International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

247

Deriving Learning Strategies from Words Lists: Digital Dictionaries, Lexicons, Directed

Graphs and the Symbol Grounding Problem

Jean-Marie Poulin and Alexandre Blondin Massé
Département d’informatique
Université du Québec a Montréal
Montréal, QC, Canada H3C 3P8

Email: {poulin. jean_marie,

Abstract—We examine the structure of dictionaries, more specif-
ically the interweaving of links that connect words through
their definitions. With few exceptions, all the words used to
construct dictionary definitions are defined somewhere else in the
dictionary. All these references between words create a network
of relations, thus making it possible to use graph theory for the
study of dictionary structures. We propose using words learning
as an investigative tool. For a given dictionary or lexicon, what
would be the best strategy to learn all its headwords? To answer
this question, we introduce a formal model and simple graph
algorithms. We evaluate several different learning strategies by
comparing their learning rate and their efficiency for 8 mono-
lingual English-language dictionaries. It turns out that the most
significant factor affecting the performance of learning strategies
is their ability to break definitions circularity. In other words,
the most effective learning strategies are the ones that break
definition loops as quickly as possible. We show that a very simple
algorithmic strategy, based solely on the vertices out-degree - the
number of definitions in which lexemes participate - significantly
improves the learning process when compared to psycholinguistic-
based strategies. We also put forward that such an approach
represents an efficient alternative for the construction of “word
lists” used to teach foreign languages.

Keywords—-Dictionaries; Lexicons; Learning Strategies; Word
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I. INTRODUCTION

In this paper, which is an extended version of our earlier
research presented at COGNITIVE 2018 [1], we examine the
internal structure of dictionaries from a new and different
perspective.

Whether in the form of clay tablets, papyrus, manuscripts,
printed books, web pages or electronic tablets, dictionaries
have existed for a very long time [2]. Since Antiquity, they
have been commonly used as reference works in all areas of
knowledge related to language. Even today, they are indispens-
able resources for reading, writing and translating texts, as well
as for acquiring general knowledge.

With the advent of printing at the beginning of Renaissance,
and even more so with the development of computers and
the digital representation of knowledge in the 20th century,
dictionaries underwent profound metamorphoses. In spite of
this, dictionaries, lexicons and encyclopedias of all kinds
still retain their relevance today. Open platforms, such as
Wiktionary and Wikipedia, or Web versions of commercial
dictionaries, such as Merriam-Webster [3] or Collins [4], are
becoming ever more popular.
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One of the key drivers of this success is undoubtedly the in-
tegration of hypertext and hyperlinks. These new technologies
allow lexicographers to easily establish different types of links
between words and concepts within a single publication, or
even direct the user to external web resources. It then becomes
possible to easily navigate from one word to another, without
having to browse laboriously through the thousands of pages of
a paper book. The way one uses dictionaries is thus profoundly
modified. The relationships between the words become as
important as the information about the words themselves.

Helped by developments in cognitive psychology and nat-
ural language processing, researchers have begun to ques-
tion how these links between the words in dictionaries are
organized. Are there invariants or schemes common to all
dictionaries? This question was the main topic of several
articles dealing with the structure of dictionaries.

In one of the first contributions on the subject, Clark
[5] considered two special dictionaries: Longman’s Dictionary
of Contemporary English (LDOCE) [6] and Cambridge’s In-
ternational Dictionary of English (CIDE) [7]. LDOCE and
CIDE have the particular feature of having a small control
vocabulary, i.e., the number of words used in at least one def-
inition is minimized. He showed that the words in the control
vocabulary have distinctive properties: they are in general more
abstract and their definition is longer and more complex than
that of other words. Subsequently Steyvers and Tenenbaum
[8] continued the analysis of the graphs associated with the
WordNet Semantic Network [9] and Roget’s Thesaurus [10].

Pursuing the same topic, a group of researchers have
recently published a series of articles exploring the internal
structure of dictionaries [11]-[15]. These works all use a
formal model for the lexicon based on graph theory. This
approach makes it possible to apply conventional graph pro-
cessing algorithms to dictionaries and derive a wealth of
linguistically relevant information. Their analysis of several
English-language digital dictionaries shows that all of them
have a common structure and contain the same basic compo-
nents [14], i.e.,

A Kernel, which is a subset of words in the dictionary that
can be used to define all other words. The kernel can
in turn be subdivided into a series of subcomponents
of varying size, consisting of clusters of closely related
words.

A Core, which is the subcomponent of the kernel with the
largest number of words. In all the digital dictionaries
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studied, the core is considerably larger than the other
subcomponents of the kernel.

A Minimum Grounding Set (MinSet), which consists of a
subset of words smaller than the core, obtained by
judiciously combining elements of the core and other
subcomponents of the kernel. This is the smallest group
of words that can be used to define all the other words in
the dictionary.

In addition, it turns out that the kernel has some distinct
psycholinguistic characteristics [15]:

e The words in the kernel are learned earlier, are more
concrete and are used more frequently than other words
in the dictionary.

e There is a strong correlation between the evaluated
psycholinguistic variables age of acquisition, degree of
abstraction and words frequency.

e Within the kernel itself, there is a marked gradation of
these same measures when evaluating words from the
kernel, the core and the minimum grounding set.

Among these observations, the key point is most likely the
minimum grounding set (Minset) question. In [15] the authors
establish a direct link between the Minset and the "Symbol
Grounding Problem”, first described by Harnad in [16]. This
problem can be briefly summarized as follows: When one
looks for the definition of a word in a dictionary, he sees
that this definition is built using other words. If these other
words are not known, one can, of course, look for them in
the dictionary. But, at the risk of getting caught in an endless
loop, the meaning of some words must be known and rooted
in the sensorimotor experience: "[...] it can not be dictionary
lookups all the way down!" [15].

The symbol grounding problem is especially acute when
learning a new language. In addition to getting familiar with
grammar and syntax, one must acquire vocabulary and learn
enough words to be able to understand and be understood. It
must be possible to associate the external form of a written or
spoken word with its meaning in a given context. According
to Schmitt [17]: “[The] form-meaning link is the first and most
essential lexical aspect which must be acquired”.

What is the best way to learn these new words? Are
there special learning methods or preferred strategies? In
many research works, such as Prince [18], Schmitt [19],
and Joyce [20], the authors compare traditional approaches
used by instructors to teach second language learners. In the
first method called “L1 translation”, new English words are
explained to the student in its mother tongue (the first language
or L1). For example, if the student is Spanish-speaking, the
teacher would give him an explanation of the English word
cat in Spanish, i.e., gato or felino. With the second approach,
named either “L2 context” or “L2 definition”, the student must
deduce by himself the meaning of a new word using the
context in which it was seen or through some other explanation
in English (the 2nd language or L2). One could for example
explain to Jacques, a French-speaking student, the English
word own with a definition such as “to have or hold as
property”. Joyce [20] compares these two methods. The “L1
translation” method is preferred for students with lower levels
of proficiency: “[...] L1 translations for intentional vocabulary
learning is seen to be most effective for students at lower
proficiency levels”, On the other hand, the “L2 definition”
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approach is the most effective for vocabulary development:
“for the purposes of general language development, learning
through an L2 definition is favored”.

A simple language dictionary can thus be a surprisingly
effective way to understand and memorize new words. But
for this to be successful, there is however an important
prerequisite. The learner must first master a basic subset of
the words in the new language. Only in this way will he be
able to profitably use a dictionary.

Let us illustrate this point with the student Jacques in the
previous example. Suppose Jacques sees in an English text the
word own, which he does not know. He therefore consults the
Merriam-Webster and finds the definition: “to have or hold as
property” [21]. Assuming that he already knows the meaning
of the words to, have, or, hold and as, but not that of the
word property, he looks further in the dictionary and finds a
definition for the word property: “something that is owned by
a person”. Although he is familiar with the words something,
that, is/be, by and person, this definition is not useful for him.
He faces what we call a definition loop: he needs to know the
meaning of owned/own to understand the meaning of property,
whereas at the beginning he was trying to understand this same
word own. This is the difficulty we previously mentioned, the
“Symbol Grounding Problem”. Dictionary definitions are not
enough by themselves to learn new words. In order to break
out of the Kafkaesque situation created by the definition loop,
one of these 2 words has to be learned some other way. In this
case, Jacques could ask his teacher to explain him either the
word own or the word property.

These same issues lie at the heart of our questioning. We
aim to study the close relationship between the structure of
monolingual dictionaries and the way in which the words of
a language can be learned. In the references cited above (eg:
[15]), the authors analyze the internal structure of dictionaries
using groups of words with specific properties in terms of
graph structure or psycholinguistic characteristics. They eval-
uate the definitional relations between the words to determine
if it is possible to discover clusters of words having properties
related to symbol grounding. Our approach is complementary.
We first develop word lists, called learning strategies, based
either on sequences of words coming from existing psycholin-
guistic norms, or built using graph theory algorithms. We then
study the behavior of our learning strategies with respect to
a reference task: “learning” all the words in a dictionary. We
determine how effectively the strategies manage to break the
definition loops in the dictionaries, thus avoiding the symbol
grounding problem.

The rest of this document is organised as follows. In
Section II, after having introduced some linguistic terminology
and recalled basic notions of graph theory, we propose a
convenient way to represent a lexicon as a directed graph. In
Section III, we describe the notion of learning strategy. We
first look in more detail at the problem of symbol grounding.
Next, we discuss the question of word lists, these teaching tools
frequently used by language instructors. Subsequently, we
propose a formal learning model as well as related algorithms
used to evaluate the strategies efficiency, regarding their ability
to perform the task of “learning” all the words of a lexicon.
We outline in Section IV our experimental environment and
document the source of the digital dictionaries and psycholin-
guistic norms. Then we describe in detail the two types of
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learning strategies developed:

o the algorithmic strategies, built using graph theory algo-
rithms;

o the psycholinguistic strategies, based on psycholinguistic
norms, i.e., lists of words ordered according to specific
psycholinguistic properties.

Section V is devoted to the actual description of the exper-
iments carried out. We present how we collected data and
measured the performance of the strategies used to learn
whole dictionaries. Then we outline the results obtained in
the form of tables and graphs and offer a quick analysis of
the most significant observations. Section VI completes our
presentation by highlighting important findings and suggesting
other avenues for future research.

It should also be noted that this article is a free French
to English translation, with several modifications, of the first
author’s Master thesis [22].

II. DICTIONARIES, LEXICONS AND GRAPHS

In order to clearly position the subject of our study, let us
look at some common definitions of the word “dictionary”.

“Dictionary: a reference source in print or
electronic form containing words usually alphabet-
ically arranged along with information about their
forms, pronunciations, functions, etymologies, mean-
ings, and syntactic and idiomatic uses”

Merriam-Webster [3]

“Dictionary: a book that gives a list of words
in alphabetical order and explains their meanings in
the same language, or another language”

Longman [23]

These descriptions are consistent with the traditional view
that most people hold. However, if we study them in more
details, a central element of the definition stands out: the term
words. In the following example, we look at 2 sentences where
word is used with two different meanings.

Example 1.

a) “Parce que” is a French word that translates to “because”.
In this sentence word refers to the whole “Parce que”
group.

b) “Parce que” is written in two words.

In this case, word corresponds directly to the usual
definition of a word as suggested by Jackson [24]: “a
sequence of letters bounded by spaces”.

Here is another example, showing another aspect of the
ambivalence of word.

Example 2.

a) We found a cat on the porch.

b) There are many cats in the neighborhood.

