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Abstract—In increasingly many information systems that 
publish digital content, the documents that are generated for 
publication are tailored for and delivered to users working in 
different and varying contexts. To this end, the content from 
which an actual document is created is dynamically selected 
with respect to a specific context. The task of content selection 
incorporates queries to an underlying database that hosts data 
representing content. Such queries are parameterized with a 
description of the context at hand. This is particularly true for 
content management applications, e.g., for websites that are 
targeted at a user’s context. The notion of context comprises 
various dimensions of parameters like language, location, time, 
user, and user’s device. Most data modeling languages, 
including programming languages, are not well prepared to 
cope with variants of content, though. They are designed to 
manage universal, consistent, and complete sets of data. The 
Minimalistic Meta Modeling Language (M3L) can be applied as 
a language for content representation. M3L has proven 
particularly useful for modeling content in context. Towards an 
operational M3L execution environment, we are researching 
mappings to databases of different data models, and for each 
data model schemas to efficiently store and utilize M3L models. 
This article discusses such schemas for context-aware data 
representation and retrieval. The main focus lies on efficiency of 
queries used for M3L evaluation with the goal of context-
dependent content selection. This is achieved by expressing 
context-aware models, in particular M3L statements, by means 
of existing persistence technology. 

Keywords-data modeling; data schema; databases; content 
modeling; context-aware data modeling; content; content 
management; content management systems; context. 

I. INTRODUCTION 
In many information systems, e.g., web-based ones, data 

represents content to be incorporated into documents that are 
generated on purpose. More often than not content is required 
to be queried dynamically on document access, calling for 
adequate content storage and retrieval. First studies on such 
content persistence have been reported [1]. This article 
extends the report on the current state of these database 
schema investigations. 

In the digital society [2], data is required to represent all 
kinds of content, ranging from structured content of text 
documents to unstructured, typically binary representations of 

video and audio content. Content is used for many purposes, 
the most obvious ones being information and commerce. 
Content is published by means of documents, often 
multimedia documents incorporating different media that are 
interrelated to form hypermedia networks. So-called 
publication channels offer the medium for one kind of 
publication, e.g., a website, a document file, or a mobile app. 
Content is typically represented in a channel-agnostic way in 
order to support multi- or even omni-channel publishing. 

It is quite common to deliver content to users in a way that 
addresses the context in which they are when requesting the 
content. This may include the channel they are using, the 
working mode they are in, the history of previous usage 
scenarios, etc. Targeting content to users’ contexts can range 
from simply arranging content in a specific way, over 
specifically assembled documents, to content that is 
synthesized for the current requests. Examples are a 
prominent display of teasers for content that is assumed to be 
of interest to the user, the production of documents matching 
a user’s native language, adjustment of document quality 
based on the current network bandwidth and the receiving 
device, and creating content that represents some base data in 
knowledgeable form. 

For such content targeting scenarios, data needs to be 
stored in a way that allows generating different views on the 
content, mainly by selecting content relevant in a certain 
context. Data representing all forms of content in such a 
system, therefore, needs to be attributed with the contexts in 
which it is applicable or preferred. Obviously, some notion of 
context is required for such representations [3]. 

Data modeling and programming languages typically do 
not exhibit features to represent context and to include it in 
evaluations. Database management systems, being the 
backbone of practically every information system, are 
particularly optimized for one connected set of data that is 
supposed to be consistent and complete. This means that they 
are not well equipped for dynamic content production, neither 
regarding content representation nor efficient context-
dependent retrieval. 

Data retrieval needs particular attention when content is 
dynamically assembled depending on some context in which 
it is requested. For the tasks of context-aware content 
management, complex collections of data to be used as 
content are requested frequently. A context-aware schema has 
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to efficiently support the underlying queries that are employed 
to identify relevant content. 

For the discussion of data models, we consider content in 
contexts as it is expressible using the Minimalistic Meta 
Modeling Language (M3L). This language allows expressing 
content in a straightforward way. Being a modeling language, 
there is no obvious mapping to established data structures, 
though. 

The rest of this paper is organized as follows. Section II 
reviews related work in the area of context-aware data and 
content models. Sections III and IV give a brief overview over 
the M3L and describe those parts of the language that are 
required for the discussion in this paper. Section III describes 
the static aspects of the M3L used to define application 
models. Section IV focuses on the dynamic evaluation of such 
models. The architecture of a current M3L implementation is 
discussed in Section V in order to clarify the scope of M3L 
persistence. Section VI presents a first conceptual model of an 
internal representation of M3L concepts. Section VII makes 
this model more concrete by means of logical representations, 
comparable to the logical view on databases. Aspects of M3L 
persistence implementations based on different data models 
are touched in Section VIII. The conclusion and 
acknowledgment close the paper in Section IX. 

II. RELATED WORK 
Context is important in the area of content management, 

but also in other modeling domains. This section names some 
existing modeling approaches to contextual information. 

A. Content Management Products 
Most commercial content management products have 

introduced some notion of context in their models and 
processes. They utilize context information to target content 
to users. Some use the term personalization, which is similar 
to, but different from contextualization [4]. 

In most cases, there are publication rules associated with 
content, similar as discussed in [5]. These rules are based on 
so-called segments. Every user is assigned one or more 
segments. When requesting content, the rules are evaluated 
for the actual segment(s) in order to select suitable content. 

Content authors and editors maintain the content rules. 
Segments are assigned to users automatically by the systems 
based on the users’ behavior (user interactions), the user 
journey (e.g., previously visited sites and search terms used 
for finding the current website), and context information (e.g., 
device used and location of the user). 

Segments offer a rather universal notion of context, though 
there is no explicit context model. 

B. Context-aware Data Models 
Parallel to the notion of context used for content, there 

exists some work on the influence of environments on running 
applications. In mobile usage scenarios, context refers mainly 
to such environmental considerations, e.g., network 
availability, network bandwidth, device, or location. 

Context changes are incorporated dynamically into 
evaluations in these scenarios [6]. 

