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Abstract—This paper focuses on how to mine large datasets by 

applying the ECF-means algorithm, in order to detect potential 

outliers. ECF-means is a clustering algorithm, which combines 

different clustering results in ensemble, achieved by different 

runs of a chosen algorithm, into a single final clustering 

configuration. Furthermore, ECF is also a manner to “fuzzify” 

a clustering algorithm, assigning a membership degree to each 

point for each obtained cluster. A new kind of outlier, called 𝒐-

rank fuzzy outlier, is also introduced; this element does not 

strongly belong to any cluster, which needs to be observed more 

closely; moreover, a novel validation index, called 𝒐. 𝑭𝑶𝑼𝑰, is 

defined too, based on this new kind of fuzzy outliers. The 

proposed method for fuzzification is applied to the 𝒌-means 

clustering algorithm by using its Weka implementation and an 

ad-hoc developed software application. Through the three 

exposed case studies, the experimental outcomes on real world 

datasets, and the comparison with the results of other outlier 

detection methods, the proposed algorithm seems to provide 

other types of deeper detections; the first case study concerns 

the famous Wine dataset from the UCI Machine Learning 

Repository; the second one involves the analysis and exploration 

of data in meteorological domain, where various results are 

explained; finally, the third case study explores the well-known 

Iris dataset which, traditionally, has no outliers, while new 

information is discovered by the ECF-means algorithm and 

exposed here with many results. 

Keywords-ECF-means; Fuzzy Outlier Detection; Data 

Mining; Ensemble Clustering; k-means; Weka. 

I.  INTRODUCTION 

The Ensemble Clustering Fuzzification (ECF) means [1] 
is an algorithm aimed at combining multiple clustering 
models to produce a better result than that of the individual 
clustering components. The proposed ensemble approach is 
carried on using the well-known 𝑘-means algorithm, its Weka 
implementation, and an ad-hoc developed software 
application. Compared to the version described in [1], we 
made some updates obtaining a new version of the algorithm. 
First of all, the most important variation to the algorithm 
consists in removing any equal partitions determined by two 
different runs of 𝑘 -means algorithm. Therefore, all the 
ensemble results and the evaluation indexes are calculated on 
the number of different obtained partitions and not on the total 
number of performed iterations. Moreover, we also define a 

new validation index, called 𝑜 -rank fuzzy outlier index 
(𝑜. 𝐹𝑂𝑈𝐼)  by calculating the percentage of 𝑜 -rank fuzzy 
outliers discovered by ECF. 

The clusters achieved by the algorithm can be read in a 
“soft” way, in order to better explore and understand the 
results, and discover potential outliers in the dataset. 

An outlier, or an anomaly, is an observation that is 
numerically distant from the rest of the data. What “distant” 
means depends on the context and on the domain, on the type 
of data and on the objective of analysis that must be achieved. 
Additionally, outlier detection is the process, or a technique, 
to find patterns in data that do not conform to estimated 
behavior. It plays a primary role in both statistical and data 
mining tasks, so much that identifying, understanding, and 
predicting anomalies from data is one of the key pillars of 
modern and advanced data analysis. 

Nowadays methods and algorithms for data analysis 
increasingly involve huge amounts of data which are certainly 
rich in valuable information and useful knowledge, but also 
full of noise and impurities. The main challenges of outlier 
detection with this increasing complexity, variety, and volume 
of datasets, are how to discover similar outliers in one fell 
swoop, as a group [2]. Thus, an advantageous activity of data 
analysis must strictly have a data preparation step that 
includes data cleaning and anomalies removal activities. 

Several outlier detection techniques have been proposed in 
literature [3]. Roughly, the approaches to outlier detection can 
be divided into two main categories: statistical and non-
statistical methods. Within the non-statistical methods, the 
Machine Learning techniques for Data Mining are very 
popular, studied, and even among the most applied. Statistical 
methods are typically model-driven while Data Mining 
methods are typically data-driven. Mainly the Data Mining 
approaches for anomaly detection are divided into Proximity-
based, Density-based, and Clustering-based techniques. This 
paper focuses on clustering-based outlier detection algorithms 
that look for outliers by applying one of the clustering 
algorithms and retrieve the anomalies subset. Moreover, this 
paper presents our idea on how apply the ECF-means 
algorithm for outlier detection task, and therefore, we explore 
datasets by applying this clustering-based technique.  

Whilst usually it is hard to attach an outlier score to objects 
by using most of the clustering algorithms [4], the ECF-means 
algorithm defines a new class of outliers, consisting of 
elements that in [1] are named 𝑜 -rank fuzzy outliers. 



12

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Therefore, ECF-means is able to assign a score to each 
element of the dataset depending on the vector constituted by 
its memberships to every obtained clusters. An element whose 
score is lower than a fixed threshold level is an outlier, 
because it belongs to two or more different clusters, without a 
clear and unambiguous membership. In this way, it is possible 
to have different kinds of outliers by fixing different 
thresholds: an element with level 1 is not a true outlier, whilst 
an element of level 0 is a full anomaly. These elements can be 
analyzed separately in order to understand if they are records 
that have undergone measurement errors and need to be 
deleted, or elements that are, from some point of view, special 
elements, confirming the idea that outliers are sometimes 
more interesting than the majority of the data. 

Finally, the detected outliers are something new compared 
to those discovered by the crisp or traditional techniques for 
outlier analysis, and the two ways rarely discover the same 
anomalies. 

In this paper, we present some applications of ECF-means 
algorithm, including datasets explorations, clustering results, 
outliers detection and classification. For the sake of clarity, 
this algorithm has many purposes and this paper focuses on an 
its application aimed at detecting outliers in various real-world 
benchmark datasets, testing its results and comparing the 
discovered anomalies with those detected by classical 
statistical methods. Our examples will demonstrate the 
efficiency of the ECF-means approach, comparing our results 
with those retrieved by other methods. 

A. Structure of the paper 

In Section II, we present some outlier detection 
generalities, including different approaches to discover 
anomalies in large datasets, and application fields. Particular 
attention is given to the clustering-based algorithms for 
anomaly detection and to properties of the algorithms for 
outliers detection. 

In Section III, we provide cluster analysis general outlines, 
including main definitions, its scope and its role in Data 
Mining. Furthermore, some concepts regarding Ensemble 
Clustering, soft and hard clustering are mentioned. 

In Section IV, the original 𝑘 -means algorithm is 
synthesized, exposing its pros and cons. 

In Section V, the ECF-means is presented, including some 
main definitions; in particular, we introduce the 𝑜-rank fuzzy 
outlier definition. 

In Section VI, we present some validation measures for 
cluster analysis and for fuzzy clustering, including Silhouette, 
Partition Entropy Coefficient, the Threshold Index, and a 
novel index called 𝑜 -rank fuzzy outlier index. 

In Section VII, the ECF-means SW application is 
explained, underlining the updates of the new version. 

In Sections VIII, IX, and X we show how the new version 
of the implemented software tool has been used in three 
different applications, underlining how it helped us to explore 
datasets, to discover new knowledge, to detect potential 
outliers, and to group objects in order to train custom models. 

Finally, in Section XI, we show our general considerations 
in order to motivate future works and researches. 

II. OUTLIER DETECTION 

In outlier detection, the main goal is to discover objects 
that are different than the most other objects in the dataset. In 
many applications outliers contain important information and 
their correct identification is crucial. 

A. Different Approaches and Application Fields 

Outlier detection, or interchangeably anomaly detection, is 
the process of finding data objects with behaviors that are very 
different from expectation. Precisely, such objects are called 
outliers, anomalies, abnormalities, discordants or deviants. 
Outlier detection is generally considered a problem of 
machine learning or data mining, in the same way as 
classification and clustering. 

A very common definition of an outlier is provided in [5] 
and it states: 

“An Outlier is an observation which deviates so much 
from the other observations as to arouse suspicions that it was 
generated by a different mechanism.” 

In Data Mining and Statistics, outliers are particularly 
important aspects of the data. It may be difficult to evaluate 
the amount of noise in the data set or the number of outliers. 
More than that, what is noise or an outlier to one person may 
be interesting to another person. So, a unique mechanism that 
can identify outliers in datasets is impossible to define. 
Furthermore, the resolution of potential conflicts in detection 
is often possible thanks only to domain knowledge, which 
cannot always come to the aid of data analysts, especially 
when they are dealing with big data. 

Table I shows several examples with categories of 
anomalies and it confirms why an uniform definition of 
anomaly is very hard to achieve. It is also evident that there is 
no clear separation between these types of outliers. 

TABLE I.  EXAMPLES OF OUTLIERS 

 Example Category 

1 
Outlier with respect to 
rest of the data points 

Point Outlier, Contextual 
Outliers 

2 
Outlier with respect to 

local neighborhood 
Point Outlier, Contextual 

Outliers 

3 
Outlier with respect to the 

data distribution 
Point Outlier, Contextual 

Outliers 

4 
Outlier with respect to 

local dense regions 
Point Outlier, Collective 

Outliers 

5 
Outlier tight cluster in a 

sparse region 
Point Outlier, Collective 

Outliers 

6 
Outlier sparse cluster in a 

dense region 
Collective Outliers 

Outliers can be classified into three main categories that 
intersect with the examples in Table I: 

1. point outliers, where a single instance of data is 
anomalous if it is too far off from the rest;  

2. contextual outliers, if its value significantly deviates 
from the rest the data points in the same context; note 
that this means same value may not be considered an 
outlier if it occurred in a different context; these 
outliers are common in time-series data; 

3. collective outliers, where a set of data instances 
collectively helps in detecting anomalies.  
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The technique chosen for anomaly detection can be based 
on the type of data you are dealing with. Many of these 
approaches have been exactly developed for certain 
application domains, while others are more generic and 
reusable. One of the main criteria used to select the outlier 
detection technique is based on the nature of the outlier to 
discover. 

Approaches for outlier detection are reported in Table II 
[6] [7] [8]. 

TABLE II.  METHODS FOR OUTLIER DETECTION 

Method Description 

Nearest 
neighbor-based 

lazily analyze the nearest neighborhood of a test point 
to assign it an outlier score relative to their 
neighborhood; in particular, these methods are based 
on the idea that normal instances lie in dense 
neighborhoods whilst anomalous points lie in sparse 
neighborhoods 

Clustering-
based 

the anomaly score assigned to a test point is based on 
its relationship with its nearest cluster; by using these 
algorithms, outliers do not belong to a cluster or are far 
away from the nearest cluster representative 

Classification-
based 

operate under the hypothesis that a classifier can be 
trained from a given feature space that can discriminate 
between normal and outlier classes 

Statistical are based on building a probability distribution model 
and considering how likely objects are under that 
model; outliers appear in the low probability regions of 
the distribution and have high anomaly score 

Spectral 
decomposition- 
based 

are unsupervised learning techniques that find an 
approximation of the data using a combination of 
attributes that reveal low dimensional structure in 
dimensional data; points that are different from others 
in the lower approximation are detected as outliers 

Information 
theoretic 

by which an anomalous point is an instance that has 
irregularities in the information content by using 
different information theoretic measures such as 
entropy or complexity 

Other authors report [4] that the Machine Learning 
methods for outlier detection can be classified as proximity-
based techniques, mainly founded on Nearest Neighbor 
concept, density-based techniques, where outliers are objects 
that are in regions of low density, and clustering-based 
techniques, where outliers can form small groupings or where 
an outlier is an object does not strongly belong to any cluster. 

TABLE III.  APPLICATIONS FIELDS OF OUTLIER DETECTION 

 Field Goal 

1 Medical Informatics 
Healthcare analysis, diagnostics, in a 

wide variety of medical specializations 

2 Intrusion Detection 
Break-ins, penetrations, and other form 

of computer abuse detection 

3 Fraud Detection Credit card, mobile phone 

4 
Fault / Damage  

Detection 
Industry damage, multi-failures in 

Avionics systems, and others 

5 
Crime Investigation / 

Counter Terror  
Op. Planning 

Fake news, misinformation, security, 
surveillance, social network monitoring 

6 Other Domains 

Speech Recognition, Traffic Monitoring, 
Detecting Faults in Web Applications, 
Detectiong Outliers in Astronomical 

Data, in CRM, in Census Data, in 
Biological Data, Novelty Detection in 

Robot Behaviour, Click Through 
Protection, and others 

The well-known DBSCAN clustering algorithm [9] can be 
considered, for example, both in the density-based category 
and in the clustering-based one, because DBSCAN assumes 
that regions or points with density lower than a global 
threshold are noise or outliers. 

