
11

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fuzzy Outlier Detection by Applying the ECF-Means Algorithm

A clustering ensemble approach for mining large datasets

Gaetano Zazzaro, Angelo Martone

CIRA

Italian Aerospace Research Centre

Capua (CE), Italy

e-mail: {g.zazzaro, a.martone}@cira.it

Abstract—This paper focuses on how to mine large datasets by

applying the ECF-means algorithm, in order to detect potential

outliers. ECF-means is a clustering algorithm, which combines

different clustering results in ensemble, achieved by different

runs of a chosen algorithm, into a single final clustering

configuration. Furthermore, ECF is also a manner to “fuzzify”

a clustering algorithm, assigning a membership degree to each

point for each obtained cluster. A new kind of outlier, called 𝒐-

rank fuzzy outlier, is also introduced; this element does not

strongly belong to any cluster, which needs to be observed more

closely; moreover, a novel validation index, called 𝒐. 𝑭𝑶𝑼𝑰, is

defined too, based on this new kind of fuzzy outliers. The

proposed method for fuzzification is applied to the 𝒌-means

clustering algorithm by using its Weka implementation and an

ad-hoc developed software application. Through the three

exposed case studies, the experimental outcomes on real world

datasets, and the comparison with the results of other outlier

detection methods, the proposed algorithm seems to provide

other types of deeper detections; the first case study concerns

the famous Wine dataset from the UCI Machine Learning

Repository; the second one involves the analysis and exploration

of data in meteorological domain, where various results are

explained; finally, the third case study explores the well-known

Iris dataset which, traditionally, has no outliers, while new

information is discovered by the ECF-means algorithm and

exposed here with many results.

Keywords-ECF-means; Fuzzy Outlier Detection; Data

Mining; Ensemble Clustering; k-means; Weka.

I. INTRODUCTION

The Ensemble Clustering Fuzzification (ECF) means [1]
is an algorithm aimed at combining multiple clustering
models to produce a better result than that of the individual
clustering components. The proposed ensemble approach is
carried on using the well-known 𝑘-means algorithm, its Weka
implementation, and an ad-hoc developed software
application. Compared to the version described in [1], we
made some updates obtaining a new version of the algorithm.
First of all, the most important variation to the algorithm
consists in removing any equal partitions determined by two
different runs of 𝑘 -means algorithm. Therefore, all the
ensemble results and the evaluation indexes are calculated on
the number of different obtained partitions and not on the total
number of performed iterations. Moreover, we also define a

new validation index, called 𝑜 -rank fuzzy outlier index
(𝑜. 𝐹𝑂𝑈𝐼) by calculating the percentage of 𝑜 -rank fuzzy
outliers discovered by ECF.

The clusters achieved by the algorithm can be read in a
“soft” way, in order to better explore and understand the
results, and discover potential outliers in the dataset.

An outlier, or an anomaly, is an observation that is
numerically distant from the rest of the data. What “distant”
means depends on the context and on the domain, on the type
of data and on the objective of analysis that must be achieved.
Additionally, outlier detection is the process, or a technique,
to find patterns in data that do not conform to estimated
behavior. It plays a primary role in both statistical and data
mining tasks, so much that identifying, understanding, and
predicting anomalies from data is one of the key pillars of
modern and advanced data analysis.

Nowadays methods and algorithms for data analysis
increasingly involve huge amounts of data which are certainly
rich in valuable information and useful knowledge, but also
full of noise and impurities. The main challenges of outlier
detection with this increasing complexity, variety, and volume
of datasets, are how to discover similar outliers in one fell
swoop, as a group [2]. Thus, an advantageous activity of data
analysis must strictly have a data preparation step that
includes data cleaning and anomalies removal activities.

Several outlier detection techniques have been proposed in
literature [3]. Roughly, the approaches to outlier detection can
be divided into two main categories: statistical and non-
statistical methods. Within the non-statistical methods, the
Machine Learning techniques for Data Mining are very
popular, studied, and even among the most applied. Statistical
methods are typically model-driven while Data Mining
methods are typically data-driven. Mainly the Data Mining
approaches for anomaly detection are divided into Proximity-
based, Density-based, and Clustering-based techniques. This
paper focuses on clustering-based outlier detection algorithms
that look for outliers by applying one of the clustering
algorithms and retrieve the anomalies subset. Moreover, this
paper presents our idea on how apply the ECF-means
algorithm for outlier detection task, and therefore, we explore
datasets by applying this clustering-based technique.

Whilst usually it is hard to attach an outlier score to objects
by using most of the clustering algorithms [4], the ECF-means
algorithm defines a new class of outliers, consisting of
elements that in [1] are named 𝑜 -rank fuzzy outliers.

12

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Therefore, ECF-means is able to assign a score to each
element of the dataset depending on the vector constituted by
its memberships to every obtained clusters. An element whose
score is lower than a fixed threshold level is an outlier,
because it belongs to two or more different clusters, without a
clear and unambiguous membership. In this way, it is possible
to have different kinds of outliers by fixing different
thresholds: an element with level 1 is not a true outlier, whilst
an element of level 0 is a full anomaly. These elements can be
analyzed separately in order to understand if they are records
that have undergone measurement errors and need to be
deleted, or elements that are, from some point of view, special
elements, confirming the idea that outliers are sometimes
more interesting than the majority of the data.

Finally, the detected outliers are something new compared
to those discovered by the crisp or traditional techniques for
outlier analysis, and the two ways rarely discover the same
anomalies.

In this paper, we present some applications of ECF-means
algorithm, including datasets explorations, clustering results,
outliers detection and classification. For the sake of clarity,
this algorithm has many purposes and this paper focuses on an
its application aimed at detecting outliers in various real-world
benchmark datasets, testing its results and comparing the
discovered anomalies with those detected by classical
statistical methods. Our examples will demonstrate the
efficiency of the ECF-means approach, comparing our results
with those retrieved by other methods.

A. Structure of the paper

In Section II, we present some outlier detection
generalities, including different approaches to discover
anomalies in large datasets, and application fields. Particular
attention is given to the clustering-based algorithms for
anomaly detection and to properties of the algorithms for
outliers detection.

In Section III, we provide cluster analysis general outlines,
including main definitions, its scope and its role in Data
Mining. Furthermore, some concepts regarding Ensemble
Clustering, soft and hard clustering are mentioned.

In Section IV, the original 𝑘 -means algorithm is
synthesized, exposing its pros and cons.

In Section V, the ECF-means is presented, including some
main definitions; in particular, we introduce the 𝑜-rank fuzzy
outlier definition.

In Section VI, we present some validation measures for
cluster analysis and for fuzzy clustering, including Silhouette,
Partition Entropy Coefficient, the Threshold Index, and a
novel index called 𝑜 -rank fuzzy outlier index.

In Section VII, the ECF-means SW application is
explained, underlining the updates of the new version.

In Sections VIII, IX, and X we show how the new version
of the implemented software tool has been used in three
different applications, underlining how it helped us to explore
datasets, to discover new knowledge, to detect potential
outliers, and to group objects in order to train custom models.

Finally, in Section XI, we show our general considerations
in order to motivate future works and researches.

II. OUTLIER DETECTION

In outlier detection, the main goal is to discover objects
that are different than the most other objects in the dataset. In
many applications outliers contain important information and
their correct identification is crucial.

A. Different Approaches and Application Fields

Outlier detection, or interchangeably anomaly detection, is
the process of finding data objects with behaviors that are very
different from expectation. Precisely, such objects are called
outliers, anomalies, abnormalities, discordants or deviants.
Outlier detection is generally considered a problem of
machine learning or data mining, in the same way as
classification and clustering.

A very common definition of an outlier is provided in [5]
and it states:

“An Outlier is an observation which deviates so much
from the other observations as to arouse suspicions that it was
generated by a different mechanism.”

In Data Mining and Statistics, outliers are particularly
important aspects of the data. It may be difficult to evaluate
the amount of noise in the data set or the number of outliers.
More than that, what is noise or an outlier to one person may
be interesting to another person. So, a unique mechanism that
can identify outliers in datasets is impossible to define.
Furthermore, the resolution of potential conflicts in detection
is often possible thanks only to domain knowledge, which
cannot always come to the aid of data analysts, especially
when they are dealing with big data.

Table I shows several examples with categories of
anomalies and it confirms why an uniform definition of
anomaly is very hard to achieve. It is also evident that there is
no clear separation between these types of outliers.

TABLE I. EXAMPLES OF OUTLIERS

 Example Category

1
Outlier with respect to
rest of the data points

Point Outlier, Contextual
Outliers

2
Outlier with respect to

local neighborhood
Point Outlier, Contextual

Outliers

3
Outlier with respect to the

data distribution
Point Outlier, Contextual

Outliers

4
Outlier with respect to

local dense regions
Point Outlier, Collective

Outliers

5
Outlier tight cluster in a

sparse region
Point Outlier, Collective

Outliers

6
Outlier sparse cluster in a

dense region
Collective Outliers

Outliers can be classified into three main categories that
intersect with the examples in Table I:

1. point outliers, where a single instance of data is
anomalous if it is too far off from the rest;

2. contextual outliers, if its value significantly deviates
from the rest the data points in the same context; note
that this means same value may not be considered an
outlier if it occurred in a different context; these
outliers are common in time-series data;

3. collective outliers, where a set of data instances
collectively helps in detecting anomalies.

13

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The technique chosen for anomaly detection can be based
on the type of data you are dealing with. Many of these
approaches have been exactly developed for certain
application domains, while others are more generic and
reusable. One of the main criteria used to select the outlier
detection technique is based on the nature of the outlier to
discover.

Approaches for outlier detection are reported in Table II
[6] [7] [8].

TABLE II. METHODS FOR OUTLIER DETECTION

Method Description

Nearest
neighbor-based

lazily analyze the nearest neighborhood of a test point
to assign it an outlier score relative to their
neighborhood; in particular, these methods are based
on the idea that normal instances lie in dense
neighborhoods whilst anomalous points lie in sparse
neighborhoods

Clustering-
based

the anomaly score assigned to a test point is based on
its relationship with its nearest cluster; by using these
algorithms, outliers do not belong to a cluster or are far
away from the nearest cluster representative

Classification-
based

operate under the hypothesis that a classifier can be
trained from a given feature space that can discriminate
between normal and outlier classes

Statistical are based on building a probability distribution model
and considering how likely objects are under that
model; outliers appear in the low probability regions of
the distribution and have high anomaly score

Spectral
decomposition-
based

are unsupervised learning techniques that find an
approximation of the data using a combination of
attributes that reveal low dimensional structure in
dimensional data; points that are different from others
in the lower approximation are detected as outliers

Information
theoretic

by which an anomalous point is an instance that has
irregularities in the information content by using
different information theoretic measures such as
entropy or complexity

Other authors report [4] that the Machine Learning
methods for outlier detection can be classified as proximity-
based techniques, mainly founded on Nearest Neighbor
concept, density-based techniques, where outliers are objects
that are in regions of low density, and clustering-based
techniques, where outliers can form small groupings or where
an outlier is an object does not strongly belong to any cluster.

TABLE III. APPLICATIONS FIELDS OF OUTLIER DETECTION

 Field Goal

1 Medical Informatics
Healthcare analysis, diagnostics, in a

wide variety of medical specializations

2 Intrusion Detection
Break-ins, penetrations, and other form

of computer abuse detection

3 Fraud Detection Credit card, mobile phone

4
Fault / Damage

Detection
Industry damage, multi-failures in

Avionics systems, and others

5
Crime Investigation /

Counter Terror
Op. Planning

Fake news, misinformation, security,
surveillance, social network monitoring

6 Other Domains

Speech Recognition, Traffic Monitoring,
Detecting Faults in Web Applications,
Detectiong Outliers in Astronomical

Data, in CRM, in Census Data, in
Biological Data, Novelty Detection in

Robot Behaviour, Click Through
Protection, and others

The well-known DBSCAN clustering algorithm [9] can be
considered, for example, both in the density-based category
and in the clustering-based one, because DBSCAN assumes
that regions or points with density lower than a global
threshold are noise or outliers.

It is very important to underline that outlier detection can
represent both the objective of the analysis and a data cleaning
method in the Data Preparation step of the CRISP-DM [10].

Outlier detection is central for a wide variety of
applications and activities [11] [12] such as reported in Table
III.

B. Clustering-based Outlier Detection

Outlier detection finds objects that are not strongly related
to other objects, while on the contrary cluster analysis finds
groups of strongly related objects in the dataset. One
implication is that clustering can be successfully used for
outlier analysis.