Context-awareness is not limited to data models. It is also 
used for adaptable or adaptive software systems, e.g., to map 
software configurations to execution environments [7], or to 
control the behavior of a generic solution [8]. 

C. Concept-oriented Content Management 
Concept-oriented Content Management (CCM) [9] is an 

approach to manage content reflecting knowledge. Such 
content does not represent simple facts, but instead is subject 
to interpretation. Furthermore, the history of things is 
described by content, not just their latest state. 

CCM is not directly concerned about modeling context. 
Instead, it aims to introduce a form of pragmatics into content 
modeling that allows users on the one hand to express 
differing views by means of individual content models, and 
on the other hand to still communicate by exchanging content 
between individualized models. 

CCM uses a notion of personalization that goes far beyond 
the one of content management systems (see above). 

It is similar to contextualized content usage, although the 
system does not know about the context of a user. Instead, 
users carry out personalization (in CCM terms) manually. 

A CCM system reacts to model changes and relates model 
variants to each other. The basis for this ability is systems 
generation: based on the definitions of users, schemas, APIs, 
and software modules are generated. 

Some aspects of the considerations presented in 
Section VIII were gained from the research on the generation 
of CCM modules that map content to external data, e.g., 
content representations stored in databases. 

III. THE MINIMALISTIC META MODELING LANGUAGE 
The Minimalistic Meta Modeling Language (M3L, 

pronounced “mel”) is a modeling language that is applicable 
to a range of modeling tasks. It proved particularly useful for 
context-aware content modeling [10]. 

For the purpose of this paper, we only introduce the static 
aspects of the M3L in this section. Dynamic evaluations that 
are defined by means of different rules are presented in the 
subsequent section. 

The descriptive power of M3L lies in the fact that the 
formal semantics is rather abstract. There is no fixed domain 
semantics connected to M3L definitions. There is also no 
formal distinction between typical conceptual relationships 
(specialization, instantiation, entity-attribute, aggregation, 
materialization, contextualization, etc.). 

A. Concept Definitions and References 
A M3L definition consists of a series of definitions or 

references. Each definition starts with a previously unused 
identifier that is introduced by the definition and may end with 
a semicolon, e.g.: 
Person; 

A reference has the same syntax, but it names an identifier 
that has already been introduced. 

We call the entity named by such an identifier a concept. 
The keyword is introduces an optional reference to a base 

concept, making the newly defined concept a refinement of it. 
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A specialization relationship as known from object-
oriented modeling is established between the base concept and 
the newly defined derived concept. This relationship leads to 
the concepts defined in the context (see below) of the base 
concept to be visible in the derived concept. 

The keyword is always has to be followed by either a, an, 
or the. The keywords a and an are synonyms for indicating 
that a classification allows multiple sub-concepts of the base 
concept: 
Peter is a Person; John is a Person; 

There may be more than one base concept. Base concepts 
can be enumerated in a comma-separated list: 
PeterTheEmployee is a Person, an Employee; 

The keyword the indicates a closed refinement: there may 
be only one refinement of the base concept (the currently 
defined one), e.g.: 
Peter is the FatherOfJohn; 

Any further refinement of the base concept(s) leads to the 
redefinition (“unbinding”) of the existing refinements. 

Statements about already existing concepts lead to their 
redefinition. For example, the following expressions define 
the concept Peter in a way equivalent to the above variant: 
Peter is a Person; 
Peter is an Employee; 

B. Content and Context Definitions 
Concept definitions as introduced in the preceding section 

are valid in a context. Definitions like the ones seen so far add 
concepts to the top of a tree of contexts. Curly brackets open 
a new context, e.g.: 
Person { Name is a String; } 
Peter is a Person{"Peter Smith" is the Name;} 
Employee { Salary is a Number; } 
Programmer is an Employee; 
PeterTheEmployee is a Peter, a Programmer { 
 30000 is the Salary; 
} 

We call the outer concepts the context of the inner, and we 
call the set of inner concepts the content of the outer. 

In this example, we assume that concepts String and 
Number are already defined. The sub-concepts created in 
context are unique specializations in that context only. 

As indicated above, concepts from the context of a concept 
are inherited by refinements. For example, Peter inherits the 
concept Name from Person. 

M3L has visibility rules that correlate to both contexts and 
refinements. Each context defines a scope in which defined 
identifiers are valid. Concepts from outer contexts are visible 
in inner scopes. For example, in the above example the 
concept String is visible in Person because it is defined in 
the topmost scope. Salary is visible in PeterTheEmployee 
because it is defined in Employee and the context is inherited. 
Salary is not valid in the topmost context and in Peter. 

C. Contextual Amendments 
Concepts can be redefined in contexts. This happens by 

definitions as those shown above. For example, in the context 
of Peter, the concept Name receives a new refinement. 

Different aspects of concepts can explicitly be redefined 
in a context, e.g.: 
AlternateWorld { 
 Peter is a Musician { 
  "Peter Miller" is the Name; 
 } 
} 

We call a redefinition performed in a context different 
from that of the original definition a conceptual amendment. 

In the above example, the contextual variant of Peter in 
the context of AlternateWorld is both a Person (initial 
definition) and a Musician (additionally defined). The Name 
of the contextual Peter has a different refinement. 

A redefinition is valid in the context it is defined in, in sub-
contexts, and in the context of refinements of the context 
(since the redefinition is inherited as part of the content). 

D. Concept Narrowing 
There are three important relationships between concepts 

in M3L. 
M3L concept definitions are passed along two axes: 

through visibility along the nested contexts, and through 
inheritance along the refinement relationships. 

A third form of concept relationship, called narrowing, is 
established by dynamic analysis rather than by static 
definitions like content and refinement. 

For a concept c1 to be a narrowing of a concept c2, c1 and 
c2 need to have a common ancestor, and they have to have 
equal content. Equality in this case means that for each content 
concept of c2 there needs to be a concept in c1’s content that 
has an equal name and the same base classes. 