It is very important to underline that outlier detection can 
represent both the objective of the analysis and a data cleaning 
method in the Data Preparation step of the CRISP-DM [10]. 

Outlier detection is central for a wide variety of 
applications and activities [11] [12] such as reported in Table 
III.  

B. Clustering-based Outlier Detection 

Outlier detection finds objects that are not strongly related 
to other objects, while on the contrary cluster analysis finds 
groups of strongly related objects in the dataset. One 
implication is that clustering can be successfully used for 
outlier analysis. 

This approach is based on the idea that anomalous points 
do not belong to a cluster or to a single cluster without 
ambiguity. Another possibility occurs when the anomalous 
point is far away from the nearest normal cluster 
representative (such as the centroid, the medoide, etc.). The 
use of an unsupervised outlier detection approach based on a 
clustering algorithm also has the advantage of avoiding the 
bias introduced by training an algorithm with anomalous 
instances, labeled wrongly as normal data, producing many 
and unmanageable misclassifications. 

Applying a clustering method to detect anomalies can 
discover, such as all the kinds of outlier detection approaches, 
single, spare, and rare elements, or also clusters of outliers, 
forming a collection, which is why in this case anomalies are 
called “collective outliers”. For the sake of clarity, many times 
the collective outliers aggregate far from the rest of the 
elements of the dataset, and then they could be modeled by a 
rule, forming a real new cluster and not an actual set of 
anomalies. So, an almost always applicable rule by which we 
can understand if a potential anomaly is a real anomaly, is to 
recognize if the anomaly belongs to a pattern. As already 
mentioned, the subset of the detected anomalous points may 
also not form a cluster, for example, because they are not 
cohesive with each other or they are not well separated from 
the rest of the clusters. 

The main idea to detect anomalies by using a clustering 
approach is based on the property that “normal” data belong 
to large and dense clusters, whereas outliers belong to small 
or sparse clusters, or they are singletons, not belonging to any 
cluster. Consequently, all clusters smaller than a minimum 
size can be discarded, reassessed, or reported. 

The clustering approach to anomaly detection can be used 
with any clustering algorithm, but requires thresholds for the 
minimum cluster size and the distance between a small cluster 
and other clusters. The idea of a clustering-based algorithm 
for outlier detection is captured by the definition [4]: 

“An object is a cluster-based outlier if the object does not 
strongly belong to any cluster.” 

In this context, “strongly” also means “clearly” and 
“without ambiguity”, and in the next sections the meaning of 
these words will be more explicit. 
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The binding of a point to its cluster can be measured by a 
score. A simple way of defining this score is to first cluster the 
whole dataset and then use the distance of the point to its 
closest cluster centroid. The points that have the highest scores 
are potential outliers. 

After objects of a set are clustered and outliers are 
discovered and removed, the set with the rest of objects can 
be clustered again, analyzing if outliers affect the clustering. 
This is a very thorny problem, especially if 𝑘-means is chosen 
as the clustering algorithm, the results of which depend on the 
choice of the initial centroids and on the number 𝑘 of clusters 
to be determined. 

Another problem to be highlighted concerns the size of the 
clusters. If a cluster has very few points, these are potential 
outliers only if the other clusters have much larger sizes, 
otherwise nothing can be said. In a nutshell, outlier detection 
is strongly conditioned by the selected threshold.  

Furthermore, many clustering techniques, such as 𝑘 -
means, do not automatically determine the number of clusters. 
This is a problem when using clustering in outlier detection, 
since whether an object is considered an outlier or not may 
depend on the number of obtained clusters. 

All these aspects make us understand how the problem of 
outlier detection is strictly dependent on the set of data, the 
chosen method, the parameters of the algorithm, and the 
analysis goals. As consequence we have that we are not 
always sure that a discovered point is really anomalous. 

The cluster-based outlier definition inherently contains a 
fuzzy reinterpretation of cluster analysis and outlier detection. 
For this reason, the ECF-means algorithm is a good candidate 
to detect potential outliers and to explore the dataset and 
clustering results. 

C. Fuzzy Clustering-based Approach to Outlier Detection 

In order to detect anomalies, fuzzy clustering is an 
alternative approach to classical clustering-based methods 
that are centered on the concept of crisp membership. 
Recently fuzzy clustering-based methods are applied in many 
fields, analyzing various types of data, and also getting very 
good results [13] [14] [15] [16]. In most of these works, 
however, authors use the fuzzy c-means clustering (FCM) 
algorithm, or a variant of it, for detecting outliers. Moreover, 
many crisp clustering techniques have difficulties in handling 
extreme outliers but fuzzy clustering algorithms tend to give 
them very small membership degree in surrounding clusters.  

A systematic approach is to first cluster all objects and 
then assess the degree to which an object belongs to any 
cluster. Generally, the rules of assignment of the degree of 
membership characterizes the fuzzy clustering results. For 
example, the distance of an object to its cluster center can be 
used to measure the degree to which the object belongs to a 
specific cluster. If the elimination of an object results in a 
substantial improvement in the objective, then we would 
classify the object as an outlier. In a nutshell, clustering 
creates a model of the data and anomalies distort that model. 

Another way to state if an object is an anomalous point is 
to calculate a level of “undecidability” of the point; for 
example, if the point belongs to two clusters with the same 
degree, then it has a high possibility of being an outlier. 

D. Ensemble Outlier Detection 

Mainly, an ensemble classical approach to outlier 
detection combines the outputs of individual outlier detection 
components by a weighted majority voting rule in a complete 
unsupervised context. The construction of ensembles is 
proposed as a solution to increase the individual capacity of 
each algorithm component and to improve the 
“anomalousness” of a potential outlier. However, no gain will 
be obtained by using components whose results are equal. So 
the discovered outliers sets must have some different 
anomalous points. 

Whilst unsupervised outlier detection algorithms often 
suffer from high false positive detection rates, an ensemble 
approaches can be used to reduce these rates and many 
applications have shown good results to achieve more 
accurate and reliable anomalies [17]. 

The ensemble components can be built by applying each 
approach in Table II. However, the classification-based 
methods are more common than clustering-based ones [18]. 

The approach presented here is not a classical clustering-
based method, it is a rather unique approach between 
ensemble methods for anomaly detection, due to its hybrid 
nature. In fact, on the one hand, it is the consequence of an 
aggregation clustering method, on the other hand, it exploits 
its fuzzy implication to assign scores to all points of the 
dataset, and on the basis of these scores it attributes a level of 
“outlierness” to the points. 

E. Properties of the Algorithms for Outlier Detection  

An anomaly detection method can enjoy some properties. 
The idea presented here is to apply an algorithm for 

anomaly detection to a dataset, to remove the discovered 
anomalous points, and then to apply to the remaining data the 
same algorithm again. 

Let 𝑆 be a set of points, 𝐹 an outlier detection method, and 
𝐴 the set of outliers of 𝑆 discovered by 𝐹. In this case we can 
write 𝐹(𝑆) = 𝐴 . If 𝐹(𝑆 − 𝐴) = ∅ , then 𝐹  is an invariant 
algorithm for 𝑆 (or 𝑆 is invariant respect to 𝐹). In this case, 𝐹 
finds all the outliers of 𝑆 in one fell swoop. If 𝐹 is invariant 
for each set, simply 𝐹 is invariant. 

The mentioned DBSCAN algorithm [4] [9] can be 
considered as a clustering-based outlier detection method; in 
a nutshell, the clustering results depend on the radius 𝜀 of the 
epsilon-range-queries (which are hyperspheres) and on 𝑚 
parameter that is the minimum number of data objects 
required in an epsilon-range-query. For DBSCAN the outliers 
are noise, i.e., those points belonging to those clusters that 
have less than 𝑚 elements, and therefore, they are not reached 
by any epsilon-range-query. Fixing 𝜀  and 𝑚 , DBSCAN is 
invariant for each set. 

The ECF-means algorithm is invariant for some datasets 
and not for others, as will be shown in the case studies in the 
next sections. 

For the sake of clarity, the invariance property is not a 
property of the anomaly detection method, but of the set 
analyzed by the method. 

If 𝐹 enjoys the invariance property for each set, then on 
one hand, 𝐹 is a very “robust” method for outliers detection, 
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but on the other hand, the method is a very strong property, or 
it can be very hard to prove it. It can be relaxed by a more 
general property explained in Figure 1. 

Invariance Property of Order 𝒏 

𝑆 = 𝐴0 set of points 
𝐹 outlier detection method 
𝐴1 the set of outliers of 𝑆 discovered by 𝐹: 
𝐴1 = 𝐹(𝑆) = 𝐹(𝐴0)  
𝐴2 the set of outliers of 𝐴0 − 𝐴1: 

𝐴2 = 𝐹(𝑆 − 𝐹(𝑆)) = 𝐹(𝐴0 − 𝐴1)  
𝐴3 the set of outliers of 𝐴0 − (𝐴1 ∪ 𝐴2): 

𝐴3 = 𝐹 (𝑆 − (𝐹(𝑆) ∪ 𝐹(𝑆 − 𝐹(𝑆)))) = 𝐹(𝐴0 − (𝐴1 ∪ 𝐴2))  

……  
𝐴𝑛 = 𝐹(𝐴0 − (𝐴1 ∪ 𝐴2 ∪ …∪ 𝐴𝑛−1))  
𝐴𝑛+1 = 𝐹(𝐴0 − (𝐴1 ∪ 𝐴2 ∪…∪ 𝐴𝑛))  

𝐹 is 𝑛-invariant for 𝑆 if and only if 𝐴𝑛+1 = ∅ and 𝐴𝑛 ≠ ∅ 

Figure 1.  Generic Invariance Property of 𝐹. 

In the generic invariance property of 𝐹, 𝐴𝑛+1 ∩ 𝐴𝑛 = ∅ 
(𝑛 > 0). 

III. CLUSTER ANALYSIS 

In order to detect potential outliers and to explore the 
dataset, cluster analysis is widely used in data mining. In this 
section, some general clustering considerations are shown. 

A. Introduction 

Clustering, or cluster analysis, belongs to intersection of 
Statistics, Machine Learning, and Pattern Recognition. It is a 
very useful unsupervised method for discovery pattern in 
large amount of data. It is a technique to group a set of objects 
into subsets or clusters. It is widely used [19] for Data Mining 
tasks, because it can be easily applied to understand, explore, 
prepare, and model data. It plays an outstanding role in many 
applications, such as scientific data exploration, information 
retrieval and text mining, web analysis, bioinformatics, and 
many others. 

It can be applied at various steps of the Knowledge 
Discovery in Database (KDD) process. KDD can be carried 
out according to the Cross Industry Standard Process for Data 
Mining (CRISP-DM) [10]. Table IV shows the six steps of 
CRISP and where the cluster analysis can be applied. Some 
cluster analysis tasks are also reported. 

TABLE IV.  CRISP-DM STEPS AND CLUSTER ANALYSIS 

 CRISP-DM Step Name Cluster Analysis Tasks 

I Business Understanding -------- 

II Data Understanding Data Exploration and Description 

III Data Preparation 
Data Selection, Cleaning and 
Reduction, Features Selection, 
Gain and Raising 

IV Modeling 

Generate Test Design, Data 
Modeling (Segmentation, 
Associative Rules, …), Model 
Customization  

V Evaluation -------- 

VI Deployment -------- 

In the literature, there are many categories of algorithms 
for clustering: Heuristic-based, Model-based, and Density-
based [20]. Their common goal is to create clusters so that 
objects in the same cluster should be as similar as possible, 
whereas objects in one cluster should be as dissimilar as 
possible from objects in the other clusters. Usually, it is not 
easy to choose the most useful algorithmic approach, the most 
satisfying result, and therefore, the most usable configuration. 
In fact, the different models for clustering may produce 
configurations that are very different from one another. 
Anyone applying a clustering algorithm immediately realizes 
how difficult it is to choose the final cluster configuration. We 
may have different results because we choose different 
algorithms, or different parameters of the fixed algorithm. 
Furthermore, the numerous available evaluation metrics often 
do not facilitate this choice because they lead to very 
discordant results. 