This approach is based on the idea that anomalous points
do not belong to a cluster or to a single cluster without
ambiguity. Another possibility occurs when the anomalous
point is far away from the nearest normal cluster
representative (such as the centroid, the medoide, etc.). The
use of an unsupervised outlier detection approach based on a
clustering algorithm also has the advantage of avoiding the
bias introduced by training an algorithm with anomalous
instances, labeled wrongly as normal data, producing many
and unmanageable misclassifications.

Applying a clustering method to detect anomalies can
discover, such as all the kinds of outlier detection approaches,
single, spare, and rare elements, or also clusters of outliers,
forming a collection, which is why in this case anomalies are
called “collective outliers”. For the sake of clarity, many times
the collective outliers aggregate far from the rest of the
elements of the dataset, and then they could be modeled by a
rule, forming a real new cluster and not an actual set of
anomalies. So, an almost always applicable rule by which we
can understand if a potential anomaly is a real anomaly, is to
recognize if the anomaly belongs to a pattern. As already
mentioned, the subset of the detected anomalous points may
also not form a cluster, for example, because they are not
cohesive with each other or they are not well separated from
the rest of the clusters.

The main idea to detect anomalies by using a clustering
approach is based on the property that “normal” data belong
to large and dense clusters, whereas outliers belong to small
or sparse clusters, or they are singletons, not belonging to any
cluster. Consequently, all clusters smaller than a minimum
size can be discarded, reassessed, or reported.

The clustering approach to anomaly detection can be used
with any clustering algorithm, but requires thresholds for the
minimum cluster size and the distance between a small cluster
and other clusters. The idea of a clustering-based algorithm
for outlier detection is captured by the definition [4]:

“An object is a cluster-based outlier if the object does not
strongly belong to any cluster.”

In this context, “strongly” also means “clearly” and
“without ambiguity”, and in the next sections the meaning of
these words will be more explicit.

14

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The binding of a point to its cluster can be measured by a
score. A simple way of defining this score is to first cluster the
whole dataset and then use the distance of the point to its
closest cluster centroid. The points that have the highest scores
are potential outliers.

After objects of a set are clustered and outliers are
discovered and removed, the set with the rest of objects can
be clustered again, analyzing if outliers affect the clustering.
This is a very thorny problem, especially if 𝑘-means is chosen
as the clustering algorithm, the results of which depend on the
choice of the initial centroids and on the number 𝑘 of clusters
to be determined.

Another problem to be highlighted concerns the size of the
clusters. If a cluster has very few points, these are potential
outliers only if the other clusters have much larger sizes,
otherwise nothing can be said. In a nutshell, outlier detection
is strongly conditioned by the selected threshold.

Furthermore, many clustering techniques, such as 𝑘 -
means, do not automatically determine the number of clusters.
This is a problem when using clustering in outlier detection,
since whether an object is considered an outlier or not may
depend on the number of obtained clusters.

All these aspects make us understand how the problem of
outlier detection is strictly dependent on the set of data, the
chosen method, the parameters of the algorithm, and the
analysis goals. As consequence we have that we are not
always sure that a discovered point is really anomalous.

The cluster-based outlier definition inherently contains a
fuzzy reinterpretation of cluster analysis and outlier detection.
For this reason, the ECF-means algorithm is a good candidate
to detect potential outliers and to explore the dataset and
clustering results.

C. Fuzzy Clustering-based Approach to Outlier Detection

In order to detect anomalies, fuzzy clustering is an
alternative approach to classical clustering-based methods
that are centered on the concept of crisp membership.
Recently fuzzy clustering-based methods are applied in many
fields, analyzing various types of data, and also getting very
good results [13] [14] [15] [16]. In most of these works,
however, authors use the fuzzy c-means clustering (FCM)
algorithm, or a variant of it, for detecting outliers. Moreover,
many crisp clustering techniques have difficulties in handling
extreme outliers but fuzzy clustering algorithms tend to give
them very small membership degree in surrounding clusters.

A systematic approach is to first cluster all objects and
then assess the degree to which an object belongs to any
cluster. Generally, the rules of assignment of the degree of
membership characterizes the fuzzy clustering results. For
example, the distance of an object to its cluster center can be
used to measure the degree to which the object belongs to a
specific cluster. If the elimination of an object results in a
substantial improvement in the objective, then we would
classify the object as an outlier. In a nutshell, clustering
creates a model of the data and anomalies distort that model.

Another way to state if an object is an anomalous point is
to calculate a level of “undecidability” of the point; for
example, if the point belongs to two clusters with the same
degree, then it has a high possibility of being an outlier.

D. Ensemble Outlier Detection

Mainly, an ensemble classical approach to outlier
detection combines the outputs of individual outlier detection
components by a weighted majority voting rule in a complete
unsupervised context. The construction of ensembles is
proposed as a solution to increase the individual capacity of
each algorithm component and to improve the
“anomalousness” of a potential outlier. However, no gain will
be obtained by using components whose results are equal. So
the discovered outliers sets must have some different
anomalous points.

Whilst unsupervised outlier detection algorithms often
suffer from high false positive detection rates, an ensemble
approaches can be used to reduce these rates and many
applications have shown good results to achieve more
accurate and reliable anomalies [17].

The ensemble components can be built by applying each
approach in Table II. However, the classification-based
methods are more common than clustering-based ones [18].

The approach presented here is not a classical clustering-
based method, it is a rather unique approach between
ensemble methods for anomaly detection, due to its hybrid
nature. In fact, on the one hand, it is the consequence of an
aggregation clustering method, on the other hand, it exploits
its fuzzy implication to assign scores to all points of the
dataset, and on the basis of these scores it attributes a level of
“outlierness” to the points.

E. Properties of the Algorithms for Outlier Detection

An anomaly detection method can enjoy some properties.
The idea presented here is to apply an algorithm for

anomaly detection to a dataset, to remove the discovered
anomalous points, and then to apply to the remaining data the
same algorithm again.

Let 𝑆 be a set of points, 𝐹 an outlier detection method, and
𝐴 the set of outliers of 𝑆 discovered by 𝐹. In this case we can
write 𝐹(𝑆) = 𝐴 . If 𝐹(𝑆 − 𝐴) = ∅ , then 𝐹 is an invariant
algorithm for 𝑆 (or 𝑆 is invariant respect to 𝐹). In this case, 𝐹
finds all the outliers of 𝑆 in one fell swoop. If 𝐹 is invariant
for each set, simply 𝐹 is invariant.

The mentioned DBSCAN algorithm [4] [9] can be
considered as a clustering-based outlier detection method; in
a nutshell, the clustering results depend on the radius 𝜀 of the
epsilon-range-queries (which are hyperspheres) and on 𝑚
parameter that is the minimum number of data objects
required in an epsilon-range-query. For DBSCAN the outliers
are noise, i.e., those points belonging to those clusters that
have less than 𝑚 elements, and therefore, they are not reached
by any epsilon-range-query. Fixing 𝜀 and 𝑚 , DBSCAN is
invariant for each set.

The ECF-means algorithm is invariant for some datasets
and not for others, as will be shown in the case studies in the
next sections.

For the sake of clarity, the invariance property is not a
property of the anomaly detection method, but of the set
analyzed by the method.

If 𝐹 enjoys the invariance property for each set, then on
one hand, 𝐹 is a very “robust” method for outliers detection,

15

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

but on the other hand, the method is a very strong property, or
it can be very hard to prove it. It can be relaxed by a more
general property explained in Figure 1.

Invariance Property of Order 𝒏

𝑆 = 𝐴0 set of points
𝐹 outlier detection method
𝐴1 the set of outliers of 𝑆 discovered by 𝐹:
𝐴1 = 𝐹(𝑆) = 𝐹(𝐴0)
𝐴2 the set of outliers of 𝐴0 − 𝐴1:

𝐴2 = 𝐹(𝑆 − 𝐹(𝑆)) = 𝐹(𝐴0 − 𝐴1)
𝐴3 the set of outliers of 𝐴0 − (𝐴1 ∪ 𝐴2):

𝐴3 = 𝐹 (𝑆 − (𝐹(𝑆) ∪ 𝐹(𝑆 − 𝐹(𝑆)))) = 𝐹(𝐴0 − (𝐴1 ∪ 𝐴2))

……
𝐴𝑛 = 𝐹(𝐴0 − (𝐴1 ∪ 𝐴2 ∪ …∪ 𝐴𝑛−1))
𝐴𝑛+1 = 𝐹(𝐴0 − (𝐴1 ∪ 𝐴2 ∪…∪ 𝐴𝑛))

𝐹 is 𝑛-invariant for 𝑆 if and only if 𝐴𝑛+1 = ∅ and 𝐴𝑛 ≠ ∅

Figure 1. Generic Invariance Property of 𝐹.

In the generic invariance property of 𝐹, 𝐴𝑛+1 ∩ 𝐴𝑛 = ∅
(𝑛 > 0).

III. CLUSTER ANALYSIS

In order to detect potential outliers and to explore the
dataset, cluster analysis is widely used in data mining. In this
section, some general clustering considerations are shown.

A. Introduction

Clustering, or cluster analysis, belongs to intersection of
Statistics, Machine Learning, and Pattern Recognition. It is a
very useful unsupervised method for discovery pattern in
large amount of data. It is a technique to group a set of objects
into subsets or clusters. It is widely used [19] for Data Mining
tasks, because it can be easily applied to understand, explore,
prepare, and model data. It plays an outstanding role in many
applications, such as scientific data exploration, information
retrieval and text mining, web analysis, bioinformatics, and
many others.

It can be applied at various steps of the Knowledge
Discovery in Database (KDD) process. KDD can be carried
out according to the Cross Industry Standard Process for Data
Mining (CRISP-DM) [10]. Table IV shows the six steps of
CRISP and where the cluster analysis can be applied. Some
cluster analysis tasks are also reported.

TABLE IV. CRISP-DM STEPS AND CLUSTER ANALYSIS

 CRISP-DM Step Name Cluster Analysis Tasks

I Business Understanding --------

II Data Understanding Data Exploration and Description

III Data Preparation
Data Selection, Cleaning and
Reduction, Features Selection,
Gain and Raising

IV Modeling

Generate Test Design, Data
Modeling (Segmentation,
Associative Rules, …), Model
Customization

V Evaluation --------

VI Deployment --------

In the literature, there are many categories of algorithms
for clustering: Heuristic-based, Model-based, and Density-
based [20]. Their common goal is to create clusters so that
objects in the same cluster should be as similar as possible,
whereas objects in one cluster should be as dissimilar as
possible from objects in the other clusters. Usually, it is not
easy to choose the most useful algorithmic approach, the most
satisfying result, and therefore, the most usable configuration.
In fact, the different models for clustering may produce
configurations that are very different from one another.
Anyone applying a clustering algorithm immediately realizes
how difficult it is to choose the final cluster configuration. We
may have different results because we choose different
algorithms, or different parameters of the fixed algorithm.
Furthermore, the numerous available evaluation metrics often
do not facilitate this choice because they lead to very
discordant results.

In spite of the availability of a large number of validation
criteria, the ability to truly test the quality of a final
configuration remains vague and hard to achieve. Specific
domain knowledge is not an aid because it is often hard to
translate it into operating rules, neither the domain expert has
a real target class for evaluating and comparing the results. So,
why do not consider all the obtained configurations? That is,
why do not find a method that summarizes all the results of
clusterings? Meta-learning ensemble methods may be an
answer. The idea is that no single model or criterion truly
captures the optimal clustering, but a cooperation of models
could provide a more robust solution. Cluster Ensemble, or
Aggregation Clustering, or Multiview Clustering, aims to find
a single clustering from multi-source basic clusterings on the
same group of data objects [21]. However, these ensemble
methods, such as voting-based clustering [22], consensus
clustering [23], or clustering aggregation [24] do not assign a
level of membership to every point in clusters.

In order to overcome the limits mentioned above, the ECF-
means algorithm can be included within ensemble procedures.
It is also an a posteriori criterion for optimization of the
obtained groupings. This procedure takes in input any
partitioning clustering algorithm for which it is possible to
initially choose the 𝑘 number of clusters to be determined and
a seed for the random choice of the initial 𝑘 centroids.

The 𝑘-means algorithm is one of the clustering algorithms
that checks all the conditions listed. So, it is considered as the
reference clustering algorithm. In Weka implementation of 𝑘-
means [25] [26], the name of the algorithm is SimpleKMeans;
in this version the seed parameter is 𝑠 , which is the
initialization value for the random number generator. Using
the same seed value will always result in the same initial
centroids then. Exploiting this seed parameter, many different
configurations are evaluated and compared, and also used in
our meta-algorithm for ensemble final configuration.

ECF-means can lead also to a “soft” interpretation of the
clusters, in order to better explore and understand the results,
and to find possible outliers in the dataset.

B. Definitions and Scope

A Clustering algorithm produces a partition on an
unlabeled data set, such that no cluster is empty, no two

16

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

clusters intersect, and the union of all clusters is the data set
itself.