For an example, assume definitions like: 
Person { Sex; Status; } 
MarriedFemalePerson is a Person { 
 Female is the Sex; 
 Married is the Status; 
} 
MarriedMalePerson is a Person { 
 Male is the Sex; 
 Married is the Status; 
} 

With these definitions, a concept 
Mary is a Person { 
 Female is the Sex; 
 Married is the Status; 
} 

is a narrowing of MarriedFemalePerson, even though it is 
not a refinement of that concept, and though it introduces 
separate nested concepts Female and Married. 

E. Semantic Rule Definitions 
For each concept, one semantic rule may be defined. 
The syntax for semantic rule definitions is a double 

turnstile (“|=”) followed by a concept definition. A semantic 
rule follows the content part of a concept definition, if such 
exists. 

A rule’s concept definition is not made effective directly, 
but is used as a prototype for a concept to be created later. 

The following example redefines concepts 
MarriedFemalePerson and MarriedMalePerson: 
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MarriedFemalePerson is a Person { 
 Female is the Sex; 
 Married is the Status; 
} |= Wife 
MarriedMalePerson is a Person { 
 Male is the Sex; 
 Married is the Status; 
} |= Husband 

The concepts Wife and Husband are not added directly, 
but at the time when the parent concept is evaluated. 
Evaluation is covered by the subsequent section. 

Concepts from semantic rules are created and evaluated in 
different contexts. The concept is instantiated in the same 
context in which the concept carrying the rule is defined. The 
context for the evaluation of a rule (evaluation of the newly 
instantiated concept, that is) is that of the concept for which 
the rule was defined. 

In the example above, the concept Wife is created in the 
root context and is then further evaluated in the context of 
MarriedFemalePerson. 

Rules are passed from one concept to another by means of 
inheritance. They are passed to a concept from (1) concepts 
the concept is a narrowing of, and (2) from base classes. 
Inheritance happens in this order: Only if the concept is not a 
narrowing of a concept with a semantic rule then rules are 
passed from base concepts. 

E.g., Mary as defined above evaluates to Wife. 

F. Syntactic Rule Definitions 
Additionally, for each concept one syntactic rule may be 

defined. 
Such a rule, like a grammar definition, can be used in two 

ways: to produce a textual representation from a concept, or 
to recognize a concept from a textual representation. 

A semantic rule consists of a sequence of string literals, 
concept references, and the name expressions that evaluate 
to the current concept’s name. 

During evaluation of a syntactic rule, rules of referenced 
concepts are applied recursively. Concepts without a defined 
syntactic rule are evaluated to/recognized from their name. 

E.g., from definitions 
WordList { 
 Word; Remainder is a WordList; 
} |- Word " " Remainder; 
OneWordWordList is a WordList |- Word; 
Sentence { WordList; } |- WordList "." 
HelloWorld is a Sentence { 
 Words is the WordList { 
  Hello is the Word; 
  OneWordWordList is the Remainder { 
   World is the Word; 
} } } 

the textual representation 
Hello World. 

is produced. 
Syntactic rule evaluation is not covered in this article. 

IV. CONCEPT EVALUATION 
As pointed out, there is no fixed generic semantic of M3L 

constructs. Nevertheless, concrete models receive semantics 

by means of semantic rules and their evaluation. After 
definition, each concept (in the root context) is evaluated in a 
way described in this section. 

Concept evaluation is based on (a) narrowing (see 
Section III.D) and (b) semantic rules (Section III.E). 

This section gives a semi-formal description of these 
means to assign semantics to M3L models. We present as 
many definitions as are required to derive the main database 
operations that drive the evaluation process in database-driven 
M3L implementations. 

Throughout this section, let ℂ be the set of concepts, 𝕊 be 
the set of sets of concepts, and ℝ be the set of semantic rules. 
Let 𝕋 be the set of root concepts (concepts that do not have 
another concept as their explicit context). 

A. Concept Relationship Access Functions 
First, we define typical access functions to the components 

of a M3L model. 
The function context returns the context of a concept as 

defined by a concept definition, or ^, if the given concept is a 
root concept: 

 context: ℂ→ℂ. (1) 

The reverse relation, content, returns the content of a 
concept: 

 content: ℂ→𝕊: c↦{c’∈ℂ | context(c’)=c}, c≠^, 
 content: ℂ→𝕊: ^↦𝕋. (2) 

The base relationship maps a concept to its base concepts: 

 base: ℂ´ℂ→𝕊. (3) 

Since the set of base concepts may be extended by 
contextual concept amendments, the relation is evaluated 
relative to a context, given by the context-defining concept 
(second parameter), or by ^ if base concepts as defined in the 
root context are requested. 

The inverse, the refine relationship, maps concepts to the 
concepts derived from them in a given context x: 

 refine: ℂ´ℂ→ℂ: (c,x)↦{c’∈ℂ | c’∈base(c,x)}. (4) 

Let semanticRule be a projection function that returns the 
semantic rule defined for a concept in a given context x. If 
none is defined in x or any parent context, the function 
returns ^. 

 semanticRule: ℂ´ℂ→ℝ (5) 

Likewise, let concept be the function that returns the 
concept that is defined by a rule definition: 

 concept: ℝ→ℂ. (6) 

E.g., for a concept Concept in the root context defined as 
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Concept |= NewConcept {Content;} 

the function application concept(semanticRule(Concept,^)) 
returns NewConcept. 

B. Computed Relationships 
On the basis of the accessor functions defined in the 

previous subsection, some computed relationships can be 
defined. In this subsection we define helper functions required 
to define narrowing in the subsequent subsection, and to 
finally define evaluation in Section IV.D: the set of transitive 
base concepts baseT, the set of transitive refinements refineT, 
and the bottom of a concept set. 