Here the problem is a variant of the one in the previous
example. Are cat and cats two different words? If we apply
once again the definition from Jackson [24], we can infer that
they are different words. But the fact is that in both cases we
clearly refer to the same “small domestic animal known for
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catching mice” [3]. In sentence 2 b), the plural form cats is
used to show that we are talking about several animals.

This kind of ambiguity thus represents an important prob-
lem for our intended automated dictionary processing: the term
word is not precise enough. We need to find a better way to
distinguish its various uses. This is the reason why we first
introduce a more precise linguistic terminology, allowing us
to mitigate the imprecision of the vocabulary. We then put
this terminology to work in order to propose a more formal
definition of a lexicon. Thereafter, after having recalled some
elementary notions of graph theory, we describe a way to
represent a lexicon as a directed graph.

A. Terminology

There is no consensus amongst the different schools of
linguistics as to which terminology is to be preferred. In
this section we therefore propose, in order to simplify the
understanding of our document, a list of the basic linguistic
terms needed to describe our formal model.

Lexicon:

From a linguistic point of view, what is the difference
between a lexicon and a dictionary? In English, the term
lexicon is a common synonym for dictionary. According to the
Merriam-Webster [25] or the Handbook of Linguistics [26], it
is a book containing a list of words, accompanied by their
definition, presented in alphabetical order. In our article, we
use the term lexicon in its strict linguistic sense, namely: “the
theoretical entity that corresponds to all the lexical items of a
language or of an individual, i.e., the mental lexicon” [27, p.
109]. Note that this definition refers to a “set of lexical items”,
and not to a “set of words”. To further highlight the difference
between a dictionary and a lexicon, let us add a few precisions:

1) A dictionary is a model, a particular representation of a
language’s lexicon It emphasizes the descriptive aspect,
the definition of the words.

2) A dictionary is usually presented in alphabetical order,
while there is no such imperative for a lexicon.

3) In a lexicon, the relationships between words are as im-
portant as the words themselves: it is not just a sequential
list of words. One can also see a lexicon as a web of
words linked together by a complex network of various
relationships.

Amongst the many different relationships that words can
have between them, let us look at a few examples:

Example 3.

a) In the sentence: “The cat is a domestic animal”’, CAT
and ANIMAL are connected to each other by relations
of hyponymy and hyperonymy. CAT is a hyponym of
ANIMAL, while in the opposite direction, ANIMAL is a
hyperonym of CAT.

b) In the sentence “I saw a stray cat”, the words CAT and
STRAY are connected by another type of relationship.
STRAY is a quality that is commonly applied to a CAT.
However, the qualifier PURPLE, as in “I saw a purple cat”,
is mostly inappropriate for a cat, unless used in a very
specific context, like in a comic book.

¢) If we define a CAT as a “small domestic animal known
for catching mice” [3], the words SMALL, DOMESTIC,
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ANIMAL, etc., have here a different relationship with CAT
They help to describe, to define what a CAT is.

Later on, we use this last type of relationship, termed a
“definitional relation”, to explore the structure of lexicons.

Words, lexemes and others:

Let us look now at the different elements that make
up our terminology. Figure 1 illustrates, in the form of an
entity-relationship diagram, the reciprocal links that unite the
linguistic terms required for our analysis. These terms, as well
as the associated writing conventions, are strongly inspired by
Polguere [27], [28].

word form: The Oxford Dictionary defines a word form as:
“a (particular) form of a word; especially each of the
possible forms taken by a given lexeme, distinguished by
their grammatical inflections” [29].
Without going further into linguistic theory, we simply
say that cat and cats are two different word forms
of the lexeme CAT, both of which refer to the same
lexical meaning <cat>. The terms “lexeme” and “lexical
meaning” are defined later on.
Writing convention:
A word form is noted in italics, for example cats.

lexical item: A lexical item - or headword - is the basic unit
of a lexicon, equivalent to an entry in a dictionary. “A
lexical item, also called a lexical unit, is either a lexeme
or a phrase. Each lexicon (lexeme or phrase) is associated
with a given meaning [...]” [27, p. 69]
For example, “seat belt” and “cat” are both lexical items.
“cat” is a simple lexical item consisting of a single word-
form, equivalent to the lexeme CAT. On the other hand,
“seat belt” is a compound lexical item comprising 2
associated word forms.
In our analysis however, we do not tackle the task of
deciding whether a group of words corresponds to a
compound lexical item or not. We believe that is a
different, quite difficult problem, worthy of consideration
on its own. We thus consider further on all word-forms
as candidate lexemes.

lexeme: Let us examine again the two sentences in example 2.
We understand that the two word-forms car and cats both
make reference to the same concept or idea: the lexical
meaning <cat>. These word-forms are simply “inflected
forms” of the same lexeme CAT. Here, “inflected form”
refers to a morphological change, the addition of an
affix or special ending to the final of a word (noun,
pronoun, participle, adjective) according to its function
in the sentence or proposition [30].
Polguere [27] defines a lexeme as a generalization of
word-form linguistic signs: each lexeme of the language
is structured around a meaning that can be expressed
by a set of distinct word-forms. In other words, we can
think of a lexeme as a way of identifying a precise
lexical meaning, to which a series of grammatical
variations represented by the different word-forms
are associated. In the same manner, the word-forms
write, writes, written, ... are different grammatical
forms of the same lexeme WRITE (Spencer [31]).
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Writing convention:

Lexemes are written in small capital letters, as in CAT.
They can also be tagged, as in CHATL, where the
exponent “1” indicates the result of disambiguation and
the index “N” represents the part of speech.

lexical meaning: In this paper, we use the term lexical

meaning to refer to the idea, the mental representation,
to which a lexeme refers. “The lexical meaning refers
to a mental concept that is associated with a lexical
unit to express an idea” [32] The term lexical meaning
can, according to the disciplines and the authors, be
put in parallel with the related notions of concept:
“Between all the individuals thus connected by the
language, it will establish a kind of average: all will
reproduce [...] the same signs united to the same
concepts” [33], as well as category in philosophy
and cognitive psychology, and signified in semiotics.
Writing convention:

The lexical meaning of a lexeme is noted with chevrons.
For example, <cat> is the lexical meaning associated
with the lexeme CAT.

lemma: According to Polguére, a lemma is the

canonical word form wused to designate a term
[27, p. 135]. In French for example, we use the
infinitive present to represent a verb, the masculine
singular to represent a noun, etc. According to our
nomenclature, we say that it is the word-form that
has been chosen to identify one or more lexemes.
Writing convention:

1. A lemma is written in non-proportional font, for
example caT.

2. To distinguish the lexemes associated with the same
lemma, we use an exponent between 1 and n, for

example cHaT!, cHAT?, ..., CHAT™.

In automatic language processing, lemmatization is the
operation consisting of identifying the lemma that cor-
responds to the different word-forms of a lexeme. For
example: the lemma co is the result of the lemmatization
of the word-forms goes, went, ... The distinction between
the terms “lexeme” and “lemma” can sometimes seem
difficult to establish. To help make them stand out, one
only needs to remember that lexeme is rather related to
meaning, to semantics, whereas lemma is related to form,
to morphology.

part of speech: The parts of speech (POS) are classes that

group together lexical items according to their grammat-
ical properties [27]. For the purposes of our presentation,
we consider that all lexemes are part of exactly one of
the following 5 parts of speech: noun, verb, adjective,
adverb and stop word. The first four classes - noun, verb,
adjective and adverb - group the vast majority of lexemes.
The fifth class, stop word, groups all the other lexemes
whose semantic value is poorer.

Writing convention:

The part of speech of a lexeme or a lemma is represented
by a coding label: “\” for name, “,” for verb, “,”
for adjective, “z” for adverb and “s” for stop word.
For example, CATy indicates that the lexeme CAT is a
noun.

In natural language processing (NLP), the term “lemma-
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Figure 1. Entity-relationship diagram of linguistic terms
(simplified)

tization” is used to refer to this process of identifying the
part of speech to which the lexemes of a sentence or text
belong.

Polysemy and Disambiguation:

We previously mentioned that a given lemma can cor-
respond to more than one lexeme. In this regard, linguistic
researchers usually make the distinction between two different
situations [34] :

e homonymy, when the lexemes are of different etymolog-
ical origin.

e polysemy, when the lexemes refer to different meanings
of the same word

The next example, extracted from Jurafsky and Martin’s
work [35], illustrates in a classical way how a “word” can
have many different meanings:

Example 4.
(a) “Instead, a bank can hold the investments in a custodial
account in the client’s name.”

(b) “But as agriculture burgeons on the east bank, the river
will shrink even more.”

(c) “The bank is on the corner of Nassau and Witherspoon.”
To understand these sentences, one has to choose amongst

some possible meanings for the lexeme BANK which one is
the most appropriate, for example:

BANK.: “financial institution”,
BANKZ: “building belonging to a financial institution”,
BANK;: “sloping mound”,

In sentences (a) and (c), the context is quite different. It
is relatively easy to disambiguate BANK. Sentence (a) is
about investment, account and client, so BANKI}I is the most
appropriate. In (b) however, BANK? is the most relevant since
we are in the context of agriculture, river, etc. Given that the
semantic domain is downright different, we can easily identify
them as homonyms. On the other hand, sentence (c) is more
difficult to analyze. We do not have many clues from the
context to guide our choice. One must know or figure out
that Nassau and Witherspoon are street names and then infer

that we are talking about a building, therefore the branch of a
bank. BANKZ and BANK}, are thus polysemous.

This complex process of discriminating the meaning of
words is called “Word Sense Disambiguation” (WSD) or
simply disambiguation. For a human, the distinction is made
naturally, without apparent effort. It is however much more
difficult for an algorithm or computer program: “The reason
that lexical polysemy causes so little actual ambiguity is that,
in actual use, context provides information that can be used to
select the intended sense. Although contextual disambiguation
is simple enough when people do it, it is not easy for a com-
puter to do” [36] According to Corréa, Lopes and Amancio,
the question of lexical disambiguation in artificial intelligence
even remains an unresolved problem in 2018 [37]. For several
authors, it is considered an Al-complete problem. In other
words, by analogy with NP-complete problems in complexity
theory, it is a problem as difficult as the creation of a real
artificial intelligence [38], [39].

There is thus no cost-efficient and reliable way to disam-
biguate the meaning of words in a sentence. However, when
they build or revise dictionaries, lexicologists usually order
word senses according to their usage frequency, starting from
the most frequently used : CIDE: [7, p. ix], LDOCE: [40],
WORDSMYTH: [41]. Thus, by simply using the definitions
order, “the heuristic of the first sense” generally gives sat-
isfactory results. This method is still a baseline difficult to
surpass: “The first sense heuristic [...] outperforms many of
these systems which take surrounding context into account”
[42]. For these reasons, as well as for the sake of simplicity,
we use the first sense heuristic as a disambiguation method in
this work.

B. Formal definition of a lexicon

As we have seen above, a lexicon can be described from
a linguistic point of view as a set of lexemes accompanied by
their definitions and any other information necessary for their
use [26].

However, for our analysis, we need to go further in
terms of mathematical formalism. Proceeding by successive
refinements, we propose in this section the formal definition
of a complete lexicon.

Definition 1 (Lexicon). A lexicon is a quadruple X =
(A, P, L,D), where:
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(i) A is an alphabet, whose elements are called letters.

@ P ={N,V, A R, S} is a non-empty set of elements
called part of speech (POS). The elements correspond to
the 5 parts of the speech described earlier.

