
Systematic Application of Domain-Driven Design for a Business-Driven Microservice
Architecture

Benjamin Hippchen, Michael Schneider, Pascal Giessler
Sebastian Abeck

Cooperation & Management (C&M), Institute for Telematics
Karlsruhe Institute of Technology

Karlsruhe, Germany
{benjamin.hippchen, michael.schneider, pascal.giessler, abeck}@kit.edu

Abstract—Today’s cloud providers open up new opportunities for
software development. Unfortunately, however, not all existing
applications are ready for operation in the cloud. One reason
for this is usually the chosen architecture, which offers little
flexibility like the monolithic architecture. In order to take up
the possibilities in the cloud, a flexible architecture such as the
microservice architecture is required. Developing with such an
architecture is challenging and requires experienced team mem-
bers. Especially the design of microservice-based applications is
the challenge. Utilizing domain-driven design can be beneficial
in breaking business functionality down into microservices. But
also the use of domain-driven design requires a lot of experience,
due to the lack of systematic. For this reason, we have created
a systematic for the application of domain-driven design in the
context of microservice development. The systematic accompanies
the development team through the development process and
supports them in the design and modelling of microservices. To
cover the choreography of microservices, a new diagram called
context choreography has been added. We also present UML
profiles to support the modeling activities. Our systematic has
shown over a longer period of time that it has a verifiable positive
effect on microservice development.

Keywords–Microservice; Microservice Architecture; Domain-
Driven Design; Context Map; Bounded Context.

I. INTRODUCTION

This article is an extended version of [1], which was
published at SOFTENG 2019. The following aspects were
added to the original work: (1) Consideration of event-driven
communication within the context choreography; (2) Support-
ing the application of DevOps paradigms with the context map
and context choreography. (3) Modeling of the context map;
(4) UML profile for context map and context choreography.
The digital transformation is in progress and organizations
must participate; otherwise, they will be left behind. Existing
business models have to be rethought and new ones created.
Tightly coupled to the business model is the organization’s
application landscape. Thus, this landscape has also to be
reimagined. Meanwhile, microservice architectures have es-
tablished themselves as an important architectural style and
can be considered enablers of the digital transformation [2].
Therefore, one major step towards a digital organization is
the migration of legacy applications with monolithic software
architecture into a microservice architecture. Afterward, the
architecture must be maintained to provide long-lived software
systems. However, neither the migration, design and develop-
ment of a microservice architecture nor its maintenance are
easy to achieve.

The structure of the new microservice-based application
seems straightforward for the development team. Some mi-
croservices communicate with each other and deliver business-
related functionalities over web application interfaces (web
APIs). Another approach to communication is the event-based
exchange of information. One also speaks of messaging [3].
The use of events is becoming more and more popular, as
it provides a loose coupling in the context of microservices.
However, at this point, the corresponding development team
must ask itself decisive questions: How many microservices
do we need? In which microservice do we put which function-
ality? Do we interact with third party applications? Domain-
driven design (DDD) by Evans [4] provides important concepts
which help answering these questions. As a software engineer-
ing approach, DDD focuses on the customer’s domain and
wants to reflect this structure into the intended application.
The business and its business objects are the focus of each
developing activity. Technical details, like the deployment
environment or technology decisions, are omitted and do
not appear in design artifacts. This is also a weak point of
DDD, because from a certain point technical decisions are
of great importance. An example of this is the operation of
microservices, which is of a purely technical nature. DDD
emphasizes the use of a domain model as a main development
artifact: all relevant information about the domain, or business,
is stored in it.

For microservice architectures, DDD helps structuring the
application along business boundaries. Likely, these boundaries
match the customer’s domain boundaries. In his book Domain-
Driven Design: Tackling Complexity in the Heart of Software,
Evans introduces the “context map” diagram. The main pur-
pose of the context map is to explore the customer’s domain
and state it as visual elements. The context map focuses for
example on the macro structure of the domain, sub domains,
departments instead of micro elements like business objects.
A further essential DDD element and pattern is the “bounded
context,” which represents a container for domain information.
This container is filled with the mentioned domain’s micro
structure, creating a domain model. The name bounded context
is derived from its explicit boundary. Through this boundary,
the container’s content is only valid inside of the bounded
context. From the strategic point of view, a bounded context is
a candidate for a microservice. It is important to note, that the
bounded context should be mostly independent of other parts
of the domain. This supports the idea of microservices. Thus,
the context map could display the organisation’s microservice

343

International Journal on Advances in Software, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



architecture.
Like most DDD concepts, creating a context map is

challenging and the tasks are not straightforward. The vague
definitions and lack of process description impose problems.
In addition, DDD does not provide a modeling language like
Unified Modeling Language (UML). The following example
illustrates several problems. A development team wants to
establish a microservice architecture at Karlsruhe Institute of
Technology (KIT) for the administration of students. Typically,
for this purpose, universities introduce Student Information
Systems (SIS) to support the business process execution for
their employees. There are several problems with those SIS:
(1) in the hands of software companies, (2) little to no under-
standing of the university’s domain, (3) primarily monolithic
architecture, and, (4) little to no insights for third parties.
Since the development team has no affect on the SIS and its
architecture, the goal is to enhance the SIS with social media
aspects to support interaction between students. A microservice
architecture is planned for the new functionality. In order
to use DDD, the team must gather information about the
domain and create a domain model and context map. The
first uncertainty is the creation order of the artifacts. Both
artifacts rely on information from each other. While creating
the domain model, the development team has to know where
to look for specific domain information, which is stated in
the context map. When creating the context map, several
bounded contexts are needed, which contain a domain model.
In addition, the content of a context map is not precisely
defined. The literature states that the context map contains
bounded contexts and relationships but does not state how
to elicit them or what they represent in the real world. This
lack of real-world representation is especially a problem for
development teams, who have to interact with an existing
application. On the one hand, it is necessary to provide the
third party application in the context map, since the context
map can capture the information transferred between the third-
party and the university. On the other hand, it is unclear how
to represent the third-party application in the context map. A
bounded context needs a domain model, and there is no domain
model in this case. These are only two problems with the
application of the context map, but they illustrate how import
it is to enhance usability. In the following sections, we discuss
these and other problems in more detail.

In this article, we provide the following contributions to
enhance the application of the context map and support the
design and maintenance of a microservice-based application:

• Context Map Foundations: One major problem of
DDD is the lack of integration and placement in
existing software development processes. It is unclear
in which phases the context map must be created and
in which phases it supports the development. There-
fore, in Section III, we provide the first integration
and placement of this map. In addition, we discuss
the foundations of the context map and define the
elements in this section.

• Context Choreography: While applying DDD for the
development of microservice-based applications, we
realized the existing artifacts did not capture all rele-
vant information. Thus, in Section II and Section III,
we introduce a new type of diagram, the “context
choreography”. This diagram’s purpose is to display

the choreography between multiple microservices for
the application. To suit the ever more popular event-
driven communication, the context choreography can
represent the exchanged events between the microser-
vices needed for the application.

• Artifact Creating Order: As mentioned, it is unclear
in which order the DDD artifacts must be created.
Therefore, in Section III, we also provide a detailed
order with an emphasis on the context map. The
application of the order is presented in our case study
in Section V.