The goal is to create clusters that are coherent internally,
but substantially different from each other. In a nutshell,
objects in the same cluster should be as similar as possible,
whereas objects in one cluster should be as dissimilar as
possible from objects in the other clusters.

Similarity between objects that belong to a cluster is
usually measured by a metrics 𝑑 . Two objects 𝑥 and 𝑦 are
similar if the value of 𝑑(𝑥, 𝑦) is small; what “small” means
depends on the context of the problem. 𝑑 is defined by some
distance measure. Typically, the Euclidean Distance (or
simply the squared Euclidean Distance) is widely used in
many applications (it is also used in the ECF-means) for the
computation of similarities:

𝐸𝐷2(𝑥, 𝑦) =∑(

𝑛

𝑖=1

𝑥𝑖 − 𝑦𝑖)
2

It is important to underline that, also depending on the type
of data, other many metrics are possible.

Numerous clustering algorithms are available in the
literature and there are several points of view for examining
clustering techniques; a very good landscape of Clustering
algorithms can be retrieved in [20], and an in-depth and
complete study of clustering techniques, algorithms and
applications can be retrieved in [27].

C. Ensemble Clustering

Different clustering approaches or different views of the
data can lead to different solutions to the clustering problem.
Indeed, also initial settings of a fixed algorithm may produce
clusters that are very different from one another. This
evidence is closely related to the theory of Ensemble
Clustering (or Multiview Clustering), which studies this issue
from a broader perspective [21] [28].

Therefore, instead of running the risk of picking an
unsuitable clustering algorithm, a cluster ensemble can be
used in order to get a “better” clustering configuration. The
idea is that no single model or criterion truly captures the
optimal clustering, but a collective of models will provide a
more robust final solution.

Most ensemble models use the following three steps to
discover the final clusters configuration:

1. Generate 𝑁 different clusterings, by using different
approaches, or different data selection, different
settings of the same algorithm, or different clusterings
provided by different runs of the same algorithm.
These represent the ensemble components.

2. Combine the results into a single and more robust
clustering, by using a meta-rule or a set of rules.

3. Evaluate the ensemble clustering result and compare
it with the results of the 𝑁 components.

As already mentioned, the ensemble components can be
selected in a wide variety of ways.

Some strategies for building clustering ensemble
components follow:

1. By using different subsets of features. Each clustering
configuration is found by means of overlapping or
disjoint subsets of the original features set.

2. By selecting different subsets of the data, via random
sampling.

3. The different components can be selected combining
a variety of models and algorithms such as
partitioning, hierarchical or density-based methods,
random or deterministic algorithms, and so on.

4. The different components can correspond to different
settings of the same algorithm.

5. The different components could be obtained from a
single algorithm, randomizing the initial choice of the
clusters centroids. Of course, an example is 𝑘-means;
thus, the ensemble can be formed as the result of 𝑁
different runs of the algorithm.

After the individual components have been obtained, it is
often a challenge to find a meta-rule able to combine the
results from these different solutions in order to create a
unified ensemble clustering.

D. Hard and Soft Clustering

Clustering algorithms can also be classified into hard and
soft algorithms. A hard clustering algorithm leads to a
partition of crisp sets. In a crisp set, an element is either a
member of the set or not. On the other hand, a soft clustering
algorithm leads to fuzzy clusters. Fuzzy sets allow elements
to be partially in a set. Each element is given a degree of
membership in a set.

One of the most famous fuzzy clustering algorithms is
fuzzy 𝑐-means [29] (FC-means), which allows an object to
belong to two or more clusters with a membership degree
between zero (not an element of the set) and one (a member
of the set). It has been widely used in many real-world
application domains where well-separated clusters are
typically not available.

The ECF-means algorithm leads to a fuzzy partitioning of
the dataset, by repeatedly applying the results of the 𝑘-means
algorithm, as reported in next sections.

IV. THE 𝑘-MEANS ALGORITHM

𝑘-means is a simple clustering algorithm whose main goal
is to find 𝑘 non-overlapping clusters. Each final cluster is
represented by its centroid that is typically the mean of the
points in that cluster.

A. Introduction, scope and procedure

𝑘 -means is one of the oldest and still widely used
algorithms for cluster analysis. Without any doubt, it
represents the archetype of the clustering partitioning
algorithms. Because of its mathematical simplicity, it is also
the most studied unsupervised learning technique [30], and
over the years, many of its variations and extensions have
been implemented (for High-Dimensional Data, for Data
Streams, Time Series, for Data with noise, and so on).
𝑘 -means is also a simple prototype-based clustering

algorithm that uses the centroid of the objects in a cluster as
the prototype of the cluster.

Its basic algorithmic structure is shown in Figure 2.

17

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

𝒌-means Clustering Algorithm

Input: S set of instances; 𝑘 number of clusters
Output: set of 𝑘 clusters with 𝑘 centroids

1. Randomly initialize 𝑘 cluster centers (centroids)
2. While termination condition is not satisfied {
3. Assign instances to the closest cluster center
4. Update cluster centers using the instances assignment
5. }

Figure 2. 𝑘-means Algorithm.

The condition of termination of the process is satisfied
when no point changes clusters.

B. Pros and Cons

The algorithm has been very successful thanks to its
simplicity and also for its linear time complexity 𝑂(𝑘𝑛𝑙) ,
where 𝑛 is the number of objects to be clustered and 𝑙 is the
number of iterations that the algorithm is performing.

Like most partitioning clustering algorithms, 𝑘-means has
some disadvantages:

1. It is very sensitive to outliers and noise.
2. The number of clusters need to be specified by the

user and often it is not simple to choose it.
3. It is not able to discover concave-shaped clusters.
4. Since the initial choice of 𝑘 centroids is random,

different selections can also lead to very different
final partitions, especially for large datasets with
many features.

The 𝑘-means algorithm always terminates, but it does not
necessarily find the “best” set of clusters.

C. Fuzzy 𝑐-means

The fuzzy 𝑐 -means (FCM) algorithm has got many
versions. The code of Figure 3 does not use incremental
updates of cluster centroids.

Basic Fuzzy 𝒄-means Algorithm

1. Select an initial fuzzy pseudo-partition, i.e. assign values to all the
𝑤𝑖𝑗

2. repeat
3. Compute the centroid of each cluster using the fuzzy pseudo-

partition
4. Recompute the fuzzy pseudo-partition. i.e., the 𝑤𝑖𝑗
5. until The centroids do not change.
 (Alternative stopping conditions are “if the change in the error is

below a specified threshold” or “if the absolute change in any
𝑤𝑖𝑗 is below a given threshold.”

Figure 3. Basic Fuzzy c-means Algorithm.

𝑘-means can be regarded as a special case of fuzzy 𝑐-
means [4] and the behavior of the two algorithms is quite
similar.

V. ENSEMBLE CLUSTERING FUZZIFICATION MEANS

The initial selection of centroids can significantly affect
the result of the 𝑘-means algorithm. To overcome this, the
algorithm can be run several times for a fixed value of 𝑘, each
time with a different choice of the initial 𝑘 centroids.

In many software implementations of 𝑘 -means, for
example, in its Weka version, it is possible to choose a seed
parameter (𝑠), useful for the random selection of the first
initial centroids (𝑠 is the random number seed to be used).
Using this parameter, it is possible to realize, as will be
described in the following sections, a procedure able to
optimize and reinforce the obtained partition.

A. Introduction and Definitions

Let 𝑆 ⊆ ℝ𝑚 be a set of points. Let 𝑘 be the desired
number of clusters to be determined. Changing the seed (𝑠)
from 0 to 𝑁 − 1 , 𝑁 partitions of 𝑆 can be generated by
applying the 𝑘-means algorithm. Some of these partitions are
exactly the same, considering or not the order of groupings.
Others, however, differ for very few records, and others for
many.

In the following 𝑁 × 𝑘 matrix, called Clustering Matrix 𝐶
of 𝑆, each row is a partition of 𝑘 clusters of 𝑆.

𝐶 =

(

𝐶1,1 𝐶1,2 … 𝐶1,𝑘
𝐶2,1 𝐶2,2 … 𝐶2,𝑘
… … 𝐶𝑖,𝑗 …

𝐶𝑁,1 𝐶𝑁,2 … 𝐶𝑁,𝑘)

𝐶𝑖,𝑗 is the 𝑗-th cluster obtained at the 𝑖-th iteration of the

clustering algorithm, with 𝑖 = 1, … , 𝑁 and 𝑗 = 1,… , 𝑘.
It is possible to associate a new 𝑁 × 𝑘 matrix to 𝐶, called

𝑀𝑈 matrix, which is the matrix of the centroids of the clusters:

𝐶 →

(

𝜇(𝐶1,1) 𝜇(𝐶1,2) … 𝜇(𝐶1,𝑘)

𝜇(𝐶2,1) 𝜇(𝐶2,2) … 𝜇(𝐶2,𝑘)

… … 𝜇(𝐶𝑖,𝑗) …

𝜇(𝐶𝑁,1) 𝜇(𝐶𝑁,2) … 𝜇(𝐶𝑁,𝑘))

= 𝑀𝑈

𝜇(𝐶𝑖,𝑗) is the arithmetic mean of the 𝑗-th cluster of the 𝑖-th

iteration of the algorithm, with 𝑖 = 1, … ,𝑁 and 𝑗 = 1,… , 𝑘.

B. Clusters Sort Algorithm

The algorithm in Figure 4 is useful for sorting the clusters
partitions of 𝐶 matrix. This step is essential because 𝑘-means
can produce different orders of clusters in different runs, even
if the partitioning results can be the same.

Please note it is possible that the average of some elements
of the second row 𝐶2 in Algorithm 1 has a minimum distance
from two or more averages of elements of the first row 𝐶1. In
this case, the minimum value of the minimum values is
chosen.

C. The ECF-means Algorithm

Let 𝐶 be a Clustering Matrix of 𝑆 , sorted by using the
Algorithm 1.

We define 𝑪𝒋 as floor of 𝑪𝒋 : 𝐶𝑗 = ⋂ 𝐶𝑖,𝑗
𝑁
𝑖=1 , with 𝑗 =

1,… , 𝑘 . It is possible that 𝐶𝑗 = ∅ (𝑗 = 1,… , 𝑘). Moreover,

𝑺 = ⋃ 𝐶𝑗
𝑘
𝑗=1 is defined as the floor of 𝑺.

18

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 1: Clusters Sort Algorithm

Input: two different rows of 𝐶:

𝐶1 = (𝐶1,1, 𝐶1,2, … , 𝐶1,𝑘) and 𝐶2 = (𝐶2,1, 𝐶2,2, … , 𝐶2,𝑘)
Output: a new order of the second row:
(𝐶′2,1, 𝐶′2,2, … , 𝐶′2,𝑘) = 𝐶′2

𝐶1 represents the reference row of the current sorting procedure (e.g.,
obtained by fixing 𝑠 = 0 in the Weka 𝑘-means algorithm).

1. Calculate the 2 × 𝑘 matrix of clusters centroids:

𝑀𝑈 = (
𝜇(𝐶1,1), 𝜇(𝐶1,2),… , 𝜇(𝐶1,𝑘)

𝜇(𝐶2,1), 𝜇(𝐶2,2),… , 𝜇(𝐶2,𝑘)
)

2. Compute the Euclidean Distances (𝐸𝐷) in 𝑀𝑈. The following 𝑘 ×
𝑘 matrix is the ∆ matrix of the 𝐸𝐷s:

∆= (

𝑑1,1 𝑑1,2 … 𝑑1,𝑘
𝑑2,1 𝑑2,2 … 𝑑2,𝑘
… … … …
𝑑𝑘,1 𝑑𝑘,2 … 𝑑𝑘,𝑘

)

Where:

𝑑𝑖,𝑗 = 𝐸𝐷 (𝜇(𝐶1,𝑖), 𝜇(𝐶2,𝑗)), with 𝑖, 𝑗 = 1,… , 𝑘.

3. Calculate the minimum value of each row of ∆.
min{𝑑1,1, 𝑑1,2,… , 𝑑1,𝑘} = 𝑑1,𝑗1̅̅̅ = 𝑚𝑖𝑛1

min{𝑑2,1, 𝑑2,2, … , 𝑑2,𝑘} = 𝑑2,𝑗2̅̅̅ = 𝑚𝑖𝑛2
………………
min{𝑑𝑘,1, 𝑑𝑘,2, … , 𝑑𝑘,𝑘} = 𝑑𝑘,𝑗𝑘̅̅ ̅ = 𝑚𝑖𝑛𝑘

4. The second row 𝐶′2 is:

(𝐶′2,1, 𝐶′2,2, … , 𝐶′2,𝑘) = (𝐶2,𝑗1̅̅̅ , 𝐶2,𝑗2̅̅̅, … , 𝐶2,𝑗𝑘̅̅ ̅)

Where:
𝐶′2,1 = 𝐶2,𝑗1̅̅̅ is the cluster (in 𝐶2) that has the centroid with the
minimum distance from the centroid of the first element of 𝐶1.
………
𝐶′2,𝑘 = 𝐶2,𝑗𝑘̅̅ ̅ is the cluster (in 𝐶2) that has the centroid with the

minimum distance from the centroid of the 𝑘-th element of 𝐶1.