In spite of the availability of a large number of validation 
criteria, the ability to truly test the quality of a final 
configuration remains vague and hard to achieve. Specific 
domain knowledge is not an aid because it is often hard to 
translate it into operating rules, neither the domain expert has 
a real target class for evaluating and comparing the results. So, 
why do not consider all the obtained configurations? That is, 
why do not find a method that summarizes all the results of 
clusterings? Meta-learning ensemble methods may be an 
answer. The idea is that no single model or criterion truly 
captures the optimal clustering, but a cooperation of models 
could provide a more robust solution. Cluster Ensemble, or 
Aggregation Clustering, or Multiview Clustering, aims to find 
a single clustering from multi-source basic clusterings on the 
same group of data objects [21]. However, these ensemble 
methods, such as voting-based clustering [22], consensus 
clustering [23], or clustering aggregation [24] do not assign a 
level of membership to every point in clusters. 

In order to overcome the limits mentioned above, the ECF-
means algorithm can be included within ensemble procedures. 
It is also an a posteriori criterion for optimization of the 
obtained groupings. This procedure takes in input any 
partitioning clustering algorithm for which it is possible to 
initially choose the 𝑘 number of clusters to be determined and 
a seed for the random choice of the initial 𝑘 centroids. 

The 𝑘-means algorithm is one of the clustering algorithms 
that checks all the conditions listed. So, it is considered as the 
reference clustering algorithm. In Weka implementation of 𝑘-
means [25] [26], the name of the algorithm is SimpleKMeans; 
in this version the seed parameter is 𝑠 , which is the 
initialization value for the random number generator. Using 
the same seed value will always result in the same initial 
centroids then. Exploiting this seed parameter, many different 
configurations are evaluated and compared, and also used in 
our meta-algorithm for ensemble final configuration. 

ECF-means can lead also to a “soft” interpretation of the 
clusters, in order to better explore and understand the results, 
and to find possible outliers in the dataset. 

B. Definitions and Scope 

A Clustering algorithm produces a partition on an 
unlabeled data set, such that no cluster is empty, no two 
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clusters intersect, and the union of all clusters is the data set 
itself. 

The goal is to create clusters that are coherent internally, 
but substantially different from each other. In a nutshell, 
objects in the same cluster should be as similar as possible, 
whereas objects in one cluster should be as dissimilar as 
possible from objects in the other clusters. 

Similarity between objects that belong to a cluster is 
usually measured by a metrics 𝑑 . Two objects 𝑥  and 𝑦  are 
similar if the value of 𝑑(𝑥, 𝑦) is small; what “small” means 
depends on the context of the problem. 𝑑 is defined by some 
distance measure. Typically, the Euclidean Distance (or 
simply the squared Euclidean Distance) is widely used in 
many applications (it is also used in the ECF-means) for the 
computation of similarities: 

𝐸𝐷2(𝑥, 𝑦) =∑(

𝑛

𝑖=1

𝑥𝑖 − 𝑦𝑖)
2 

It is important to underline that, also depending on the type 
of data, other many metrics are possible. 

Numerous clustering algorithms are available in the 
literature and there are several points of view for examining 
clustering techniques; a very good landscape of Clustering 
algorithms can be retrieved in [20], and an in-depth and 
complete study of clustering techniques, algorithms and 
applications can be retrieved in [27]. 

C. Ensemble Clustering 

Different clustering approaches or different views of the 
data can lead to different solutions to the clustering problem. 
Indeed, also initial settings of a fixed algorithm may produce 
clusters that are very different from one another. This 
evidence is closely related to the theory of Ensemble 
Clustering (or Multiview Clustering), which studies this issue 
from a broader perspective [21] [28].  

Therefore, instead of running the risk of picking an 
unsuitable clustering algorithm, a cluster ensemble can be 
used in order to get a “better” clustering configuration. The 
idea is that no single model or criterion truly captures the 
optimal clustering, but a collective of models will provide a 
more robust final solution. 

Most ensemble models use the following three steps to 
discover the final clusters configuration: 

1. Generate 𝑁  different clusterings, by using different 
approaches, or different data selection, different 
settings of the same algorithm, or different clusterings 
provided by different runs of the same algorithm. 
These represent the ensemble components.  

2. Combine the results into a single and more robust 
clustering, by using a meta-rule or a set of rules. 

3. Evaluate the ensemble clustering result and compare 
it with the results of the 𝑁 components. 

As already mentioned, the ensemble components can be 
selected in a wide variety of ways.  

Some strategies for building clustering ensemble 
components follow: 

1. By using different subsets of features. Each clustering 
configuration is found by means of overlapping or 
disjoint subsets of the original features set. 

2. By selecting different subsets of the data, via random 
sampling. 

3. The different components can be selected combining 
a variety of models and algorithms such as 
partitioning, hierarchical or density-based methods, 
random or deterministic algorithms, and so on. 

4. The different components can correspond to different 
settings of the same algorithm. 

5. The different components could be obtained from a 
single algorithm, randomizing the initial choice of the 
clusters centroids. Of course, an example is 𝑘-means; 
thus, the ensemble can be formed as the result of 𝑁 
different runs of the algorithm. 

After the individual components have been obtained, it is 
often a challenge to find a meta-rule able to combine the 
results from these different solutions in order to create a 
unified ensemble clustering. 

D. Hard and Soft Clustering 

Clustering algorithms can also be classified into hard and 
soft algorithms. A hard clustering algorithm leads to a 
partition of crisp sets. In a crisp set, an element is either a 
member of the set or not. On the other hand, a soft clustering 
algorithm leads to fuzzy clusters. Fuzzy sets allow elements 
to be partially in a set. Each element is given a degree of 
membership in a set. 

One of the most famous fuzzy clustering algorithms is 
fuzzy 𝑐-means [29] (FC-means), which allows an object to 
belong to two or more clusters with a membership degree 
between zero (not an element of the set) and one (a member 
of the set). It has been widely used in many real-world 
application domains where well-separated clusters are 
typically not available. 

The ECF-means algorithm leads to a fuzzy partitioning of 
the dataset, by repeatedly applying the results of the 𝑘-means 
algorithm, as reported in next sections. 

IV. THE 𝑘-MEANS ALGORITHM 

𝑘-means is a simple clustering algorithm whose main goal 
is to find 𝑘  non-overlapping clusters. Each final cluster is 
represented by its centroid that is typically the mean of the 
points in that cluster. 

A. Introduction, scope and procedure 

𝑘 -means is one of the oldest and still widely used 
algorithms for cluster analysis. Without any doubt, it 
represents the archetype of the clustering partitioning 
algorithms. Because of its mathematical simplicity, it is also 
the most studied unsupervised learning technique [30], and 
over the years, many of its variations and extensions have 
been implemented (for High-Dimensional Data, for Data 
Streams, Time Series, for Data with noise, and so on). 
𝑘 -means is also a simple prototype-based clustering 

algorithm that uses the centroid of the objects in a cluster as 
the prototype of the cluster. 

Its basic algorithmic structure is shown in Figure 2. 
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𝒌-means Clustering Algorithm 

Input: S set of instances; 𝑘 number of clusters 
Output: set of 𝑘 clusters with 𝑘 centroids 

1. Randomly initialize 𝑘 cluster centers (centroids) 
2. While termination condition is not satisfied { 
3.           Assign instances to the closest cluster center 
4.          Update cluster centers using the instances assignment 
5.     } 

Figure 2.  𝑘-means Algorithm. 

The condition of termination of the process is satisfied 
when no point changes clusters. 

B. Pros and Cons 

The algorithm has been very successful thanks to its 
simplicity and also for its linear time complexity 𝑂(𝑘𝑛𝑙) , 
where 𝑛 is the number of objects to be clustered and 𝑙 is the 
number of iterations that the algorithm is performing. 

Like most partitioning clustering algorithms, 𝑘-means has 
some disadvantages: 

1. It is very sensitive to outliers and noise. 
2. The number of clusters need to be specified by the 

user and often it is not simple to choose it. 
3. It is not able to discover concave-shaped clusters. 
4. Since the initial choice of 𝑘  centroids is random, 

different selections can also lead to very different 
final partitions, especially for large datasets with 
many features. 

The 𝑘-means algorithm always terminates, but it does not 
necessarily find the “best” set of clusters. 

C. Fuzzy 𝑐-means  

The fuzzy 𝑐 -means (FCM) algorithm has got many 
versions. The code of Figure 3 does not use incremental 
updates of cluster centroids. 

Basic Fuzzy 𝒄-means Algorithm 

1. Select an initial fuzzy pseudo-partition, i.e. assign values to all the 
𝑤𝑖𝑗  

2. repeat  
3.  Compute the centroid of each cluster using the fuzzy pseudo-

partition 
4. Recompute the fuzzy pseudo-partition. i.e., the 𝑤𝑖𝑗 
5.    until The centroids do not change. 
       (Alternative stopping conditions are “if the change in the error is 

below a specified threshold” or “if the absolute change in any 
𝑤𝑖𝑗 is below a given threshold.” 

Figure 3.  Basic Fuzzy c-means Algorithm. 

𝑘-means can be regarded as a special case of fuzzy 𝑐-
means [4] and the behavior of the two algorithms is quite 
similar. 

V. ENSEMBLE CLUSTERING FUZZIFICATION MEANS 

The initial selection of centroids can significantly affect 
the result of the 𝑘-means algorithm. To overcome this, the 
algorithm can be run several times for a fixed value of 𝑘, each 
time with a different choice of the initial 𝑘 centroids. 

In many software implementations of 𝑘 -means, for 
example, in its Weka version, it is possible to choose a seed 
parameter (𝑠), useful for the random selection of the first 
initial centroids (𝑠 is the random number seed to be used). 
Using this parameter, it is possible to realize, as will be 
described in the following sections, a procedure able to 
optimize and reinforce the obtained partition. 

A. Introduction and Definitions 

Let 𝑆 ⊆ ℝ𝑚  be a set of points. Let 𝑘  be the desired 
number of clusters to be determined. Changing the seed (𝑠) 
from 0 to 𝑁 − 1 , 𝑁  partitions of 𝑆  can be generated by 
applying the 𝑘-means algorithm. Some of these partitions are 
exactly the same, considering or not the order of groupings. 
Others, however, differ for very few records, and others for 
many. 

In the following 𝑁 × 𝑘 matrix, called Clustering Matrix 𝐶 
of 𝑆, each row is a partition of 𝑘 clusters of 𝑆. 

𝐶 =

(

 

𝐶1,1 𝐶1,2 … 𝐶1,𝑘
𝐶2,1 𝐶2,2 … 𝐶2,𝑘
… … 𝐶𝑖,𝑗 …

𝐶𝑁,1 𝐶𝑁,2 … 𝐶𝑁,𝑘)

  

𝐶𝑖,𝑗 is the 𝑗-th cluster obtained at the 𝑖-th iteration of the 

clustering algorithm, with 𝑖 = 1, … , 𝑁 and 𝑗 = 1,… , 𝑘. 
It is possible to associate a new 𝑁 × 𝑘 matrix to 𝐶, called 

𝑀𝑈 matrix, which is the matrix of the centroids of the clusters: 

𝐶 → 

(

 
 

𝜇(𝐶1,1) 𝜇(𝐶1,2) … 𝜇(𝐶1,𝑘)

𝜇(𝐶2,1) 𝜇(𝐶2,2) … 𝜇(𝐶2,𝑘)

… … 𝜇(𝐶𝑖,𝑗) …

𝜇(𝐶𝑁,1) 𝜇(𝐶𝑁,2) … 𝜇(𝐶𝑁,𝑘))

 
 
= 𝑀𝑈 

𝜇(𝐶𝑖,𝑗) is the arithmetic mean of the 𝑗-th cluster of the 𝑖-th 

iteration of the algorithm, with 𝑖 = 1, … ,𝑁 and 𝑗 = 1,… , 𝑘. 

B. Clusters Sort Algorithm 

The algorithm in Figure 4 is useful for sorting the clusters 
partitions of 𝐶 matrix. This step is essential because 𝑘-means 
can produce different orders of clusters in different runs, even 
if the partitioning results can be the same. 