• UML Profiles - The look and feel of a context map
depends on the modeler. DDD does not provide any
modeling language for the style of a context map.
Thus, each context map must be read differently,
depending on the conceptional understanding of the
modeler. We see a problem in the missing model-
ing systematic of a context map. In Section IV, we
provide UML profiles for the context map and a the
context choreography. Especially for the collaboration
between multiple development teams, it is necessary
to have a clear understanding and a limited amount of
diagram elements.

II. PLACEMENT AND INTEGRATION OF THE CONTEXT
MAP

One main problem of DDD is its lack of placement in
the field of software development. Neither its models nor its
patterns, including the context map, are placed in common
software development processes. For our placement, we focus
on the context of microservices. Since the context map has
some weaknesses in development, a new diagram is introduced
to close the gap.

A. Placement
As mentioned in Section I, the use of the context map

is not straightforward. The development team must analyze
the domain, create a domain model, and develop a context
map. On the one hand, the context map has a great benefit for
microservice architectures. On the other hand, applying the
context map correctly is difficult.

Each DDD practice should be performed with the focus on
an intended application [4]. This ensures the “perfect fit” of
the gathered information, called “domain knowledge,” for the
application. Domain knowledge is captured in domain models.
At this point, the pattern “bounded context” becomes impor-
tant. An application consists of multiple bounded contexts,
which all have their own domain models. With respect to the
complexity of the domain knowledge, it makes sense to split
the domain knowledge into multiple domain models. The va-
lidity of each domain model is limited by the bounded context.
Furthermore, each bounded context has its own “ubiquitous
language,” which is based on the domain knowledge and acts
as a contract for communication between project members
and stakeholders. For the development of microservice-based
applications especially, the multiple bounded contexts support
the idea of a microservice architecture. Through connections
between the bounded contexts, the domain knowledge is
joined together in the application. The arising relationships are
application-specific and differ from application to application.
There are several types of relationships [5]. Modeling the

344

International Journal on Advances in Software, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



bounded contexts and their relationships is the purpose of a
context map.

Considering a microservice architecture, the purpose of a
context map is not only to elicit domain knowledge. Orga-
nizations that introduce microsevices need to manage their
application landscape to maintain the microservice architec-
ture. Without the knowledge about which microservices are
available and who is in charge of them, the microservice
architecture loses its advantages. Existing microservices are
simply not used, even the domain knowledge they provide
is required, due to the fact that other development teams
could not find it, oversee it or forgot about it. The required
domain knowledge is redeveloped in new microservices and
the existing microservices become legacy. Sustaining the ad-
vantages of a microservice architecture is therefore important
for organizations and the context map is one tool which helps
to achieve this. In addition, the aspect that DDD focus its
development artifacts on the customer’s domain, supports the
maintenance of the microservice architecture. Aligning the
context map to the customer’s domain leads to a natural-
looking architecture [6]. Conway’s Law [7] also supports
the idea behind this. The organizational structure is adapted
to the microservice architecture and vice versa. Looking at
concepts like Martin Fowler’s “HumaneRegistry” [8] or API
management products like “apigee” [9], the idea and approach
of the context map is required and furthermore it supports such
concepts and products.

Using the context map as a tool for maintaining the
microservice architecture is contradictory to one DDD aspect:
focus always on an application. The mentioned maintenance
does not require any kind of application-specific information.
A microservice is mainly an application-independent software
building block [10] and needs to be treated as such while main-
taining the microservice architecture. Even if the development
of a microservice is motivated through the development of an
application. Thus, we see the context map as an application-
independent diagram.

Application

Presentation

Backend
-For-

Frontend (BFF)

Application

Domain

Infrastructure

Application

Domain

Infrastructure

Microservice Microservice

Context
Choreography

Context
Map

Figure 1. Placement of context mapping artifacts regarding the software
building blocks from [10]

According to [10], for microservice-based applications,
microservices are choreographed in applications through a
backend-for-frontend (BFF) pattern. This is where application-
specific information comes into play. Fig. 1 depicts the soft-
ware architecture, including the application’s BFF. To capture
the choreography in the BFF, a new type of diagram is needed.
The “context choreography” provides a view of the bounded
context necessary for the application. Furthermore, the context
choreography indicates which domain knowledge the bounded
context transfers. We have chosen the term choreography
because choreography is the real goal of the way Microservices
communicate. A distinction is made between choreography
and orchestration [11]. In orchestration, the interactions be-
tween the microservices must be triggered either by a central
instance or by the microservices themselves. This results in an
unwanted coupling between the building blocks. In contrast,
the choreography relies on a loose coupling by reacting to
events that take place in a message broker (such as RabbitMQ
[12] or Kafka [13]). The microservices only need to know the
events to which they have to react. It does not matter who
created the event.

The context map can also be placed into software devel-
opment activities. In [10], the first steps to place DDD into
the software development activities from Brügge et al. [14]
were taken. However, the context map itself was omitted.
We built on these results for our placement of the context
map. Domain-driven design introduces two types of “design
activities” [4]. The first is the “strategic design,” with tasks in
modeling and structuring the domain’s macroarchitecture (e.g.,
departments are used to define boundaries). This macroarchi-
tecture is captured in the context map. Secondly, the “tactical
design” further refines the macroarchitecture and enriches
the bounded contexts with domain knowledge. This activity
represents the microarchitecture of the domain and therefore
of the microservice. Both activities rely on creating diagrams.
Considering the software development activities from Brügge
et al., Evans’ designation as strategic and tactical “design”
is misleading. Those focus more on the analysis than on
the design phase. Many DDD practices and principles, such
as “knowledge crunching,” aim to analyze the domain. The
development team explores the customer’s domain and should
simultaneously create the context map and domain model.
Thus, the strategic and tactical designs are completed out,
which is why the context map must be integrated at this point.

As mentioned, the content of the context map depends on
its purpose. This is even the case for the relationships between
the bounded contexts. Developing a monolithic application
requires a different viewpoint on these relationships than a
microservice-based application. A microservice architecture
has many different microservices, which are managed by
different development teams. By choreographing microservices
in applications, development teams are automatically interde-
pendent. This dependency is illustrated in the relationships in
the context map. They could also be seen as communication
paths between those development teams.

Our placement indicates that the context map has several
possibilities to support the development of microservice archi-
tectures and microservice-based applications. We distinguish
between a microservice architecture and the development of a
microservice-based application. With regard to the microser-
vice architecture style, the context map provides an overview

345

International Journal on Advances in Software, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



of all in the application landscape existing microservices
and further the dependencies of the responsible development
teams—which are also necessary information for maintain-
ing the microservice architecture. Due to the application-
independence of these information, the context map is an
application-independent diagram. Additionally, we saw a lack
of the context map while specifying microservice-based ap-
plications. Information transferred between microservices was
missing a specification, which is necessary for choreograph-
ing the BFF of the application. Thus, we introduced the
context choreography, which displays the application-specific
dependencies between the microservices and their transferred
domain knowledge. With this placement, we make a first step
in advancing the use of the context map.

III. FOUNDATIONS AND ARTIFACT ORDER

In addition to the placement, we see a high need for clear
definitions and guidance in creating the context choreography
and context map. Therefore, this section provides definitions
for terms regarding both artifacts. Afterward, we explain how
the artifacts could be created.

A. Foundations
We found that, in addition to the development process,

terminology around the context map is not clearly defined.
This also leads to difficult application. Therefore, we want to
provide some basics.