(iif) L is a finite set of triplets ¢ = (w, i, p), called lexemes
and denoted ¢ = w;, where w € A* is a word form, 7 > 1
is an integer, and p € P. We then say that (w, %, p) is the
i-th sense of the tagged word form (w, p):

- If there is no (w,i,p) € £ with i > 1, then w) = w,
and (w, p) is monosemic. Moreover, if all (w,i,p) € L
are monosemic, then we say that X is monosemic.

- If there exists a (w,4,p) € £ with ¢ > 1, we say that
(w,p) and X are polysemic.

- To make the numbering consistent, we assume that if
(w,i,p) € L and ¢ > 1, then (w,i — 1,p) € L is also
true.

- If p=s, then ¢ = wi is called a stop lexeme.

(iv) D is a function that associates with each lexeme ¢ € L a
finite sequence D(¢) = (d1,ds,...,dy), where d; € A*
for i =1,2,...,k It is called the definition of .
We can see in Example 5 a polysemic lexicon.
Example 5. Let X = (A, P, L, D) be a lexicon such that:
e A={ab,... 2}

e P = {N}, where N shows that the part of the speech is a
NOUN,

e L and D are as defined in Table I.

TABLE I. Lexemes and definitions of a polysemic lexicon

4 D(¢)
FRUIT,%l plant, part, that, has, seed, and, edible, flesh)

FRUITEl the, result, of, work, or, action)

FLESHg the, part, of, an, animal, used, as, food)

(
(
FLESH (the, edible, part, of, a, fruit, or, vegetable)
(
(

SEED# the, small, part, of, a, plant, from, which, a, new, plant, can, develop)

Definition 2 (Lemmatized lexicon). Let lemma(w) be a
function that associates to a word-form w € A* its lemma.
If we replace in Definition 1 (iv) D(¢) = (di,da,...,d;) by
D) = (lemma(dy), lemma(ds), ..., lemma(dy)), then
D(¢) is called a lemmatized definition of /.

We then say that X is a lemmatized lexicon.

Definition 3 (Tagged Lexicon). If we replace in Defini-
tion 2 (iv) the condition d; € A* with d; € A* x P, then
D(¥) is called a tagged definition of .

We then say that X is a tagged lexicon. Example 6 shows
such a lexicon.

Example 6. Let X = (A, P, L, D) be a lexicon such that:
e A={a,b,..., 2}
e P ={N,V,s}, where N = NOUN, V — VERB, S — STOP
e L and D are as defined in Table II.
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TABLE II. Lexemes and definitions for a tagged lexicon

l | D)

HAVEy (tos, owny, ors, possess,)

OWNy (tos, havey, ins, your, possession,)
POSSESSy (tos, havey , ins, itss, possessiony , tos, owny )
POSSESSIONy (having/have,, , ors, owning/own,, , something )

Definition 4 (Disambiguated lexicon). If we replace in Def-
inition 3 (iv) the condition by d; € L, then D(¢) is called a
disambiguated definition of £.

We then say that X is a disambiguated lexicon.

Definition 5 (complete lexicon). Finally, if X is a disam-
biguated lexicon such that for every ¢ that is not a stop lexeme
there is a D({), we then say that X is a complete lexicon.

Example 7. Let X = (A, P, L, D) be a lexicon such as:
e A={a,b,..., 2}
e P ={N,V,S}, where N = NOUN, V — VERB, S — STOP
e [ and D are defined in Table III.

TABLE III. Lexemes and definitions for a complete lexicon

L | D)

HAVEy (TOs, OWNy, ORs, POSSESSy)

OWNy (TOs, HAVEy, INs, YOURg, POSSESSIONy)
POSSESSy (TOs, HAVEy, INg, ITSs, POSSESSIONy, TOs, OWNy )

POSSESSIONy (having /HAVEy, ORs, owning /OWNy, SOMETHINGs )

C. Graphs

In this section, we give a brief overview of the mathemati-
cal model used for our analysis of the structure of lexicons: the
graph theory. But first, let us introduce the notion of semantic
network.

For many authors specializing in artificial intelligence, a
semantic network is an especially useful form of knowledge
representation [43]-[45]. Lehmann gives a very concise def-
inition: “A semantic network is a graph of the structure of
meaning” [46]. In its traditional form, a semantic network
represents objects in the form of nodes, connected to each
other by links, which are optionally labeled. Figure 2 provides
an example of a simple semantic network. Nodes and arrows
represent a subset of a database of free associations [47]. In
this study, the authors asked participants, after showing them a
word, to name the first word that spontaneously came to their
mind. For example, in the diagram in Figure 2, “volcano” is
connected to “explode” by an arrow. This means that several
participants spontaneously associated the word “explode” with
the word “volcano” when the latter was used as a primer.

Using the same type of representation, one can easily
imagine representing a lexicon as a graph where the lexemes
are displayed as nodes and the relations between the lexemes
are indicated by links between the nodes. As an example, let
us go back to the definition of the lexeme HAVEy in exemple 7:

D(HAVEy) = (TOs, OWNy, ORg, POSSESSy)
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Figure 2. Association network [8].

Figure 3 represents this same definition of HAVEy as a semantic
network.

This form of representation is quite similar to the way
Bondy and Murphy introduce the notion of graph [48, p. 1],
i.e., “[...] a diagram consisting of a set of points together with
lines joining certain pairs of these points”. But to properly
represent definitional relations between lexemes, we must be
more specific and introduce the notion of directed graph.

Definition 6 (Directed graph). A directed graph D — digraph —
is an ordered pair (V, A) where:

(i) V is a finite set of vertices,

(ify ACV xV is a finite set of elements called arcs,

Note: If v1,v € V, then (v1,v2) € A does not imply that
(Uz, 1}1) € A.

Example 8. Let D = (V, A) be a directed graph with

V= ‘{’U],’UQ,U?,,’U4},
A= {(/027”1); (’U3,'U1), (Ula U2)7 (03702% (’1}4,’03), (U2a U3)>
(/0271)4)7 ('Ul,'l)4), (7)3,7}4)}

Figure 4 is a visual representation of the digraph D.

From this definition of a directed graph, we derive the
following related notions:

degree
Let D = (V, A) be a directed graph. For u,v € V, u is
a predecessor of v if (u,v) € A. The set of predecessors
of v is written N~ (v). The number of predecessors of v
is called the in-degree of v, represented by deg™ (v). In
the same manner, we say that v is a successor of u if
(u,v) € A and that the set of successors of u is denoted
N7 (u). In this case degt(u) = |[NT(u)| is called the
outer degree of wu.

circuit

A finite sequence p = (vi,va,...,v;) € V¥ is called a

path of D if (v;,v;41) € Afori=1,2,...,k— 1. If in
addition v; = vy, then p is called a circuit.
feedback vertex set

A feedback vertex of D is a subset U C V of vertices
such that, for any set of vertices ¢ forming a circuit in D,
the set U N c is non-empty [49]. That is, U covers all
circuits of D. The minimum feedback vertex set (MFVS)
problem consists in finding in a graph a feedback vertex
set of size as small as possible. For a general graph, it is
an NP-hard problem, namely that there is no algorithm to
solve this problem in polynomial time unless P = NP [50].
However, by using combinatorial operators and linear
programming techniques [51], [52], Vincent-Lamarre et
al. [15] have succeeded in solving the problem for the
smallest lexicons they considered and in finding a good
approximation for the other ones.

strongly connected component

For u,v € V, we write u — v if there exists a path from
u to v and we write u <> if both v — v and v — u hold.
A strongly connected component (SCC) is a subgraph of
D induced by an equivalence class of the relation <> over
V. In other words, when it is possible to move from a
vertex u to a vertex v in a strongly connected component,
it is also possible to go in the opposite direction from
the vertex v to the vertex u. Moreover, since <> is
an equivalence relation and in particular, transitive, the
induced subgraph will be of maximal size [11].

D. Lexicons and Associated Graphs

Directed graphs are especially suitable for representing the
relations between the lexemes of a lexicon. For our analysis
of the structure of lexicons, we consider only the definitional
relations of the type: lexeme [ “is part of the definition” of
lexeme [’

We represent a lexicon using the following conventions:

e The vertices of the graph correspond to the lexemes.
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Figure 3. Semantic Network Representing Definitional Relationships

Figure 4. Digraph D

e The arcs between the vertices correspond to the relations
between the lexemes. For example, if an arc goes from
vertex [ to vertex I, it means that lexeme [ is part of the
definition of I'.

e With regard to stop lexemes, we consider that their lexical
value is very low compared to lexemes of other parts
of speech (noun, verb, adjective and adverb). We do not
represent them in the associated graphs and we do not
take them into account in our analysis. This way of doing
things is used very often in NLP [35], in information
research (RI) [53], and in data mining [54].

More formally, we define an “associated graph”, as follows.

Definition 7 (Associated graph).
Let X = (A, P, L, D) be a complete lexicon. Then G(X)
is X’s associated graph if:
(i) G(X)=(V,A) is a directed graph
@ v=cC
(iii) If ¢ € D(¢') and ¢ is not a stop lexeme, then (¢,¢') € A

The following example 9 shows the graph associated with
the small lexicon X4, containing 4 vertices — 4 lexemes —
and 9 arcs — 9 definitional relations —.

Example 9.

Let Xgman = (A, P, L, D) be a complete lexicon where
L and D are shown in Table IV.

Figure 5 illustrates the graph corresponding to the lexicon
Xs7nall~
Example 10.

Figure 6 shows the graph associated with the larger
Xiarge = (A, P, L, D) lexicon, comprising 40 vertices and

TABLE IV. Complete lexicon

¢ | D(®)

HAVEy (TOs, OWNy, ORg, POSSESSy)

OWNy (TOs, HAVEy, INs, YOURg, POSSESSIONy )

POSSESSy (TOs, HAVEy, INg, ITSs, POSSESSIONy, TOs, OWNy )

POSSESSIONy | (having/HAVEy, ORs, owning/OWNy, SOMETHING; )
123 arcs.

III. LEARNING STRATEGIES

In this section, we examine the relationship between the
learning of new words and the structure of dictionaries.

First, we look into what is implied by the phrase “learning
new words”. We seek to understand how we learn to associate
a linguistic token, whether read or heard, with a meaning. For
this purpose, we reexamine the symbol grounding problem [16]
and the pedagogical approach traditionally used to mitigate this
difficulty: the construction of word lists.

In a second step, we propose a high-level model to repre-
sent the process of learning new words. After having formally
defined what “learning a new word” means in our context, we
propose different algorithms to simulate this behaviour.

A. Learning new words

In this section, we address the issue of vocabulary acqui-
sition, particularly in the context of second-language learning.
First, we seek to identify the main difficulties encountered
when using a monolingual dictionary to learn the meaning of
the new words encountered.
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Figure 5. Graph associated with the lexicon X g,q11

Symbol Grounding Problem:

In several articles dealing with this matter, Harnad ana-
lyzes the problem of grounding symbols, the famous Symbol
Grounding Problem [16], [55], [56]. Without going into the
details of linguistics and cognitive science, this question can
be summarized as follows: Where does the meaning of words
come from? How is it that a word we know usually conjures
up something specific? According to Harnad, this is because
the words are grounded in a sensorimotor way:

“How are word meanings grounded? Almost cer-
tainly in the sensorimotor capacity to pick out their
referents.” [56]

However, it is clear that the learning of new words does
not occur in the same way for a young child assimilating the
first basics of his mother tongue as for an adult studying a new
language.