Please note it is possible that the average of some elements 
of the second row 𝐶2 in Algorithm 1 has a minimum distance 
from two or more averages of elements of the first row 𝐶1. In 
this case, the minimum value of the minimum values is 
chosen. 

C. The ECF-means Algorithm 

Let 𝐶  be a Clustering Matrix of 𝑆 , sorted by using the 
Algorithm 1.  

We define 𝑪𝒋  as floor of 𝑪𝒋 : 𝐶𝑗 = ⋂ 𝐶𝑖,𝑗
𝑁
𝑖=1 , with 𝑗 =

1,… , 𝑘 . It is possible that 𝐶𝑗 = ∅ (𝑗 = 1,… , 𝑘 ). Moreover, 

𝑺 = ⋃ 𝐶𝑗
𝑘
𝑗=1  is defined as the floor of 𝑺. 
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Algorithm 1: Clusters Sort Algorithm 

Input: two different rows of 𝐶:  

𝐶1 = (𝐶1,1, 𝐶1,2, … , 𝐶1,𝑘) and 𝐶2 = (𝐶2,1, 𝐶2,2, … , 𝐶2,𝑘) 
Output: a new order of the second row: 
(𝐶′2,1, 𝐶′2,2, … , 𝐶′2,𝑘) = 𝐶′2  

𝐶1 represents the reference row of the current sorting procedure (e.g., 
obtained by fixing 𝑠 = 0 in the Weka 𝑘-means algorithm). 

1. Calculate the 2 × 𝑘 matrix of clusters centroids: 

𝑀𝑈 = (
𝜇(𝐶1,1), 𝜇(𝐶1,2),… , 𝜇(𝐶1,𝑘)

𝜇(𝐶2,1), 𝜇(𝐶2,2),… , 𝜇(𝐶2,𝑘)
)  

2. Compute the Euclidean Distances (𝐸𝐷) in 𝑀𝑈. The following 𝑘 ×
𝑘 matrix is the ∆ matrix of the 𝐸𝐷s:  

∆= (

𝑑1,1 𝑑1,2 … 𝑑1,𝑘
𝑑2,1 𝑑2,2 … 𝑑2,𝑘
… … … …
𝑑𝑘,1 𝑑𝑘,2 … 𝑑𝑘,𝑘

)  

Where: 

𝑑𝑖,𝑗 = 𝐸𝐷 (𝜇(𝐶1,𝑖), 𝜇(𝐶2,𝑗)), with 𝑖, 𝑗 = 1,… , 𝑘. 

3. Calculate the minimum value of each row of ∆. 
min{𝑑1,1, 𝑑1,2,… , 𝑑1,𝑘} = 𝑑1,𝑗1̅̅̅ = 𝑚𝑖𝑛1  

min{𝑑2,1, 𝑑2,2, … , 𝑑2,𝑘} = 𝑑2,𝑗2̅̅̅ = 𝑚𝑖𝑛2  
………………  
min{𝑑𝑘,1, 𝑑𝑘,2, … , 𝑑𝑘,𝑘} = 𝑑𝑘,𝑗𝑘̅̅ ̅ = 𝑚𝑖𝑛𝑘  

4. The second row 𝐶′2 is: 

(𝐶′2,1, 𝐶′2,2, … , 𝐶′2,𝑘) = (𝐶2,𝑗1̅̅̅ , 𝐶2,𝑗2̅̅̅, … , 𝐶2,𝑗𝑘̅̅ ̅)  

Where: 
𝐶′2,1 = 𝐶2,𝑗1̅̅̅  is the cluster (in 𝐶2) that has the centroid with the 
minimum distance from the centroid of the first element of 𝐶1. 
………  
𝐶′2,𝑘 = 𝐶2,𝑗𝑘̅̅ ̅ is the cluster (in 𝐶2) that has the centroid with the 

minimum distance from the centroid of the 𝑘-th element of 𝐶1. 

Figure 4.  Clusters Sort Algorithm. 

Let 𝑥  be an element of 𝑆; we can count the number of 
clusters of the first column of 𝐶  where 𝑥 is, the number of 
clusters of the second column of 𝐶 where 𝑥 is, and so on. In 
this way, we can associate a new numerical vector to 𝑥, called 
attitude of 𝒙 (𝑎𝑡𝑡(𝑥)): 

𝑎𝑡𝑡(𝑥) = (𝑎𝑡𝑡1(𝑥), 𝑎𝑡𝑡2(𝑥), … , 𝑎𝑡𝑡𝑘(𝑥)), 

where 𝑎𝑡𝑡𝑗(𝑥) is the number of clusters in the 𝑗-th column of 

𝐶  where 𝑥  is located. 𝑎𝑡𝑡𝑗(𝑥) = 𝑁 ⇔ 𝑥 ∈ 𝐶𝑗  and 

∑ 𝑎𝑡𝑡𝑗(𝑥)
𝑘
𝑗=1 = 𝑁. In this manner, we are defining a function 

𝑎𝑡𝑡𝑗 (𝑗 = 1,… , 𝑘 and 𝐼 = {1,2, … , 𝑁}): 

𝑎𝑡𝑡𝑗: 𝑥 ∈⋃𝐶𝑖,𝑗
𝐼

→ 𝑎𝑡𝑡𝑗(𝑥) = |{𝑖 ∈ 𝐼: 𝑥 ∈ 𝐶𝑖,𝑗}| 

where, as usual, |𝐴| is the number of the elements of the set 𝐴. 
Finally, we can define the probability vector of 𝒙, as: 

𝑝(𝑥) = (
𝑎𝑡𝑡1(𝑥)

𝑁
,
𝑎𝑡𝑡2(𝑥)

𝑁
,… ,

𝑎𝑡𝑡𝑘(𝑥)

𝑁
) 

Thanks to the simple mathematical notions of the current 
section, we are able to “soften” the “hard” 𝑘-means algorithm 
and we can have a new Fuzzy Clustering Algorithm. 
According to this approach, each element of the dataset 
belongs to each cluster with a different degree of membership, 
and the sum of these probabilities is equal to one. 

Furthermore, the method can also be interpreted in a 
different way. Indeed, this “fuzzification” procedure can be 
used not only with 𝑘-means algorithm, but also for others 
partitional clustering algorithms for which it is possible to 
choose the number of clusters to be determined. In this way, 
the algorithm is part of the Ensemble algorithms. For these 
reasons, ECF-means is also a meta-algorithm because we 
reach a fuzzy partition of the dataset by using a multiple 
clustering algorithm schema. 

The Algorithm 2 of Figure 5 is able to assign a probability 
membership to each point of the dataset and to “slice” the data 
in clusters. 

Algorithm 2: ECF-means (Fuzzification of 𝒌-means) 

Input: 𝑆 ⊆ ℝ𝑚 ; number 𝑘  of clusters to be determined; 
membership threshold 𝑡  (0≤ 𝑡 ≤ 1); number 𝑁  of 𝑘 -means 
iterations 
Output: set of 𝑘 clusters of level 𝑡; probability vector of each 
element 𝑥 of 𝑆 

1. Apply the 𝑘-means algorithm to 𝑆, fixing the random seed 𝑠 = 0, 
obtaining the clusters 𝐶0,1, … , 𝐶0,𝑘 (𝐶(0)-configuration) 

2. foreach 𝑠 = 1,… , 𝑁 − 1 
3. Apply the 𝑘-means algorithm to 𝑆, obtaining the clusters 

𝐶′𝑠,1, … , 𝐶′𝑠,𝑘 (𝐶′(𝑠)-configuration) 
4. Apply the Clusters Sort Algorithm to 𝐶′(𝑠), considering 

𝐶(0)  as reference, obtaining the clusters 𝐶𝑠,1, … , 𝐶𝑠,𝑘 
(𝐶(𝑠)-configuration) 

5. end 
6. foreach  𝑗 = 1,… , 𝑘 
7. foreach 𝑥 ∈ 𝑆 
8. Calculate 𝑝𝑗(𝑥) = 𝑎𝑡𝑡𝑗(𝑥)/𝑁 
9. Fix the cluster 𝐶𝑗

𝑡 = {𝑥 ∈ 𝑆| 𝑝𝑗(𝑥) ≥ 𝑡} 

10. end 
11. end 

Figure 5.  ECF-means Algorithm. 

The membership threshold 𝑡 in the Algorithm 2 is fixed by 
the user and it is very useful to change the “level” to clusters 

final configuration. If 𝑡 = 1, then 𝐶𝑗
1 = {𝑥 ∈ 𝑆|𝑝𝑗(𝑥) = 1} =

𝐶𝑗 . Additionally, 𝑆 = ⋃ 𝐶𝑗
1𝑘

𝑗=1 . If 𝑡 = 0 , then 𝐶𝑗
0 = {𝑥 ∈

𝑆|𝑝𝑗(𝑥) ≥ 0} and ⋃ 𝐶𝑗
0𝑘

𝑗=1 = 𝐶𝑗
0 = 𝑆. 

Let 𝑝(𝑥)  be the probability vector of 𝑥  and let 𝑀 =
max 𝑎𝑡𝑡(𝑥) = max{𝑎𝑡𝑡1(𝑥), 𝑎𝑡𝑡2(𝑥), … , 𝑎𝑡𝑡𝑘(𝑥)}  be the 
maximum of 𝑎𝑡𝑡(𝑥), if this exists. We can define the position 
of 𝑀 in 𝑎𝑡𝑡(𝑥) as 𝑃𝑀𝐴(𝑥), if this exists. 

D. 𝑜-rank Fuzzy Outlier 

As has been defined, to each point of the dataset it is 
possible to associate a probability vector, which is as matter 
of fact a vector of degrees of memberships. What happens if 
we cannot unambiguously identify the cluster to which the 
point belongs? What happens if the two highest components 
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of the vector are equal (or almost equal)? In this case, two 
interpretations are possible; the “ambiguity”: 

1. depends on the clustering procedure, for example, on 

the choice of 𝑘 or on the selection of the number 𝑁 of 
iterations, 

2. is intrinsic to the point because the point is an 
anomaly. 

The first interpretation leads to the definition of a novelty 
validation measure called Threshold Index 𝑇𝐼 , which is 
reported in the next section. Thanks to the second 
interpretation it is possible to define a new particular type of 
outlier, called 𝑜-rank fuzzy outlier. 

An element 𝑥 ∈ 𝑆  is an 𝒐 -rank fuzzy outlier of 𝑺  if 
𝑝𝑗(𝑥) − 𝑝𝑙(𝑥) ≤ 𝑜 (0 ≤ 𝑜 ≤ 1), where 𝑝𝑗(𝑥) and 𝑝𝑙(𝑥) are 

the first two highest value components of 𝑝(𝑥) . The 𝑜 
parameter is also named “outlier threshold”. 

The definition of 𝑜-rank fuzzy outlier helps us to treat 
these points as special points, which need to be observed more 
closely, because they belong at least to two different clusters, 
with a degree of “ambiguity”. 

The 𝑜 parameter allows to create a hierarchy of outliers; 
that is, 𝑜 represents a score to be assigned to each point of the 
dataset. For example, if 𝑘 = 3  and 𝑝(𝑥1) = (1, 0, 0), 
𝑝(𝑥2) = (0.1, 0.45, 0.45),  𝑝(𝑥3) = (0.75, 0.05, 0.2),  and 
𝑝(𝑥4) = (0.5, 0.4, 0.1), then: 

 𝑥1, 𝑥2, 𝑥3, 𝑥4  are 1-rank outliers 

 𝑥2, 𝑥3, 𝑥4 are 0.55-rank outliers 

 𝑥2, 𝑥4 are 0.1-rank outliers 

 𝑥2 is a 0-rank outlier 

The set of 1-rank fuzzy outliers of 𝑆 is 𝑆; the set of 1-rank 
fuzzy outliers of 𝑆 that aren’t 𝑜-rank fuzzy outlier, with 𝑜 <
1 , is the floor of 𝑆.  From the “ 𝑜 -rank fuzzy outlier” 
perspective, each point in the dataset is an outlier. 

The 𝑜-rank fuzzy outliers, where 𝑜 is close to 0, are the 
most interesting points of the dataset, which need to be 
analyzed separately from the rest of the other points. Their 
fuzzy nature pushes us to a deepening, also to understand if 
they are “polluting” elements of the dataset, or they are 
wrongly selected by the algorithm and, therefore, they are 
ambiguous points for the algorithm but not anomalous in the 
dataset, or they constitute the main objective of detection. 