Chained base relationships are retrieved by 

baseT: ℂ´ℂ→𝕊,	
	 baseT: (c,x)↦base(c,x) ∪ {baseT(c’,x) | c’∈base(c,x)}. (7) 

Likewise, transitive refinement is defined by: 

refineT: ℂ´ℂ®𝕊,	
	 refineT: (c,x)↦{c} ∪ {refineT(c’,x) | c’∈refine(c,x)}. (8) 

The function bottom removes concepts from a concept set 
if these are already subsumed by other contained concepts. 
These are concepts that are refined by a concept in the set and 
are themselves not refining that concept: 

bottom: 𝕊´ℂ®𝕊,	
bottom: (S,x)↦S \ {c∈S | $c2∈S: c2∈refineT(c,x) 

  Ù cÏrefineT(c2,x)}. (9) 

C. Concept Narrowing 
One central point in the process of evaluating concepts is 

to compute their narrowing. In order to define narrowings, we 
first introduce some helper functions. 

Let Rc be the set of root concepts that (transitively) are 
base concepts of a concept c, Rc = 𝕋 ∩ baseT(c,x). A superset 
of c’s narrowing is easily computed using 

narrowCandiateList: ℂ´ℂ®𝕊 
 narrowCandiateList: (c,x)↦{refineT(c’,x)|c’ÎRc}, (10) 

meaning that all narrowings are found in the set consisting of 
all concepts from all content hierarchies to which the concept 
belongs. 

In order to remove candidates for narrowings, helper 
functions to examine a concept’s “type” are required. Two 
functions help analyzing whether a concept c is a refinement 
of a base concept b, (interpreted in the context of concept x): 

hasType: ℂ´ℂ´ℂ→Bool 
 hasType:	(c,b,x)↦baseT(c,x)ÊbaseT(b,x), (11) 

and whether two concepts c1 and c2 are the same with respect 
to their set of base concepts: 

sameType: ℂ´ℂ´ℂ→Bool: (c1,c2,x)↦c2ÎbaseT(c1,x) Ú c1=c2 
  Ú hasType(c1,c2,x). (12) 

Besides these static type checks, we also need structural 
matching of concepts (sometimes called “duck typing” [11]): 

hasWholeContent:	ℂ´ℂ´ℂ→Bool 
hasWholeContent:	(c,candidateBaseConcept,x)↦ 

"c1∈content(candidateBaseConcept): $c2∈content(c): 
  sameType(c2,c1,x). (13) 

The function hasWholeContent determines for two 
concepts c and candidateBaseConcept whether (interpreted 
w.r.t. the context of concept x) the whole content of c is also 
part of the context of candiateBaseConcept, meaning that 
there is a concept with an equal set of base classes. 

With the helper functions (10)-(13) we define the 
narrowing of a concept c in the context of a concept x as: 

narrowing: ℂ´ℂ®𝕊: (c,x)↦refineT(c,x) 
∪ {c’Î narrowCandiateList(c,x) | hasType(c,c’,x) 

 Ù hasWholeContent(c,c’,x)}. (14) 

D. Semantic Rule Application and Concept Evaluation 
At the core of the concept evaluation lies the productive 

application of semantic rules as described in Section III.E. 
During the evaluation process, semantic rules are applied 

by instantiating the concept named in a rule. We express this 
by a function apply as 

apply: ℝ´ℂ®	ℂ:	
apply: (r,x)↦concept(r) in context(x), if it exists,	

apply: (r,x)↦deep copy of concept(r) in context(x), 
 interpreted in x, else. (15) 

With narrowing and rule application we can define M3L 
concept evaluation as 

evaluate: ℂ´ℂ®𝕊,	
evaluate: (c,x)↦bottom(evaluate(apply(semanticRule( 

                                                      narrowing(c,x),x),x),x),x), 
                        if some concept in narrowing(c,x) has a rule, 

evaluate: (c,x)↦bottom(evaluate(refineT(c,x),x),x), 
              if some concept in refineT(c,x) has a semantic rule 
 evaluate: (c,x)↦bottom(refineT(c,x),x), else. (16) 

For the sake of brevity, we use extensions to set-valued 
parameters to relationships (5), (15), and (16). 

V. ANATOMY OF THE M3L ENVIRONMENT 
This section outlines the architecture of a first M3L 

implementation. It is studied here in order to determine base 
functions that require an efficient implementation for concept 
evaluation. This leads to the requirements on the persistence 
layer that is the subject of this article. 
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Figure 1.  Architecture of the current M3L implementation. 

When implementing concept evaluation (16) and all 
supporting functions (1)-(15), one notices that there are the 
basic accessor functions (1)-(6). Other functions are defined 
on top of these basic functions. Therefore, an efficient 
implementation will place the accessor functions (1)-(6) and 
those making heaviest use of them, (7) and (8), close to the 
data layer, while the others can be implemented in a storage-
agnostic way. These assumptions lead to an architecture as the 
one presented in this section. 

The current M3L runtime environment is an application 
that is based on several components. These components are 
interchangeable in order to be applicable in a wide range of 
configurations, namely different M3L syntaxes (compact or 
verbose), interpretation of files or interactive input, or 
compilation to different target languages and different 
persistence technology for concept storage and retrieval. 

The UML class diagram in Fig. 1 illustrates this M3L 
implementation. For the method signatures shown in the 
diagram assume M3LConcept to be an interface for concept 
representations and M3LConceptSet to be a set of those. 

For brevity, the types of method arguments are omitted. In 
the figure, c denotes a M3LConcept to perform an operation 
on, ctx a M3LConcept giving the context of the operation, 
name a String giving a concept name, and r a semantic rule. 

At the frontend, a Parser recognizes M3L statements and 
creates an abstract syntax tree (AST) for further processing. 
The parser is based on a parser generated by the ANTLR 
(ANother Tool for Language Recognition) parser 
generator [12]. The grammar of the M3L is quite simple. Still, 
this powerful parser generator is employed because it plays an 
important role for the handling of syntactic rules (see 
Section III.F) at runtime and thus is part of the setup anyway. 

In fact, there are different parsers and listeners for different 
syntaxes of the M3L we are experimenting with. Fig. 1 shows 
the M3LVerboseParser for the syntax used in this article. 