When a second-language learner encounters a word he does
not know, one way around this difficulty may be to consult
a dictionary to find the definition of the unknown word. If
everything goes well, the definition allows him to “learn” the
new word and memorize it. Let us illustrate this situation with
an example from [16]:

(1) Suppose a learner already knows the word horse, which
is well grounded in his sensorimotor experience. He can
easily recognize a horse if he sees one.

(2) Let’s also suppose that striped is known in the same
manner

(3) He would then presumably be able to identify a zebra if he
sees one, using only a simple definition such as “striped
horse”. He could associate the symbol — the word zebra —
with the animal that looks like a horse and that is striped.

But things get more complicated if there are too much
words in the definition that he does not know. In the article of
Blondin Massé et al, the authors describe the uncomfortable
situation where one would endlessly run through the dictionary,
going from unknown words to other unknown words, without
hope of arriving at understanding of the words and of their
definitions [11]. Therefore, for the definition of a word in a
dictionary to be understandable and useful, a sufficient number

of words must already be “grounded”, that is, they must mean
something more than abstract forms on paper or on a screen.
We do not study further how words are actually grounded
in sensorimotor experience. We keep in mind that if enough
words in the definition are known and well grounded, one can
learn a new word and ground it in turn.

Minimum Grounding Set:

We now examine how our formal model for lexicons and
associated graphs reflects the symbol grounding issue.

First, assume that we can learn a new lexeme only if we
already know all the lexemes that appear in its definition. We
can then define a grounding set as a subset of lexemes allowing
us to learn all the other lexemes in this lexicon.

Definition 8 (Grounding set). Given

(a) X =(A,P,L,D) a complete lexicon,

(b) G(X) = (V, A) its associated graph,

(¢) U CV asubset of V,

(d) L}a function defined by L(U) =UU{v € V | N~ (v) C
U},

if there is a k € Z* such that L*(U) = V, we then say
that U is a grounding set of X and that L is k-reachable.

Looking again at lexicon Xj,,¢. in Figure 6, we can use
this definition to validate if a subset of the vertices of Xjqrge
is a grounding set.

Example 11.

Let us use a starting subset U = { HAVE%, PLACE%,,
POSSESSION., QUALIFYL, REFER!, STATE., THING. }.

If we recursively apply the previously defined function L,
we get:

LYU)=U

LY(U) = L°(U) U {PARTICULARY, POSITION}, OWN{ }
L*(U) = L'(U) U {POSSESS:, SOMETHING }

L*(U) = L*(U) U {CONDITIONL }

LY(U) = L*(U)
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In Figure 7, the elements of the sets L°(U), LY(U), L*(U)
and L3(U) are respectively marked with the symbols @, @,
2 and @.

For example, we can see that the lexeme OWN\I, 18
I-reachable since it can be learned from the lexemes
POSSESSION} and HAVE!. Similarly, the lexeme POSSESS!
is 2-reachable since it can be learned from the lexemes
POSSESSION} and HAVEL, and OWNl. Moreover, since we
have L*(U) = L3(U), there is no way we can learn additional
lexemes and U is not a grounding set of the X4, lexicon.

Blondin Massé et al. have shown that there is also an exact
correspondence between the grounding sets of a lexicon X and
the feedback vertex sets of the associated graph G(X) [11].
So, if U is a grounding set of G(X), it means that we
can learn by definition all the other lexemes of X, that is
V'\ U. As explained earlier in Section II-C, the calculation
of a minimum feedback vertex set is, in general, an NP-
hard problem. However, as the article by Vincent-Lamarre et
al. [15] demonstrates, it is possible to use algorithms and linear
programming techniques to calculate an exact solution or at
worst to find a close-enough approximation. To illustrate the
calculation of minimal grounding sets, let us look again at
examples of complete lexicons presented in Section II-D.

Example 12.

For the trivial lexicon X,,,4;; from Figure 8, one can easily
find by trial and error a minimum feedback vertex set, for
instance: {HAVE!, POSSESSION/ }.

Example 13.

On the other hand, for the Xj,.¢. lexicon, which is still
diminutive compared to a real-life dictionary, we find that
the “manual” method is not adequate for finding a minimum
grounding set. Figure 9 illustrates a minimum grounding set
obtained using the method described in Vincent-Lamarre et
al. [15].

{ACCOMPLISHL, HAVE!, IMPORTANT}, LIKE!,
MAKE!, PLACE}, POSSESSION}, QUALIFYL,
REFERY, STATE}, THING;, NOT;, ELSE}}

B. Word lists

Let us look at the connection that can be established be-
tween the notions of symbol grounding and minimal grounding
set, and the techniques used for teaching languages.

The importance given to vocabulary teaching in second
language classes has varied over the years, following the evo-
Iution of theories and approaches in language didactics [57].
But the fact remains that for students, the acquisition of a large
vocabulary is essential for attaining proficiency in a language.
Teachers and researchers in applied linguistic have thus long
sought ways to facilitate the learning of new words for their
students. In this context, one can understand their interest in
word lists.

Word lists are of word groupings representative of a spe-
cialized field or a language that students must master as early
as possible to become autonomous in their study. They then
have a base of known words allowing them to independently
use dictionaries or other tools to help learning. According to
Nation, "Word lists lie at the heart of good vocabulary course
design" [58].
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In the 1930s, Charles Ogden first introduced his "Basic
English", a version of English with simplified grammar and
vocabulary [59]. Basic English was to become, according to
Ogden, a universal language, somewhat like Esperanto. To
facilitate the learning of this basic English, several lists of
words - between 850 and 2000 words - were subsequently
built [60].

In the 1950s, West proposed its General Service List
(GSL), containing about 2000 words frequently used in English
[61]. The GSL has since become a key reference: “There has
been no comparable replacement for the GSL up to now” [62].

More recently, Brezina and Gablasova [63], as well as
Browne [64] both proposed an improved version of the GSL,
named in both cases the New General Service List (NGSL).
Browne also suggests 3 additional lists to complement the
NGSL [65]:

e The “New Academic Word List” (NAWL);
e The “TOEIC Service List” (TSL);
e The “Business Service Lists” (BSL).

But how are these lists constructed? The most commonly
used method is to count the relative frequency of words in a
collection of relevant documents and then classify those words

in a list according to their frequency and their importance
for the author. In a recent publication, Nation presents a de-
tailed description of list construction techniques using corpora
[58].

In this article we propose a different approach, never used
before as far as we know. With this new method, we use a
lexicon and simple graph theory algorithms to efficiently build
word lists. To accomplish this, we first represent the lexicon
as a directed graph and then use graph algorithms to identify
a list of words allowing us to effectively “learn” all the other
words of the lexicon.

C. Learning model

In an article by Picard et al. [13], the authors put forward
the hypothesis that there are two ways to learn new words or
new lexical meanings: verbal instruction and direct sensorimo-
tor induction.

We rely on this premise to build our formal model of
learning. We say that a new lexeme can be learned in two
different ways:

Direct learning: With this approach, lexeme and lexical

meaning are directly connected through sensorimotor ex-
perience. For example, during a visit to a farm, someone
could explain to a child that the animal in front of him
is called a “horse”.
To keep our model simple, we do not concern ourselves
about the way this link is established or what is going on
at the mental and sensorimotor levels. We stick to the fact
that it is a complex operation, which often requires the
intervention of a person or some other entity to clarify the
matter. We have to get out of the pure “world of words”,
so we consider it to be a relatively costly process.

Definition learning: In this case, some lexical information is
used to establish the link between the meaning and the
lexeme; for example, a student searches a dictionary to
find the definition of a zebra.
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(Lexemes are marked according to their k-reachability ffrom U).
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Figure 8. Graph associated to lexicon X g q11
(Lexemes in the minimum feedback vertex set are marked in red).

We assume that this form of learning is much less
expensive than direct learning. It does not require the
intervention of people, nor the participation of a third
party to provide explanations; we remain in the exclusive
sphere of words and meanings.

Nevertheless, in order to avoid falling into the trap of
symbol grounding, we need to assume that a lexeme can
only be learned by definition if it is completely defined,
that is all lexemes in its definition are already known.
In our model, we use a monolingual lexicon as our
external data source.

Within this model, our learning objective is stated as
follows. Starting from an initial situation where we do not
know the meaning of any lexeme, we aim to learn the meaning
of all the lexemes of a lexicon. To do this, the learning process
involves learning the lexemes one by one according to the
following rules:

1) If a lexeme in the lexicon is unknown, but all the
elements in its definition are known already, we learn it
by definition.

2) Otherwise, we learn directly the next lexeme indicated by
the learning strategy.

3) Repeat the previous steps until the entire lexicon is
learned.

Learning Strategy:

Let us now formally define a learning strategy.

Definition 9 (Learning Strategy). Let X = (A, P,L,D) be a
complete lexicon.

(i) A learning strategy S is an ordered sequence of elements
from L.

(if) If the sequence S viewed as a set is a grounding set of
X, we say that S is exhaustive.

(iii) Otherwise, we say that S is non exhaustive.

In other words, a learning strategy for a lexicon is simply
a list of lexemes in that lexicon sorted in the order in which
they are to be learned. As we will see in the next section, this
list can be derived from an external word list, for example

the Brysbaert and New [66] usage frequency list, or it can be
determined using an algorithm. It is an exhaustive strategy if
it allows us to learn all the lexemes in the lexicon.

Taking into account the two learning ways described above,
we intuitively find that the learning effort for a strategy will
be minimized if it requires to learn directly as few lexemes
as possible. Without loss of generality, we further assume the
cost of learning directly a lexeme to be 1 and O for learning
by definition . We also say that a given strategy S; is more
efficient than strategy S5 if S; allows to fully learn the lexicon
at a lower cost than S;.

Learning Algorithms:

We now expose the 3 algorithms that will let us calculate
the cost of a learning strategy and determine if it is exhaustive.

Algorithm 1: Partial learning cost

The PARTIALCOST function computes the actual cost
attributed to a strategy. As we mentioned before, some
strategies, deemed non-exhaustive, fail to completely
learn a lexicon. If so, PARTIALCOST calculates the cost
so far and returns the portion of the lexicon that could
not be learned. Otherwise, if the strategy is exhaustive,
the cost returned corresponds to the total cost and there
are no more lexeme to learn. Incidentally, this also allows
us to verify if a strategy is exhaustive or not.

The function PARTIALCOST() accepts the following pa-
rameters:

e S, a learning strategy.
e X, a lexicon.

It returns as result the couple (cost, X), where:

e cost is the cost incurred by the strategy S for learning
lexicon X,

e X' is the remaining portion of X that could not be
learned with S. X’ can be used to determine if S is
exhaustive:

o If lexicon X’ is empty, then the strategy S is
exhaustive and cost is equivalent to the total cost.
o If lexicon X' is not empty, then strategy S is non-
exhaustive. We must then use a fallback strategy to
completely learn the lexicon and get the total cost.

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

260

PARTICULARY

IMPORTANCELY, I:

Figure 9. Graph associated to lexicon Xjqrge
(Lexemes in the minimum feedback vertex set are marked in red).
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The flow of Algorithm 1 is as follows:

line 4: Get next lexeme from strategy.

line 5: Make sure lexeme exists in lexicon.

line 7: Learn lexeme directly, at cost 1.

lines 8-10: Then learn by definition, at cost 0, all lexemes
completely defined.

line 12: Repeat the preceding steps until both the lexicon
and the strategy are empty.

line 13: The cost of the strategy is the sum of the
learning cost for all lexemes learnt directly.