Figure 4. Clusters Sort Algorithm.

Let 𝑥 be an element of 𝑆; we can count the number of
clusters of the first column of 𝐶 where 𝑥 is, the number of
clusters of the second column of 𝐶 where 𝑥 is, and so on. In
this way, we can associate a new numerical vector to 𝑥, called
attitude of 𝒙 (𝑎𝑡𝑡(𝑥)):

𝑎𝑡𝑡(𝑥) = (𝑎𝑡𝑡1(𝑥), 𝑎𝑡𝑡2(𝑥), … , 𝑎𝑡𝑡𝑘(𝑥)),

where 𝑎𝑡𝑡𝑗(𝑥) is the number of clusters in the 𝑗-th column of

𝐶 where 𝑥 is located. 𝑎𝑡𝑡𝑗(𝑥) = 𝑁 ⇔ 𝑥 ∈ 𝐶𝑗 and

∑ 𝑎𝑡𝑡𝑗(𝑥)
𝑘
𝑗=1 = 𝑁. In this manner, we are defining a function

𝑎𝑡𝑡𝑗 (𝑗 = 1,… , 𝑘 and 𝐼 = {1,2, … , 𝑁}):

𝑎𝑡𝑡𝑗: 𝑥 ∈⋃𝐶𝑖,𝑗
𝐼

→ 𝑎𝑡𝑡𝑗(𝑥) = |{𝑖 ∈ 𝐼: 𝑥 ∈ 𝐶𝑖,𝑗}|

where, as usual, |𝐴| is the number of the elements of the set 𝐴.
Finally, we can define the probability vector of 𝒙, as:

𝑝(𝑥) = (
𝑎𝑡𝑡1(𝑥)

𝑁
,
𝑎𝑡𝑡2(𝑥)

𝑁
,… ,

𝑎𝑡𝑡𝑘(𝑥)

𝑁
)

Thanks to the simple mathematical notions of the current
section, we are able to “soften” the “hard” 𝑘-means algorithm
and we can have a new Fuzzy Clustering Algorithm.
According to this approach, each element of the dataset
belongs to each cluster with a different degree of membership,
and the sum of these probabilities is equal to one.

Furthermore, the method can also be interpreted in a
different way. Indeed, this “fuzzification” procedure can be
used not only with 𝑘-means algorithm, but also for others
partitional clustering algorithms for which it is possible to
choose the number of clusters to be determined. In this way,
the algorithm is part of the Ensemble algorithms. For these
reasons, ECF-means is also a meta-algorithm because we
reach a fuzzy partition of the dataset by using a multiple
clustering algorithm schema.

The Algorithm 2 of Figure 5 is able to assign a probability
membership to each point of the dataset and to “slice” the data
in clusters.

Algorithm 2: ECF-means (Fuzzification of 𝒌-means)

Input: 𝑆 ⊆ ℝ𝑚 ; number 𝑘 of clusters to be determined;
membership threshold 𝑡 (0≤ 𝑡 ≤ 1); number 𝑁 of 𝑘 -means
iterations
Output: set of 𝑘 clusters of level 𝑡; probability vector of each
element 𝑥 of 𝑆

1. Apply the 𝑘-means algorithm to 𝑆, fixing the random seed 𝑠 = 0,
obtaining the clusters 𝐶0,1, … , 𝐶0,𝑘 (𝐶(0)-configuration)

2. foreach 𝑠 = 1,… , 𝑁 − 1
3. Apply the 𝑘-means algorithm to 𝑆, obtaining the clusters

𝐶′𝑠,1, … , 𝐶′𝑠,𝑘 (𝐶′(𝑠)-configuration)
4. Apply the Clusters Sort Algorithm to 𝐶′(𝑠), considering

𝐶(0) as reference, obtaining the clusters 𝐶𝑠,1, … , 𝐶𝑠,𝑘
(𝐶(𝑠)-configuration)

5. end
6. foreach 𝑗 = 1,… , 𝑘
7. foreach 𝑥 ∈ 𝑆
8. Calculate 𝑝𝑗(𝑥) = 𝑎𝑡𝑡𝑗(𝑥)/𝑁
9. Fix the cluster 𝐶𝑗

𝑡 = {𝑥 ∈ 𝑆| 𝑝𝑗(𝑥) ≥ 𝑡}

10. end
11. end

Figure 5. ECF-means Algorithm.

The membership threshold 𝑡 in the Algorithm 2 is fixed by
the user and it is very useful to change the “level” to clusters

final configuration. If 𝑡 = 1, then 𝐶𝑗
1 = {𝑥 ∈ 𝑆|𝑝𝑗(𝑥) = 1} =

𝐶𝑗 . Additionally, 𝑆 = ⋃ 𝐶𝑗
1𝑘

𝑗=1 . If 𝑡 = 0 , then 𝐶𝑗
0 = {𝑥 ∈

𝑆|𝑝𝑗(𝑥) ≥ 0} and ⋃ 𝐶𝑗
0𝑘

𝑗=1 = 𝐶𝑗
0 = 𝑆.

Let 𝑝(𝑥) be the probability vector of 𝑥 and let 𝑀 =
max 𝑎𝑡𝑡(𝑥) = max{𝑎𝑡𝑡1(𝑥), 𝑎𝑡𝑡2(𝑥), … , 𝑎𝑡𝑡𝑘(𝑥)} be the
maximum of 𝑎𝑡𝑡(𝑥), if this exists. We can define the position
of 𝑀 in 𝑎𝑡𝑡(𝑥) as 𝑃𝑀𝐴(𝑥), if this exists.

D. 𝑜-rank Fuzzy Outlier

As has been defined, to each point of the dataset it is
possible to associate a probability vector, which is as matter
of fact a vector of degrees of memberships. What happens if
we cannot unambiguously identify the cluster to which the
point belongs? What happens if the two highest components

19

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of the vector are equal (or almost equal)? In this case, two
interpretations are possible; the “ambiguity”:

1. depends on the clustering procedure, for example, on

the choice of 𝑘 or on the selection of the number 𝑁 of
iterations,

2. is intrinsic to the point because the point is an
anomaly.

The first interpretation leads to the definition of a novelty
validation measure called Threshold Index 𝑇𝐼 , which is
reported in the next section. Thanks to the second
interpretation it is possible to define a new particular type of
outlier, called 𝑜-rank fuzzy outlier.

An element 𝑥 ∈ 𝑆 is an 𝒐 -rank fuzzy outlier of 𝑺 if
𝑝𝑗(𝑥) − 𝑝𝑙(𝑥) ≤ 𝑜 (0 ≤ 𝑜 ≤ 1), where 𝑝𝑗(𝑥) and 𝑝𝑙(𝑥) are

the first two highest value components of 𝑝(𝑥) . The 𝑜
parameter is also named “outlier threshold”.

The definition of 𝑜-rank fuzzy outlier helps us to treat
these points as special points, which need to be observed more
closely, because they belong at least to two different clusters,
with a degree of “ambiguity”.

The 𝑜 parameter allows to create a hierarchy of outliers;
that is, 𝑜 represents a score to be assigned to each point of the
dataset. For example, if 𝑘 = 3 and 𝑝(𝑥1) = (1, 0, 0),
𝑝(𝑥2) = (0.1, 0.45, 0.45), 𝑝(𝑥3) = (0.75, 0.05, 0.2), and
𝑝(𝑥4) = (0.5, 0.4, 0.1), then:

 𝑥1, 𝑥2, 𝑥3, 𝑥4 are 1-rank outliers

 𝑥2, 𝑥3, 𝑥4 are 0.55-rank outliers

 𝑥2, 𝑥4 are 0.1-rank outliers

 𝑥2 is a 0-rank outlier

The set of 1-rank fuzzy outliers of 𝑆 is 𝑆; the set of 1-rank
fuzzy outliers of 𝑆 that aren’t 𝑜-rank fuzzy outlier, with 𝑜 <
1 , is the floor of 𝑆. From the “ 𝑜 -rank fuzzy outlier”
perspective, each point in the dataset is an outlier.

The 𝑜-rank fuzzy outliers, where 𝑜 is close to 0, are the
most interesting points of the dataset, which need to be
analyzed separately from the rest of the other points. Their
fuzzy nature pushes us to a deepening, also to understand if
they are “polluting” elements of the dataset, or they are
wrongly selected by the algorithm and, therefore, they are
ambiguous points for the algorithm but not anomalous in the
dataset, or they constitute the main objective of detection.

If ECF is considered a method for outliers detection, and
if 𝑜.FOU is the set of 𝑜-rank fuzzy outliers of 𝑆, it could be
very interesting to find the highest 𝑜 for which ECF-means is
invariant for 𝑆, naturally if a such 𝑜 exists:

max {𝑜: 𝐸𝐶𝐹(𝑆 − 𝑜. 𝐹𝑂𝑈) = ∅}

For this selected 𝑜, the set of 𝑜-rank fuzzy outliers of 𝑆
that make ECF-means an invariant method for outliers
detection is a special subset that has to be detailed.

E. Updates to the New Version of the Algorithm

As pointed in the previous sections, changing the seed (𝑠)
from 0 to 𝑁 − 1 , 𝑁 partitions of 𝑆 can be generated by
applying the 𝑘-means algorithm. Some of these partitions are
exactly the same, considering or not the order of groupings. In

this new version of the algorithm, after applying the clusters
sorting algorithm, all the identical configurations are deleted,
leaving only all the different partitions. Obviously, two
partitions are different if they have at least one element that
belongs to two different clusters of the two partitions.

This change effects on the whole designed method. As
consequence of this choice, all the ensemble results and the
evaluation indexes are calculated on the number of different
obtained partitions and not on the total number of performed
iterations.

Two different seeds could lead to the same partition
because through them the same initial centroids are selected,
or because of some topological reason, which is for the
geometric distributions of the elements in the dataset. It might
be interesting to find out some rules by which different
selections of the initial centroids lead to the same final
configuration and to discover if a pattern exists for these
elements. This change was made above all to avoid that the
Weka algorithm based on the seed (𝑠) too often chooses the
same initial centroids and, therefore, that the corresponding
partitions are too privileged and impact on the final result.

Even the case studies presented have clearer results thanks
to the changes that have been made, and the new validation
index facilitates the interpretation of the achieved results.

Note that, especially for small datasets, the possible
different final configurations can be very few; in this case, an
ensemble approach can be superfluous or even useless.

VI. CLUSTER VALIDITY ASSESSMENT

Clustering validation has long been recognized as one of
the critical issues essential to success of clustering
applications [27].

A. Introduction

One of the most important issues in clusters analysis is the
evaluation of the clustering results. In order to compare the
outputs of different clustering algorithms, or the different
partitions retrieved by the same clustering algorithm by using
different parameters, it is necessary to develop some validity
criteria. Moreover, if the number of clusters is not given by
the clustering algorithm, many cluster validity methods have
been developed in the literature; indeed, to find the optimal
number of clusters in the data set is a very central task in data
analysis. These methods lead to many different indices,
specialized for the various categories and approaches of
clustering algorithms; moreover, the methods are usually
divided in supervized and un-supervized methods, or in
internal and external validation criteria [27].

Most validation indices take into account the concepts of
cohesion and separation [31]; therefore, the index is a measure
that “optimizes”:

 Cohesion, also called compactness or tightness:
patterns in one cluster should be as similar to each
other as possible. The fitness variance of the patterns
in a cluster is an indication of the cluster’s cohesion.

 Separation: clusters should be well separated.
Distance among the representatives of the clusters
provides an indication of cluster separation.

20

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Silhouette Index

One of the most widespread and useful indices is the
Silhouette [32] [33]. The Silhouette method is an
unsupervized method (it does not need a class attribute to
calculate it) for evaluation of clusterings. It is a measure of
how similar an object is to its own cluster (cohesion)
compared to other clusters (separation).

The Silhouette index is calculated strarting from the
definition of the silhouette of each point of the dataset. The
silhouette 𝑠(𝑖) of a point 𝑖 is calculated by the following
formula:

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max {𝑎(𝑖), 𝑏(𝑖)}

Where:

 𝑠(𝑖) is the silhouette of 𝑖
 𝑖 is a generic point in the dataset;

 𝑎(𝑖) is the average distance between 𝑖 and all other
data within the same cluster.