In the next stage of M3L processing, a Builder creates an 
internal representation of the parsed M3L definitions. 

Using the AntLR framework, a Parser and a Builder are 
connected by an observer, here the M3LVerboseListener, that 
receives callbacks whenever the parser recognized a syntactic 
construct. 

In order to receive notifications, the observer implements 
methods defined by the AntLR API in the interface 
ParseTreeListener. The interfaces are not shown in detail but 
illustrated in UML by the “lollipop”. In turn an observer uses 
an interface provided by Builder implementations (again 
represented by a lollipop) to pass information to them. 

These interfaces allow different Builder implementations. 
Most notably, there are interpreters and compilers. The 
Interpreter acts directly. It contains generic code for the 
creation and evaluation of concepts. This code is based on 
operations provided by a M3LStore (see below). The inner 
working of the Interpreter is outlined by the private methods 
shown on the diagram in Fig. 1. The methods implement those 
functions from Section. IV that are expressed using the more 
basic functions. 

A compiler creates equivalent code for the creation and 
evaluation of concepts that can (repeatedly) be executed. 

Every concrete Builder implements the methods defined 
in the Builder interface that decorate the AST and pass the 
intermediate representation to a M3LStore. These methods are 
omitted in Fig. 1 in the shown Interpreter. Additionally, 
concrete builder implementations typically define methods for 
the functions (9)-(16) for concept evaluation. In Fig. 1 such 
methods are listed as private methods of Interpreter. 

Analysis of these functions unveils the functionality to be 
provided by a M3LStore. According to this design, M3LStore 
implementations deliver the base functionality required for the 
builders, namely the required access functions as well as 
computed relationships that use them most (1)-(8). 

org.antlr.v4.runtime

org.antlr.v4.runtime.tree

Builder
<<interface>>

M3LStore
<<interface>>

M3L Runtime

M3L Verbose 
Recognizer Listener

<<interface>>

+ addBaseConcept(c, name, ctx):void
+ addSingletonBaseConcept(c, name, ctx):void
+ baseConcepts(c, ctx):M3LConceptSet
+ baseConceptsTransitive(c, ctx):M3LConceptSet
+ concept(r):M3LConcept
+ content(c, ctx):M3LConceptSet
+ context(c):M3LConcept
+ deepCopy(c, targetCtx, ctx):M3LConcept
+ find(name, ctx):M3LConcept
+ findOrCreate(cPath, ctx):M3LConcept
+ refinement(c, ctx):M3LConceptSet
+ refinementTransitive(c, ctx):M3LConceptSet
+ semanticRule(c, ctx):SemanticRule
+ setSemanticRule(c, ruleC):void

Interpreter

- applyRule(rule, ctx): M3LConcept
- bottom(results, ctx):M3LConceptSet
- evaluate(c, ctx):M3LConceptSet
- hasType(c1, c2, ctx):boolean
- hasWholeContent(c1, c2, ctx):boolean
- isOfSameTypeAs(c1, c2, ctx):boolean
- narrowCandiateList(c, ctx):M3LConceptSet
- narrowing(c, ctx):M3LConceptSet

M3L Verbose 
Listener

<<implements>>

ParseTreeListenerParser

M3L Verbose Parser
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Figure 2.  M3L concept refinements and contexts. 

The M3LStore interface shown in Fig. 1 consists of 
methods used by a Builder to build up a model during parsing, 
and the abovementioned methods that implement the base 
functions used during concept evaluation (1)-(8). 

For an efficient implementation, we lay an emphasis on 
the responsibilities of the M3LStore. The remainder of this 
article discusses mappings to some established persistence 
technologies that can be used as a basis of M3LStore 
implementations. 

VI. A CONCEPTUAL MODEL FOR CONTENT 
REPRESENTATIONS 

A conceptual model, as known from database modeling, 
serves as a first step towards data models for context-aware 
content. The notion of “concept” is ambiguous here: The aim 
is a model of (M3L) concepts. A conceptual model for this 
allows us to abstract from the M3L as a language. The model 
is not supposed to address practical properties such as 
operational complexity. 

A set of M3L concept definitions can be viewed as a graph 
with each node representing a concept, labeled with the name 
of the concept. There are two kinds of edges to represent 
specialization and contextualization. In fact, such a graph 
forms a hypergraph to account for contextualization. Every 
node can contain a graph reflecting definitions as the 
concept’s content. 

The following subsections detail specialization and 
contextualization relationships, as well as contextual 
redefinitions. 

A. Representing Specialization 
Conceptually, a specialization/generalization relationship 

can straightforward be seen as a many-to-many relationship 
between concepts. Fig. 2 shows an example. 

Arrows with filled heads, directed from a concept to its 
base concepts, represent specialization relationships in the 
figure. For example, Concept 4 is a refinement of Concept 1 
and Concept 2. 

Fig. 2 furthermore indicates an amendment in a context, 
namely Concept 9. While Concept 7 is a refinement of 
Concept 4 and Concept 5 in the default context, it is 
additionally a refinement of Concept 6 in the context of 
Concept 9 (if it is an is a/is an definition; otherwise, 
Concept 7 would only be a refinement of Concept 6 in the 
context of Concept 9). 

 
Figure 3.  M3L concept definitions in contexts. 

B. Representing Context 
Since contexts form a hierarchy, contextualization can be 

represented by a one-to-many relationship between concepts 
in the roles of context and content. 

Fig. 3 represents such a hierarchy by nested boxes shown 
for concepts. The contextualization relationship is thus 
visually represented by containment. For example, Concept 2 
is part of the content of Concept 1, or Concept 2 is defined in 
the context of Concept 1. 

The outermost context is the default context. There is no 
corresponding concept for this context. 

C. Representing Contextual Information 
Specialization and contextualization act together. 

Refinements of a concept inherit its content; concepts from 
that content are valid also in the context of the refinement. 
Each context allows concept amendments. These are a second 
way to add variations of concepts. 