1) Bounded Context: The bounded context is the main
element for the context map and is an explicit boundary for
limiting the validity of domain knowledge [4]. Thus, within
this context, there is a domain model and its ubiquitous
language. A bounded context does not represent an application.
This is based on the layered architecture of DDD, which
consists of four layers: (1) presentation, (2) application, (3)
domain, and (4) infrastructure. Domain-driven design and its
artifacts focus only on the domain layer and omit the others.
Therefore, without any application logic in a domain model,
a bounded context cannot represent an application at all.
This definition is fundamental, when creating a context map.
An intended application is usually integrated into an existing
application landscape.

When developing a microservice-based application, a
bounded context initially only represents a candidate for a
microservice [6]. Thus, a bounded context is either large
enough that two or more microservices are necessary or small
enough that they are included in one microservice. The best
practice, however, should be the one-to-one relationship. This
relationship eases the maintenance of the architecture through
a clearer mapping between bounded contexts, microservices,
and the responsible development teams. Reconsidering the size
of the bounded context helps achieve this mapping. Therefore,
we have collected several indicators, or more precisely possible
influence factors, for the size of bounded contexts from our
experiences in research and practice. This list should not be
considered complete or verified with an empirical study but
should rather be seen as an aid. A bounded context (1) has a
high cohesion and low coupling, (2) can be managed by one
development team, (3) has ideally a high autonomy to reduce
the communication/coordination effort between development
teams, (4) has a unique language that is not (necessarily)
shared, and (5) represents a meaningful excerpt of the domain.

2) Context choreography: As mentioned (see Section II),
the specification of a microservice-based application was
lacking some information. Thus, we introduced the context
choreography as a new diagram.

For microservice-based application development, it is im-
portant to state the other needed microservices—and thus
also the bounded context. Furthermore, the exchanged data
between those microservices are important information. As
a microservice-based application is developed, existing mi-
croservices could still be used, while new ones are developed.
In both cases, the context choreography is supportive. Regard-
ing the application itself, the context choreography maps all
microservices dependent on web interfaces and the consum-
ing events, which are necessary to achieve the application’s
functionality. In further steps, the events to be published by
the microservices could be integrated. A connection of the
two microservices via an event does not mean that both
communicate directly with each other. This is the case when
shared entities are exchanged via web interfaces. According
to the software architecture provided by [10], the application’s
BFF is specified. Independent from the application, the context
choreography states the microservice web interfaces. Both the
consumed and the provided interfaces of the microservice are
provided. Thus, while developing the application, the first
hints for designing the API can be derived. With regard to
the subsequent maintenance of the microservice, development
teams are able to identify the microservices that rely on them
and vice versa.

3) Context Map: The DDD’s original purpose for the
context map differs from the one provided in this paper. In
the context of microservice architecture, the context map is a
useful diagram for maintaining the architecture and supporting
application development.

One major advantage is the comprehensive overview of
existing microservices. According to the best practice from
Section III-A1, each bounded context in the context map rep-
resents a microservice. Further, in software architecture, social
and organization aspects have to be considered [15]. Therefore,
dependencies between microservices, and thus development
teams, are stated. When development teams want to evolve
their microservices, it is important to ask who depends on
these microservices. At this point, the dependencies on other
teams must be considered because any change could affect the
stability of the other microservices. Thus, changes have to be
communicated.

Also, for the development of a microservice-based ap-
plication, the context map is advantageous. Regarding the
context choreography, existing microservices are used to com-
pose functionality for the intended application. Using existing
microservices is only possible if they are traceable in the
microservice architecture. This is where the context map comes
into play. After developing a microservice, it is placed as a
bounded context into the model. While the application is in
development, the development team can use the context map
as a tool to locate the needed microservices.

4) Domain Experts and other Target Groups: The interac-
tion between domain experts and developers is one principle of
DDD [4]. Each artifact is created for and with domain experts.
Thus, the artifacts should be understandable without a software
development background.

346

International Journal on Advances in Software, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



The context map according to DDD’s definition is also
relevant for domain experts [16]. However, according to our
definition, we do not see any advantages for domain experts
since the context map provides an overview of bounded con-
texts and communication paths between development teams.
Furthermore, the context choreography is irrelevant. Only
the subdomains, which represent the organization’s structure,
contain helpful information.

5) Supporting DevOps Paradigms with the Context Map
and Context Choreography: The paradigm of Development &
Operations (DevOps) is becoming more and more relevant for
software development [17]. Especially in the context of the
development of microservices, essential concepts have opened
up. The paradigms in the context of microservices are relevant
for coping with the challenges of the microservice architecture,
such as the shorter time-to-market. The shorter development
cycles can thus be absorbed by continuous integration and
continuous delivery (CI/CD) [18]. A great synergy between
microservice architecture and DevOps arises during the han-
dling of the development team [19]. The development of
microservices requires a rethink within the development team.
The classic approach of large development teams is to split up
into smaller self-sufficient development teams [6]. This idea
is also supported by DevOps, which empowers a development
team for the entire lifecycle of a microservice.

Important for the use of DevOps is the consideration of the
paradigms during the architectural design [20]. For example, it
is highly relevant that a microservice can be further developed
independently of other microservices. To achieve this, the con-
tent of the microservices must be highly cohesive in order to be
loosely coupled to other microservices. This is precisely where
the designed system and the artifacts that are created come in
handy. By using the context map, the domain can be separated
into coherent microservices, which exist independently and can
be further developed independently of the other microservices.
Furthermore, the number of microservices and thus the number
of necessary development teams can be read when designing
the context map.

The context choreography can support the operations team
of the microservices with the operation. From the artifact
the necessary endpoints can be identified, which have to be
released for the communication between the microservices.
Such approval is particularly relevant at the infrastructure level.

B. Process for Establishing a Context Map

To develop a microservice-based application, it is necessary
to establish the bounded contexts needed for the application.
The developed application may reuse existing microservices,
which should be integrated into the application landscape. To
obtain an overview of the microservice landscape, the context
map is useful. In this section, we focus on the establishment
of the bounded contexts, the context choreography, and the
context map. For developing an application, we build on a
development process based on behavior-driven development
(BDD) [21] and DDD [4] introduced in [10]. We omit the steps
in [10] and focus on the creation of context choreography and a
context map. Therefore, this section describes how the context
map is established and enhanced within the development
process.

1) Forming the Initial Domain Model: Forming the initial
domain model occurs in the analysis and design phases. Before
developing an application, the requirements are specified with
BDD in the form of features. As Fig. 2 illustrates, a tactical
diagram is derived from the features (e.g., the domain objects
and their relationships). If a domain model already exists
(e.g., from an existing microservice), this should be taken into
account. The resulting diagram represents the initial domain
model, which contains the application’s business logic. Thus,
the domain model provides the semantic foundation for all the
specified features. The resulting diagram is comparable to a
UML class diagram and displays the structural aspects of the
domain objects. If the domain structure is still vague when the
number of features is satisfied, more features are considered
until the domain model appears to be meaningful. Afterward,
as presented in Fig. 2, this initial domain model is examined
and structured into several bounded contexts.