If ECF is considered a method for outliers detection, and 
if 𝑜.FOU is the set of 𝑜-rank fuzzy outliers of 𝑆, it could be 
very interesting to find the highest 𝑜 for which ECF-means is 
invariant for 𝑆, naturally if a such 𝑜 exists: 

max {𝑜: 𝐸𝐶𝐹(𝑆 − 𝑜. 𝐹𝑂𝑈) = ∅} 

For this selected 𝑜, the set of 𝑜-rank fuzzy outliers of 𝑆 
that make ECF-means an invariant method for outliers 
detection is a special subset that has to be detailed. 

E. Updates to the New Version of the Algorithm 

As pointed in the previous sections, changing the seed (𝑠) 
from 0 to 𝑁 − 1 , 𝑁  partitions of 𝑆  can be generated by 
applying the 𝑘-means algorithm. Some of these partitions are 
exactly the same, considering or not the order of groupings. In 

this new version of the algorithm, after applying the clusters 
sorting algorithm, all the identical configurations are deleted, 
leaving only all the different partitions. Obviously, two 
partitions are different if they have at least one element that 
belongs to two different clusters of the two partitions. 

This change effects on the whole designed method. As 
consequence of this choice, all the ensemble results and the 
evaluation indexes are calculated on the number of different 
obtained partitions and not on the total number of performed 
iterations. 

Two different seeds could lead to the same partition 
because through them the same initial centroids are selected, 
or because of some topological reason, which is for the 
geometric distributions of the elements in the dataset. It might 
be interesting to find out some rules by which different 
selections of the initial centroids lead to the same final 
configuration and to discover if a pattern exists for these 
elements. This change was made above all to avoid that the 
Weka algorithm based on the seed (𝑠) too often chooses the 
same initial centroids and, therefore, that the corresponding 
partitions are too privileged and impact on the final result. 

Even the case studies presented have clearer results thanks 
to the changes that have been made, and the new validation 
index facilitates the interpretation of the achieved results. 

Note that, especially for small datasets, the possible 
different final configurations can be very few; in this case, an 
ensemble approach can be superfluous or even useless. 

VI. CLUSTER VALIDITY ASSESSMENT 

Clustering validation has long been recognized as one of 
the critical issues essential to success of clustering 
applications [27]. 

A. Introduction 

One of the most important issues in clusters analysis is the 
evaluation of the clustering results. In order to compare the 
outputs of different clustering algorithms, or the different 
partitions retrieved by the same clustering algorithm by using 
different parameters, it is necessary to develop some validity 
criteria. Moreover, if the number of clusters is not given by 
the clustering algorithm, many cluster validity methods have 
been developed in the literature; indeed, to find the optimal 
number of clusters in the data set is a very central task in data 
analysis. These methods lead to many different indices, 
specialized for the various categories and approaches of 
clustering algorithms; moreover, the methods are usually 
divided in supervized and un-supervized methods, or in 
internal and external validation criteria [27]. 

Most validation indices take into account the concepts of 
cohesion and separation [31]; therefore, the index is a measure 
that “optimizes”: 

 Cohesion, also called compactness or tightness: 
patterns in one cluster should be as similar to each 
other as possible. The fitness variance of the patterns 
in a cluster is an indication of the cluster’s cohesion. 

 Separation: clusters should be well separated. 
Distance among the representatives of the clusters 
provides an indication of cluster separation. 
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B. Silhouette Index   

One of the most widespread and useful indices is the 
Silhouette [32] [33]. The Silhouette method is an 
unsupervized method (it does not need a class attribute to 
calculate it) for evaluation of clusterings. It is a measure of 
how similar an object is to its own cluster (cohesion) 
compared to other clusters (separation). 

The Silhouette index is calculated strarting from the 
definition of the silhouette of each point of the dataset. The 
silhouette 𝑠(𝑖)  of a point 𝑖  is calculated by the following 
formula: 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max {𝑎(𝑖), 𝑏(𝑖)}
 

Where:  

 𝑠(𝑖) is the silhouette of 𝑖 
 𝑖 is a generic point in the dataset; 

 𝑎(𝑖) is the average distance between 𝑖 and all other 
data within the same cluster. 

 𝑏(𝑖) is the smallest average distance of  𝑖 to all points 
in any other cluster, of which 𝑖 is not a member. 

From the above definition it is clear that −1 ≤ 𝑠(𝑖) ≤ 1.  
The Silhouette index is the aritmetic mean of the 

silhouettes of each point in the dataset. 
A value of the Silhouette index far from zero expresses a 

good result of the clustering algorithm. 

C. Validation Measures for Fuzzy Clustering 

Let 𝑈 = (𝑢𝑙𝑖) (1 ≤ 𝑙 ≤ 𝑘, 1 ≤ 𝑖 ≤ 𝑛)  be the 
membership’s matrix of a fuzzy partition of a dataset 𝑆 with 
𝑛 records, and 𝑘 is the number of clusters. 

The first validity index for fuzzy clustering is the Partition 
Coefficient Index (𝑃𝐶)  [34]. 𝑃𝐶  is based on 𝑈  and it is 
defined as: 

𝑃𝐶 =
1

𝑛
∑∑𝑢𝑙𝑖

2

𝑛

𝑖=1

𝑘

𝑙=1

 

𝑃𝐶 ∈ [1 𝑘⁄ , 1] . Furthermore, a 𝑃𝐶  value close to 1 𝑘⁄  
indicates that clustering is “very fuzzy”; the value 1 𝑘⁄  is 
obtained when 𝑢𝑙𝑖 = 1 𝑘⁄  , for each 𝑙, 𝑖. 

Another index is the Partition Entropy Coefficient (𝑃𝐸): 

𝑃𝐸 = −
1

𝑛
∑∑𝑢𝑙𝑖𝑙𝑜𝑔𝑎(𝑢𝑙𝑖)

𝑛

𝑖=1

𝑘

𝑙=1

 

𝑃𝐸 ∈ [0, 𝑙𝑜𝑔𝑎𝑘]. Furthermore, a low 𝑃𝐸 value indicates 
that clustering is “not very fuzzy”. 𝑃𝐸  values close to the 
upper limit indicate an absence of any clustering structure 
within the dataset or the inability of the algorithm to extract it. 

The main disadvantage of 𝑃𝐶 and 𝑃𝐸 is their monotonic 
evolution tendency with respect to 𝑘 . To avoid this, a 
modification of the 𝑃𝐶  index can reduce the monotonic 
tendency and was defined by: 

𝑀𝑃𝐶 = 1 − 
𝑘

𝑘 −  1
 (1 –  𝑃𝐶) 

where 0 ≤ 𝑀𝑃𝐶 ≤ 1. 
Finally, let we define a novel validity index, which we call 

the Threshold Index 𝑻𝑰, by the following formula: 

𝑇𝐼 =
|𝑆|

|𝑆|
 

𝑇𝐼 provides a measure of the quantity of elements in the 
dataset that are fixed in every partition (they belong to the 
floor set) with respect to the size of the whole dataset. 

Finally, if 𝑜.FOU is the set of 𝑜-rank fuzzy outliers, then 
let we define the 𝒐-rank fuzzy outlier index (𝒐. 𝑭𝑶𝑼𝑰), by the 
following formula: 

𝑜. 𝐹𝑂𝑈𝐼 =
|𝑜. 𝐹𝑂𝑈|

|𝑆|
 

𝑜. 𝐹𝑂𝑈𝐼 tells how many elements in the dataset are 𝑜-rank 
fuzzy outliers with respect to the size of the whole dataset. 

Thanks to these validation measures, it is possible to have 
a rough idea of the fuzzy nature of the whole dataset and, 
thanks to 𝑜. 𝐹𝑂𝑈𝐼, if too many points are outliers, then it is 
necessary to modify the parameters of the algorithm, such as 
𝑘 or 𝑁. For this reason, they are useful to better select these 
parameters. 

VII. ECF-MEANS TOOL V2.0 

With the purpose of testing the ECF-means algorithm, a 
software application has been designed and developed. It has 
been carried on using a Client/Server architectural pattern, 
where the Server part consists of the algorithm and other 
support utilities, while the Client part is made by a browser-
based application, responsible of the ECF-means result 
visualization. 

The algorithm had an important update and it leads to a 
new version of the software tool, and that is why we have 
renamed the tool updating it to the version 2.0. However, the 
tool presents an option to choose whether to keep the old 
version of the algorithm, leaving even the same 
configurations, or go to version 2.0, deleting the same 
partitions. 

A. Software Implementation 

The ECF-means web application is built up of two main 
modules: the first one wraps the ECF-means Algorithm that 
has been implemented in Java programming language, and it 
makes use of the Weka 𝑘-means algorithm (SimpleKMeans) 
[25] [35] as clustering algorithm implementation. 

The second module consists of the web application client 
part, which has been implemented by using JavaScript 
libraries, such as D3.js, as visualization library, and jQuery for 
Ajax asynchronous data communication and Document 
Object Model (DOM) manipulation tasks. 
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B. GUI & Data Visualization 

The implemented tool provides a user-friendly GUI, by 
which it is very easy to load datasets, fix the ECF-means 
parameters, and understand the algorithm results visually. 

The GUI can be divided into three functional blocks, as 
highlighted by red numbered circle in Figure 6. 

Through the first functional block, user can upload a 
dataset from a local file system, in csv or arff formats; after 
that he/she can specify the number of clusters 𝑘 (default is set 
to two), the initial seed number (default 0), and the number of 
iterations 𝑁 to perform (default 100). 

The o Value spin box controls the 𝑜-rank fuzzy outlier 
value and hence the 𝑜. 𝐹𝑂𝑈𝐼  index. Furthermore, its value 
changes cluster points shape and color: if a point has a 
difference between the two highest values of its probability 
membership vector less than this value, the point is displayed 
as a grey square. 

Two checkboxes control computation of, respectively: 
1. Silhouette Indexes. 
2. Only different cluster configuration, as stated in 

Section V.E. 

Lastly, a set of buttons allow the following operations: 
1. Run: runs the ECF-means algorithm and displays the 

results (clustering graphical visualization and 
validation measures output). 

2. Save Results: saves results to an output csv file. 
3. Stop: ends the current computation. 

The second block is where clustering visualization takes 
shape under scatter plot form: dataset points are displayed as 
circle with the color of the belonging cluster (resulting from 
the highest value of the probability membership vector) and 
with an opacity due to the degree of membership to the same 
cluster (stronger opacity means higher membership). 

If the attributes of the dataset are two, Voronoi lines 
(computed considering initial seed, default 𝑠 = 0) are also 
displayed. 

In the top of the block, some input controls are used to 
affect data visualization. In particular, two combo boxes are 
used to allow the choosing of dataset’s attributes that has to be 
displayed. Below this, a slider allows to set the degrees of 
membership above which a point is displayed (Membership 
Threshold t). 

Instead, rightmost input fields, in order from top to 
bottom, control the visualization of: 

1. The Initial Seed Centroid points (each with a “cross” 
symbol). 

2. The Mean Seed Centroid points (each with a “plus” 
symbol). 

 
Figure 6.  Software GUI and clustering visualization.
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The last third block is divided into three box panels: in the 
first one the validation measures are displayed, as described 
in Section VI.C, such as 𝑃𝐶, 𝑃𝐸, 𝑀𝑃𝐶, 𝑇𝐼, and 𝑜. 𝐹𝑂𝑈𝐼. In 
addition, Sum of Squared Errors (SSE) and Silhouette (S) 
measures have also been included; they are calculated 
considering Initial Seed (IS) and Mean Seed (MS), where MS 
is the mean value of the measure over all the 𝑁  iterations, 
which lead to the definition of IS-SSE, MS-SSE, IS-S, and 
MS-S. Below this box, a second box displays the number of 
different retrieved partitions.  

Lastly, in the bottom part of the block, a popup panel is 
displayed when a user clicks on a cluster point, where 
information about this clicked point are reported, such as point 
features, cluster memberships vector, best cluster assignment, 
etc. 

C. Output Results 

The ECF application exports results in csv format, where 
each row of the output file represents a point 𝑥 of the dataset. 
The application appends ECF-means algorithm results as 
additional columns to the attributes columns of the point 𝑥.  