In order to represent contextualized redefinitions, we 
introduce two kinds of context definitions: Initial Concept 
Definition and Contextual Concept Amendment. Both can be 
placed in any context. 

An initial concept definition is placed in the topmost 
context in which a concept is defined. Redefinitions of 
concepts are represented by contextual amendments inside the 
concept in whose context the redefinition is performed. 

 
Figure 4.  M3L concept amendments in contexts. 
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Figure 5.  Representation of refinements using materialized transitive refinement relationships. 

Fig. 4 illustrates such a concept redefinition scenario. As 
before, contexts are depicted as nested boxes. There is one 
Context and a Sub-Context. Both show a Concept that has 
originally been defined as a refinement of Base Concept and 
is itself refined to Refinement. In the context on Sub-Context, 
the concept gets the additional base concept Base Concept 2, 
and there is another refinement Refinement 2. These additions 
are recorded in the contextual amendment of Concept in Sub-
Context. This is, of course, transparent on model level. 

Amendments have a reference to the next higher 
definition. This reference is called Original. In Fig. 4, it is 
shown by the dotted line. 

Traversal of the original references allows collecting all 
definitions in order to determine the effective definition. 

VII. LOGICAL CONTENT REPRESENTATION 
This section refines contextual content representation 

models to a level similar to that of a logical data model. This 
way it discusses properties of data representations without 
taking implementation details into account. 

The complexity of lookups is of major importance for the 
schema design. During the evaluation of M3L statements, 
many graph traversals are required to find all valid contexts, 
all base concepts (to determine content sets) and all 
refinements (to narrow down concepts before applying rules; 
this evaluation process is not laid out in this paper). 

The most important design decision is the degree of 
(de)normalization of the schema. The basic assumption is that 
content is mainly queried, so that creation and update cost is 
less important than lookup cost. 

We consider two designs of denormalized schemas: 
materialization of reference sets and storage of relationships 
in a way that allows efficient queries. Efficient storage is 
based on the usage of numeric IDs to reference concepts and 
computing relationships based on ID sets. An example of such 
an approach is the BIRD numbering scheme for trees [13] that 
allows range queries to determine subtrees. 

A. Storing Refinements 
Compared to the straightforward conceptual model, the 

logical schema is denormalized in order to avoid repeated 

navigation of specialization relationships when collecting the 
set of (transitive) base concepts or refinements of a concept. 

Two approaches are investigated: aggregated data and 
transitive refinement relationships. 

Aggregated data collects necessary information to avoid 
nested queries for refinements. All base concepts and all 
refinements are stored in an object representing the concept 
definition in a certain context. Context-dependent content is 
added in contextual concept amendments (s.a.) that are stored 
as part of the context hierarchy. These aggregate the 
definitions effective in all parent contexts. 

The description objects additionally reference each other 
via original references. 

Alternatively, just transitive refinement relationships are 
materialized for every concept in every context. This way, 
transitive refinements are directly available, and base concepts 
can be collected using a simple query. 

Fig. 5 shows an example for the sample from Fig. 2. The 
dashed boxes show the transitive refinements per relevant 
context. Base concepts can be determined by queries. 

For example, the (transitive) base concepts of Concept 4 
are those concepts that have this concept as a 
refinement. Specifically, these are Concept 1 and Concept 2 
(in both the default context and in the context of Concept 9). 

Storing the context together with the refinement 
relationships is vital for handling singleton (is the) 
relationships, in particular the unbinding of concepts. 

B. Storing Context Hierarchies 
Performance is particularly important for the retrieval of 

the hierarchy of contexts a concept is defined or amended in. 
The effective definition of a concept (including aggregated 
base concepts and content) relies on this concept hierarchy. 

By blending in the context information into the transitive 
refinements, as shown in the previous subsection, the situation 
is leveraged to a large degree. Still, the content that a concept 
has in a certain context is also relevant to concept evaluations. 

As for the specialization/generalization relationships, two 
approaches are discussed here: materialized content 
collections in all contexts and information about paths in the 
context hierarchy. 
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Figure 6.  Representation of context hierarchies my materializing paths. 

The materialization of contextual definitions works the 
same way as that of refinements: with every concept definition 
amendment, we store the effective content in the respective 
context. This has to be computed on definition. 

For the second approach, Fig. 6 illustrates the attribution 
of paths to the schematic example of Fig. 3. For each concept, 
we note down the concepts lying on the path in the context 
hierarchy from the default context to a specific context. For 
example, Concept 1 lies on the paths from the default context 
to itself, to Concept 2, and to Concept 3. 

We used numeric IDs to reference the concept (with the 
ID 0 given to the pseudo-concept for the default concept). IDs 
have to be ordered from the default context to sub-contexts. 
By querying for all concepts on the path of a concept, ordered 
by ID, we retrieve the path to that concept. 

VIII. PHYSICAL CONTENT STORAGE MODELS 
This section briefly discusses some implementation 

approaches to context-aware content models using different 
data models. Specifically, we present the basics of a mapping 
to relational databases, to a document-oriented database, a 
content repository, and a graph database. 

A. Mapping M3L to a Relational Database 
There is a range of approaches to storing trees and graphs 

in relational databases [14]. On the basis of these, we add 
materialized transitive relationships as described above. 

Relational tables for the transitive context hierarchy can 
be defined by statements like (with numeric type INT): 
CREATE TABLE concept (id INT PRIMARY KEY); 
CREATE TABLE paths ( 
 concept_id       INT REFERENCES concept(id), 
 terminal_concept INT REFERENCES concept(id), 
 PRIMARY KEY (concept_id, terminal_concept)); 

The table concept holds concepts (both initial definitions 
and amendments) with artificial IDs (other data is omitted 
here). The second table holds the path information as indicated 
in Fig. 6. concept_id refers to the concept, terminal_concept 
refers to the concept on whose path the concept lies. 

Data stored this way can be queried by, e.g., 
SELECT c.* FROM concept c, paths p 
 WHERE c.id = p.concept_id 
 AND p.terminal_concept = i 
 ORDER BY p.concept_id DESC; 

to retrieve the path to concept i. 

