36 33 24 18 23 22 11 13 13 54 27
0:00:07 55 30 28 17 18 12 18 13 20 21 63 26 29 22 20 16 15 19 14 21 52 22
0:00:08 54 10 28 17 31 22 24 19 3 25 66 30 29 29 21 17 21 29 22 2 59 32
0:00:09 52 11 24 27 23 26 17 23 6 22 69 35 26 23 28 23 21 19 24 5 62 38
0:00:10 58 29 28 24 22 1 29 22 23 31 76 38 34 26 29 24 25 26 1 23 56 16
0:00:11 60 28 28 28 25 1 27 26 22 23 77 38 34 28 28 26 25 26 5 23 60 24
0:00:12 62 31 31 27 13 24 27 29 21 22 76 40 44 27 22 26 22 5 22 24 63 33
0:00:13 44 19 43 18 66 8 18 34 17 21 53 34 29 19 16 20 18 37 22 36 40 20
0:00:14 60 34 25 30 31 23 25 30 28 22 80 44 38 24 27 26 22 27 26 28 66 38
0:00:15 71 37 38 31 33 29 32 25 30 29 81 41 38 36 30 22 25 29 29 27 71 41
0:00:16 74 38 41 40 34 34 32 39 29 37 84 46 41 37 34 31 30 29 29 31 78 45
0:00:17 76 42 38 43 40 38 32 40 33 32 84 49 43 36 35 32 32 31 32 34 78 47
0:00:18 75 41 41 38 40 35 33 36 33 36 83 46 44 34 37 30 26 33 32 34 74 45

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0:00:06 49 30 27 10 25 23 3 6 22 11 23 30 26 23 14 26 21 8 26 29 25 34
0:00:07 56 27 17 11 22 13 13 16 14 16 18 31 21 18 25 21 16 12 19 22 20 34
0:00:08 45 35 22 23 25 28 23 21 14 29 24 32 30 26 2 26 17 23 30 20 28 34
0:00:09 45 27 29 26 22 19 26 22 23 21 16 24 21 18 5 18 23 20 15 17 20 34
0:00:10 63 38 28 3 25 29 1 1 21 23 29 36 27 25 24 31 24 9 27 30 25 38
0:00:11 66 38 29 4 27 26 2 1 24 24 29 39 33 30 23 33 26 3 30 30 29 38
0:00:12 69 29 27 26 26 9 22 23 31 9 27 25 25 11 29 28 25 25 28 33 24 39
0:00:13 49 13 27 21 26 1 17 8 30 79 16 12 11 9 32 25 18 27 18 17 19 33
0:00:14 69 36 35 26 23 32 27 30 28 27 26 38 36 29 29 38 28 22 27 27 21 34
0:00:15 76 39 33 31 32 31 29 28 26 29 32 45 36 29 32 34 27 27 29 35 31 46
0:00:16 77 42 42 36 33 35 31 35 33 30 36 44 41 38 32 35 35 32 33 37 33 43
0:00:17 79 47 43 38 34 39 34 39 35 34 33 49 43 41 40 38 38 33 35 38 27 45
0:00:18 78 42 40 31 34 35 29 30 31 35 38 44 42 34 39 39 36 27 34 43 33 45
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Figure 23.  Load of I/O interrupt each CPU core 

 

[ y-axis: performance rate (%) ]

[ x-axis: CPU cores ]

0

20

40

60

80

100

120

10 20 40 60 80

MVCC-8Log MVCC-1Log

 
Figure 24.  Scalability evaluation for log processing 
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D. Experimental Results and Consideration for 

POMVCC 

We compared the performance of MVCC (8 logs) and 
POMVCC (8 logs) corresponding to the number of threads. 
In Figure 25, the x-axis represents the number of threads, and 
the y-axis represents tps on increasing conflict rate. The 
performance of both MVCC and POMVCC increased as the 
number of threads increased. POMVCC ran 1.36–1.60 times 
faster than MVCC. 

To investigate scalability more precisely, we conducted an 
experiment in which the number of warehouses changed 
corresponding to the number of threads. That is, the number 
of warehouses was ten (DB size was 0.45 GB) when the 
number of threads was ten and the one was 80 (DB size was 
3.61 GB) when the one was 80. The respective experimental 
results show Figures 26 and 27. 