Bounded Contexts

Tactical Diagrams

Context Choreography

Context Map

Specifying features

Extracting Domain 
Knowledge from Various 

Sources

Deriving Data Exchange 
Between Bounded Contexts

Summarizing of all Context 
Choreographies and 

Applying Communication 
Patterns

Artifact OrderActivities

forms

input for

leads to

establishes

Figure 2. Creating order for artifacts their and impacting activities

2) Forming the Bounded Contexts: The model is strate-
gical analyzed and separated based on the business and its
functionality. This step depends on the domain knowledge and
the structure of the business. Therefore, knowledge crunching
from DDD [4] is applied to gather that knowledge. Often, a
business’s domain knowledge is scattered through the whole
business. Therefore, analyzing the business is important to
understand the business processes and the interaction of differ-
ent departments. By default, each department knows its tasks
the best. To extract the domain knowledge, various sources
should be considered. These sources include domain experts
who are part of a department, as well as documents and
organizational aspects. This domain knowledge provides hints
for structuring the domain and has to be considered while
forming the bounded contexts. Considering the application
analysis and the business analysis from [10] leads to the
bounded contexts, as illustrated in Figure 2. If a context map
has been established, then the context map is searched for the
required domain knowledge of the application. If a bounded
context representing the domain knowledge already exists, then
this bounded context is taken into account. A new bounded
context is established if the context map does not contain
the required domain knowledge. For example, we integrated
a profile context into an existing context map of the campus
management domain.

3) Toward the Context Choreography: Forming the
bounded contexts is only the first step towards a working

347

International Journal on Advances in Software, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE I. Overview of communication patterns and their impact

Comm. pattern Description Effort
Partnership Cooperation between bounded contexts

to avoid failure
Very high

Shared Kernel Explicit shared functionality between
different development teams

Medium to
high

Customer/
Supplier

Supplier provides required functionality
for the customer. The customer has in-
fluence on the supplier’s design deci-
sions

High to
very high

Conformist Similar to customer/supplier but with no
influence on design decisions.

Low to
medium

Separate Ways No cooperation between development
teams

Low

Anticorruption
Layer

Additional layer that transforms one
context into another

Low

Open Host Ser-
vice

Uniform interface for accessing the
bounded context

Low

Published
Language

Information exchange is achieved using
the ubiquitous language of the bounded
context

Low

application. Each previously established bounded context is
considered a microservice and requires or offers a unique
interface for communication that can be based on REST
or other paradigms like messaging. The microservices are
choreographed with the BFF. Either the BFF directly accesses
the web interfaces or creates events to which the microservices
react. To allow choreography, the data exchange between
the bounded contexts is considered next. The required data
exchange is modeled in the context choreography. For each
bounded context, a context choreography diagram is modeled.
Domain objects that need to be shared or consumed from other
bounded contexts are modeled as shared entities or events. The
considered bounded context can either share the domain object
itself or consume the domain object. Within an event there is
information about the domain objects (see domain objects [5]).

4) Toward the Context Map: In microservice architectures,
each established bounded context represents a microservice
and is implemented by autonomous development teams. Thus,
for relating bounded contexts, teams may need to communicate
with each other. Therefore, the communication effort between
the teams should be considered. The communication effort
indicates how much communication between the teams is
required. Clear communication paths are necessary, because
a team needs to know which other team is responsible for
relating bounded contexts. Therefore, dependencies and com-
munication channels between teams are defined. Depending
on the teams and the possible communication effort, a com-
munication pattern is chosen based on [4] [5] (see Table
I). The last three communication patterns listed in Table I
are special patterns designed to reduce the communication
between different teams, as well as the impact on interface
changes. Other benefits and drawbacks of particular patterns
exist but they are out of the scope for the current discussion.
The context map illustrates the determined communication
path between the bounded contexts. For example, when the
communication between teams is not possible, such as when
foreign services are adopted, DDD patterns need to be applied.
For foreign services, the ACL pattern should be applied. In the
last step, as depicted in Figure 2, the relationships (including
the pattern) and the bounded contexts are added to the context
map diagram.

Adding those bounded contexts and communication re-

lationships is an essential part of the context map. This
concludes the first cycle of the analysis and design phases.
The information about team dependencies helps in managing
the development team and especially in restructuring in the
sense of microservice architecture and DevOps.

5) Adjustments of the models: After the design phase,
the implementation phase follows. In this phase, the models
are implemented and tested. Afterward, specific parts of the
application are developed. Following the iterative process, new
features are implemented into the next cycle. These features
need to be analyzed and may change the domain model. In
addition, this may lead to the establishment of new bounded
contexts. Thus, the models, including the tactical diagrams,
the context choreography, and the context map, are refined
according to the features and the knowledge crunching process
in the previous steps.

IV. MODELING OF CONTEXT MAP AND CONTEXT
CHOREOGRAPHY

In Chapter III we defined the foundations of a context
map and also introduced the context choreography as a new
type of diagram. Both types of diagrams have to be modeled.
Considering the fact, that DDD does not provide any modeling
guideline, the appearance—or the syntax—of a context map
is broadly diversified. But also the semantics varies from
model to model. As a consequence, comprehensibility and
interoperability of development teams is reduced. Therefore,
this chapter discusses the feasibility of creating a UML profile
for the context map and context choreography. It will be inte-
grated in the modeling application Enterprise Architect (EA),
although any other software modeling tool like ArgoUML
could be used alike.

A. UML Diagram Type and Elements
The purposes of the context map and context choreog-

raphy are different, but for both it is necessary to express
relationships between bounded contexts. On the one hand,
the context map displays the way how teams interact with
each other. On the other hand, the context choreography
shows, which information is shared between bounded contexts.
Both models are essentially component diagrams and share
the concept of bounded contexts and relationships, but other
diagram elements differ.

1) Context Map Elements: The context map provides an
overview of all bounded contexts and their relationships. It is
important to use an expressive and at the same time limited
syntax. This should keep the complexity manageable and still
cover all important business and domain information. In order
to meet these requirements, the model should contain at least
three types of visual elements. The essential diagram elements
are components, stereotypes and associations which are shown
in 5. Unlike components and associations, stereotypes can not
exist on their own. They are an extension for adding specific
information to an element. Additionally the use of more
modeling elements, as packages for grouping components into
subdomains and notes for general annotations, are advised.
Components are used as containers for artifacts, which are in
case of the context map a domain model. To distinguish their
purpose they are tagged with stereotypes either as a “bounded
context”, “foreign bounded context”, an “anti corruption layer
(ACL)” or as a “shared kernel” [22]. The purpose of bounded
contexts are already explained in Section III-A1.

348

International Journal on Advances in Software, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



a) Foreign Bonded Context: In comparison to a
bounded context the foreign bounded context should be used
for any bounded context whose domain knowledge is not fully
accessible; just like a blackbox. Therefore, this the foreign
bounded context might share an domain object which does not
suit the needs of a bounded context. Neither responsibilities
of development teams nor the content can be affected for a
foreign bounded context. Without further treatment the domain
knowledge of a bounded context must be adapted to this
domain object which can affect its design in a bad way.
Therefore the ACL supports a bounded context by converting
domain objects from such a foreign bounded context into the
required form. It is important, that no domain knowledge is
packed into an ACL, which should be in the bounded context
itself.

b) Anti Corruption Layer: The anti corruption layer
(ACL) is used by the downstream as an isolating layer to
communicate with the upstream. Hereby, the ACL converts the
domain objects according to the domain models of those two
bounded contexts. This means few or no changes to the domain
model of the downstream have to be made. As mentioned
earlier, the ACL does not provide any domain knowledge itself.
It could be seen as an additional layer.

c) Shared Kernel: The shared kernel is the last essential
element for the context map. It is used to share a subset
of domain objects among multiple bounded contexts [5]. A
reference from a bounded context to a shared kernel means that
the domain knowledge of the shared kernel is included in the
bounded context. As soon as two bounded contexts refer to a
shared kernel, further developments of it has to be coordinated
between the regarding development teams. This also leads to
a shared responsibility.

d) Relationships: Associations are used to connect
bounded contexts regarding their organizational structure and
dependencies to other development teams. There are two
types of associations. Firstly directed ones to represent an
upstream/downstream relationship where the arrow points in
the direction of the downstream. Secondly there are undirected
ones to express that they are equal. To make the associations
more expressive and thus more valuable they are tagged with
additional stereotypes. Directed associations can be tagged as
“customer/supplier” and “confirmist”, while undirected ones
can be tagged as “partnership” [5].

e) Omitted Associations: Literature introduces more
patterns than these described above, but in our case, we did
not see any advantages for them in the context of designing
a microservice architecture. One pattern is called “separate
way”, which is used when two bounded contexts should stay
independent of each other despite one could integrate the
other to fulfill its functionality. It should be applied when
there is an expensive integration of the regarding bounded
contexts. But having microservices in mind, each microservice
is independent by definition [6].