 𝑏(𝑖) is the smallest average distance of 𝑖 to all points
in any other cluster, of which 𝑖 is not a member.

From the above definition it is clear that −1 ≤ 𝑠(𝑖) ≤ 1.
The Silhouette index is the aritmetic mean of the

silhouettes of each point in the dataset.
A value of the Silhouette index far from zero expresses a

good result of the clustering algorithm.

C. Validation Measures for Fuzzy Clustering

Let 𝑈 = (𝑢𝑙𝑖) (1 ≤ 𝑙 ≤ 𝑘, 1 ≤ 𝑖 ≤ 𝑛) be the
membership’s matrix of a fuzzy partition of a dataset 𝑆 with
𝑛 records, and 𝑘 is the number of clusters.

The first validity index for fuzzy clustering is the Partition
Coefficient Index (𝑃𝐶) [34]. 𝑃𝐶 is based on 𝑈 and it is
defined as:

𝑃𝐶 =
1

𝑛
∑∑𝑢𝑙𝑖

2

𝑛

𝑖=1

𝑘

𝑙=1

𝑃𝐶 ∈ [1 𝑘⁄ , 1] . Furthermore, a 𝑃𝐶 value close to 1 𝑘⁄
indicates that clustering is “very fuzzy”; the value 1 𝑘⁄ is
obtained when 𝑢𝑙𝑖 = 1 𝑘⁄ , for each 𝑙, 𝑖.

Another index is the Partition Entropy Coefficient (𝑃𝐸):

𝑃𝐸 = −
1

𝑛
∑∑𝑢𝑙𝑖𝑙𝑜𝑔𝑎(𝑢𝑙𝑖)

𝑛

𝑖=1

𝑘

𝑙=1

𝑃𝐸 ∈ [0, 𝑙𝑜𝑔𝑎𝑘]. Furthermore, a low 𝑃𝐸 value indicates
that clustering is “not very fuzzy”. 𝑃𝐸 values close to the
upper limit indicate an absence of any clustering structure
within the dataset or the inability of the algorithm to extract it.

The main disadvantage of 𝑃𝐶 and 𝑃𝐸 is their monotonic
evolution tendency with respect to 𝑘 . To avoid this, a
modification of the 𝑃𝐶 index can reduce the monotonic
tendency and was defined by:

𝑀𝑃𝐶 = 1 −
𝑘

𝑘 − 1
 (1 – 𝑃𝐶)

where 0 ≤ 𝑀𝑃𝐶 ≤ 1.
Finally, let we define a novel validity index, which we call

the Threshold Index 𝑻𝑰, by the following formula:

𝑇𝐼 =
|𝑆|

|𝑆|

𝑇𝐼 provides a measure of the quantity of elements in the
dataset that are fixed in every partition (they belong to the
floor set) with respect to the size of the whole dataset.

Finally, if 𝑜.FOU is the set of 𝑜-rank fuzzy outliers, then
let we define the 𝒐-rank fuzzy outlier index (𝒐. 𝑭𝑶𝑼𝑰), by the
following formula:

𝑜. 𝐹𝑂𝑈𝐼 =
|𝑜. 𝐹𝑂𝑈|

|𝑆|

𝑜. 𝐹𝑂𝑈𝐼 tells how many elements in the dataset are 𝑜-rank
fuzzy outliers with respect to the size of the whole dataset.

Thanks to these validation measures, it is possible to have
a rough idea of the fuzzy nature of the whole dataset and,
thanks to 𝑜. 𝐹𝑂𝑈𝐼, if too many points are outliers, then it is
necessary to modify the parameters of the algorithm, such as
𝑘 or 𝑁. For this reason, they are useful to better select these
parameters.

VII. ECF-MEANS TOOL V2.0

With the purpose of testing the ECF-means algorithm, a
software application has been designed and developed. It has
been carried on using a Client/Server architectural pattern,
where the Server part consists of the algorithm and other
support utilities, while the Client part is made by a browser-
based application, responsible of the ECF-means result
visualization.

The algorithm had an important update and it leads to a
new version of the software tool, and that is why we have
renamed the tool updating it to the version 2.0. However, the
tool presents an option to choose whether to keep the old
version of the algorithm, leaving even the same
configurations, or go to version 2.0, deleting the same
partitions.

A. Software Implementation

The ECF-means web application is built up of two main
modules: the first one wraps the ECF-means Algorithm that
has been implemented in Java programming language, and it
makes use of the Weka 𝑘-means algorithm (SimpleKMeans)
[25] [35] as clustering algorithm implementation.

The second module consists of the web application client
part, which has been implemented by using JavaScript
libraries, such as D3.js, as visualization library, and jQuery for
Ajax asynchronous data communication and Document
Object Model (DOM) manipulation tasks.

21

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. GUI & Data Visualization

The implemented tool provides a user-friendly GUI, by
which it is very easy to load datasets, fix the ECF-means
parameters, and understand the algorithm results visually.

The GUI can be divided into three functional blocks, as
highlighted by red numbered circle in Figure 6.

Through the first functional block, user can upload a
dataset from a local file system, in csv or arff formats; after
that he/she can specify the number of clusters 𝑘 (default is set
to two), the initial seed number (default 0), and the number of
iterations 𝑁 to perform (default 100).

The o Value spin box controls the 𝑜-rank fuzzy outlier
value and hence the 𝑜. 𝐹𝑂𝑈𝐼 index. Furthermore, its value
changes cluster points shape and color: if a point has a
difference between the two highest values of its probability
membership vector less than this value, the point is displayed
as a grey square.

Two checkboxes control computation of, respectively:
1. Silhouette Indexes.
2. Only different cluster configuration, as stated in

Section V.E.

Lastly, a set of buttons allow the following operations:
1. Run: runs the ECF-means algorithm and displays the

results (clustering graphical visualization and
validation measures output).

2. Save Results: saves results to an output csv file.
3. Stop: ends the current computation.

The second block is where clustering visualization takes
shape under scatter plot form: dataset points are displayed as
circle with the color of the belonging cluster (resulting from
the highest value of the probability membership vector) and
with an opacity due to the degree of membership to the same
cluster (stronger opacity means higher membership).

If the attributes of the dataset are two, Voronoi lines
(computed considering initial seed, default 𝑠 = 0) are also
displayed.

In the top of the block, some input controls are used to
affect data visualization. In particular, two combo boxes are
used to allow the choosing of dataset’s attributes that has to be
displayed. Below this, a slider allows to set the degrees of
membership above which a point is displayed (Membership
Threshold t).

Instead, rightmost input fields, in order from top to
bottom, control the visualization of:

1. The Initial Seed Centroid points (each with a “cross”
symbol).

2. The Mean Seed Centroid points (each with a “plus”
symbol).

Figure 6. Software GUI and clustering visualization.

22

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The last third block is divided into three box panels: in the
first one the validation measures are displayed, as described
in Section VI.C, such as 𝑃𝐶, 𝑃𝐸, 𝑀𝑃𝐶, 𝑇𝐼, and 𝑜. 𝐹𝑂𝑈𝐼. In
addition, Sum of Squared Errors (SSE) and Silhouette (S)
measures have also been included; they are calculated
considering Initial Seed (IS) and Mean Seed (MS), where MS
is the mean value of the measure over all the 𝑁 iterations,
which lead to the definition of IS-SSE, MS-SSE, IS-S, and
MS-S. Below this box, a second box displays the number of
different retrieved partitions.

Lastly, in the bottom part of the block, a popup panel is
displayed when a user clicks on a cluster point, where
information about this clicked point are reported, such as point
features, cluster memberships vector, best cluster assignment,
etc.

C. Output Results

The ECF application exports results in csv format, where
each row of the output file represents a point 𝑥 of the dataset.
The application appends ECF-means algorithm results as
additional columns to the attributes columns of the point 𝑥.

TABLE V. COLUMN NAMES MEANING

Column Names Description

ISCDistance𝑖, with
𝑖 = 1,… , 𝑘

Vector of Euclidean Distances between point 𝑥 and
Initial Seed Centroids

ISCMembership
Cluster membership derived from the position of
the smallest value in ISCDistance vector

MSCDistance𝑖 ,
with 𝑖 = 1,… , 𝑘

Vector of Euclidean Distances between point 𝑥 and
Mean Seed Centroids

MSCMembership

Cluster membership derived from the position of
the smallest value in MSCDistance vector

Membership𝑖,
with 𝑖 = 1,… , 𝑘

Probability vector of point 𝑥, 𝑝(𝑥)

ECFMembership Cluster membership derived from the 𝑃𝑀𝐴(𝑥)

o-rank fuzzy
outlier

Y, if the point 𝑥 is an o-rank fuzzy outlier, where o
is fixed through the o Value input box by the user
N, otherwise

Table V shows these additional column names meaning,
where Mean Seed Centroid (MSC) is the arithmetic mean
value of all computed centroids in 𝑁 iterations.

VIII. CASE STUDY 1: THE WINE DATASET

The Wine dataset from the UCI Machine Learning
Repository [36] is widely mined both by applying
classification algorithms and clustering techniques. Chemical
indicators are used in order to analyze the wine dataset. This
case study is useful to underline the differences between
classical methods for outlier detection and ECF-means.

A. Dataset Exploration

The Wine dataset has got 178 instances described by 13
attributes, with no missing values, and divided into three
classes {0, 1, 2}, with the distribution [59, 71, 48]. These data
are the results of a chemical analysis of wines grown in the
same region in Italy but derived from three different cultivars.

The analysis determined the quantities of 13 constituents
found in each of the three types of wines.

TABLE VI. LIST OF WINE DATASET VARIABLES (FEATURES)

Name # Name

1 Alcohol 8 Nonflavanoid phenols

2 Malic acid 9 Proanthocyanins

3 Ash 10 Color intensity

4 Alcalinity of ash 11 Hue

5 Magnesium 12 OD280/OD315 of diluted wines

6 Total phenols 13 Proline

7 Flavanoids

The attributes (variables) are listed in Table VI.

B. Outliers Detection with RapidMiner Tool

The RapidMiner tool [37] provides a series of case studies
for data analysis by using machine learning techniques, and
one of these concerns outlier detection in Wine dataset. The
goal of these case study is to select anomalies in data resulting
from a chemical analysis of wines by finding the data clusters
and, then, identifying the anomalies based on local outlier
factors. The clusters are achieved by applying the 𝑋-means
algorithm [38] which determines the correct number of
centroids based on a heuristic. Briefly, 𝑋 -means is an
extended version of 𝑘-means. It begins with a minimum set of
centroids and then iteratively exploits if using more centroids
makes sense according to the data. If a cluster is split into two
sub-clusters is determined by the Bayesian Information
Criteria (BIC), balancing the trade-off between precision and
model complexity.

TABLE VII. 𝑋-MEANS RESULTS

Cluster
Number of

Items
cluster_0 51

cluster_1 62

cluster_2 29

cluster_3 36

Tot 178

TABLE VIII. LIST OF OUTLIERS

Id Cluster Thershold

1 26 cluster_1 1.605

2 60 cluster_0 1.744

3 70 cluster_0 1.867

4 72 cluster_0 1.538

5 74 cluster_1 1.963

6 79 cluster_0 1.611

7 96 cluster_1 1.880

8 97 cluster_0 1.534

9 111 cluster_0 1.655

10 122 cluster_1 1.943

11 159 cluster_3 1.684

The outliers are detected by find the “outlier scoring”
using the LOF (local outlier factor) mechanism [39]. The
examples are filtered to get one data set with the outliers and
another with the rest (non-anomalous points), using
“outlier=1.5” as a threshold. Then, the outputs of the

23

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

RapidMiner analysis flow are the clustered data and two
example sets with the outliers/non-outliers records.

The 𝑋-means algorithm provides 4 clusters, as reported in
Table VII.

The outliers set, which we call 𝑂𝑈𝑇 , provided by the
RapidMiner flow, consists of 11 anomalies reported in Table
VIII.

The set 𝑂𝑈𝑇 of anomalies will be compared with the set
of outliers obtained by the ECF-means algorithm, in order to
discover if there is an 𝑜-rank threshold such that the two sets
have some elements in common (𝑂𝑈𝑇 ∩ 𝑜. 𝐹𝑂𝑈 ≠ ∅).

C. DBSCAN Algorithm Application

The mentioned DBSCAN algorithm can be applied in
order to detect noise in the Wine dataset. Fixing 𝜀 = 0.6 and
𝑚 = 5 in the Weka algorithm version, DBSCAN retrieves
one cluster and provides 11 unclustered instances (noises),
which are listed in Table IX, and they form the set 𝑁𝑂𝐼.