TABLE V.  COLUMN NAMES MEANING 

Column Names Description 

ISCDistance𝑖, with 
𝑖 = 1,… , 𝑘 

Vector of Euclidean Distances between point 𝑥 and 
Initial Seed Centroids 

ISCMembership 
Cluster membership derived from the position of 
the smallest value in ISCDistance vector 

MSCDistance𝑖 , 
with 𝑖 = 1,… , 𝑘 

Vector of Euclidean Distances between point 𝑥 and 
Mean Seed Centroids 

MSCMembership 
 

Cluster membership derived from the position of 
the smallest value in MSCDistance vector 

Membership𝑖, 
with 𝑖 = 1,… , 𝑘 

Probability vector of point 𝑥, 𝑝(𝑥) 

ECFMembership Cluster membership derived from the 𝑃𝑀𝐴(𝑥) 

o-rank fuzzy 
outlier 

Y, if the point 𝑥 is an o-rank fuzzy outlier, where o 
is fixed through the o Value input box by the user 
N, otherwise 

Table V shows these additional column names meaning, 
where Mean Seed Centroid (MSC) is the arithmetic mean 
value of all computed centroids in 𝑁 iterations.  

VIII. CASE STUDY 1: THE WINE DATASET 

The Wine dataset from the UCI Machine Learning 
Repository [36] is widely mined both by applying 
classification algorithms and clustering techniques. Chemical 
indicators are used in order to analyze the wine dataset. This 
case study is useful to underline the differences between 
classical methods for outlier detection and ECF-means. 

A. Dataset Exploration 

The Wine dataset has got 178 instances described by 13 
attributes, with no missing values, and divided into three 
classes {0, 1, 2}, with the distribution [59, 71, 48]. These data 
are the results of a chemical analysis of wines grown in the 
same region in Italy but derived from three different cultivars. 

The analysis determined the quantities of 13 constituents 
found in each of the three types of wines. 

TABLE VI.  LIST OF WINE DATASET VARIABLES (FEATURES) 

# Name # Name 

1 Alcohol 8 Nonflavanoid phenols 

2 Malic acid 9 Proanthocyanins 

3 Ash 10 Color intensity 

4 Alcalinity of ash 11 Hue 

5 Magnesium 12 OD280/OD315 of diluted wines 

6 Total phenols 13 Proline 

7 Flavanoids   

The attributes (variables) are listed in Table VI. 

B. Outliers Detection with RapidMiner Tool 

The RapidMiner tool [37] provides a series of case studies 
for data analysis by using machine learning techniques, and 
one of these concerns outlier detection in Wine dataset. The 
goal of these case study is to select anomalies in data resulting 
from a chemical analysis of wines by finding the data clusters 
and, then, identifying the anomalies based on local outlier 
factors. The clusters are achieved by applying the 𝑋-means 
algorithm [38] which determines the correct number of 
centroids based on a heuristic. Briefly, 𝑋 -means is an 
extended version of 𝑘-means. It begins with a minimum set of 
centroids and then iteratively exploits if using more centroids 
makes sense according to the data. If a cluster is split into two 
sub-clusters is determined by the Bayesian Information 
Criteria (BIC), balancing the trade-off between precision and 
model complexity. 

TABLE VII.  𝑋-MEANS RESULTS 

Cluster  
Number of 

Items 
cluster_0 51 

cluster_1 62 

cluster_2 29 

cluster_3 36 

Tot 178 

TABLE VIII.  LIST OF OUTLIERS 

# Id Cluster Thershold 

1 26 cluster_1 1.605 

2 60 cluster_0 1.744 

3 70 cluster_0 1.867 

4 72 cluster_0 1.538 

5 74 cluster_1 1.963 

6 79 cluster_0 1.611 

7 96 cluster_1 1.880 

8 97 cluster_0 1.534 

9 111 cluster_0 1.655 

10 122 cluster_1 1.943 

11 159 cluster_3 1.684 

The outliers are detected by find the “outlier scoring” 
using the LOF (local outlier factor) mechanism [39]. The 
examples are filtered to get one data set with the outliers and 
another with the rest (non-anomalous points), using 
“outlier=1.5” as a threshold. Then, the outputs of the 
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RapidMiner analysis flow are the clustered data and two 
example sets with the outliers/non-outliers records. 

The 𝑋-means algorithm provides 4 clusters, as reported in 
Table VII. 

The outliers set, which we call 𝑂𝑈𝑇 , provided by the 
RapidMiner flow, consists of 11 anomalies reported in Table 
VIII. 

The set 𝑂𝑈𝑇 of anomalies will be compared with the set 
of outliers obtained by the ECF-means algorithm, in order to 
discover if there is an 𝑜-rank threshold such that the two sets 
have some elements in common (𝑂𝑈𝑇 ∩ 𝑜. 𝐹𝑂𝑈 ≠ ∅). 

C. DBSCAN Algorithm Application 

The mentioned DBSCAN algorithm can be applied in 
order to detect noise in the Wine dataset. Fixing 𝜀 = 0.6 and 
𝑚 = 5 in the Weka algorithm version, DBSCAN retrieves 
one cluster and provides 11 unclustered instances (noises), 
which are listed in Table IX, and they form the set 𝑁𝑂𝐼. 

TABLE IX.  LIST OF NOISES 

# Id 𝑶𝑺 

1 60 YES 
2 70 YES 

3 74 YES 

4 79 YES 

5 96 YES 

6 97 YES 

7 111 YES 

8 116 NO 

9 122 YES 

10 125 NO 

11 159 YES 

In the third column of Table IX, the “YES” value says if 
the unclustered instance is also in 𝑂𝑈𝑇 set. 

D. ECF-means Application 

The ECF-means tool provides some different results. First 
of all, by changing 𝑘 from 2 to 5, the best clustering outcomes 
are obtained by selecting 𝑘 = 3. In Table X the validation 
measures are listed and they are calculated by fixing I = 500, 
which is the total number of performed iterations. #DP 
indicates the number of different partitions obtained during 
the 500 performed iterations. 

TABLE X.  VALIDATION MEASURES (I=500) 

𝒌 MPC MS-S TI #DP 

2 0.21 0.4 0.01 8 

3 0.89 0.48 0.62 21 

4 0.65 0.42 0.27 246 

5 0.57 0.41 0 466 

In spite of the fuzzy nature of the analyzed dataset 
(MPC=0.89), setting 𝑘 = 3 the values of the Silhouette (MS-
S = 0.48) and of the Threshold Index (TI = 0.62) are the 
highest of the list.  

The floor 𝑆 of Wine dataset has got 110 instances; these 

elements do not have a fuzzy nature (or a degree of 
“ambiguity”), and the first cluster has got only one element, 
the second one has got 58 elements, and the third one has got 

51 elements. Set 𝑆 − 𝑆  contains potential outliers, and by 

changing the 𝑜  parameter, different levels of 𝑜 -rank fuzzy 
outliers are obtained, as Table XI shows. 

TABLE XI.  LIST OF 𝑜-RANK FUZZY OUTLIERS 

𝒐 𝒐-𝑭𝑶𝑼𝑰 
Id of 𝒐-rank 

fuzzy outliers 
0.05 0.01 69 

0.1 0.01 69 

0.15 0.01 69, 74 

0.25 0.02 69, 72, 74 

0.35 0.03 61, 69, 71, 72, 74, 75 

𝑝(69) = (0.5238, 0, 0.4762) is the probability vector of 
the element with Id = 69, whilst the probability vector of 74 is 
𝑝(74) = (0.4286, 0.5714, 0) . The element 72, which is a 
0.25-rank fuzzy outlier is not a real outlier because it is not an 
ambiguous element, considering its probability vector 
𝑝(72) = (0.619, 0.381, 0). 

The detected 0.15-rank fuzzy outliers, discovered by the 
ECF-means algorithm, listed in Table XI, form the 0.15 -
𝐹𝑂𝑈 = {69, 74} set.  

The intersection set 𝑂𝑈𝑇 ∩ 𝑁𝑂𝐼 ∩ 0.15.𝐹𝑂𝑈 is {74} and 
this point does not represent anything new. 

However, the new detected point, marked with id = 69, is 
really halfway between the first cluster and the third one and 
its discovery makes us understand how the proposed ECF-
means method is able to enrich our knowledge on the analyzed 
dataset. Moreover, this point is found also by the RapidMiner 
outlier detection process, using “outlier=1.3” as threshold of 
the selecting filter, instead of 1.5. 

IX. CASE STUDY 2 IN METEOROLOGICAL DOMAIN 

The application of the ECF-means algorithm to the 
meteorological dataset [40] has been extensively presented in 
[1], where numerous results have been described. To deepen 
the nature of the dataset and to have an example of data 
analysis, you can consult [41]. 

This case study is useful for explaining how the algorithm 
is able to explore even datasets with numerous records, how 
the number of discovered outliers increases with the increase 
of the 𝑜  parameter, and how the “ambiguous” points also 
belong to overlapping geographical areas. 

A. Summary of the Previous Results 

Briefly, in this section a summary of the results of the 
ECF-means application is presented. 

An historical dataset made up of 9200 meteorological 
observations has been collected. Data have been retrieved 
from ECMWF MARS Archive containing the surface 
Synoptic observations (SYNOP) provided by 4 geographical 
sites: Charles De Gaulle (CDG) airport in Paris and 
Grazzanise, Milan, and Pantelleria airports in Italy. 

SYNOP observations are recorded every hour and the list 
of the meteorological variables [41] used for applying the 
ECF-means algorithm is reported in Table XII. Each airport 
site has got 2300 records and the SITE attribute has 4 values. 

Considering the Silhouette measure, the best clustering 
partition is obtained by selecting 𝑘 = 3  for 𝑘 -means 
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algorithm (Silhouette=0.49). Fixing 𝑘 = 3  and considering 
SITE attribute as Class attribute, CDG and Milan are inserted 
into the same cluster (Cluster 0) by the algorithm (4 sites in 3 
clusters): it seems that the two sites have a lot in common! 
Thus, we try to merge these two sets, obtaining a new set 
called CDG+MIL. 

TABLE XII.  LIST OF METEOROLOGICAL VARIABLES (FEATURES) 

# Name # Name 

1 Pressure 6 cloud cover 

2 three-hour pressure change 7 height of base of cloud 

3 wind direction 8 Dewpoint Temperature 

4 wind speed 9 Drybulb Temperature 

5 Visibility 10 SITE 

The incorrectly clustered instances are 3710 and represent 
40.32% of the original dataset. 𝑘 -means does not provide 
homogeneous clusters with respect to SITE attribute. From an 
intuitive point of view, the 3 sites (Grazzanise, Pantelleria and 
CDG+MIL) have an ambiguous meteorological nature and the 
3710 unclustered instances are on the border between two or 
more sites. In other words, the datasets have overlapping 
areas, with “similar” meteorological conditions, and perhaps 
the sites are not so different, and they are not well-separated 
from each other. 

The ECF-means algorithm tries to overcome the problem 
in which the 𝑘-means algorithm falls in this meteorological 
case study, and in part it succeeds, if only because it provides 
much more information on datasets, clusters, and on 
clustering results, thanks to which the data analyst can make 
more informed and useful choices. 

By fixing 𝑘 = 3, thanks to the ECF-means application, we 
are able to select the floor 𝑆 of whole dataset. It has got 5363 

records. The incorrectly clustered instances are 704 and 
represent 13.12% of 𝑆. 

The elements belonging to 𝑆  never fluctuate from one 

cluster to another (considering the 350 iterations) and 
constitute approximately 58.3% of the initial dataset.  

The obtained results lead to a clear improvement of the 
clustering: the clusters seem much more separate, if the 
contingency matrices are calculated starting from the floor set. 
ECF-means manages to break down the percentage of 
instances that are incorrectly clustered from 40.32% to 
13.12%. 