Transitive refinements can be stored in a table: 
CREATE TABLE transitive_refinements ( 
 base_concept_id INT REFERENCES concept(id), 
 refinement_id   INT REFERENCES concept(id), 
 context_id      INT REFERENCES concept(id), 
 PRIMARY KEY (base_concept_id, refinement_id, 
              context_id)); 

The base concepts of, e.g., Concept 4 can be queried by: 
SELECT base_concept_id 
 FROM transitive_refinements 
 WHERE refinement_id = 4 AND context_id = 0; 

in the default context (with ID 0), or by: 
SELECT base_concept_id 
 FROM transitive_refinements 
 WHERE refinement_id = 4 AND context_id = 9; 

for the context of Concept 9. 

B. MongoDB 
As an example of so-called NoSQL approaches, we 

conduct ongoing experiments with MongoDB [15], a widely 
used document-oriented database management system. 

The definition of concept relationships is done in a similar 
way as in relational databases: records have IDs, and records 
store IDs for references. There are no distinct relation 
structures, though. References are stored as document fields. 

In contrast to a purely relational structure, documents 
allow representing nested contexts in a natural manner by 
embedded documents. 

As an example of a schema, the insert statement shown in 
Fig. 7 stores the whole graph of Fig. 2. 

This structure can be queried as required. For example, to 
find concepts with base concept Concept 6 in the context of 
Concept 9, the aggregate statement in Fig. 7 can be applied. 

C. Content Repository for Java Technology API (JCR) 
In an attempt to define a content-specific database, the 

Content Repository for Java Technology API (JCR) standard 
has been set up in Java Specification Requests JSR-170 [16] 
and JSR-283 [17]. The standard is employed by some 
commercial content management system products. 

The API implies a content model to be supported by JCR 
implementations. The data model behind JCR is similar to 
XML: It features hierarchies of nodes, where each node can 
have properties, attributes of one out of a set of predefined 
base types. 
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Figure 7.  Document definitions to map M3L to MongoDB and a sample query. 

With these characteristics, M3L concept models can be 
mapped to JCR in a straightforward manner: nodes represent 
concepts, and concept relationships are expressed in the node 
hierarchy as well as by properties of type reference. 

Context hierarchy in M3L is reflected by the node 
hierarchy in JCR. This way, the API allows direct access to 
context by Node#getParent() and access to content by 
Node#getNodes(). 

Relationships to base concepts are represented by a (multi-
valued) reference property base-ref. 

Contextual concept amendments are represented as nodes 
on their own as outlined in Section VI.C. Nodes for 
amendments link to the node representing the definition they 
add to by a reference property original. 

A semantic rule is represented by a reference from a 
concept to the one that is defined by its rule. To this end, rule 
concepts that are instantiated on rule application are stored 
outside of concept hierarchy. 

With this mapping, a M3LStore can be expressed easily 
using the JCR API. Functions regarding the context hierarchy 
are directly reflected in the node hierarchy, base concept 
references are expressed by reference properties of nodes. 

Only refinement relationships require special 
consideration for navigating base concept references against 
their direction. E.g., for transitive refinements, Java code like 
the following is included (with c a node representing the 
concept for which to compute the transitive refinement, ctx a 
node representing the context in which to evaluate it, 
refinement a set in which to collect nodes): 
outer: for (Node c2 : allConcepts()) { 
  Node[] baseConcepts 
  = baseConceptsTransitive(session, c2, ctx); 
  for (Node bC : baseConcepts) 
    if (bC.getPath().equals(c.getPath())) { 
      refinement.add(c2); 
      continue outer; 
    } 
} 

This code is the core of the refinementTransitive() method 
of a M3LStore for JCR. 

D. Mapping M3L to a Graph Database 
Graph database management systems [18] organize data 

as graphs of different types. 

In this section, the DMBS Neo4J [19] is considered as a 
representative of graph database management systems. It 
allows data modelling using directed colored graphs with 
labelled nodes. Data manipulation and querying is performed 
using the language Cypher [20]. 

In Neo4j, we model M3L concepts as nodes. Following 
the conceptual model from Section VI, we introduce types 
(labels) CONCEPT and CONCEPTAMENDMENT for initial 
concept definitions and for conceptual content amendments. 
For each contextual definition, an explicit node with a label is 
created. Edges representing concept relationships are set to 
and from nodes representing concepts in specific contexts. 

For the different concept relationships occurring in M3L 
models, we add edges of different types. To express context, 
we use an edge of kind CONTEXT from a node representing a 
concept to a node representing the context of that concept. The 
relationship between a refinement and its base concept is 
represented by an edge of kind BASE. We record a reference 
from a contextual concept amendment to the concept it is 
redefining using an ORIGINAL edge. The semantic rule of a 
concept is expressed by a SEMANTICRULE edge from the 
concept to the new concept the rule defines. 

Fig. 8 shows a database resulting from the concept 
definitions in the example of Person entities from Section III. 
It is a screen shot taken from the tool Neo4j Browser. 

The node color shows the label assigned to a node: green 
for initial concept definition, blue for conceptual amendment. 

Cypher allows expressing transitivity directly, e.g., using 
the path ()-[:BASE*]-() for (7) (baseT). Therefore, the 
basic concept definitions and access functions can be mapped 
to Cypher in a straightforward way. 

Root level concepts are defined by a simple CREATE 
directive: 
CREATE (c:CONCEPT) SET c.name='concept name' 

In the mapping examples in this section, italicized terms 
are placeholders for parameter values. In the create directive 
this is the name of the concept to be created. 