Another pattern is the “published language”. Here, the
upstream shares a well-documented language which describes
how the communication is done and how the domain objects
are structured. Because we assume a microservice architecture,
every bounded context must have an API specification, like
OpenAPI. Hence it is not necessary to model it.

Finally an “open-host service” defines a protocol to give
access to multiple subsystems as a set of services. This can

be done globally by an API management tool which makes it
unnecessary to model it at every bounded context.

2) Modeling example for a Context Map: A simple context
map containing all previously defined elements can be seen in
Figure 3. It should give a good impression of what a more
complex context map would look like. The bounded con-

«subdomain»
Exam Management

«subdomain»
Co urse Management

«bounded context»
ModuleManagement

«bounded context»
CourseMapping

«anti corruption layer»
StudentDirectoryACL

«shared kernel»
StudyStructure

«bounded context»
Examination

«subdomain»
Student Management

«foreign bounded context»
StudentDirectory

«customer/supplier»

«conformist»

«import»
«partnership»

Figure 3. Example Context Map of the CampusManagement domain

texts, subdomains and relationships mainly serve exemplary
purposes, which is why their meaningfulness is of secondary
importance. Note that the anti-corruption layer must always be
part of a bounded context, which is depicted with the UML
nesting connector. Furthermore, the conformist relationship
between StudentDirectory and StudentDirectoryACL can be
understood as a direct relationship between StudentDirectory
and Examination where StudentDirectoryACL is just an ab-
straction layer. The remaining elements and connections should
be rather self-explanatory after the explanations above.

3) Context Choreography: Modeling the context chore-
ography differs from the context map and is way easier
to represent. Its purpose is to display communications be-
tween bounded contexts and further, the domain object, which
is transferred by this communication. Therefore, we need
bounded contexts, two types of associations and a shared entity
as a new element. The bounded context works the same as for
the context map.

a) Shared Entity: The shared entity or “shared thing”
as Newman refers to it [6] is a domain object that is used
for exchanging information between two bounded contexts.
Thus, it is provided by one bounded context and consumed by
another. It contains attributes and their types. Due to reusability
and interchangeability, attribute types should be limited to the
use of basic types.

349

International Journal on Advances in Software, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



b) Event: An event represents an event that occurs
within a process flow. Usually, an event is generated when a
domain object (especially the entities) has been manipulated.
For example, if a new profile of a student was created, an
event “StudentProfileCreated” could be thrown. The event
contains all the information required for further processing of
the process flow.

c) Association: The associations for the context chore-
ography are simple. One connects the bounded context, which
publishes the domain object, with the shared entity. It is
tagged with “shares”. The second one is to connect the
shared entity with the consuming bounded context. It is tagged
with “uses”. The associations “produces” and “comsumes” are
required for the events. The relationship between the event-
generated bounded context and the event is labeled “produces”.
The consuming bounded context has a “consumes” labeled
relationship.

B. UML Profiles for Context Map and Context Choreography

In case of both models, the syntax while modeling them
has to be limited. Possible are UML profiles or metamodels,
but each has their own advantages and disadvantages. Our ap-
proach to create a UML profile based on the UML component
diagram. Further, we integrated it into a modeling tool named
Enterprise Architect.

1) Metamodel vs. UML profile: Basically there are two
options to lever UML for custom use cases. A lightweight
extension describes the process of creating a UML profile with
corresponding stereotypes, whereas an adaptation of the UML
metamodel, by adding or changing existing elements, is called
a heavyweight extension [23]. Usually, a lightweight extension
is the better option because the majority of use cases can be
covered, while keeping the complexity low. Additionally, the
created UML profile is portable and can be used across most
enterprise modeling applications like Enterprise Architect via
the standardized XML Metadata Interchange (XMI) format.
XMI, like UML, is defined by the Object Management Group
(OMG). This open standard is supported by many software
modeling tools and its main purpose is exchanging models,
expressible in Meta-Object Facility, including their metadata.
Finally, when extending UML via profiles, the modeling ele-
ments do not have to be relearned, because the base elements
are the same and generally well understood.

The advantage of a heavyweight modification would be the
even greater flexibility in mapping the modeling problem. It
can be adapted to the most complex modeling requirements,
which could not be mapped with a UML profile in a clean way.
The downside is, that a custom modeling language, based on
UML, has to be created, that every project member has to learn
and understand, which usually is a time-consuming task to do.
In addition, your modeling software has to support the change
of the underlying metamodel, which is far less common than
UML profile support.

In conclusion, the creation of a UML is preferable to
an extension of the metamodel due to the low added value.
Context maps, context relation views and domain models are
rather intuitive and straightforward adaptations of existing
diagrams, which are easily modeled by extending standard
UML diagrams with stereotypes.

2) Enterprise Architect and Profiles: Enterprise Architect
(EA) is a software modeling tool that is based on OMG’s UML
[24]. The tool allows the integration of user-defined extensions
which includes the required UML profiles. In addition, EA al-
ready provides useful profiles for modeling languages, such as
Business Process Modeling Notation (BPMN). Custom UML
profiles can be created through EAs so-called Model Driven
Generation (MDG) technologies. The UML profiles provided
in this article are extended versions of EA’s standard UML
profiles. To create a UML profile with optimal user experience,
additional diagram and toolbox profiles are necessary, which
are specific to the EA. These custom diagrams extend standard
UML diagram metaclasses and define the appearance of the
diagram elements. A toolbox shows these defined elements to
the user. Figure 4 displays an overview of the toolbox for the
context map. The user sees only the modeling elements defined
by the custom UML profile, which simplifies the modeling
process and reduces modeling inconsistencies. We use EA to
model the context map and the context choreography.

Figure 4. Custom toolbox for the context map

3) UML Profile for the Context Map: The core elements
of our Context Map can be seen in Figures 5 and 6 and are
the same that were defined earlier. Note that the metaclasses
are only references to the elements in UML and are therefore
not created by us, but only used by the stereotypes as a basis.
The direction attribute of the association metaclasses specifies
the default direction of a newly created association, whereas
the compositionKind attribute specifies whether the association
is an aggregation or a composition. Additionally, the standard
UML package import connector was added to the toolbox for
denoting shared kernel usage and is therefore not shown in
Figure 6. It is a directional dependency relationship with the
stereotype « import », starting from the using bounded context
to the shared kernel.