TABLE IX. LIST OF NOISES

Id 𝑶𝑺

1 60 YES
2 70 YES

3 74 YES

4 79 YES

5 96 YES

6 97 YES

7 111 YES

8 116 NO

9 122 YES

10 125 NO

11 159 YES

In the third column of Table IX, the “YES” value says if
the unclustered instance is also in 𝑂𝑈𝑇 set.

D. ECF-means Application

The ECF-means tool provides some different results. First
of all, by changing 𝑘 from 2 to 5, the best clustering outcomes
are obtained by selecting 𝑘 = 3. In Table X the validation
measures are listed and they are calculated by fixing I = 500,
which is the total number of performed iterations. #DP
indicates the number of different partitions obtained during
the 500 performed iterations.

TABLE X. VALIDATION MEASURES (I=500)

𝒌 MPC MS-S TI #DP

2 0.21 0.4 0.01 8

3 0.89 0.48 0.62 21

4 0.65 0.42 0.27 246

5 0.57 0.41 0 466

In spite of the fuzzy nature of the analyzed dataset
(MPC=0.89), setting 𝑘 = 3 the values of the Silhouette (MS-
S = 0.48) and of the Threshold Index (TI = 0.62) are the
highest of the list.

The floor 𝑆 of Wine dataset has got 110 instances; these

elements do not have a fuzzy nature (or a degree of
“ambiguity”), and the first cluster has got only one element,
the second one has got 58 elements, and the third one has got

51 elements. Set 𝑆 − 𝑆 contains potential outliers, and by

changing the 𝑜 parameter, different levels of 𝑜 -rank fuzzy
outliers are obtained, as Table XI shows.

TABLE XI. LIST OF 𝑜-RANK FUZZY OUTLIERS

𝒐 𝒐-𝑭𝑶𝑼𝑰
Id of 𝒐-rank

fuzzy outliers
0.05 0.01 69

0.1 0.01 69

0.15 0.01 69, 74

0.25 0.02 69, 72, 74

0.35 0.03 61, 69, 71, 72, 74, 75

𝑝(69) = (0.5238, 0, 0.4762) is the probability vector of
the element with Id = 69, whilst the probability vector of 74 is
𝑝(74) = (0.4286, 0.5714, 0) . The element 72, which is a
0.25-rank fuzzy outlier is not a real outlier because it is not an
ambiguous element, considering its probability vector
𝑝(72) = (0.619, 0.381, 0).

The detected 0.15-rank fuzzy outliers, discovered by the
ECF-means algorithm, listed in Table XI, form the 0.15 -
𝐹𝑂𝑈 = {69, 74} set.

The intersection set 𝑂𝑈𝑇 ∩ 𝑁𝑂𝐼 ∩ 0.15.𝐹𝑂𝑈 is {74} and
this point does not represent anything new.

However, the new detected point, marked with id = 69, is
really halfway between the first cluster and the third one and
its discovery makes us understand how the proposed ECF-
means method is able to enrich our knowledge on the analyzed
dataset. Moreover, this point is found also by the RapidMiner
outlier detection process, using “outlier=1.3” as threshold of
the selecting filter, instead of 1.5.

IX. CASE STUDY 2 IN METEOROLOGICAL DOMAIN

The application of the ECF-means algorithm to the
meteorological dataset [40] has been extensively presented in
[1], where numerous results have been described. To deepen
the nature of the dataset and to have an example of data
analysis, you can consult [41].

This case study is useful for explaining how the algorithm
is able to explore even datasets with numerous records, how
the number of discovered outliers increases with the increase
of the 𝑜 parameter, and how the “ambiguous” points also
belong to overlapping geographical areas.

A. Summary of the Previous Results

Briefly, in this section a summary of the results of the
ECF-means application is presented.

An historical dataset made up of 9200 meteorological
observations has been collected. Data have been retrieved
from ECMWF MARS Archive containing the surface
Synoptic observations (SYNOP) provided by 4 geographical
sites: Charles De Gaulle (CDG) airport in Paris and
Grazzanise, Milan, and Pantelleria airports in Italy.

SYNOP observations are recorded every hour and the list
of the meteorological variables [41] used for applying the
ECF-means algorithm is reported in Table XII. Each airport
site has got 2300 records and the SITE attribute has 4 values.

Considering the Silhouette measure, the best clustering
partition is obtained by selecting 𝑘 = 3 for 𝑘 -means

24

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

algorithm (Silhouette=0.49). Fixing 𝑘 = 3 and considering
SITE attribute as Class attribute, CDG and Milan are inserted
into the same cluster (Cluster 0) by the algorithm (4 sites in 3
clusters): it seems that the two sites have a lot in common!
Thus, we try to merge these two sets, obtaining a new set
called CDG+MIL.

TABLE XII. LIST OF METEOROLOGICAL VARIABLES (FEATURES)

Name # Name

1 Pressure 6 cloud cover

2 three-hour pressure change 7 height of base of cloud

3 wind direction 8 Dewpoint Temperature

4 wind speed 9 Drybulb Temperature

5 Visibility 10 SITE

The incorrectly clustered instances are 3710 and represent
40.32% of the original dataset. 𝑘 -means does not provide
homogeneous clusters with respect to SITE attribute. From an
intuitive point of view, the 3 sites (Grazzanise, Pantelleria and
CDG+MIL) have an ambiguous meteorological nature and the
3710 unclustered instances are on the border between two or
more sites. In other words, the datasets have overlapping
areas, with “similar” meteorological conditions, and perhaps
the sites are not so different, and they are not well-separated
from each other.

The ECF-means algorithm tries to overcome the problem
in which the 𝑘-means algorithm falls in this meteorological
case study, and in part it succeeds, if only because it provides
much more information on datasets, clusters, and on
clustering results, thanks to which the data analyst can make
more informed and useful choices.

By fixing 𝑘 = 3, thanks to the ECF-means application, we
are able to select the floor 𝑆 of whole dataset. It has got 5363

records. The incorrectly clustered instances are 704 and
represent 13.12% of 𝑆.

The elements belonging to 𝑆 never fluctuate from one

cluster to another (considering the 350 iterations) and
constitute approximately 58.3% of the initial dataset.

The obtained results lead to a clear improvement of the
clustering: the clusters seem much more separate, if the
contingency matrices are calculated starting from the floor set.
ECF-means manages to break down the percentage of
instances that are incorrectly clustered from 40.32% to
13.12%.

B. Outlier Detection by Applyng the InterquartileRange

The Weka tool provides a filter for detecting outliers and
extreme values based on interquartile ranges. It can be found
among the filters in the preprocess tab. The filter complies
with the following schema:

A point 𝑥 is an outlier ⇔

{
𝑄3 + 𝑂𝐹 ∗ 𝐼𝑄𝑅 < 𝑥 < 𝑄3 + 𝐸𝑉𝐹 ∗ 𝐼𝑄𝑅

𝑜𝑟
𝑄1 − 𝐸𝑉𝐹 ∗ 𝐼𝑄𝑅 ≤ 𝑥 < 𝑄1 − 𝑂𝐹 ∗ 𝐼𝑄𝑅

A point 𝑥 is an extreme value ⇔

{
𝑥 > 𝑄3 + 𝐸𝑉𝐹 ∗ 𝐼𝑄𝑅

𝑜𝑟
𝑥 < 𝑄1 − 𝐸𝑉𝐹 ∗ 𝐼𝑄𝑅

Where:

 𝑄1 = 25% quartile,

 𝑄3 = 75% quartile,

 𝐼𝑄𝑅 = Interquartile Range, difference between 𝑄1
and 𝑄3,

 𝑂𝐹 = Outlier Factor,

 𝐸𝑉𝐹 = Extreme Value Factor.

The filter adds two new columns to the dataset: Outlier
and ExtremeValue, which assume the values “yes” or “no”,
depending on the previous filter schema.

The dataset is divided by the three sites: Grazzanise,
Pantelleria and CDG+MIL, and then, fixing 𝑂𝐹 = 3.0 and
𝐸𝑉𝐹 = 6.0, the filter is applied to the three geographical sites
separately.

Table XIII shows the number and the percentages of the
outliers and of the extreme values discovered by the Weka
filter.

TABLE XIII. SYNOP OUTLIERS AND EXTREME VALUES

 Grazzanise Pantelleria CDG+MIL

Outlier 144 (6.3%) 267 (11.6%) 319 (6.9%)

Extreme Values 65 (2.8%) 141 (6.1%) 157 (3.4%)

These values are statistical outliers and they depend on the
distributions of all the meteorological variables.

By removing these points, putting together the three
subsets, the residual dataset has got 8365 instances (some
elements are both outliers and extreme values), and the three
sites have the distribution [2145, 2012, 4208].

C. Outlier Detection by Applyng ECF-means

It is very useful to make a classification of the 𝑜-rank
fuzzy outliers of the SYNOP dataset. As we already said, from
the “𝑜 -rank fuzzy outlier” perspective, each point in the
dataset is an outlier. The elements that belong to the 𝑆, for

example, are 1-rank fuzzy outliers but aren’t 𝑜-rank fuzzy
outlier, with 𝑜 < 1.

First of all, the intersection between the set 𝑂𝑈𝑇 of 835
detected outliers by applying the InterquartileRange filter and
the set of instances that are in 𝑆 and not in 𝑆 has got 748

elements:

|𝑂𝑈𝑇 ∩ (𝑆 − 𝑆)| = 748

This makes us realize how the anomalies discovered by
the ECF method have much in common with the statistical
outliers that are in the 𝑂𝑈𝑇 set.

The elements belong to 𝑜.𝐹𝑂𝑈 are 𝑜-rank fuzzy outliers
and they have a fuzzy nature. However, 𝑜-rank fuzzy outliers
with small 𝑜 (𝑜 < 1.5) are the most interesting ones, and we
will compare them with the 𝑂𝑈𝑇 elements in more detail. So,
also in this case study we will determine the set 𝑂𝑈𝑇 ∩
𝑜. 𝐹𝑂𝑈 (|𝑂𝑈𝑇 ∩ 𝑜.𝐹𝑂𝑈| ≤ 748, for small values of 𝑜).

25

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

By changing the 𝑜 parameter (and fixing 𝑘 = 3), we have
the results of Table XIV, where the fuzzy outliers are divided
with respect to the SITE attribute.

TABLE XIV. SYNOP 𝑜-RANK FUZZY OUTLIERS

𝒐 Grazzanise Pantelleria CDG+MIL Tot
0.05 7 22 25 54 (0.6%)

0.1 41 27 63 131 (1.4%)

0.15 145 204 248 597 (6.5%)

0.2 328 454 587 1369 (14.9%)

We found that 597 points (about 6.5% of the initial

dataset) have an Outlier Threshold (difference between the
two highest values of the probability membership vector), less
than 0.15. These ambiguous instances belong also to 𝑂𝑈𝑇 set:

|𝑂𝑈𝑇 ∩ 0.15. 𝐹𝑂𝑈| = 597

The remaining 748 − 597 = 151 points, which are in
𝑂𝑈𝑇 but do not belong to 0.15 .𝐹𝑂𝑈 set, are all 0.2-rank
fuzzy outliers.

D. Invariance Property

Is the ECF-means method for outlier detection invariant
for the SYNOP dataset? Or better, is there an 𝑜 value for
which the set of 𝑜 -rank fuzzy outliers of (𝑆𝑌𝑁𝑂𝑃 −
𝑜.𝐹𝑂𝑈) = ∅?

The tests we performed, by changing the 𝑜 parameter,
showed us that ECF-means is not an invariant algorithm for
SYNOP set. But fixing 𝑜 = 0.15, the set of the 0.15-rank
fuzzy outliers of (𝑆𝑌𝑁𝑂𝑃 − 0.15. 𝐹𝑂𝑈) is very small.
Indeed, this set has got only 59 instances, which are new
points but, deepening this set, we have discovered that these
elements belong to the 0.2.𝐹𝑂𝑈 set.

For the sake of study, we repeated the procedure by setting
𝑜 = 0.2, and then discovering the 0.2-rank fuzzy outliers of
(𝑆𝑌𝑁𝑂𝑃 − 0.2. 𝐹𝑂𝑈). Also, in this case, the resulting set is
very small and it has got 40 instances.

On the other hand, if we calculate the 𝑜-rank fuzzy outliers
of the floor 𝑆 of the SYNOP set (we are applying the ECF-

means algorithm to 𝑆 that has got 5363 records) we find out

that 0.15. 𝐹𝑂𝑈 is empty and 0.1. 𝐹𝑂𝑈 has got only 11
elements, whilst 0.05. 𝐹𝑂𝑈 has got 27 records (0.5% of 𝑆),

and this result is really amazing.

E. Experimental Results

The results obtained in this case study encourage us to
reflect a lot. Unlike the previous case study, here we do not
find any new points compared to those discovered by the
traditional method based on statistics. But surely the most
interesting result is the ability that the proposed method has to
assign a score to each set of outliers.