Nested concepts are defined in a given context by: 
MATCH (ctx{name: 'context’s concept name'}) 
      -[:CONTEXT]->...(t) 
WHERE NOT (t)-[:CONTEXT]->() 
CREATE (c:CONCEPT) SET c.name='concept name' 
CREATE (c)-[:CONTEXT]->(ctx) 

db.concept.insert({ name: "Default Context", content: [ 
 { name: "Concept 1", baseConcepts: null,                                    content: null }, 
 { name: "Concept 2", baseConcepts: null,                                    content: null }, 
 { name: "Concept 3", baseConcepts: null,                                    content: null }, 
 { name: "Concept 4", baseConcepts: ["Concept 1", "Concept 2"],              content: null }, 
 { name: "Concept 5", baseConcepts: ["Concept 2"],                           content: null }, 
 { name: "Concept 6", baseConcepts: ["Concept 3"],                           content: null }, 
 { name: "Concept 7", baseConcepts: ["Concept 4", "Concept 5"],              content: null }, 
 { name: "Concept 8", baseConcepts: ["Concept 4", "Concept 5", "Concept 6"], content: null }, 
 { name: "Concept 9", baseConcepts: null,                                    content: [ 
  {name: "Concept 7", baseConcepts: ["Concept 4", "Concept 5", "Concept 6"], content: null, 
   original: "Concept 7" } ] } ] }) 
db.concept.aggregate([ 
{$unwind:"$content"},{$replaceRoot:{newRoot:"$content"}},{$match:{name:"Concept 9"}}, 
{$unwind:"$content"},{$replaceRoot:{newRoot:"$content"}},{$match:{baseConcepts:"Concept 6"}}]) 
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Figure 8.  Representation of M3L definitions in a graph database. 

The MATCH selects the node representing the concept in 
whose content to create the new concept. In order to select the 
right node, the complete path to that node is given. The path 
has to be generated for the context concept at hand, 
exemplified by the ellipsis. The WHERE clause constrains the 
match to paths whose end node does not have any further 
outgoing edges of kind CONTEXT (which are the root nodes). 

A concept refinement is defined by: 
MATCH (c{name: 'concept name'}) 
      -[:CONTEXT]->...(t) 
WHERE NOT (t)-[:CONTEXT]->() 
MATCH (b{name: 'base concept name'}) 
      -[:CONTEXT]->...(t) 
WHERE NOT (t)-[:CONTEXT]->() 
CREATE (c)-[:BASE]->(b) 

Here, c matches the refinement and b matches the base 
concept using generated paths. 

Concept amendments are defined by creating a node and 
relating it to the redefined node with an ORIGINAL edge as 
described in Section III.C. This is done by: 
MATCH (ctx{name: 'context’s concept name'}) 
      -[:CONTEXT]->...(t) 
WHERE NOT (t)-[:CONTEXT]->() 
MATCH (o{name: 'concept name'}) 
      -[:CONTEXT]->() 
      <-[:CONTEXT|:BASE*]-(ctx) 
CREATE (c:CONCEPTAMENDMENT) 
SET c.name='concept name' 
CREATE (c)-[:CONTEXT]->(ctx) 
CREATE (c)-[:ORIGINAL]->(o) 

The node ctx representing the context is found by 
matching a path as in the above statements. The concept 
definition o to be amended is found by the second MATCH 
directive. It looks for a node with the right name in the context 
of a node that is reachable from the context via context 
(following CONTEXT edges) or via refinement (following 
BASE edges) relationships, meaning that o it is either visible 
in an outer context or is inherited. 

A new node is created with the same name as the original 
node o, labelled with type CONCEPTAMENDMENT, put in 
the context ctx, and related to the original. 

Semantic rules are set using: 
MATCH (c{name: 'concept name'}) 
      -[:CONTEXT]->...(t) 
WHERE NOT (t)-[:CONTEXT]->() 
CREATE (r:CONCEPT) 
SET r.name='rule concept name' 
CREATE (c)-[:SEMANTICRULE]->(r) 

The concept c to which the rule is assigned is matched by 
name and context path again. The concept r that is instantiated 
on rule application is created like any concept and then related 
using SEMANTICRULE. 

Interpreting the concept definitions from Sections III.B 
and III.E on a M3LStore with this kind of mapping from M3L 
to Cypher leads to a graph database as shown in Fig. 8. 

IX. CONCLUSION 
This section sums up the paper and gives an outlook on 

future work towards M3L concept persistence and querying. 
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A. Summary 
This article lays out approaches to context-aware content 

management, in particular using the Minimalistic Meta 
Modeling Language (M3L). Semantics is given to content by 
rules that allow M3L concept evaluation. 

The architecture of a current testbed implementation is 
presented. The architecture description concentrates on basic 
functions required for M3L concept evaluation in a data layer. 
Since content bases typically become large in data volume, 
persistency has to be provided by this data layer. 

Though it is easily possible to map context representations 
to existing data management approaches, care has to be taken 
to enable efficient querying for M3L concept evaluation. 

A logical schema for the representation of contextual 
content is presented that introduces first optimizations that are 
independent of the target data model and the database 
management systems used. 

First sketches of implementations using different data 
models are conducted. These demonstrate the feasibility of 
concept persistence using these data models. 

Representative technologies for each data model are used 
to present schemas that can serve as a starting point of the 
discussion and evaluation of M3L implementations. 

B. Outlook 
The work on data model mappings for M3L concept 

definitions is ongoing work. There is ample room for further 
optimizations of the relational database schema with respect 
to query execution. The mappings to other data models, 
document-oriented, tree, and graph databases, need 
elaboration before significant comparisons between these can 
be conducted. 

The utilization of databases to support M3L concept 
evaluation is an open issue. Currently, base functions are 
implemented by database queries while the overall evaluation 
process is performed in a generic way by application code. 
Other functions required for concept evaluation may be 
implemented efficiently in certain database models. One 
example is the computation of candidate lists for 
narrowings (10) that may be formulated using database-
specific queries. 

Experiments with different implementations are ongoing. 
Data models have yet to be rated based on practical results. To 
this end, implementations need to be optimized. 

For comparison, a kind of test suite needs to be defined. 
Models and rule sets that address realistic scenarios will guide 
the investigations in the future. Data of significant volume has 
to be generated as concept instances according to such models. 
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