4) UML Profile for the Context Choreography: Figure 7
shows the profile for the context choreography diagram. The
metaclasses and the direction attribute behave in the same
way as in the context map. The isActive attribute on the
class specifies whether the class can operate as an independent
thread of behavior. Besides the depicted elements in the profile,
the associated toolbox does not contain any further elements,
since these should be created in the context map and imported
afterward.

350

International Journal on Advances in Software, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



«stereotype»
bounded context

«stereotype»
sh ared kernel

«stereotype»
anti corruption layer

«stereotype»
foreign bounded context

«metaclass»
PackagingComponent

«metaclass»
Package

«stereotype»
subdomain

Figure 5. Core elements of the context map profile

«stereotype»
conformist

«stereotype»
partnership

«stereotype»
customer/supplier

«metaclass»
Association

+ compositionK ind: CompositionKind = none
+ direction: D irection = Unspecified

«metaclass»
Association

+ compositionK ind: CompositionKind = none
+ direction: D irection = Source -> Desti...

Figure 6. Excerpt of the available context map profile associations

V. CASE STUDY: CAMPUS MANAGEMENT

In our case study, we illustrate our approach of establishing
a new bounded context and integrating it into an existing
context map. The case study orientates itself on the process as
described in Section III. Over three semesters, we expanded the
campus management system of KIT with microservice-based
applications. The experiment carried out can be understood as
type I validation [25]. With a type 1 validation, the testing of
the design process can be seen in a realistic project context.
It is legitimate to conduct the experiment with students as test
persons [26]. The case study represents our recent project in
this field and adds a social media component to the campus
management system.

A. Project Scope
Our vision is to simply and efficiently support the exchange

of information and facilitate cooperation between students.

Figure 7. Context choreography profile

For this purpose, we wanted to introduce a profile service in
the campus management system. This profile service should
allow students to create custom profiles to display information
about their studies, like currently visited lectures and future
exams. The purpose of this service is to assist students with
their studies and their search for study partners. For example,
students can find study partners with the help of the profile
service when other students share the lectures they attend.

B. Requirement Elicitation
In our process, we began by eliciting the requirements with

BDD and formulating them as features. Fig. 8 presents one of
the main features that enables students to edit their profile.

1. Feature: Providing student profiles
2. As a student
3. I can provide relevant information about myself
4. So that others can see my interests and study information

5. Scenario: Publish profile
6. Given I was never logged in to the ProfileService
7. When I log in to the ProfileService for the first time
8. Then my study account is linked to the ProfileService
9. And I choose which profile information I want to publish

Figure 8. Example of a BDD feature for publishing an user profile

C. Initial Domain Model
Analyzing the features leads to the initial domain model

by deriving domain objects and their relationships. In our
previously defined feature (see Section V-B), we identified, the
terms “Profile,” “Examination,” and “Student” and added them

351

International Journal on Advances in Software, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



to the initial domain model. By repeating this procedure with
all features, the domain model is enriched with the business
logic. The result of the initial tactical diagram is presented in
Fig. 9.

«entity»
Profile

«entity»
CourseOfStudy

«entity»
Examination

«entity»
Student

«value object»
ExaminationDate

«entity»
Lecture

contains

has

contains has

contains

Figure 9. Initial domain model derived from BDD features and other sources

D. Bounded Contexts and Context Choreography
While we analyzed the domain, we also considered

the existing context map of the campus management do-
main. We noticed that the bounded contexts “StudentMan-
agement,” “ExaminationManagement,” “ModuleManagement,”
and “CourseMapping” already offered the required functional-
ity. Only “ProfileManagement” had to be established as a new
bounded context. Therefore, we considered the data exchange
between the bounded contexts and created the context chore-
ography on that basis. The result is illustrated in Fig. 10. The
existing bounded contexts provide the required data as shared
entities. Furthermore, the relevant events for the process flow
were considered. Unfortunately, not every third-party applica-
tion is designed for communication with events. Therefore we
still had to use the web interfaces. The new bounded context

Figure 10. New bounded context “ProfileManagement” in a context
choreography

“Profiles” adapts the shared entities and delivers the data
required from the profile service. It also consumes the event
“NewStudentCreated” of the “StudentManagement” Bounded
Context. As soon as this event is consumed, a new profile
based on the student can be created. Last, the microservices
are choreographed in the BFF of the intended application, to
achieve the required application logic.

E. Integrating in Context Map
After we had established the bounded contexts and the

context choreography, we needed to add the profile manage-
ment context to the context map. Therefore, we determined the

dependencies and communication channels between bounded
contexts based on the context choreography. We found our
development team did not influence any other bounded context.
Thus, we applied the conformist as communication pattern. As
a result, the context map depicted in Figure 11 was enhanced
with the “Profiles” context. Afterward, we started the first
implementation cycle.

«subdomain»
CourseManagement

«bounded context»
CourseMapping

«bounded context»
ModuleManagement

«subdomain»
CampusSocialMedia

«bounded context»
ProfileManagement

«subdomain»
StudentManagement

«bounded context»
StudentManagement

«subdomain»
ExamManagement

«bounded context»
Examination-
Management

«bounded context»
Grades

«conformist»

«customer/
supplier»

«conformist»

«customer/supplier»

«partnership»

«conformist»

«conformist»

«customer/supplier»

Figure 11. “ProfileManagement” context integrated into context map

F. Context Map as Template for a Deployment Map
The resulting context map provides an overview of the

microservices that need to be deployed. Assuming that each
bounded context represents one microservice, we can enhance
the context map with technical information that is needed for
the deployment in a secure manner. For instance, we can define
which ports listen for incoming or are allowed for outgoing
requests. By following such an approach, each microservice is
initially considered in isolation. We enforce this by defining
default policies on the execution environment that need to
be taken into account during deployment. The enhancement
with technical information is transferred into a new diagram
called a deployment map. For the modeling, we use a UML
deployment diagram. In addition to a general overview of the
deployment, it can also be used for an upfront security audit.
We are planning to present the derivation rules in an upcoming
publication.

For testing purposes, we have used a hosted Kubernetes
[27] cluster on a cloud provider. Kubernetes is an open
source system for provisioning and management of container-
based applications and aroused from the collected experience
behind Omega and Borg. First of all, we have defined policies
to deny all ingress and egress traffic to all running Pods
by default. A Pod groups one or more containers and can
be seen as the central brick of Kubernetes when deploying
applications. Each bounded context will be represented by a
microservice running in a container (Docker or rkt). Depending
on their relation to each other (see TABLE I), we put them in
corresponding Pods. Next, we have used the ports for incoming
and outgoing traffic to derive the network policies. Finally,
we have defined the services that wrap the Pods and offer
a central access point for interaction. The application shows
us that the underlying context map can be used as a basic
scaffolding for deriving the deployment map but need to be

352

International Journal on Advances in Software, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



enhanced with technical information as well as information
from the development teams that develop the microservices.
For instance, a persistent storage is missing in a context map
due to its domain orientation but is needed for the deployment
map.

G. Organizing the artifacts in the Enterprise Architect
An essential part in software development is to retrieve

design artifacts. To achieve this, a centralized repository is
helpful. The EA innately provides such a centralized reposi-
tory, so we were able to make use of it and easily retrieve our
design artifacts. We placed each design artifact into a folder
structure accordingly to our experiences from other projects
[28]. The first artifact in the folder, as shown by figure 12 is

Figure 12. Repository structure of the campus management domain

the context map which has the same name as the repository.
Folders of the different subdomains follow this artifact. Each
subdomain folder can be expanded and contains the bounded
contexts that belong to this subdomain. A bounded context
itself contains the context choreography, the relation view and
the domain objects which belong to the relation view.