Moreover, this case study gave us the opportunity to
investigate the invariance property of the ECF-means method
and to research the connection between the floor set of
SYNOP and the 𝑜-rank fuzzy outliers. Although we did not
find a precise analytical relationship between floor of SYNOP
and 𝑜 (and we do not believe it exists because of the many
algorithm parameters involved), we discovered a method to

reduce the number of 𝑜-rank fuzzy outliers and to determine a
“stable” subset of the original dataset.

SYNOP is a very difficult set to analyze, not only because
it has many statistical outliers (about 9.1% of the original
dataset), but also because, as repeatedly pointed out by the
meteorologist and as also discovered in [1] and in [41], there
are no net separations between airport areas, from a weather
point of view. For example, the elements in 0.15.𝐹𝑂𝑈 are
very fuzzy points and they belong to more than one cluster,
and probably to more than one airport site (to overlapping
areas).

In [41] the dataset is mined in order to find short-range
temporal models for fog prediction; a next step would be to
find out if prediction errors belong to 𝑜. 𝐹𝑂𝑈, for some 𝑜; or,
if the generic forecast error decreases by removing the
detected outliers from the dataset, or analyzing only the floor
𝑆 of SYNOP dataset.

X. CASE STUDY 3: THE IRIS DATASET

The famous Iris dataset is a multivariate dataset that
contains 3 classes of 50 instances each, where each class refers
to a species of iris plant (Iris-setosa, Iris-virginica, and Iris-
versicolor). Four features were measured from each sample:
the length and the width of the sepals and petals, in
centimeters.

The use of this dataset is very common in classification
and clustering tasks, where numerous results have been
obtained. Moreover, historically this dataset has been one the
driving force of many theoretical studies, above all to discover
and to deepen many non-linear classification methods.

From a statistical point of view, the Iris dataset has neither
outliers nor extreme values; this makes the dataset a good
example for exploration by the ECF-means algorithm, in order
to discover new kind of outliers.

A. Summary of 𝑘-means Results

The data set only contains two clusters with rather obvious
separation: one of the clusters contains Iris-setosa, while the
other cluster contains both Iris-virginica and Iris-versicolor.

Fixing 𝑘 = 3, the incorrectly clustered instances are 18, as
reported in the contingency matrix of Table XV, and represent
12% of the original Iris dataset, by applying the simple 𝑘-
means algorithm (or by applying the ECF-means algorithm,
fixing 𝑠 = 0 and 𝐼 = 1).

TABLE XV. CLASSES TO CLUSTERS (𝑠 = 0 AND 𝐼 = 1)

0 1 2 Assigned to cluster

0 0 50 Iris-setosa Cluster 2

40 10 0 Iris-versicolor Cluster 0

8 42 0 Iris-virginica Cluster 1

32% 35% 33%

All the records of the Iris dataset belonging to the Iris
setosa class come together in a single and homogeneous
cluster. No point in this cluster shows an ambiguous or fuzzy
nature, so none of these points is an outlier. The fuzzy outliers
of the dataset are, therefore, to be searched among the records
labeled by versicolor tag or virginica one.

26

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. ECF-means Algorithm Application

Fixing 𝑘 = 3 and choosing the number of iterations 𝐼 =
7500, the performed iterations generate the validity indexes
and the statistics of Table XVI, where the 𝑜 parameter is set
to 0.1.

TABLE XVI. VALIDITY INDEXES (7500 ITERATIONS)

Index Value Descriptive note

MPC 0.73
If the Normalized Partition Coefficient

Index is 1, then the clustering is not fuzzy

Silhouette
Index

0.57
An everage Silhouette greater than 0.5

indicates reasonable partitioning of data

TI 0.5
50% of the instances belong to the floor of
the Iris dataset; then, the other 50% of the

instances have a fuzzy nature

No. of
𝟎. 𝟏. 𝑭𝑶𝑼

13
13 elements have 𝑜 ≤ 0.1 and they are 0.1-
rank fuzzy outliers. From the results of the

next tables 𝑜 ≤ 0.057

𝟎. 𝟏. 𝑭𝑶𝑼𝑰 0.0867 13/150=0.0867

No. of
different
partitions

6

The 7500 performed Iterations generate 6
different partitions. The first seeds (𝑠)

generating these partitions are:

0, 1, 31, 98, 1794, 5894

EFC-means provides the results in the contingency matrix
of Table XVII, where the incorrectly clustered instances are
17 and represent 11.33% of the original Iris dataset.

TABLE XVII. CLASSES TO CLUSTERS (𝑘 = 3, 𝐼 = 7500)

0 1 2 Assigned to cluster

0 0 50 Iris-setosa Cluster 2

47 3 0 Iris-versicolor Cluster 0

14 36 0 Iris-virginica Cluster 1

41% 26% 33%

Thanks to the ECF-means application, we are able to
select the floor 𝑆 of whole Iris dataset 𝑆. 𝑆 has got 75 elements

(TI = 0.5) that have the distributions in Table XVIII.

TABLE XVIII. CLASSES TO CLUSTERS (𝑆)

0 1 2 Assigned to cluster

0 0 32 Iris-setosa Cluster 2

4 3 0 Iris-versicolor Cluster 0

0 36 0 Iris-virginica Cluster 1

5.33% 52% 42.67%

𝑆 has got 3 incorrected clustered instances that represent

4% of 𝑆.

In conclusion, if 𝑡 = 1 , then |𝐶0
1| = 4 , |𝐶1

1| = 39 , and
|𝐶2
1| = 32.

C. Outlier Detection by Applyng ECF-means

The 50 elements in Table XVII tagged by Iris-setosa class
are divided in 4 subsets, depending on their probability
vectors, which are in Table XIX. The last column of the table
contains the difference between the two highest probabilities
of the vector (the 𝑜 parameter).

The 32 elements in the A1 subset belong to the floor of
Cluster_2 (Table XVIII) and, therefore, to the 𝑆 set. Although

the elements in B1, C1, and D1 do not belong to 𝑆 , their

probability of belonging to the Cluster_2 is very high (around
79.6%).

TABLE XIX. IRIS-SETOSA PROBABILITY VECTORS (7500 ITERATIONS)

N. of

elements
Clus_0 Clus_1 Clus_2 𝒐

A1 32 0 0 1 1

B1 13 0.204 0 0.796 0.592

C1 4 0.2035 0 0.7965 0.593

D1 1 0.2037 0 0.7963 0.5926

In conclusion, the elements tagged by Iris-setosa class
label form the Cluster_2. This result, as we know, does not
surprise us, and confirms the goodness of the ECF-means
algorithm.

The results obtained by analyzing the other floral classes
seem to be much more interesting.

The 50 Iris-versicolor elements have the probability
vectors of Table XX. These elements fluctuate between the
Cluster_0 and the Cluster_1, and no element is in Cluster_2.

TABLE XX. IRIS-VERSICOLOR PROBABILITY VECTORS (7500

ITERATIONS)

N. of

elements
Clus_0 Clus_1 Clus_2 𝒐

A2 34 0.796 0.204 0 0.592

B2 6 0.5231 0.4769 0 0.0462

C2 4 1 0 0 1

D2 3 0 1 0 1

E2 2 0.7965 0.2035 0 0.593

F2 1 0.5285 0.4715 0 0.057

The elements of A2, C2, and E2 belongs to Cluster_0,
without any doubt. In particular, the 4 elements of C2 are in
the floor of Cluster_0.

Surely, by analyzing the table, the instances marked by the
Iris-versicolor class label are mainly found in Cluster_0, and
the floor of this cluster has got only 4 elements, and then they
belong to the 𝑆 set.

The 3 elements in D2 are put in the floor of the Cluster_1,
but they have the Iris-versicolor label class, and then they are
unclustered instances.

The 7 elements belonging to B2∪F2 are 0.057-rank fuzzy
outliers, even if their probabilities of belonging to Cluster_0
are greater than the probabilities of belonging to Cluster_1.

The 50 Iris-virginica elements have the probability vectors
of Table XXI. Also, these elements fluctuate between the
Cluster_0 and the Cluster_1.

In this case, the floor of the Cluster_1 has got 36 instances
(to which are added the 3 instances tagged by Iris-versicolor
label, retrieved in the Iris-versicolor case, Table XX).

TABLE XXI. IRIS-VIRGINICA PROBABILITY VECTORS (7500

ITERATIONS)

N. of

elements
Clus_0 Clus_1 Clus_2 𝒐

A3 36 0 1 0 1

B3 8 0.796 0.204 0 0.592

C3 6 0.5231 0.4769 0 0.0462

27

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The 8 points of B3 seem to belong to Cluster_0 and then
they are unclustered instances.

The 6 elements in C3 are, without any doubt, 0.0462-rank
fuzzy outliers.

TABLE XXII. 0.057-RANK FUZZY OUTLIERS OF IRIS DATASET

El.

Num.
Sepal
length

Sepal
width

Petal
length

Petal
width

1 52 6.4 3.2 4.5 1.5

2 57 6.3 3.3 4.7 1.6

3 66 6.7 3.1 4.4 1.4

4 71 5.9 3.2 4.8 1.8

5 77 6.8 2.8 4.8 1.4

6 86 6 3.4 4.5 1.6

7 87 6.7 3.1 4.7 1.5

8 124 6.3 2.7 4.9 1.8

9 127 6.2 2.8 4.8 1.8

10 128 6.1 3 4.9 1.8

11 139 6 3 4.8 1.8

12 147 6.3 2.5 5 1.9

13 150 5.9 3 5.1 1.8

Choosing the maximum 𝑜 in the previous Table IX, Table
X, and Table XI, for which the elements are fuzzy outliers, the
Iris dataset has got 13 elements that are 0.057-rank fuzzy
outliers (B2∪F2∪C3), and they are presented in Table XXII.

D. Invariance Property

Also for Iris dataset we study the property of invariance.
First of all, in summary, from the previous application of ECF-
means algorithm, we have:

 |0.057. 𝐹𝑂𝑈| = 13,

 |𝐼𝑟𝑖𝑠 − 0.057. 𝐹𝑂𝑈| = 137,

 |𝐼𝑟𝑖𝑠| = 75.

The ECF-means method is invariant for the Iris dataset.
That is to say, the set of 0.057-rank fuzzy outliers of (𝐼𝑟𝑖𝑠 −

0.057 .𝐹𝑂𝑈) = ∅ . Not only that, the smallest 𝑜 value for
which we have 𝑜-rank fuzzy outliers is 𝑜 = 0.552.

Furthermore, if we consider 𝐼𝑟𝑖𝑠, the set of 𝑜-rank fuzzy

outliers of 𝐼𝑟𝑖𝑠 is empty for any value of 𝑜 such that 𝑜 ≤
0.246. Then, for this case study, 𝐼𝑟𝑖𝑠 ≠ 𝐼𝑟𝑖𝑠, but

|𝐶𝑙𝑢𝑠𝑡𝑒𝑟_0| = 2, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_1 = ∅, and 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_2 =

𝐶𝑙𝑢𝑠𝑡𝑒𝑟_2, which confirms the elements labeled by the Iris-

setosa class are still preserved by the algorithm.

E. Experimental Results

The 13 0.057-rank fuzzy outliers are labeled by the Iris-
versicolor class or by the Iris-virginica one, and not by Iris-
setosa class, as reported in the scatter plot chart of sepalwidth,
petalwidth space in Figure 7 (left part), where they are marked
by boxes in grey color. In particular, 7 fuzzy outliers have the
Iris-versicolor class and 6 the Iris-virginica class. They belong
to 𝑆 − 𝑆 and can be analyzed separately in order to understand

their fuzzy nature.
Moreover, there are 11 unclustered instances (D2∪C3),

but the elements in D2 belong to the floor of the Cluster_1.
Finally, the floor of Iris dataset has got 75 points
(A1∪C2∪D2∪A3), as reported in Figure 7 (right part); the
floor of a set can be easily achieved by scrolling the
“Membership Threshold” slider up to 100% in the graphical
user interface of the tool, because the floor has got only the
elements with the probability vectors equal to (1, 0, 0), or to
(0, 1, 0), or to (0, 0, 1).

The charts also show the centroids of the three clusters.
The “cross” symbol indicates the Initial Seed Centroid points,
whilst the “plus” symbol are the Mean Seed Centroid points.
In each cluster, the farther away are the “cross” and the “plus”
symbols, the more points are fuzzy (and, therefore, fewer
points belong to the floor of the considered cluster).

Figure 7. Scatter plot chart of 𝑆 with 0.057-rank fuzzy outliers in grey (on the left) and S scatter plot chart (on the right).