In Figure 26, the x-axis represents the number of threads, 
and the y-axis represents tps on a fixed conflict rate. The 
performance of POMVCC on a fixed conflict rate (Figure 
26) is higher than the performance on increasing conflict rate 
(Figure 25). POMVCC on a fixed conflict rate was 1.34 
times faster than one on increasing rate. However, MVCC 
exhibited almost the same performance regarding increasing 
conflict rate (Figure 25) and regarding the fixed conflict rate 
(Figure 26). Therefore, POMVCC was 1.63-1.74 times faster 
than MVCC. 

We then compared the scalability of MVCC and 
POMVCC corresponding to the number of threads at a fixed 
conflict rate. In Figure 27, the x-axis represents the number 
of threads, and the y-axis represents the performance rate on 
Figure 26 when the performance at 10 threads was assumed 
as that at 100. The scalability of both MVCC and POMVCC 
slowly decreased as the number of threads increased. The 
scalability coefficient of MVCC was 87.98–97.96% and that 
of POMVCC was 94.02–98.32%. POMVCC improved by 
6.87% compared with MVCC. This experiment suggests that 
the scalability coefficient of POMVCC is greater than that of 
MVCC. 

From these experiments, the scalability coefficients of 
POMVCC and MVCC depended on the size of the DB and 
number of threads. When the size of the DB was large and 
the conflict rate of the transaction was low, the scalability 
coefficient of POMVCC was high, and in all experiments, 
POMVCC ran faster than MVCC. 
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Figure 25.  Performance evaluation regarding increasing conflict rate 
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Figure 26.  Performance evaluation regarding fixed conflict rate 
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Figure 27.  Scalability evaluation regarding fixed conflict rate 

VIII. CONCLUSION AND FUTURE WORK 

We proposed POMVCC, which maintains the protocol of 
MVCC and improves performance and scalability of DBMS. 
POMVCC is focused on the partial order of transactions. The 
conventional technique provides a timestamp to each 
transaction, but POMVCC provides a timestamp to multiple 
transactions. POMVCC reduces the number of timestamps 
that are updated and improves performance and scalability of 
DBMS. We discussed the difference in isolation levels 
between MVCC and POMVCC, as shown in Figure 4. 

We implemented and evaluated POMVCC on an in-
memory DBMS we developed called “MPDB”, which is an 
MVCC-based, lock-free, in-memory DBMS that is 
characterized by parallel logs and mixed PCC/OCC. 

We first compared the performance and scalability of 
MPDB corresponding to the number of threads. The results 
indicate that the most contributing mechanism to 
performance improvement was log parallelization. Parallel 
log processing maintains scalability degradation of less than 
15% even with 80 threads. We confirmed that if the number 
of CPUs exceeds 2, it is necessary to parallelize the log 
processing. 

We then compared the performance and scalability of 
MVCC and POMVCC corresponding to the number of 
threads regarding an increasing conflict rate. The 
performance of POMVCC was 1.36–1.60 times better than 
that of MVCC. We also compared the performance of 
MVCC and POMVCC regarding a fixed conflict rate. 
POMVCC was 1.63–1.74 times faster than MVCC. The 



464

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

 

scalability coefficient of MVCC was 87.98–97.96% and that 
of POMVCC was 94.02–98.32%. The performance of 
POMVCC improved by 6.87 % compared with MVCC. 

The scalability coefficients of POMVCC and MVCC 
depended on the size of the DB and number of threads. 
When the size of the DB was large and the conflict rate of 
the transaction was low, the scalability coefficient of 
POMVCC was high, and in all experiments, POMVCC ran 
faster than MVCC. 

We implemented POMVCC on MPDB and evaluated it by 
using SNAPSHOT ISOLATION, for which POMVCC 
performed better than MVCC. However, the performance 
trend was unclear because the probability of WRITE SKEW 
increased on SERIALIZABLE. This occurs when reference 
and update transactions are executed at the same timestamp. 
POMVCC increases the number of transactions at the same 
timestamp. As a result, the number of WRITE SKEWs 
increases. It is also possible that RW-CONFLICT GRAPH 
will increase and a large cyclic graph will be created. 
Therefore, our future work is to implement and evaluate 
POMVCC by using SERIALIZABLE. 
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