VI. RELATED WORK

During our research, we searched for works comparable
to the context map and its purpose. We encountered several
inspiring works regarding different aspects of the context map.
Especially, the focus on the microservice architecture is an
important part of this paper.

A. Microservice Architecture
A microservice should concentrate on the fulfilment of one

task and should be small, so a team of five to seven developers
can be responsible for the microservice’s implementation [6].
A microservice itself is not an application, but rather a software
building block [10]. In microservice architectures, applications
are realized through choreography of these building blocks. A
central aspect of microservice architecture is the autonomy of
the single microservices [29]. Each microservice is developed
and released independently to achieve continuous integration.

B. Approaches for Designing a Microservice Architecture
The objective of microservice architectures is to subdivide

large components into smaller ones to reduce complexity
and create more clarity in the single elements of the system
[29]. In this article, we described our approach of designing

microservice architectures with a context map from DDD.
However, there are further strategies to identify microservices,
which we considered in this article.

One possible approach is event storming, as introduced
by Alberto Brandolini in the context of DDD [30]. Event
storming is a workshop-based group technique to quickly
determine the domain of a software program. The group starts
with the workshop by “storming out” all domain events. A
domain event covers every topic of interest to a domain
expert. Afterward, the group adds the commands that cause
these events. Then, the group detects aggregates, which ac-
cept commands and accomplish events, and begins to cluster
them together into bounded contexts. Finally, the relationships
between bounded contexts are considered to create a context
map. Like our approach, this strategy is based on DDD and
results in a context map displaying the bounded contexts.
Instead of a workshop for exploring the domain and defining
domain events, we develop our bounded contexts through an
iterative analysis and design phase. Furthermore, we enhanced
the context map with maintenance aspect for microservice
discovery and dependencies between development teams. The
purpose of the resulting context map from [30] is comparable
to the context choreography. Both focusing on the interactions
between bounded context and identify the transferred domain
knowledge.

Another method for approaching a microservice architec-
ture is described in [31]. First, required system operations
and state variables are identified based on use case speci-
fications of software requirements. System operations define
public operations, which comprise the system’s API, and state
variables contain information that system operations read or
write. The relationships between these systems operations and
state variables are detected and then visualized as a graph.
The visualization enables developers to build clusters of dense
relationships, which are weakly connected to other clusters.
Each cluster is considered a candidate for a microservice. This
bears a resemblance to our approach because we also begin by
focusing on the software requirements and take visualization
for better understanding the domain.

A further widely used illustration of partitioning monolithic
applications is a scaling cube, which uses a three-dimensional
approach as described in [32]. Here, Y-axis scaling is important
because it splits a monolithic application into a set of services.
Each service implements a set of related functionalities. There
are different ways to decompose the application which differ
from our domain-driven approach. One approach is to use
verb-based decomposition and define services that implement
a single use case. The other possibility is to partition the appli-
cation by nouns and establish services liable for all operations
related to a specific entity. An application might use a com-
bination of verb-based and noun-based decomposition. X-axis
and Z-axis regards the operation of the microservices. The X-
axis describes the horizontal scaling which means cloning and
load balancing the same microservice into multiple instances.
Meanwhile, the Z-axis denotes the degree of data separation.
Both axis are important for microservice architectures and
currently omitted in our context map approach.

C. Software Development Approaches
The development process we apply is based on BDD and

DDD. As a method of agile software development, BDD

353

International Journal on Advances in Software, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



should specify a software system by referencing its behavior.
The basic artifact of BDD is the feature, which describes a
functionality of the application. The use of natural language
and predefined keywords allows the developer to define fea-
tures directly with the customer [33]. During our analysis
phase, we used BDD for requirement elicitation.
In our design phase, we applied DDD based on the features
we defined with BDD. DDD’s main focus is the domain
and the domain’s functionality, rather than technical aspects
[16]. The central design artifact is the domain model, which
represents the target domain. In his book Domain Driven
Design - Tackling Complexity in the Heart of Software, Eric
Evans describes patterns, principles, and activities that support
the process of software development [4]. Although DDD is
not tied to a specific software development process, it is
orientated toward agile software development. In particular,
DDD requires iterative software development and a close
collaboration between developers and domain experts.

D. Application of the Context Map

The goal of a context map, which Evans describes as a
main activity of DDD, is to structure the target domain [4].
For this purpose, the domain is classified into subdomains,
and in those subdomains, the boarders and interfaces of
possible bounded contexts are defined. A bounded context is a
candidate for a microservice, and one team is responsible for
its development and operations [6]. Moreover, the relationships
between bounded contexts are defined in a context map. Both
the technical relationships and the organizational dependencies
between different teams are considered.
A further aspect of the context map involves the maintenance
of the miscroservice architecture. Without managing the ap-
plication (or service) landscape, existing microservices are not
used, even if they provide needed domain knowledge. The
usage of a context map helps concepts like humane registry
or API management products which tries to achieve mainte-
nance goals. Martin Fowler introduced humane registry as a
place, where both developers and users can record information
about a particular service in a wiki [8]. In addition, some
information can be collected automatically, e.g., by evaluating
data from source code control and issue tracking systems.
API management products like “apigee” [9] reach maintenance
by pre-defining API guidelines such as key validation, quota
management, transformation, authorization, and access control.

E. Unified Modeling Language Profiles in the Context of
Domain-Driven Design

How to model the artifacts of the DDD is a known problem.
Depending on the experiences and the understanding of the
modeler, the appearances of the domain model differs. This
poses a problem for the inter-team communication, due to
the fact, that each team possibly interprets modeled concepts
different.

Based on the inter-communication problem, [34] provides
a survey on DDD modeling elements together with an initial
UML profile for the domain model. Their survey is based on
the examples shown in Evans DDD book [4]. It shows that
the most examples are based on informal UML diagrams,
which prevents automatically validation, transformation and
code generation. The UML profile is applied in the context

of microservice architectures with the goal of deriving code
for microservices.

We see [34] as an important work for the application of
DDD. Their results inspired us to also create an UML profile
for the context map and context choreography.

VII. LIMITATIONS AND CONCLUSION

The concepts we provide in this article have some limita-
tions. These are addressed in the next section. Afterward, we
provide a short conclusion discussing our results.

A. Limitations
Domain-driven design has no special application or ar-

chitectural style in mind. The concepts should be applied
to DDD’s layered architecture but could be applied to dif-
ferent architectural styles. For a better fit while developing
microservice-based applications, we always had the microser-
vice architecture in mind. Therefore, our provided concepts are
only valid when developing a microservice-based application.

The concepts provided by this article are built from our
experiences which we gathered in various projects. Most of
our projects were in the academic branch, but we also worked
with industrial partners. For the context map, we developed
and proved our concepts over a longer time. Especially the
provided UML profiles reflects our needs from the mentioned
projects. It is likely, that the shown profiles are incomplete
and need to be adjusted for further projects. The case study
describes our last project. Project members and partners gave
us useful feedback about the concepts when they applied them.
In addition, the feedback also included points we had not
yet addressed, like a modeling language for context mapping.
Nevertheless, evidence of our concepts in large microservice
architectures, such as 50 or more microservices, still lacks. Our
goal is to obtain prove for large microservice architectures in
such projects.