Algorithm 1

1: function PARTIALCOST(S : strategy, X : lexicon)
: (cost, lexicon)

2: cost < 0

3:  while S # () and X # () do

4 £ < S.POP()

5: if /€ X then

6: Remove ¢ from X

7 cost < cost+ 1

8: while 3¢ € X with deg™ (¢/) = 0 do

9: Remove ¢ from X

10: end while

11: end if

12: end while

13: return (cost, X)

14: end function

Algorithm 2: Dynamic Degree Learning Cost

The DYNAMICCOST algorithm calculates the cost to learn
all the lexemes in a lexicon. At each iteration, it choses the
node having the maximum out-degree amongst the ones
remaining in the graph. In other words, it directly learns
the lexeme appearing in the largest number of definitions.
The function DYNAMICCOST() accepts only one param-
eter:

e X, a lexicon.
The flow of Algorithm 2 is:

line 3: Get the lexeme that corresponds to the highest
out-degree node from associated graph.

line 6: Learn lexeme directly, at cost 1.

lines 7-9: Learn by definition, at no cost, all lexemes
completely defined.

line 10: Get next lexeme with highest out-degree.

line 11: Repeat preceding steps until the lexicon and the
strategy are empty.

line 12: The strategy’s cost is the sum of the learning
cost for all lexemes learnt directly.
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Algorithm 2

1: function DYNAMICCOST(X : lexicon) : cost
2 cost < 0

3 ¢ < lexeme whose out-degree is highest

4 while ¢ # () do

5: Remove ¢ from X

6 cost < cost+ 1

7 while 3¢ € X with deg™ (¢') = 0 do
8 Remove ¢ from X

9

end while
10: { < lexeme whose out-degree is highest
11: end while
12: return cost

13: end function

Algorithm 3: Total Learning Cost
This algorithm calculates the total cost incurred for learn-
ing all lexemes in lexicon X using strategy S.
For exhaustive strategies, the total cost obtained with
this algorithm is identical to the one obtained with Al-
gorithm 1. For non-exhaustive strategies, the total cost
obtained is the sum of strategy S°s cost, plus the cost
incurred by applying to the remaining portion X’ of the
lexicon a fallback strategy. It is theoretically possible
to devise different algorithms that could be used as a
fallback strategy. In our case, we use the DYNAMICCOST
dynamic out-degree computation method described in
Algorithm 2.
The parameters for the function TOTALCOST() are:
e S, a learning strategy.
e X, a lexicon.

It returns as result:
e fotal cost: the total cost incurred by learning all lex-

emes in X.

Algorithm 3

1: function TOTALCOST(S : strategy, X : lexicon)
: cost

2 (cost, X') <= PARTIALCOST(S, X)

3 (total cost) + cost + DYNAMICCOST(X")

4: return fotal cost

5: end function

Complexity Analysis:

The algorithms described in the previous section are very
efficient and easy to implement. Here is an evaluation of their
complexity:

Algorithm 1 : If we take as hypotheses that:

(a) G is the graph associated with lexicon X.

(b) n is the number of vertices in G.

(¢) m is the number of arcs in G.

(d) At line 6, vertex removal is done in O(1).

(e) At line 8, we only look at the neighbors of the deleted

vertices.
Then, the time complexity is O(n + m) and the space
complexity is O(n).
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Algorithm 2 : If we take as hypotheses that:
(a) G is the graph associated with lexicon X.
(b) n is the number of vertices in G.
(¢c) m is the number of arcs in G.
(d) At line 5, vertex removal is done in O(1).
(e) Atline 7, we only look at the neighbors of the deleted
vertices.
(f) At lines 3 and 10 the list of candidates is managed
using a priority queue, in time O(logn).
(g) The priority queue is implemented using a heap
The total cost for line 3 is O(mlogn), since each vertex
v is processed in O(logn) at most O(deg(v)) times. The
time complexity is therefore O(mlogn) and the space
complexity O(n).
Algorithm 3 : The time complexity for Algorithm 3 is there-
fore O(mlogn) and the space complexity is O(n).

IV. DATA SETS

In this section, we present the data we used to study of
the structure of the dictionaries. First of all, we describe the
digital dictionaries from which the lexicons and asssociated
graphs were built. All of them are works from professional
lexicographers and are published in electronic format. Then,
we look at the different learning strategies developed to “learn”
the words in the lexicons. They are of two types:

e psycholinguistic strategies, built from specially labeled
word lists, called psycholinguistic norms,

e algorithmic strategies, obtained by analyzing the structure
of graphs associated with the lexicons.

A. Digital Dictionaries

As a basis for the analysis of lexicon’s structure, we
used eight different monolingual English-language dictionaries
developed by professional linguists. Most of them are available
in digital or paper format, with the exception of Wordsmyth,
available only on the web.

The Cambridge International Dictionary of English (CIDE)
is an English-language dictionary developed for ESL — English
as a Second Language — students [7]. The version we used
comprises about 19,000 articles and 47,000 lexemes.

The Longman Dictionary of Contemporary English
(LDOCE) is an advanced dictionary also for ESL students.
It was first published in 1978 [6]. It includes about 29,000
articles and 70,000 lexemes.

These 2 dictionaries, CIDE and LDOCE, have a common
feature [67], [68]. They are both “monolingual learners dic-
tionaries” (MLD), that is dictionaries developed especially for
the needs of second language students, in this case English
[69, p. 739, Rundell]. Both of them were built from their
own control vocabulary. In other words, all definitions use
only words from a restricted vocabulary, making it easier
for novice users to understand definitions. In both cases, the
control vocabulary contains about 2000 lexemes.

The Merriam-Webster’s Collegiate Dictionary (MWC) is
the largest dictionary we studied [21]. The 11th edition
includes more than 250,000 lexemes, grouped into 70,000
articles.

WordNet (WN) is not a dictionary in the true sense of
the word. It is rather a lexical database of the English-
language [69, p. 665, Fellbaum]. The different lexemes are
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regrouped into synonym sets or synsets. Each synset then
refers to a “meaning” and to a gloss — definition —. Synsets
are also connected to each other by different types of semantic
relations, such as hyponymy, hyperonymy, etc. The version we
used, WordNet 3.0, contains about 132,000 lexemes grouped
into 57,000 synsets.

According to its authors, Wordsmyth is at the same time
a dictionary and a thesaurus [41]. Unlike CIDE and LDOCE,
it does not use a control vocabulary. However it offers, in
addition to the definition of a given word, information about
its synonyms, antonyms and similar words [41]. It is available
in 4 versions:

e The “Wordsmyth Educational Dictionary-Thesaurus”
(WEDT) is the most comprehensive, comprising 73,000
lexemes. It was first developed in the 1980s.

e The “Wordsmyth Illustrated Learner’s Dictionary”
(WILD) is an illustrated dictionary for children. It
includes 4,200 lexemes.

e The “Wordsmyth Learner’s Dictionary-Thesaurus”
(WLDT) is an intermediate level dictionary. It comprises
6,000 lexemes.

e The “Wordsmyth Children’s Dictionary-Thesaurus”
(WCDT) is a beginners dictionary. It contains 20,000
lexemes.

Using a sequence of pre-treatments, we transformed all
these digital dictionaries into disambiguated and complete
lexicons. To do this, we first extracted from each dictionary
the words with the desired parts of the speech: noun, verb,
adjective and adverb. In addition, we did not considered the
compound lexical items in our analysis; they were ignored dur-
ing the transformation of dictionaries into lexeme graphs. We
then lemmatized and pos-tagged the lexemes in the definitions
with the “Stanford POS-tagger” [70], again ignoring the stop
words. Finally, we disambiguated the lexemes using the first
sense heuristic.

Table V presents some basic statistical data for the 8
lexicons considered:

e The number of lexemes in each dictionary (Lexemes).

e The number of lemmas (Lemmas).

e The average polysemy, being the average number of
lexemes per lemma.

e The number of lexemes used in the definitions (Lexemes
used).

e The ratio of the number of lexemes used vs the total
number of lexemes (Usage Ratio).

TABLE V. Basic statistical data on lexicons

Lexemes Lemmas  Polysemy  Lexemes  Usage
Lexicon Used Ratio
WILD 4 244 3 081 1.377 2 995 0.972
WLDT 6 036 3433 1.758 2212 0.644
WCDT 20 128 9 303 2.164 6 597 0.709
CIDE 47 092 18 694 2.519 8 773 0.469
LDOCE 69 204 22 511 3.074 10 074 0.448
WEDT 73 091 28 986 2.522 18 197 0.628
WN 132 547 57 243 2.316 29 600 0.517
MWC 249 137 68 181 3.654 33 533 0.492

After building the graphs associated with the lexicons, we
then analyzed their structure. Many measures can be applied
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to networks or graphs. Among others, Batagelj et al., identify
a series of measures specifically aimed at dictionary graphs
[71]. For our analysis, we selected the numbers that present
a quick overview of the graphs. Table VI shows the results
obtained from the graphs associated with the 8 lexicons:

The number of vertices (Nodes).

The number of arcs (Arcs).

The number of strongly related components (SCCs).

The number of lexemes in the largest SCC (<SCC).

The diameter of the largest SCC (Diameter), being “[...]

the largest number of vertices that must be traversed in

order to travel from one vertex to another” [72, ].

e The density of the graph (Density).

The density of a graph G = (V, E) is the ratio of the
number of arcs |E| in G over the maximum number of
arcs possible = (|V]-|V —1])/2 [73].

e The Characteristic Path Length (CPL) — the average
length of the shortest paths — is calculated for a graph
G = (V, E) using the following formula [74]:

Z d(u,v)

VIQVT=1)

u,veV

TABLE VI. Associated graphs structural data

Nodes Arcs SCCs <SCC Diam. Dens. CPL
Lexicon
WILD 4244 45789 2750 1446 17 10.79 1.75
WLDT 6 036 28 623 5088 858 25 474 1.10
WCDT | 20 128 102 657 17 551 2 341 22 510 0.87
CIDE 47 092 334888 45306 1702 16 7.11 0.21
LDOCE| 69204 415052 67224 1770 16 6.00 0.16
WEDT | 73091 362569 67 318 5056 29 496 0.61
WN 132 547 694 067 124 589 7 079 30 524 0.50
MWC |249 137 1 155085 239 478 8 842 29  4.64 0.31

B. Learning Strategies

There are a very large number of different strategies for
learning all the words of a dictionary or lexicon. One could
imagine trying them all. If a lexicon contains n lexemes, there
are then n! different ways to order them to specify a learning
order. Except for trivial cases, it is obviously impossible to
evaluate all those possibilities. We decided to restrict our study
to two kinds of strategies:

e Psycholinguistic Strategies: These strategies are based
on lists of words ordered according to psycholinguistic
properties.

e Algorithmic Strategies: These strategies are built using
algorithms from graph theory. Among these, one can dis-
tinguish the adapted strategies, built solely for a specific
lexicon, and the global strategies based on normalized
structural properties common to all lexicons.