B. Outlier Detection by Applyng the InterquartileRange  

The Weka tool provides a filter for detecting outliers and 
extreme values based on interquartile ranges. It can be found 
among the filters in the preprocess tab. The filter complies 
with the following schema: 

A point 𝑥 is an outlier ⇔  

{
𝑄3 + 𝑂𝐹 ∗ 𝐼𝑄𝑅 < 𝑥 < 𝑄3 + 𝐸𝑉𝐹 ∗ 𝐼𝑄𝑅

𝑜𝑟
𝑄1 − 𝐸𝑉𝐹 ∗ 𝐼𝑄𝑅 ≤ 𝑥 < 𝑄1 − 𝑂𝐹 ∗ 𝐼𝑄𝑅

 

A point 𝑥 is an extreme value ⇔  

{
𝑥 > 𝑄3 + 𝐸𝑉𝐹 ∗ 𝐼𝑄𝑅

𝑜𝑟
𝑥 < 𝑄1 − 𝐸𝑉𝐹 ∗ 𝐼𝑄𝑅

 

Where: 

 𝑄1 = 25% quartile, 

 𝑄3 = 75% quartile, 

 𝐼𝑄𝑅  = Interquartile Range, difference between 𝑄1 
and 𝑄3, 

 𝑂𝐹 = Outlier Factor, 

 𝐸𝑉𝐹 = Extreme Value Factor. 

The filter adds two new columns to the dataset: Outlier 
and ExtremeValue, which assume the values “yes” or “no”, 
depending on the previous filter schema. 

The dataset is divided by the three sites: Grazzanise, 
Pantelleria and CDG+MIL, and then, fixing 𝑂𝐹 = 3.0 and 
𝐸𝑉𝐹 = 6.0, the filter is applied to the three geographical sites 
separately.  

Table XIII shows the number and the percentages of the 
outliers and of the extreme values discovered by the Weka 
filter. 

TABLE XIII.  SYNOP OUTLIERS AND EXTREME VALUES 

 Grazzanise Pantelleria CDG+MIL 

Outlier 144 (6.3%) 267 (11.6%) 319 (6.9%) 

Extreme Values 65 (2.8%) 141 (6.1%) 157 (3.4%) 

These values are statistical outliers and they depend on the 
distributions of all the meteorological variables. 

By removing these points, putting together the three 
subsets, the residual dataset has got 8365 instances (some 
elements are both outliers and extreme values), and the three 
sites have the distribution [2145, 2012, 4208]. 

C. Outlier Detection by Applyng ECF-means 

It is very useful to make a classification of the 𝑜-rank 
fuzzy outliers of the SYNOP dataset. As we already said, from 
the “𝑜 -rank fuzzy outlier” perspective, each point in the 
dataset is an outlier. The elements that belong to the 𝑆, for 

example, are 1-rank fuzzy outliers but aren’t 𝑜-rank fuzzy 
outlier, with 𝑜 < 1. 

First of all, the intersection between the set 𝑂𝑈𝑇 of 835 
detected outliers by applying the InterquartileRange filter and 
the set of instances that are in 𝑆  and not in 𝑆  has got 748 

elements: 

|𝑂𝑈𝑇 ∩ (𝑆 − 𝑆)| = 748 

This makes us realize how the anomalies discovered by 
the ECF method have much in common with the statistical 
outliers that are in the 𝑂𝑈𝑇 set. 

The elements belong to 𝑜.𝐹𝑂𝑈 are 𝑜-rank fuzzy outliers 
and they have a fuzzy nature. However, 𝑜-rank fuzzy outliers 
with small 𝑜 (𝑜 < 1.5) are the most interesting ones, and we 
will compare them with the 𝑂𝑈𝑇 elements in more detail. So, 
also in this case study we will determine the set 𝑂𝑈𝑇 ∩
𝑜. 𝐹𝑂𝑈 (|𝑂𝑈𝑇 ∩ 𝑜.𝐹𝑂𝑈| ≤ 748, for small values of 𝑜). 
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By changing the 𝑜 parameter (and fixing 𝑘 = 3), we have 
the results of Table XIV, where the fuzzy outliers are  divided 
with respect to the SITE attribute. 

TABLE XIV.  SYNOP 𝑜-RANK FUZZY OUTLIERS 

𝒐 Grazzanise Pantelleria CDG+MIL Tot 
0.05 7 22 25 54 (0.6%) 

0.1 41 27 63 131 (1.4%) 

0.15 145 204 248 597 (6.5%) 

0.2 328 454 587 1369 (14.9%) 

 
We found that 597 points (about 6.5% of the initial 

dataset) have an Outlier Threshold (difference between the 
two highest values of the probability membership vector), less 
than 0.15. These ambiguous instances belong also to 𝑂𝑈𝑇 set: 

|𝑂𝑈𝑇 ∩ 0.15. 𝐹𝑂𝑈| = 597 

The remaining 748 − 597 = 151  points, which are in 
𝑂𝑈𝑇  but do not belong to 0.15 .𝐹𝑂𝑈  set, are all 0.2-rank 
fuzzy outliers. 

D. Invariance Property 

Is the ECF-means method for outlier detection invariant 
for the SYNOP dataset? Or better, is there an 𝑜  value for 
which the set of 𝑜 -rank fuzzy outliers of (𝑆𝑌𝑁𝑂𝑃 −
𝑜.𝐹𝑂𝑈) = ∅?  

The tests we performed, by changing the 𝑜  parameter, 
showed us that ECF-means is not an invariant algorithm for 
SYNOP set. But fixing 𝑜 = 0.15, the set of the 0.15-rank 
fuzzy outliers of (𝑆𝑌𝑁𝑂𝑃 − 0.15. 𝐹𝑂𝑈)  is very small. 
Indeed, this set has got only 59 instances, which are new 
points but, deepening this set, we have discovered that these 
elements belong to the 0.2.𝐹𝑂𝑈 set. 

For the sake of study, we repeated the procedure by setting 
𝑜 = 0.2, and then discovering the 0.2-rank fuzzy outliers of 
(𝑆𝑌𝑁𝑂𝑃 − 0.2. 𝐹𝑂𝑈). Also, in this case, the resulting set is 
very small and it has got 40 instances. 

On the other hand, if we calculate the 𝑜-rank fuzzy outliers 
of the floor 𝑆 of the SYNOP set (we are applying the ECF-

means algorithm to 𝑆 that has got 5363 records) we find out 

that 0.15. 𝐹𝑂𝑈  is empty and 0.1. 𝐹𝑂𝑈  has got only 11 
elements, whilst 0.05. 𝐹𝑂𝑈 has got 27 records (0.5% of 𝑆), 

and this result is really amazing. 

E. Experimental Results 

The results obtained in this case study encourage us to 
reflect a lot. Unlike the previous case study, here we do not 
find any new points compared to those discovered by the 
traditional method based on statistics. But surely the most 
interesting result is the ability that the proposed method has to 
assign a score to each set of outliers. 

Moreover, this case study gave us the opportunity to 
investigate the invariance property of the ECF-means method 
and to research the connection between the floor set of 
SYNOP and the 𝑜-rank fuzzy outliers. Although we did not 
find a precise analytical relationship between floor of SYNOP 
and 𝑜 (and we do not believe it exists because of the many 
algorithm parameters involved), we discovered a method to 

reduce the number of 𝑜-rank fuzzy outliers and to determine a 
“stable” subset of the original dataset. 

SYNOP is a very difficult set to analyze, not only because 
it has many statistical outliers (about 9.1% of the original 
dataset), but also because, as repeatedly pointed out by the 
meteorologist and as also discovered in [1] and in [41], there 
are no net separations between airport areas, from a weather 
point of view. For example, the elements in 0.15.𝐹𝑂𝑈 are 
very fuzzy points and they belong to more than one cluster, 
and probably to more than one airport site (to overlapping 
areas). 

In [41] the dataset is mined in order to find short-range 
temporal models for fog prediction; a next step would be to 
find out if prediction errors belong to 𝑜. 𝐹𝑂𝑈, for some 𝑜; or, 
if the generic forecast error decreases by removing the 
detected outliers from the dataset, or analyzing only the floor 
𝑆 of SYNOP dataset. 

X. CASE STUDY 3: THE IRIS DATASET 

The famous Iris dataset is a multivariate dataset that 
contains 3 classes of 50 instances each, where each class refers 
to a species of iris plant (Iris-setosa, Iris-virginica, and Iris-
versicolor). Four features were measured from each sample: 
the length and the width of the sepals and petals, in 
centimeters.  

The use of this dataset is very common in classification 
and clustering tasks, where numerous results have been 
obtained. Moreover, historically this dataset has been one the 
driving force of many theoretical studies, above all to discover 
and to deepen many non-linear classification methods. 

From a statistical point of view, the Iris dataset has neither 
outliers nor extreme values; this makes the dataset a good 
example for exploration by the ECF-means algorithm, in order 
to discover new kind of outliers. 

A. Summary of 𝑘-means Results 

The data set only contains two clusters with rather obvious 
separation: one of the clusters contains Iris-setosa, while the 
other cluster contains both Iris-virginica and Iris-versicolor. 

Fixing 𝑘 = 3, the incorrectly clustered instances are 18, as 
reported in the contingency matrix of Table XV, and represent 
12% of the original Iris dataset, by applying the simple 𝑘-
means algorithm (or by applying the ECF-means algorithm, 
fixing 𝑠 = 0 and 𝐼 = 1). 

TABLE XV.  CLASSES TO CLUSTERS (𝑠 = 0 AND 𝐼 = 1) 

0 1 2 Assigned to cluster 

0 0 50 Iris-setosa Cluster 2 

40 10 0 Iris-versicolor  Cluster 0 

8 42 0 Iris-virginica  Cluster 1 

32% 35% 33%  

All the records of the Iris dataset belonging to the Iris 
setosa class come together in a single and homogeneous 
cluster. No point in this cluster shows an ambiguous or fuzzy 
nature, so none of these points is an outlier. The fuzzy outliers 
of the dataset are, therefore, to be searched among the records 
labeled by versicolor tag or virginica one. 
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B. ECF-means Algorithm Application 

Fixing 𝑘 = 3 and choosing the number of iterations 𝐼 =
7500, the performed iterations generate the validity indexes 
and the statistics of Table XVI, where the 𝑜 parameter is set 
to 0.1. 

TABLE XVI.  VALIDITY INDEXES (7500 ITERATIONS) 

Index Value Descriptive note 

MPC 0.73 
If the Normalized Partition Coefficient 

Index is 1, then the clustering is not fuzzy 

Silhouette 
Index 

0.57 
An everage Silhouette greater than 0.5 

indicates reasonable partitioning of data 

TI 0.5 
50% of the instances belong to the floor of 
the Iris dataset; then, the other 50% of the 

instances have a fuzzy nature 

No. of  
𝟎. 𝟏. 𝑭𝑶𝑼 

13 
13 elements have 𝑜 ≤ 0.1 and they are 0.1-
rank fuzzy outliers. From the results of the 

next tables 𝑜 ≤ 0.057 

𝟎. 𝟏. 𝑭𝑶𝑼𝑰 0.0867 13/150=0.0867 

No. of 
different 
partitions 

6 

The 7500 performed Iterations generate 6 
different partitions. The first seeds (𝑠) 

generating these partitions are: 

0, 1, 31, 98, 1794, 5894 

EFC-means provides the results in the contingency matrix 
of Table XVII, where the incorrectly clustered instances are 
17 and represent 11.33% of the original Iris dataset. 

TABLE XVII.  CLASSES TO CLUSTERS (𝑘 = 3, 𝐼 = 7500) 

0 1 2 Assigned to cluster 

0 0 50 Iris-setosa Cluster 2 

47 3 0 Iris-versicolor  Cluster 0 

14 36 0 Iris-virginica  Cluster 1 

41% 26% 33%  

Thanks to the ECF-means application, we are able to 
select the floor 𝑆 of whole Iris dataset 𝑆. 𝑆 has got 75 elements 

(TI = 0.5) that have the distributions in Table XVIII. 

TABLE XVIII.  CLASSES TO CLUSTERS (𝑆) 

0 1 2 Assigned to cluster 

0 0 32 Iris-setosa Cluster 2 

4 3 0 Iris-versicolor  Cluster 0 

0 36 0 Iris-virginica  Cluster 1 

5.33% 52% 42.67%  

𝑆 has got 3 incorrected clustered instances that represent 

4% of 𝑆. 

In conclusion, if 𝑡 = 1 , then |𝐶0
1| = 4 , |𝐶1

1| = 39 , and 
|𝐶2
1| = 32. 