Another limitation of our concept is that we only applied
them in “clean” microservice architectures. However, in the
real world, there are also legacy applications in the application
landscapes of organizations. Typically, a legacy application is
not a microservice-based one; often, it is a monolithic archi-
tecture. In future work, we must determine how to integrate
legacy applications into the context choreography and context
map.

B. Conclusion
During our research, we found many different studies that

consider model-driven approaches for developing microser-
vices. Using these approaches for microservices is common.
In domain-driven design, especially, the approaches that focus
on the development itself but omit the design and maintenance
phases. Therefore, we wanted to provide details on the design
and maintenance of a microservice architecture using DDD’s
context map.

The context map has great potential to aid in develop-
ing and maintaining applications and is more useful when
considering a microservice architecture. However, the context
map shares a problem with most DDD concepts: its lacking
placement in software engineering, foundations and concrete
guidelines. Therefore, we first provided placement for the
context map. Next, we clarified its foundations with a focus

354

International Journal on Advances in Software, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



on the bounded context, the main concept of the context
map. It needs to be emphasized that the context map is not
only showing microservices and therefore the microservice
architecture. Communication paths and dependencies between
development teams are also considered in the context map.
After the foundations were clear, we could develop a sys-
tematic approach for creating the context map. This approach
began in the analysis phase with an initial domain model, sep-
arating the domain knowledge into bounded contexts, stating
relationships between them, and putting the bounded contexts
into a context map. The separation of bounded contexts and
their relationships are stated in our new diagram, the “context
choreography.” This diagram’s purpose is to illustrate nec-
essary bounded contexts for microservice-based applications.
Furthermore, we created UML profiles for the context map and
context choreography to unify their appearances. With those
profiles, we especially tackle the various interpretations of the
context map and support the inter-team communication.

This article’s contributions are the first step in making use
of the context map, and the newly defined context choreogra-
phy more efficient.

ACKNOWLEDGMENT

We want to give special thanks to Iris Landerer, Chris
Irrgang and Tobias Hülsken for always providing their opinions
and useful feedback on our concepts. Furthermore, we would
like to thank the following development team, which provided
the results in our case study: Alessa Radkohl, Nico Peter, and
Stefan Throner.

REFERENCES

[1] B. Hippchen, M. Schneider, I. Landerer, P. Giessler, and S. Abeck,
“Methodology for splitting business capabilities into a microservice
architecture: Design and maintenance using a domain-driven approach,”
The Fifth International Conference on Advances and Trends in Software
Engineering, 2019.

[2] M. Gebhart, P. Giessler, and S. Abeck, “Challenges of the Digital
Transformation in Software Engineering,” ICSEA 2016, p. 149, 2016.

[3] C. Richardson, “Pattern: Messaging,”
https://microservices.io/patterns/communication-style/messaging.html
[retrieved: 11, 2019].

[4] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Professional, 2004.

[5] V. Vernon, Ed., Implementing Domain-Driven Design. Addison-
Wesley, 2013.

[6] S. Newman, Building Microservices: Designing Fine-grained Systems.
" O’Reilly Media, Inc.", 2015.

[7] M. E. Conway, “How do Committees Invent,” Datamation, vol. 14,
no. 4, pp. 28–31, 1968.

[8] M. Fowler, “HumaneRegistry,” URL:
https://martinfowler.com/bliki/HumaneRegistry.html [retrieved: 08,
2019].

[9] Google, “apigee, API management,” https://apigee.com/api-
management/ [retrieved: 08, 2019].

[10] B. Hippchen, P. Giessler, R. Steinegger, M. Schneider, and S. Abeck,
“Designing Microservice-Based Applications by Using a Domain-
Driven Design Approach,” in International Journal on Advances in
Software, Vol. 10, No. 3&4, pp. 432–445, 2017.

[11] M. Bruce and P. A. Pereira, Microservices in Action. Manning
Publications, 2019.

[12] Pivotal, “Rabbitmq,” https://www.rabbitmq.com [retrieved: 11, 2019].
[13] Apache, “Kafka,” https://kafka.apache.org [retrieved: 11, 2019].
[14] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering

Using UML, Patterns and Java-(Required). Prentice Hall, 2004.

[15] O. Vogel, I. Arnold, A. Chughtai, and T. Kehrer, Software Architecture:
A Comprehensive Framework and Guide for Practitioners. Springer
Science & Business Media, 2011.

[16] S. Millett, Patterns, Principles and Practices of Domain-Driven Design.
John Wiley & Sons, 2015.

[17] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Per-
spective. Addison-Wesley Professional, 2015.

[18] L. Chen, “Continuous delivery: Overcoming adoption challenges,”
Journal of Systems and Software, vol. 128, pp. 72–86, 2017.

[19] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architec-
ture enables devops: Migration to a cloud-native architecture,” IEEE
Software, vol. 33, no. 3, pp. 42–52, 2016.

[20] L. Chen, “Microservices: Architecting for continuous delivery and de-
vops,” in 2018 IEEE International Conference on Software Architecture
(ICSA). IEEE, 2018, pp. 39–397.

[21] J. F. Smart, BDD in Action: Behavior-Driven Development for the
Whole Software Lifecycle. Manning, 2015.

[22] E. Evans, Domain-Driven Design Reference: Definitions and Pattern
Summaries. Dog Ear Publishing, 2014.

[23] J. Osis and U. Donins, Topological UML Modeling: An Improved Ap-
proach for Domain Modeling and Software Development, ser. Computer
Science Reviews and Trends. Elsevier Science, 2017.

[24] O. OMG, “Unified Modeling Language (OMG UML),” Superstructure,
2007.

[25] Z. Durdik, Architectural Design Decision Documentation Through
Reuse of Design Patterns. KIT Scientific Publishing, 2016, vol. 14.

[26] W. F. Tichy, “Hints for reviewing empirical work in software engineer-
ing,” Empirical Software Engineering, vol. 5, no. 4, pp. 309–312, 2000.

[27] K. Hightower, B. Burns, and J. Beda, Kubernetes: Up and Running:
Dive Into the Future of Infrastructure. O’Reilly Media, 2017.

[28] M. Schneider, B. Hippchen, P. Giessler, C. Irrgang, and S. Abeck,
“Microservice development based on tool-supported domain modeling,”
The Fifth International Conference on Advances and Trends in Software
Engineering, 2019.

[29] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microservice
Architecture: Aligning Principles, Practices, and Culture. " O’Reilly
Media, Inc.", 2016.

[30] A. Brandolini, “Introducing Event Storming,”
blog, Ziobrando’s Lair, vol. 18, 2013, URL:
http://ziobrando.blogspot.com/2013/11/introducing-event-storming.html
[retrieved: 0, 2019].

[31] S. Tyszberowicz, R. Heinrich, B. Liu, and Z. Liu, “Identifying Microser-
vices Using Functional Decomposition,” pp. 50–65, 2018.

[32] N. Dmitry and S.-S. Manfred, “On Micro-Services Architecture,” In-
ternational Journal of Open Information Technologies, vol. 2, no. 9,
2014.

[33] M. Wynne, A. Hellesoy, and S. Tooke, The Cucumber Book: Behaviour-
Driven Development for Testers and Developers. Pragmatic Bookshelf,
2017.

[34] F. Rademacher, S. Sachweh, and A. Zündorf, “Towards a uml profile for
domain-driven design of microservice architectures,” in International
Conference on Software Engineering and Formal Methods. Springer,
2017, pp. 230–245.

355

International Journal on Advances in Software, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