Psycholinguistic Strategies:

Researchers interested in the cognitive aspects of language
have long used standardized databases, called psycholinguistic
norms, which group words according to their psycholinguistic
properties [75]-[78]. For example, the MRC database lists
150,837 English-Language words, for which 26 different psy-
cholinguistic properties are listed [78].
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Among the recent psycholinguistic norms, we have selected
five of them, made available by their authors as a supplement
to their research work. They are lists of words based on
psycholinguistic variables frequently used by researchers in
language psychology: words usage frequency, age of acqui-
sition and degree of concreteness [19]. The usage frequency
measurement is probably the most commonly used norm for
psycholinguistic research [66]. It is a measure of the rate of
occurrence of words within a given corpus, normalized to 1
million. Age of acquisition is an estimation of the age at which
children are presumed, on average, to have learned a word. As
for the concreteness, it "[...] refers to the degree to which words
refer to individuals, places and objects that can be seen, heard,
touched, smelled or tasted" [80, cited by [75]].

Table VII presents the 5 data sources we used to construct
our learning psycholinguistic strategies, versus the psycholin-
guistic variables from which they were derived. It goes without
saying however that our analysis could easily be extended
to other databases or other variables, depending on data
availability.

TABLE VII. Psycholinguistic Variables and Learning Strategies

Variable | Strategy | Source | # Words

Usage frequency FREQBgysbacrt [66] 74 000

Usage frequency FREQNGsL+ [65], [81], 6 600
[82], [83]

Age of acquisition AOABysbacrt [84] 31 000

Age of acquisition AOA Childes [85] 13 000

Concreteness CONCiysbaert [86] 37 000

To build our learning strategies, we first lemmatized and
disambiguated the words from the databases in order to
transform them into lexemes, and then ordered them according
to the psycholinguistic variable considered. For example, for
a strategy based on the age of acquisition, the first lexeme
proposed by the strategy corresponds to the word that the
authors consider to be learned the earliest in the development
of the child. Then the second lexeme suggested corresponds to
the second word learned and so on until we get to the lexeme
estimated to be learned the latest.

An additional alignment step between lexicons and strate-
gies is required. Since the psycholinguistic data used to
construct the strategies come from heterogeneous sources,
the lexemes they contain do not necessarily match with the
lexicons. When a lexeme proposed by a strategy does not
appear in a lexicon, we choose to simply ignore it. In particular,
we do not measure the degree alignment of psycholinguistic
strategies with lexicons, that is, the size of the intersections
between the strategies and the lexicons. This is one of the
limitations of our analysis. If we were to tackle it in the future,
this could possibly allow a more refined assessment of the
quality of the strategies.

Let us now look at how the different learning strategies
were developed.

The first strategy in table VII, FREQg;yspaert is derived from
the norm described in [66]. The authors assembled it from
SUBTLEX(ys, a corpus of film subtitles in American English.
It includes 74,000 unlemmatized words.

The FREQngsL+ strategy comes from lists of words used
to learn English as a second language. Although word lists
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are not based solely on psycholinguistic criteria, they are still
an important domain of research since the works of Ogden
[59] and West [61]. For this paper, we selected the “New
General Service List” (NGSL) from Browne, Culligan and
Phillips [65]. This is an improved version of West’s original
list, containing 2,800 words selected from the Cambridge
English Corpus (CEC). To enable the NGSL to be more easily
compared to other psycholinguistic strategies, we developed
an augmented version: the NGSL+. The latter is obtained by
concatenating to the NGSL three other lists of complementary
words developed by the authors of the NGSL from specialized
corpora:

e The New Academic Word List (NAWL) is constructed
from a body of academic texts [81]. It contains 963 words.

e The Business Service List (BSL) is a list of 1700 words
related to business and commerce [82].

e The "TOEIC Service List" (TSL) is intended for students
wishing to attain the "Test of English for International
Communication" (TOEIC) certification. It is a list of 1200
words that complement the NGSL [83].

To build the AOAgyshaert Strategy, we used the norm based
on the age acquisition norm from Kuperman et al. [84].
Since it is not possible to get this information directly from
the children themselves, the most frequently used method
is to interview adults and ask them to assess the age at
which they have learned certain words. For their research,
Kuperman, Stadthagen-Gonzalez and Brysbaert used a crowd-
sourcing technique based on the Amazon Mechanical Turk.
Adult participants were asked to estimate how old they were
when they learned the words from a list. From their responses,
the authors constructed a list of 31,000 words tagged with their
estimated age of acquisition, ranging from 1 to 21 years old.

The other age-based acquisition strategy, AOAchiges, USES
data from another source: the project “Child Language Data
Exchange System” (CHILDES) [85]. In this case, a different
method was used to collect the data. The age of acquisition
was estimated from recorded conversations of children aged 1
to 11 years. The resulting list, noisier than the previous one,
contains 13,000 words.

For the CONCpyspaert Strategy, we used Brysbaert, War-
riner and Kuperman’s norm [86]. As with their study on the
age of acquisition, the authors used crowdsourcing to recruit
participants. The adults chosen had to classify words on a
concreteness scale ranging from 1 to 5, 1 being completely
abstract and 5 corresponding to the most concrete words. For
example, the concrete words banana, apple and baby are of
degree 5, while belief and although are respectively of degree
1.19 and 1.07. The list thus created contains 37,000 words.

Algorithmic Strategies:

Algorithmic strategies are lists of lexemes derived from the
structural properties of graphs, which means that lexemes are
ordered according to the results of graph theory algorithms.

Table VIII summarizes the algorithmic strategies we have
experimented with. It should be noted that all these strategies
directly use the COST or DYNAMICCOST algorithms without
resorting to a fallback strategy. In contrast to psycholinguistic
strategies, the techniques used ensure that lexicons are fully
“learned” when the algorithms terminate.

With the first 3 strategies, MFVS. 1.y, DD<icx> and
SD.1.x>, We get as many different strategies as lexicons,
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TABLE VIII. Algorithmic learning strategies

Strategy | Property | Algorithm | Number
MFVS.iexs Min. Grounding Set CosT 8

(1 per lexicon)
DD. ey Dynamic Degree DYNAMICCOST 8

(1 per lexicon)
SD<1exs Static Degree CoSsT 8

(1 per lexicon)
MFVSixed Min. Grounding Set CoSsT 1
DDnixed Dynamic Degree CosT 1
SDmixed Static Degree CosT 1

each one of them being adapted to a specific lexicon. Here
the <1ex> index represents the lexicon. For instance, SDipock
corresponds to the static degree strategy for the LDOCE
lexicon.

The MFVS.i.,. strategies are assembled individually for
each lexicon <1ex> from the minimum grounding set calculated
with the method described in definition 8. Although the prob-
lem of calculating a MFVS is NP-hard in general, it was still
possible to obtain an optimal solution for 6 of the 8 lexicons
and a good approximation for the 2 others. In this specific case,
the order of the lexemes in the strategy is not considered.

With the DD.;.,. Dynamic Degree strategies, the next
lexeme to be learned is not chosen from a predetermined
list. As described in Algorithm 2, it is calculated dynamically
at each step by selecting the vertex whose out-degree is the
highest. Since “learned” lexemes are systematically removed
at each step, it is equivalent to selecting each time the lexeme
that appears in the greatest number of definitions.

For the SD.;.,- Static Degree strategies, the next lexeme
to learn comes from a list containing all the lexicons of the
lexicon. The lexemes are ordered in descending order of the
out-degree of their corresponding vertices. Unlike the DD ¢
strategies, the degree of vertices is computed statically when
the graph is initially built. Thus, one begins to learn the
lexemes from the one that is used in most definitions, going
to the least used.

In order to evaluate whether the use of strategies uniquely
built for each lexicon could distort the results, we also de-
veloped global strategies, based on structural data common
to all the lexicons. Those strategies, called mixed strategies,
are assembled by merging into one global list all the lexemes
coming from the strategies adapted to each lexicon. For exam-
ple, the lexemes from the 8 DD.,,. strategies are merged to
form the DD,,;zeq list. It is built by randomly choosing one
of the 8 lexicons, and then selecting the next lexeme from the
corresponding strategy. If the lexeme is already in the global
list, it is ignored. We then repeat this process until all the lists
are exhausted. For example, the DD,,;,.q strategy was built
by concatenating the lexemes in the order shown in Table IX.

V. RESULTS AND DISCUSSION

In this section, we present the results obtained during our
experiments. First, we explain the different measures collected
during the execution of the algorithms on the lexicons. We then
show comparative results for the various learning strategies
and the 8 lexicons analyzed. We conclude the section with a
discussion of the results.
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TABLE IX. Mixed learning strategies

Number | Lexeme | Origin

1 BE;V DDwiLp
2. HAVE;V DDwn
3. PERSON;N DDwipt
4 USE;N DDwn
5990. DEALFISH;N DDywc
5991. PHENYTOIN;N DDumwce

A. Measurements

To allow for the combinations of strategies and lexicons to
be compared, different performance indicators were recorded
during the tests.

Detailed Learning Measurements:

When learning a lexicon with a strategy, a series of values
is recorded each time a lexeme is learned directly. This makes
it possible to evaluate the pace of the learning process. Table X
shows an overview of the data recorded during one learning
cycle of the MWC lexicon using the AOAg;yspaert Strategy.

TABLE X. Learning progress (partial)

Cost Nodes Arcs Degree Lexeme Fallb.
1 249 056 1 152 896 2 mama;n 0

2 249 054 1152 894 2 mom;n 0

3 249 053 1152 892 8 potty;n 0

4 249 051 1152 884 17 yes;n 0

5 249 047 1152 867 1522 water;n 0

6 249 039 1 151 337 130 wet;a 0

7 249 037 1 151 208 33 spoon;n 0

8 249 036 1 151 175 51 nap;n 0

9 249 030 1151 121 2 daddy;n 0

10 249 028 1151 119 18 hug;n 0

11 249 026 1151 101 212 shoe;n 0

10 249 028 1 151 119 18 hug;n 0

11 249 026 1151 101 212 shoe;n 0
10113 14 14 1 kakemono;n 484
10114 12 12 1 stilbestrol;n 485
10115 10 10 1 ciphertext;n 486
10116 8 8 1 banderilla;n 487
10117 6 6 1 amphitryon;n 488
10118 4 4 1 mannose;n 489
10119 2 2 1 phenytoin;n 490

We can see the following measures:

Cost: Number of lexemes learned directly since the beginning
of the cycle

Nodes: Number of vertices remaining in the graph (before
learning the lexeme)

Arcs: Number of arcs remaining in the graph (before learning
the lexeme)

Degree: Out-degree of the lexeme

Lexeme: Lexeme learned

Fallb.: Cumulative cost of the fallback strategy

Global Performance Measurements:
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At the end of a learning cycle, global performance indica-
tors are also recorded. Table XI shows, for each combination
of lexicons and learning strategies, their performance in terms
of cost, efficiency, percentage of words learned directly, and
coverage (if applicable).

The counters shown are:

Cost: Indicates the total learning cost for the strategy, i.e.,
the total number of lexemes that had to be learned
directly in order to successfully learn the full lexicon (see
algorithms 1 and 2). For example, the cost for the DDy
strategy and the WILD lexicon is 574. Thus represents the
total number of lexemes that had to be learned directly.

Efficiency: Efficiency is the ratio of the total number of
lexemes over the cost of learning. We see that the WILD
lexicon contains 4,244 lexemes and that 1,260 lexemes
had to be learned directly with the FREQngsL+ strategy.
The efficiency of the FREQngsL+ for the WILD lexicon
is therefore 4,244/1,260 or 3.37. We can interpret this
measure as the average number of lexemes that can be
learned by definition for each lexeme learned directly. In
other words, we learn on average 2.37 additional lexemes
by definition every time we learn a lexeme directly.