28

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Thanks to the obtained results, we can easily understand
how the algorithm is able to optimize the partitioning of the
data space with respect to the class that expresses the floral
typology. The algorithm is able to find this partitioning in one
fell swoop. By applying the simple 𝑘-means we may not be
able to get the same partition. However, the most interesting
result is that the algorithm is able to preserve the cluster with
Iris-setosa label and to find the floating elements that are at
the limits of the floral types.

These “disturbing” elements can be analyzed separately in
order to understand if they are, from some point of view,
outliers or records that have undergone measurement errors.

The arithmetic mean of the 13 discovered fuzzy outliers is,
for example, 𝜇13 = (6.277, 3.008, 4.761, 1.67) and the
arithmetic mean of the distances of the 13 points from 𝜇13 is
0.441. Moreover, if you subdivide the 13 points into two
subsets, taking into account the two values of the target class,
the 7 records with Iris-versicolor value have 𝜇7 =
(6.4, 3.157, 4.628, 1.543) and the arithmetic mean of the
distances of the 7 points from 𝜇7 is 0.389; the 6 records with
Iris-virginica value have 𝜇6 = (6.133, 2.833, 4.917, 1.817)
and the arithmetic mean of the distances of these 6 points from
𝜇6 is 0.25.

These measures give us an idea of how the outliers are
close to each other, and how they have a low dispersion
around the average.

XI. CONCLUSION AND FUTURE WORKS

In this work we have presented a procedure for detecting
outliers or anomalies in large datasets, using the ECF-means
algorithm, which is an ensemble method useful for optimizing
and “fuzzifing” cluster analysis results. After describing the
various types of outliers and the main approaches of data
mining for their discovery, in this paper we defined a new
category of outliers, called 𝑜-rank fuzzy outliers, based on the
different degrees of membership of the point to the various
obtained clusters.

By using an ad hoc implemented software application and
the Weka version of the well-known 𝑘-means algorithm, three
case studies have been proposed, aimed at showing the
strengths of the ECF-means ensemble approach.

In particular, with the tool it is possible:

1. optimize the choice of algorithm parameters, such as

the number 𝑘 of the clusters to be determined, by
calculating validation metrics such as the Silhouette,
the partition entropy coefficient, and two new metrics

that are the threshold index (TI) and the 𝑜-rank fuzzy

outlier index (𝑜.FOUI), which have been defined for
the first time in this work. These new indexes give us
a rough estimate of the amount of outliers of the
dataset;

2. calculate a degree of membership of each point to
each cluster;

3. select the 𝑜-rank fuzzy outliers of the dataset as those
points that have a fixed level of ambiguity, and also
choose the level;

4. view the obtained results using a simple and
interactive graphical interface.

The presented case studies showed that the ECF-means
algorithm is able to detect more and different anomalies than
those discovered by the usual outlier detection methods: these
new points are elements that have a high level of ambiguity
and which must be subjected to a more in-depth analysis.
Being able to assign a level or score of ambiguity to each point
is certainly one of the strengths of the proposed method, which
is a method for exploring data.

However, we had that all the most exciting results can be
obtained by the active interaction with the software tool
interface, thanks to which, by scrolling the sliders, changing
parameters, and visualizing groupings, numerous properties
of the dataset can be discovered.

In future works, we are going to evaluate our method on
other several datasets, for example, on others from UCI ML
Repository.

Future investigations about the algorithm:
1. to find the relationship between the clusters centroids

calculated considering the initial seed (𝑠 = 0) (the
“cross” symbols in the GUI) and those obtained
considering the means of the centroids computed
over all the 𝑁 iterations (the “plus” symbols in the
GUI), as it was stated in the case study of the Iris
dataset;

2. to understand the relationship between the distance
among the cross and the plus centroids and the floor
of each cluster;

3. to discover a criterion for the 𝑜 parameter
optimization in relation to the other parameters, such
as 𝑘 and 𝑁.

Additionally, in order to understand the final
configuration, the floor of the analyzed dataset, and the
discovered fuzzy outliers, why not train a model by using a
machine learning technique, able to predict the probability
vector of a point in a test set? The model could be a
multivariate and regressive classifier with 𝑘 − 1 output
variables, useful to know the level of “ambiguity” of a new
and not yet clustered observation.

For the current study, we have chosen the simple 𝑘-means
as the reference clustering algorithm. Furthermore, we can
consider other algorithms in substitution or in addition to it,
and this will surely be one of the next improvement of the tool.

Another information that can be very useful to the data
analyst is the frequencies of the partitions that are obtained by
varying the seed 𝑠. This feature, and other statistical
computations, will also be added to the next tool update.

ACKNOWLEDGMENT

The authors would mention the TECVOL II and the Big
Data Facility projects, both funded by the Italian PRORA, in
which the meteorological database has been realized and the
tool has been designed and developed.

REFERENCES

[1] G. Zazzaro and A. Martone, “ECF-means – Ensemble
Clustering Fuzzification Means,” Proc. of the Eighth
International Conference on Advances in Information Mining
and Management (IMMM), pp. 20-27, 2018.

29

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[2] S. Vijendra and P. Shivani, “Robust Outlier Detection
Technique in Data Mining: A Univariate Approach,” arXiv
Preprint arXiv:1406.5074, [Online] available from:
http://arxiv.org/abs/1406.5074, 2019.01.25.

[3] A. Zimeck and P. Filzmoser, “There and back again: Outlier
detection between statistical reasoning and data mining
algorithms,” WIREs Data Mining Knowl Discov. 8:e1280,
Wiley Periodicals, Inc., 2018.

[4] P. Tan, M. Steinbach, and V. Kumar, “Introduction to Data
Mining”, Pearson Addison Wesley, 2005.

[5] D. Hawkins, “Identification of Outliers,” Chap. and Hall, 1980.

[6] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly
Detection,” in Encyclopedia of Machine Learning and Data
Mining. Second Edition, Springer, 2017.

[7] S. Agrawal and J. Agrawal, “Survey on Anomaly Detection
using Data Mining Techniques,” Proc. of 19th International
Conference on Knowledge Based and Intelligent Information
and Engineering Systems, Elsevier, 2015.

[8] C. C. Aggarwal, “Outlier Analysis. 2nd Ed.,” Springer, 2017.

[9] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A Density-
Based Algorithm for Dicovering Clusters in Large Spatial
Databases with Noise,” Proc. Of the 2nd Intl. Conf. on
Knowledge Discovery and Data Mining, AAAI Press, pp. 226-
231, August 1996.

[10] P. Chapman et al., “CRISP-DM 1.0. Data Mining guide,” 2000.

[11] K. Singh and S. Upadhyaya, “Outlier Detection: Applications
And Techniques,” IJCSI International Journal of Computer
Science Issues, vol. 9, Issue 1, no. 3, pp. 307-323, January
2012.

[12] Z. Niu, S. Shi, J. Sun, and X. He, “A Survey of Outlier
Detection Methodologies and Their Applications,” AICI 2011,
Part I, LNAI 7002, pp. 380-387, 2011.

[13] H. Izakian and W. Pedrycz, “Anomaly Detection in Time
Series Data using a Fuzzy C-Means Clustering,” in IFSA
World Congress and NAFIPS Annual Meeting
(IFSA/NAFIPS), 2013 Joint.

[14] B. S. Harish and S. V. Aruna Kumar, “Anomaly based
Intrusion Detection using Modified Fuzzy Clustering,”
International Journal of Interactive Multimedia amd Artificial
Intelligence, vol. 4, no. 6, 2017.

[15] L. Xie, Y. Wang, L. Chen, and G. Yue, “An Anomaly
Detection Method Based on Fuzzy C-means Clustering
Algorithm,” Proceedings of the Second International
Symposion on Networking and Network Security (ISNNS’10),
2010.

[16] R. Sampat and S. Sonowani, “A Survey of Fuzzy Clustering
Techniques for Intrusion Detection System,” International
Journal of Engineering Research & Technology (IJERT), vol.
3 Issue 1, 2014.

[17] Z. Zhao, C. K. Mohan, and K. G. Mehrotra, “Adaptive
Sampling and Learning for Unsupervised Outlier Detection,”
Proceedings of the Twenty-Ninth International Florida
Artificial Intelligence Research Society Conference, 2016.

[18] B. Micenková, B. McWilliams, and I. Assent, “Learning
Outlier Ensembles: The Best of Both Worlds – Supervised and
Unsupervised,” Proc. of the ODD^2 workshop organized
together with KDD'14, 2014.

[19] P. Berkhin, “Survey of clustering data mining techniques,”
Technical report, Accrue Software, San Jose, CA, 2002.

[20] A. K. Jain, A. Topchy, M. H. C. Law, and J. M. Buhmann,
“Landscape of Clustering Algorithms,” IAPR International
Conference on Pattern Recognition, vol. 1, pp. 260-263,
Cambridge, UK, 2004.

[21] L. I. Kuncheva, “Combining Pattern Classifiers. Methods and
Algorithms,” Wiley-Interscience, A John Wiley & Sons, Inc.,
Publication, 2004.

[22] A. Strehl and J. Ghosh, “Cluster Ensembles – A Knowledge
Reuse Framework for Combining Multiple Partitions,” Journal
of Machine Learning Research 3 (2002), pp. 583-617.

[23] S. Monti, P. Tamayo, J. Meisirov, and T. Golub, “Consensus
Clustering: A Resampling-Based Method for Class Discovery
and Visualization of Gene Expression Microarray Data,”
Machine Learning, 52, pp. 91–118, 2003, Kluwer Academic
Publishers.

[24] A. Gionis, H. Mannila, and P. Tsaparas, “Clustering
Aggregation,” on 21st International Conference on Data
Engineering (ICDE), pp. 341-352, 2005.

[25] R. R. Bouckaert et al., “WEKA Manual for Version 3-9-2,” the
University of Waikato, Hamilton, New Zealand, December,
2017.

[26] E. Frank, M. A. Hall, and I. H. Witten, “Data Mining: Practical
Machine Learning Tools and Techniques,” Morgan Kaufmann,
2016.

[27] G. Gan, C. Ma, and J. Wu, “Data Clustering. Theory,
Algorithms, and Applications,” ASA-SIAM Series on
Statistics and Applied Probability, SIAM, Philadelphia, ASA,
Alexandria, VA, 2007.

[28] C. C. Aggarwal, “Data Mining. The Textbook,” Springer
International Publishing, 2015.

[29] J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The Fuzzy c-
Means Clustering Algorithm,” Computers & Geosciences Vol.
10, no. 2-3, pp. 191-203, 1984.

[30] J. Wu, “Advances in k-means Clustering. A Data Mining
Thinking,” Springer, 2012.

[31] S. Das, A. Abraham, and A. Konar, “Metaheuristic
Clustering,” Studies in Computational Intelligence, vol. 178,
Springer, 2009.

[32] P. J. Rousseeuw, “Silhouettes: a graphical aid to the
interpretation and validation of cluster analysis,” Journal of
Computational and Applied Mathematics 20, 53-65, 1987.

[33] C. Subbalakshmi, G. R. Krishna, S. K. M. Rao, and P. V. Rao,
“A Method to Find Optimum Number of Clusters Based on
Fuzzy Silhouette on Dynamic Data Set,” International
Conference on Information and Communication Technologies
(ICICT 2014), Procedia Computer Science 46, 346-353,
Elsevier, 2015.

[34] R. N. Dave, “Validating fuzzy partition obtained through c-
shells clustering,” Pattern Recog. Lett. 17, pp. 613–623, 1996.

[35] M. Hall et al., “The WEKA Data Mining Software: An
Update,” SIGKDD Explorations, vol. 11, Issue 1, 2009.

[36] D. Dua and E. K. Taniskidou, UCI Machine Learning
Repository, Irvine, CA: University of California, School of
Information and Computer Science, 2017.

[37] M. Hofmann and R. Klinkenberg, “RapidMiner: Data Mining
Use Cases and Business Analytics Applications,” Chapman &
Hall/CRC Data Mining and Knowledge Discovery Series,
CRC Press, October 25, 2013.

[38] D. Pelleg and A. W. Moore, “X-means: Extending K-means
with Efficient Estimation of the Number of Clusters,” in
Seventeenth International Conference on Machine Learning,
727-734, 2000.

[39] M. M. Breuning, H-P Kriegel, R. T. Ng, and J. Sander, “LOF:
Identifying Density-Based Local Outliers,” in Proc. Of the
2000 ACM SIGMOD, pp. 93-104, ACM, USA, 2000.

[40] ECMWF, Mars User Guide. User Support. Operations Dep.
2013.

[41] G. Zazzaro, G. Romano, and P. Mercogliano, “Data Mining to
Forecasting Fog Events and Comparing Geographical Sites.
Designing a novel method for predictive models portability,”
Int. Journal on Advances in Nets and Services, vol. 10, no. 3 &
4, pp. 160-171, 2017.