C. Outlier Detection by Applyng ECF-means 

The 50 elements in Table XVII tagged by Iris-setosa class 
are divided in 4 subsets, depending on their probability 
vectors, which are in Table XIX. The last column of the table 
contains the difference between the two highest probabilities 
of the vector (the 𝑜 parameter). 

The 32 elements in the A1 subset belong to the floor of 
Cluster_2 (Table XVIII) and, therefore, to the 𝑆 set. Although 

the elements in B1, C1, and D1 do not belong to 𝑆 , their 

probability of belonging to the Cluster_2 is very high (around 
79.6%). 

TABLE XIX.  IRIS-SETOSA PROBABILITY VECTORS (7500 ITERATIONS) 

 
N. of 

elements 
Clus_0 Clus_1 Clus_2 𝒐 

A1 32 0 0 1 1 

B1 13 0.204 0 0.796 0.592 

C1 4 0.2035 0 0.7965 0.593 

D1 1 0.2037 0 0.7963 0.5926 

In conclusion, the elements tagged by Iris-setosa class 
label form the Cluster_2. This result, as we know, does not 
surprise us, and confirms the goodness of the ECF-means 
algorithm. 

The results obtained by analyzing the other floral classes 
seem to be much more interesting. 

The 50 Iris-versicolor elements have the probability 
vectors of Table XX. These elements fluctuate between the 
Cluster_0 and the Cluster_1, and no element is in Cluster_2. 

TABLE XX.  IRIS-VERSICOLOR PROBABILITY VECTORS (7500 

ITERATIONS) 

 
N. of 

elements 
Clus_0 Clus_1 Clus_2 𝒐 

A2 34 0.796 0.204 0 0.592 

B2 6 0.5231 0.4769 0 0.0462 

C2 4 1 0 0 1 

D2 3 0 1 0 1 

E2 2 0.7965 0.2035 0 0.593 

F2 1 0.5285 0.4715 0 0.057 

The elements of A2, C2, and E2 belongs to Cluster_0, 
without any doubt. In particular, the 4 elements of C2 are in 
the floor of Cluster_0. 

Surely, by analyzing the table, the instances marked by the 
Iris-versicolor class label are mainly found in Cluster_0, and 
the floor of this cluster has got only 4 elements, and then they 
belong to the 𝑆 set. 

The 3 elements in D2 are put in the floor of the Cluster_1, 
but they have the Iris-versicolor label class, and then they are 
unclustered instances. 

The 7 elements belonging to B2∪F2 are 0.057-rank fuzzy 
outliers, even if their probabilities of belonging to Cluster_0 
are greater than the probabilities of belonging to Cluster_1. 

The 50 Iris-virginica elements have the probability vectors 
of Table XXI. Also, these elements fluctuate between the 
Cluster_0 and the Cluster_1. 

In this case, the floor of the Cluster_1 has got 36 instances 
(to which are added the 3 instances tagged by Iris-versicolor 
label, retrieved in the Iris-versicolor case, Table XX). 

TABLE XXI.  IRIS-VIRGINICA PROBABILITY VECTORS (7500 

ITERATIONS) 

 
N. of 

elements 
Clus_0 Clus_1 Clus_2 𝒐 

A3 36 0 1 0 1 

B3 8 0.796 0.204 0 0.592 

C3 6 0.5231 0.4769 0 0.0462 
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The 8 points of B3 seem to belong to Cluster_0 and then 
they are unclustered instances. 

The 6 elements in C3 are, without any doubt, 0.0462-rank 
fuzzy outliers. 

TABLE XXII.  0.057-RANK FUZZY OUTLIERS OF IRIS DATASET 

 
El. 

Num. 
Sepal 
length 

Sepal 
width 

Petal 
length 

Petal 
width 

1 52 6.4 3.2 4.5 1.5 

2 57 6.3 3.3 4.7 1.6 

3 66 6.7 3.1 4.4 1.4 

4 71 5.9 3.2 4.8 1.8 

5 77 6.8 2.8 4.8 1.4 

6 86 6 3.4 4.5 1.6 

7 87 6.7 3.1 4.7 1.5 

8 124 6.3 2.7 4.9 1.8 

9 127 6.2 2.8 4.8 1.8 

10 128 6.1 3 4.9 1.8 

11 139 6 3 4.8 1.8 

12 147 6.3 2.5 5 1.9 

13 150 5.9 3 5.1 1.8 

Choosing the maximum 𝑜 in the previous Table IX, Table 
X, and Table XI, for which the elements are fuzzy outliers, the 
Iris dataset has got 13 elements that are 0.057-rank fuzzy 
outliers (B2∪F2∪C3), and they are presented in Table XXII. 

D. Invariance Property 

Also for Iris dataset we study the property of invariance. 
First of all, in summary, from the previous application of ECF-
means algorithm, we have: 

 |0.057. 𝐹𝑂𝑈| = 13,  

 |𝐼𝑟𝑖𝑠 − 0.057. 𝐹𝑂𝑈| = 137, 

 |𝐼𝑟𝑖𝑠| = 75. 

The ECF-means method is invariant for the Iris dataset. 
That is to say, the set of 0.057-rank fuzzy outliers of (𝐼𝑟𝑖𝑠 −

0.057 .𝐹𝑂𝑈) = ∅ . Not only that, the smallest 𝑜  value for 
which we have 𝑜-rank fuzzy outliers is 𝑜 = 0.552. 

Furthermore, if we consider 𝐼𝑟𝑖𝑠, the set of 𝑜-rank fuzzy 

outliers of 𝐼𝑟𝑖𝑠  is empty for any value of 𝑜  such that 𝑜 ≤
0.246.  Then, for this case study, 𝐼𝑟𝑖𝑠 ≠ 𝐼𝑟𝑖𝑠,  but 

|𝐶𝑙𝑢𝑠𝑡𝑒𝑟_0| = 2,  𝐶𝑙𝑢𝑠𝑡𝑒𝑟_1 = ∅,  and 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_2 =

𝐶𝑙𝑢𝑠𝑡𝑒𝑟_2, which confirms the elements labeled by the Iris-

setosa class are still preserved by the algorithm. 

E. Experimental Results 

The 13 0.057-rank fuzzy outliers are labeled by the Iris-
versicolor class or by the Iris-virginica one, and not by Iris-
setosa class, as reported in the scatter plot chart of sepalwidth, 
petalwidth space in Figure 7 (left part), where they are marked 
by boxes in grey color. In particular, 7 fuzzy outliers have the 
Iris-versicolor class and 6 the Iris-virginica class. They belong 
to 𝑆 − 𝑆 and can be analyzed separately in order to understand 

their fuzzy nature.  
Moreover, there are 11 unclustered instances (D2∪C3), 

but the elements in D2 belong to the floor of the Cluster_1. 
Finally, the floor of Iris dataset has got 75 points 
(A1∪C2∪D2∪A3), as reported in Figure 7 (right part); the 
floor of a set can be easily achieved by scrolling the 
“Membership Threshold” slider up to 100% in the graphical 
user interface of the tool, because the floor has got only the 
elements with the probability vectors equal to (1, 0, 0), or to 
(0, 1, 0), or to (0, 0, 1).  

The charts also show the centroids of the three clusters. 
The “cross” symbol indicates the Initial Seed Centroid points, 
whilst the “plus” symbol are the Mean Seed Centroid points. 
In each cluster, the farther away are the “cross” and the “plus” 
symbols, the more points are fuzzy (and, therefore, fewer 
points belong to the floor of the considered cluster). 

 

Figure 7.  Scatter plot chart of 𝑆 with 0.057-rank fuzzy outliers in grey (on the left) and S scatter plot chart (on the right). 
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Thanks to the obtained results, we can easily understand 
how the algorithm is able to optimize the partitioning of the 
data space with respect to the class that expresses the floral 
typology. The algorithm is able to find this partitioning in one 
fell swoop. By applying the simple 𝑘-means we may not be 
able to get the same partition. However, the most interesting 
result is that the algorithm is able to preserve the cluster with 
Iris-setosa label and to find the floating elements that are at 
the limits of the floral types. 

These “disturbing” elements can be analyzed separately in 
order to understand if they are, from some point of view, 
outliers or records that have undergone measurement errors. 

The arithmetic mean of the 13 discovered fuzzy outliers is, 
for example, 𝜇13 = (6.277, 3.008, 4.761, 1.67)  and the 
arithmetic mean of the distances of the 13 points from 𝜇13 is 
0.441. Moreover, if you subdivide the 13 points into two 
subsets, taking into account the two values of the target class, 
the 7 records with Iris-versicolor value have 𝜇7 =
(6.4, 3.157, 4.628, 1.543)  and the arithmetic mean of the 
distances of the 7 points from 𝜇7 is 0.389; the 6 records with 
Iris-virginica value have 𝜇6 = (6.133, 2.833, 4.917, 1.817) 
and the arithmetic mean of the distances of these 6 points from 
𝜇6 is 0.25. 

These measures give us an idea of how the outliers are 
close to each other, and how they have a low dispersion 
around the average. 

XI. CONCLUSION AND FUTURE WORKS 

In this work we have presented a procedure for detecting 
outliers or anomalies in large datasets, using the ECF-means 
algorithm, which is an ensemble method useful for optimizing 
and “fuzzifing” cluster analysis results. After describing the 
various types of outliers and the main approaches of data 
mining for their discovery, in this paper we defined a new 
category of outliers, called 𝑜-rank fuzzy outliers, based on the 
different degrees of membership of the point to the various 
obtained clusters. 

By using an ad hoc implemented software application and 
the Weka version of the well-known 𝑘-means algorithm, three 
case studies have been proposed, aimed at showing the 
strengths of the ECF-means ensemble approach. 

In particular, with the tool it is possible: 

1. optimize the choice of algorithm parameters, such as 

the number 𝑘  of the clusters to be determined, by 
calculating validation metrics such as the Silhouette, 
the partition entropy coefficient, and two new metrics 

that are the threshold index (TI) and the 𝑜-rank fuzzy 

outlier index (𝑜.FOUI), which have been defined for 
the first time in this work. These new indexes give us 
a rough estimate of the amount of outliers of the 
dataset; 

2. calculate a degree of membership of each point to 
each cluster; 

3. select the 𝑜-rank fuzzy outliers of the dataset as those 
points that have a fixed level of ambiguity, and also 
choose the level; 

4. view the obtained results using a simple and 
interactive graphical interface. 

The presented case studies showed that the ECF-means 
algorithm is able to detect more and different anomalies than 
those discovered by the usual outlier detection methods: these 
new points are elements that have a high level of ambiguity 
and which must be subjected to a more in-depth analysis. 
Being able to assign a level or score of ambiguity to each point 
is certainly one of the strengths of the proposed method, which 
is a method for exploring data. 

However, we had that all the most exciting results can be 
obtained by the active interaction with the software tool 
interface, thanks to which, by scrolling the sliders, changing 
parameters, and visualizing groupings, numerous properties 
of the dataset can be discovered.  

In future works, we are going to evaluate our method on 
other several datasets, for example, on others from UCI ML 
Repository. 

Future investigations about the algorithm: 
1. to find the relationship between the clusters centroids 

calculated considering the initial seed (𝑠 = 0) (the 
“cross” symbols in the GUI) and those obtained 
considering the means of the centroids computed 
over all the 𝑁 iterations (the “plus” symbols in the 
GUI), as it was stated in the case study of the Iris 
dataset; 

2. to understand the relationship between the distance 
among the cross and the plus centroids and the floor 
of each cluster; 

3. to discover a criterion for the 𝑜  parameter 
optimization in relation to the other parameters, such 
as 𝑘 and 𝑁. 

Additionally, in order to understand the final 
configuration, the floor of the analyzed dataset, and the 
discovered fuzzy outliers, why not train a model by using a 
machine learning technique, able to predict the probability 
vector of a point in a test set? The model could be a 
multivariate and regressive classifier with 𝑘 − 1  output 
variables, useful to know the level of “ambiguity” of a new 
and not yet clustered observation. 

For the current study, we have chosen the simple 𝑘-means 
as the reference clustering algorithm. Furthermore, we can 
consider other algorithms in substitution or in addition to it, 
and this will surely be one of the next improvement of the tool. 

Another information that can be very useful to the data 
analyst is the frequencies of the partitions that are obtained by 
varying the seed 𝑠.  This feature, and other statistical 
computations, will also be added to the next tool update. 
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