Pct: Percentage of words learned directly for a given strategy
and lexicon. This corresponds to the proportion of the
number of lexemes learned directly, relative to the total
number of lexemes in the lexicon. For example, for
the WEDT lexicon and the FREQngsL+ strategy, the
percentage of lexemes learned directly is 3 238 over 73
091 or 4.43%.

Coverage: Valid for non-exhaustive strategies only, this num-
ber measures the efficiency of the strategy, as a percentage
of the total cost, vs the fallback strategy. For example,
for the WCDT lexicon and the FREQngsL+ strategy, the
coverage is 82.9%. This means that out of a total learning
cost of 1,354, 1,122 lexemes, or 82.9%, were learned
with the FREQngsL+ strategy. The remaining 232 (17.1%)
were learned with DD, our fallback strategy. On the other
hand, for this same WCDT lexicon and the FREQg;yspaert
strategy, the coverage reaches 99.8%.

It turns out that, unsurprisingly, the most efficient strategies
are those that take advantage of the minimal grounding set:
the MFVS_jx>. Coming right after, the strategies optimized
according to the vertices out-degree - DD x> and DSqjexs -
are also very efficient. We also remark that for some lexicons -
MWC, WN, WEDT, WCDT - the FREQngsL+ and AOA cpiides
strategies have a low coverage rate of less than 90%.

B. Discussion
Global Performance Measurements:

The Figures in this section (Best viewed in colors) compare
different aspects of the learning process for the 8 lexicons
studied. Each of the sub-figures is produced using the detailed
performance measurements recorded while lexemes are being
learned.

The first series of graphs in Figure 10 compare the learning
rate of algorithmic strategies versus psycholinguistic strategies.

To facilitate comprehension, let us examine Figure 10a for
the CIDE lexicon. It shows the learning rate for the algorithmic
strategies MFVScipr and DDcipg in comparison with the
FREQngsL+ and FREQg:yshaert psycholinguistic strategies.

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

266

TABLE XI. Cost, efficiency, percentage and coverage

CIDE LDOCE MWC WN WEDT WCDT WLDT WILD

Strategy Measure
# Lex 47 092 69 204 249 137 132 547 73 091 20 128 6 036 4244
MFVS Cost 349 484 1 544 1251 1365 570 231 340
Eff. 134.93 142.98 161.36 105.95 53.55 35.31 26.13 12.48
Pct 0,74% 0,70% 0,62% 0,94% 1,87% 2,83% 3,83% 8,01%
Cov. S. 0. s. 0. S. 0. s. 0. s. 0. s. 0. s. 0. s. 0.
DD Cost 684 843 3095 2 566 2 389 897 394 574
Eff. 68.85 82.09 80.50 51.66 30.59 22.44 15.32 7.39
Pct 1,45% 1,22% 1,24% 1,94% 3,27% 4,46% 6,53% 13,52%
Cov. s. 0. s. 0. s. 0. s. 0. s. 0. s. 0. s. 0. s. 0.
DS Cost 687 838 3 081 2 558 2 386 899 394 577
Eff. 68.55 82.58 80.86 51.82 30.63 22.39 15.32 7.36
Pct 1,46% 1,21% 1,24% 1,93% 3,26% 4,47% 6,53% 13,60%
Cov. s. 0. s. 0. s. 0. s. 0. s. 0. s. 0. s. 0. s. 0.
MFV S mixed Cost 704 966 3077 2 835 2 348 957 398 612
Eff. 66.85 71.64 80.96 46.75 31.13 21.03 15.17 6.93
Pct 1,49% 1,40% 1,24% 2,14% 3,21% 4,75% 6,59% 14,42%
Cov. S. 0. S. 0. s. 0. S. 0. s. 0. S. 0. s. 0. s. 0.
DDinixed Cost 768 963 3 466 3 002 2 574 987 448 645
Eff. 61.32 71.82 71.88 44.15 28.39 20.39 13.47 6.57
Pct 1,63% 1,39% 1,39% 2,26% 3,52% 4,90% 7.42% 15,20%
Cov. s. 0. s. 0. s. 0. s. 0. s. 0. s. 0. s. 0. s. 0.
DSmixed Cost 793 988 3776 3021 2721 1 024 454 678
Eff. 59.32 70.00 65.98 43.87 26.86 19.65 13.30 6.25
Pct 1,68% 1,43% 1,52% 2,28% 3,72% 5,09% 7,52% 15,98%
Cov. s. 0. s. 0. s. 0. s. 0. s. 0. s. 0. s. 0. s. 0.
FREQ~GsL+ Cost 2 813 1954 5 008 4127 3238 1354 712 1 260
Eff. 16.74 35.42 49.75 32.12 22.57 14.87 8.48 3.37
Pct 597% 2,82% 2,01% 3,11% 4,43% 6,73% 11,80% 29,69%
Cov. 97.0% 90.4% 71.2% 73.4% 67.7% 82.9% 97.9% 92.8%
FREQgysh Cost 6 751 2 170 8 217 7 204 6 555 1 999 960 1193
Eff. 6.98 31.89 30.32 18.40 11.15 10.07 6.29 3.56
Pct 14,34% 3,14% 3,30% 5,44% 8,97% 9,93% 15,90% 28,11%
Cov. 99.9% 99.3% 96.1% 94.8% 98.7% 99.8% 99.7% 99.6%
AOAChil Cost 4971 5010 7729 7 284 5 586 3 409 1585 2 016
Eff. 9.47 13.81 32.23 18.20 13.08 5.90 3.81 2.11
Pct 10,56% 7,24% 3,10% 5,50% 7,64% 16,94% 26,26% 47,50%
Cov. 99.4% 97.71% 82.9% 86.3% 84.3% 97.3% 99.7% 98.3%
AOARB;ysh Cost 7 105 4 851 10 119 10 340 8 278 2 950 1284 1 430
Eff. 6.63 14.27 24.62 12.82 8.83 6.82 4.70 2.97
Pct 15,09% 7,01% 4,06% 7,80% 11,33% 14,66% 21,27% 33,69%
Cov. 99.6% 99.2% 95.2% 94.0% 96.7% 97.6% 99.5% 95.7%
CONCaiysb Cost 8 900 11 669 16 580 17 037 12 792 6 042 2373 2 477
Eff. 5.29 5.93 15.03 7.78 5.71 3.33 2.54 1.71
Pct 18,90% 16,86% 6,65% 12,85% 17,50% 30,02% 39,31% 58,36%
Cov. 99.7% 99.6% 96.4% 96.0% 97.5% 98.9% 99.7% 97.6%

We can see:

e The curves illustrating the learning rate, identified by a
different color for each lexicon:

CIDE/MFVS_CIDE
CIDE/DD_CIDE
CIDE/FREQ_NGSL+
CIDE/FREQ_Bryshaert

e A tile of the same color as the curve, showing for each
strategy the total cost incurred:

Pt

7000 8000

e Another tile showing, for each non-exhaustive strategy,
the point where it was required to resort to the fallback
strategy:

Fallback

For the CIDE lexicon (Figure 10a) as well as for all the
lexicons in Figure 10, we see that the MFVS strategy is the
most efficient one. This confirms the hypothesis that learning
the minimal grounding set lexemes allows to quickly break the
definition loops.

The graphs in Figure 11 show the learning rate for dynamic
degree strategies versus those based on the static degree. We
note that these two algorithmic strategies, DD <LEX> and SD
<LEX> give in practice equivalent results.

The graphs in Figure 12 compare the learning rate for
the algorithmic strategy DD gy versus the psycholinguis-
tic Strategies FREQNGSL+’ FREQBrysbaerts AOABrysbaert and
CONCgiyspaert- We see that psycholinguistic strategies are
much less effective in breaking the definition loops. Since
the lexemes order is decided according to psycholinguistic
criteria, many lexemes are learned directly and increase the
cost of the strategy, whereas they could have been learned by
definition - at zero cost - later in the learning cycle. Among the
psycholinguistic strategies, the two frequency-based strategies,
FREQngsL+ and FREQg;ysbaert, are the most effective, whereas
the CONCpyspaert Strategy is clearly less efficient. Intuitively,
we see that it is not possible to succeed in learning all the
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words of a dictionary by using only concrete words. One must
combine two kinds of words, abstract and concrete, to build
definitions that properly translate the lexical meaning.

Figure 13 compares the learning rate of age-based strate-
gies. At first glance, AOAchiges Seems to offer a better ef-
ficiency than AOAgyspaer. However, since OAcpiiges cOntains
far fewer lexemes than AOAg;yspaert, its coverage is lower. The
fallback point is reached very soon, before having learned
40% of the lexemes. In this case, the use of a fallback
strategy makes direct comparison between AOAchiges and
AOABR:ysbaere difficult. That being said, although the AOAchildes
and AOABgyspert Strategies are not the most successful ones,
they show that in most cases it is is sufficient to know less
than 15% of the lexemes to learn the rest by definition.

The graphs in Figure 14 compare the mixed algorithms
learning rate against the most effective psycholinguistic strate-
gies. Since they are optimized to use as few lexemes as possi-
ble, algorithmic strategies are clearly more efficient. Lexemes
ordering is the key factor making one strategy more efficient
than the other. We notice large differences in this regard
when comparing strategies based on the same psycholinguistic
criteria. For example, the word dog appears at 485th rank in
AOA hilges, While it is ranked 25th in AOABrysbaert'

Efficiency:

Table XI presents overall performance measurements for
learning strategies. Figure 15 (best viewed in colors) plots
efficiency for each evaluated lexicon and strategy. Each lexicon
is each represented by a color coded curve. The strategies are
shown on the X axis, from left to right in descending order of
efficiency.

We can distinguish 3 different groups of strategies:

1) The 1st group comprises only one strategy: the algorith-
mic MFVS_; ... For every lexicon, it is clearly the most
efficient.

2) The second group gathers the other graph algorithmic
strategies. DD<jcx> and SD.;.,. are uniquely optimized
for each lexicon, while MFVS,ixte, DDmixte and SDpixte
are global strategies common to all lexicons. They are
less efficient than MFVS. .-, but still very good.

3) Finally, the third group brings together the psycholin-
guistic strategies FREQnGsL+» FREQBrysbaem AOA Childes»
AOABRyshaert and CONCgyyspaert- Their performance is
clearly inferior comparer to algorithmic strategies.

In summary, the uniquely optimized strategies,
MFVS. x>, DD.ioxs and SD.j..., are the most efficient
ones. As for the question of whether it is possible to develop
“general” strategies as efficient as “lexicon specific” strategies,
the mixed strategies show that this is possible. The 3 mixed
strategies, MFVS,ixte, DDpixte and SDpixce are almost
as efficient as the “lexicon specific” strategies. For each
lexicon, they perform much better than strategies based on
psycholinguistic variables.

VI. CONCLUDING REMARKS

By definition, a traditional dictionary is a closed world.
According to Amsler, “[...] the dictionary is a closed system,
i.e., words used in definitions are defined elsewhere in the
dictionary” [87, p. vii]. It is therefore possible to build a graph
structure from the words of a dictionary and the definitions
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that link them together. In this article, our goal was to use
graph theory and algorithms to study these dictionary graph
structure.

Although the terms dictionary and word may seem a priori
clear and unambiguous, their imprecision makes them unsuited
for rigorous mathematical analysis. We decided to replace
them in our discussion by more precise terms: lexicons and
lexemes. We also established a linguistic terminology allowing
to formally define the notions of lexicon and associated graph.

In order to explore the structure of lexicons, we have shown
the interest of using a formal word learning process as an
analytical tool. We considered that a word - a lexeme - can
be learned in two ways: by definition, when all the lexemes
in its definition are already known, and by direct learning,
when one needs to invest significant effort to ground it through
some sensorimotor perception. We also described our learning
model, as well as related strategies and algorithms aiming to
minimize the effort and cost required to learn all the lexicons
of a lexicon.

Subsequently, we described the source data used to carry
out our analyzes: monolingual digital dictionaries and psy-
cholinguistic norms.

Finally we exposed our results in two different ways:

e in terms of learning rate, which is a measure of how
quickly a strategy progresses toward its goal of learning
all lexemes;

e in terms of efficiency, being the ratio between the number
of lexemes learned by definition and the number of
lexemes learned directly.

Our analysis confirmed the results of other researchs ( [15],
[16], [55]). Circular relationships between words play a key
role in the organization and structure of dictionaries.

If we consider a dictionary from the strict point of view
of its utility for the reader, the definition of a word will be
relevant insofar as the latter already knows all the words that
make up this definition, or at least enough words to understand
the intended meaning.

“The usefulness of a dictionary definition de-
pends on its ability to explain a meaning using words
the reader already knows” [88].

If this is not the case, the reader must look for unknown
words. And in all dictionnaries, there are necessarily many
circular definitions:

“In a typical dictionary, more than a quarter of all
definitions are written using words whose definitions
ultimately refer back to the word being defined” [88]

A reader who does not know enough of the language will
inevitably encounter intractable definition loops. Our analysis
has shown that the most efficient learning strategies are those
that break those definition loops as quickly as possible. In this
regard, those who use the minimum grounding set - feedback
vertex set of the associated graph - work best. However,
the problem of finding a feedback vertex set is NP-hard.
Even using advanced approximation techniques, this remains
a complex calculation.

Our results show that alternative strategies, built using sim-
ple graph properties, can also be very efficient. For example,
with a strategy ordering lexemes according to the out-degree

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

Number of vertices

Number of vertices

Number of vertices

Number of vertices

50000 — CIDE/DD_CIDE — LDOCE/DD_LDOCE
— CIDE/CONC_Brysbaert 70000 — LDOCE/CONC_Brysbaert
~—— CIDE/FREQ_NGSL+ —— LDOCE/FREQ_NGSL+
— CIDE/FREQ_Brysbaert — LDOCE/FREQ_Brysbaert
40000 — CIDE/AOA Brysbaert 60000 LDOCE/AOA_Brysbaert
50000
30000 g
H
2 40000
s
5
E
20000 2 30000
20000
10000
10000
o 2000 2000 6000 8000 10000 o 2000 2000 6000 8000 10000 12000 14000
Number of iterations Number of iterations
(a) CIDE (b) LDOCE
— MwC/DD_MWC 140000 — WN/DD_WN
250000 = MWC/CONC_Brysbaert — WN/CONC_Brysbaert
= MWC/FREQ_NGSL+ = WN/FREQ_NGSL+
—— MWC/FREQ_Brysbaert 120000 — WN/FREQ_Brysbaert
MWC/AOA_Brysbaert WN/AOA_Brysbaert
200000
100000
g
150000 £ 80000
s
5
5 60000
100000
40000
50000
20000
2
o 5000 10000 15000 20000 o 5000 10000 15000 20000
Number of iterations Number of iterations
(c) MWC (d) WN
80000
— WEDT/DD_WEDT — WCDT/DD_WCDT
= WEDT/CONC_Brysbaert 20000 —— WCDT/CONC_Brysbaert
70000 — WEDT/FREQ_NGSL+ WCDT/FREQ_NGSL+
— WEDT/FREQ_Brysbaert WCDT/FREQ_Brysbaert
— WEDT/AOA _Brysbaert WCDT/AOA_Brysbaert
60000
15000
50000 "
g
£
B
40000 s
2 10000
E
H
2
30000
20000 5000
10000
v . o
[ 2000 3000 6000 8000 10000 12000 14000 o 1000 2000 3000 4000 5000 6000 7000
Number of iterations. Number of iterations
(e) WEDT (f) WCDT
= WLDT/DD_WLDT = WILD/DD_WILD
6000 — WLDT/CONC_Brysbaert — WILD/CONC_Brysbaert
WLDT/FREQ_NGSL+ 4000 — WILD/FREQ_NGSL+
WLDT/FREQ_Brysbaert WILD/FREQ_Brysbaert
5000 WLDT/AOA_Brysbaert WILD/AOA _Brysbaert
3000
4000 1 8
£
g
5
3000 2
£ 2000
E
2000 1
1000
1000 B
e
o 500 1000 1500 2000 2500 o 500 1000 1500 2000 2500 3000

Number of iterations

(g) WLDT

Number of iterations

(h) WILD

Figure 12. Learning: Frequency

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

270



International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

Number of vertices

Number of vertices

Number of vertices

Number of vertices

271

50000 — CIDE/AOA Brysbaert
— CIDE/AOA_Childes 70000 LDOCE/AOA_Childes
40000 60000
50000
30000 i
£
$ 40000
s
2
5
20000 2 30000 N
20000
10000 Couv.: 99.4%
10000
P A
o 1000 4000 5000 0 1000 2000 3000 5000 6000
Number of iterations Number of iterations
(a) CIDE (b) LDOCE
MWC/AOA_Brysbaert 140000
250000 WN/AOA_Childes
(oFb: ) 120000 =
Appris:29.9% :
Couv.: 82.9% Appris:29.7%
200000 - ’ Couv.: 86.3%
100000 2
]
150000 £ 80000
b
£
£ 60000
2
100000
40000 o
“Appris:87.7%
50000 Couv.: 94.0%
20000
I ¥
2000 4000 6000 8000 10000 12000 o 2000 4000 6000 8000 10000 12000

Number of iterations

(c) MWC

Number of iterations

(d) WN

80000
— WEDT/AOA Brysbaert — WCDT/AOA_Brysbaert
— WEDT/AOA_Childes 20000 — WCDT/AOA _Childes
70000
60000
'@Fb: 15000
Appris:40.9%
50000 Couv.: 84.3% "
¢ J g
4
H
g
40000 s
2 10000
E
H
2
30000
20000
5000
10000
v o 2 2
[ 2000 4000 6000 8000 10000 o 500 1000 1500 2000 2500 3000 3500 4000
Number of iterations Number of iterations
(e) WEDT (f) WCDT
— WLDT/AOA _Brysbaert WILD/AOA _Brysbaert
6000 — WLDT/AOA Childes WILD/AOA_Childes
4000
5000
3000
4000 ]
£
H
g
s
3000 2
€ 2000
5
2
2000
@Fb: Pris:96.7%
Appris:99.0% 1000 Couv.: 98.3%
Couv.: 99.7% E—
1000 }
4 A
o 500 1000 1500 o 500 1000 1500 2000 2500

Number of iterations

(g) WLDT

Figure 13. Learning: AOA based Strategies

Number of iterations.

(h) WILD

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

Number of vertices

Number of vertices

Number of vertices

Number of vertices

50000 — CIDE/FREQ_Brysbaert — LDOCE/FREQ_Brysbaert
— CIDE/FREQ_NGSL+ 70000 — LDOCE/FREQ_NGSL+
—— CIDE/SD_mixte — LDOCE/SD_mixte
~—— CIDE/MFVS_mixte — LDOCE/MFVS_mixte
40000 CIDE/DD_mixte 60000 LDOCE/DD_mixte
50000
30000 g
H
2 40000
s
2
E
20000 2 30000
20000
10000
)
o " 1000 2000 3000 2000 5000 6000 7000 8000 o 1500 2500
Number of iterations Number of iterations
(a) CIDE (b) LDOCE
— MWC/FREQ_Brysbaert 140000 — WN/FREQ_Brysbaert
250000 — MWC/FREQ_NGSL+ WN/FREQ_NGSL+
— MWC/SD_mixte WN/SD_mixte
MWC/MFVS_mixte 120000 WN/MFVS_mixte
MWC/DD_mixte WN/DD_mixte
200000
100000
8
150000 £ 80000
s
£
§ 60000
100000
40000
50000
20000

2000 4000 6000 8000 10000

Number of iterations

(c) MWC

S
2000 4000 6000 8000
Number of iterations

(d) WN

— WCDT/FREQ_Brysbaert
— WCDT/FREQ_NGSL+
— WCDT/SD_mixte
WCDT/MFVS_mixte
WCDT/DD_mixte

80000
— WEDT/FREQ_Brysbaert
— WEDT/FREQ_NGSL+ 20000
70000 — WEDT/SD_mixte
WEDT/MFVS_mixte
WEDT/DD_mixte
60000
15000
50000 "
g
4
B
40000 5
2 10000
E
H
2
30000
20000 5000
10000
. o
o 1000 2000 3000 4000 5000 6000 7000 8000 o
Number of iterations.
(e) WEDT
— WLDT/FREQ_Brysbaert
6000 — WLDT/FREQ_NGSL+
— WLDT/SD_mixte 4000
WLDT/MFVS_mixte
WLDT/DD_mixte
5000 =
3000
4000 2
£
g
5
3000 2
£ 2000
E
2000
1000
1000

200 400 600 800 1000 1200
Number of iterations

(g) WLDT

500 1000 1500 2000
Number of iterations

(f) WCDT

— WILD/FREQ_Brysbaert
— WILD/FREQ_NGSL+
— WILD/SD_mixte
WILD/MFVS_mixte
WILD/DD_mixte

200 400 600 800 1000 1200 1400
Number of iterations

(h) WILD
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Figure 15. Lexicons: Efficiency vs Strategies

of their corresponding nodes, one can learn rapidly all the
lexemes of a lexicon. In practical terms, this corresponds to a
list of words ordered according to the number of times words
appear in the definition of other words. Such a method by far
outperforms psycholinguistic strategies .

In addition to their use as a dictionary analysis tool, the
algorithmic strategies examined present additional advantages.
To our knowledge, they represent a new approach for the
development of word lists similar to those used in language
teaching.

The word lists used by ESL teachers have traditionally been
corpus-based, that is mainly built according to words frequency
in a corpus. As an alternative, we propose a simple algorithmic
strategy, based on the out-degree of vertices.

Although it is not possible to claim that the value of a
word list is limited to its “efficiency”, we believe that this new
approach could be used with profit, especially in cases where it
is not possible to use existing word lists. In this case, or in the
absence of an established corpus, the use of a digital lexicon
or specialized dictionary would allow to establish easily a list
of the relevant words or concepts, as well as the order in which
they should be learned.

Future perspectives

A few words about the many research tracks left unex-
plored will conclude this article.

One might first think of extending the field of experimen-
tation to new sources of data. Whether using new dictionaries,
different digital lexicons, other algorithms for graph analysis,
or new psycholinguistic norms, the possibilities are numerous.
Similarly, one could explore dictionaries in fields such as
medicine, mathematics, music or other specialized domains.

In addition, although resources in this area are often quite
difficult to obtain, other languages would definitely offer
rewarding research avenues. The analysis of monolingual dic-
tionaries for languages other than English, or even of bilingual
dictionaries, would for sure present many challenges.

Finally, the use of more advanced techniques to lexically
disambiguate the definitions would offer a significant improve-
ment to our methodology. Although the first sense heuristic
usually gives satisfactory results and constitutes a strong
baseline, newer techniques using neural networks and deep
learning would certainly be worthwhile to explore. Improved
word sense disambiguation as well as handling of compound
lexical items would allow to build associated graphs more
representative of underlying dictionaries and lexicons.
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