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Abstract—Service computing in the cloud allows applications
to be deployed remotely. These are managed by third-party
service providers that make virtualised resources available for
these services. Self-adaptive features for load-balancing and auto-
scaling are available here, but generally there is no direct access
to the infrastructure or platform-level execution environment.
Some quality parameters of a provided service can be directly
observed while others remain hidden from the service consumer.
Our solution is an autonomous self-adaptive controller for
anomaly remediation in this semi-hidden setting. The objective
of the controller is to, firstly, determine possible root causes
of consumer-observed anomalies and, secondly, take appropriate
action. This needs to happen in an underlying provider-controlled
infrastructure. We use Hidden Markov Models to map observed
performance anomalies into hidden resources, and to identify the
root causes of the observed anomalies. We apply the model to a
clustered computing resource environment that is based on three
layers of aggregated resources. We discuss use cases to illustrate
the utility of the proposed solution.

Index Terms—Cloud Computing; Container Technology, Dis-
tributed Clusters; Markov Model; Anomaly Detection; Anomaly
Analysis; Workload; Performance.

I. INTRODUCTION

Due to the dynamic nature of loads in a distributed cloud or
edge computing setting, consumers may experience anomalies
(e.g., variation in a resource performance) due to distribu-
tion, heterogeneity, or scale of computing that may lead to
performance degradation and potential application failures.
Furthermore, loads might vary over time:

• changes of the load on individual resources,
• changing workload demand and prioritisation,
• reallocation or removal of resources in dynamic environ-

ments.

These may affect the workload of current system components
(container, node, cluster), and may require rebalancing their
workloads. These cloud and edge computing settings allow ser-
vices to be provided by allowing applications to be deployed
and managed by third-party providers. These make shared
virtualised resources accompanied by dynamic management
facilities [1],[2],[3],[4] available.

Recent works such as [5],[6],[7] have looked at resource
usage, rejuvenation, or analysing the correlation between re-
source consumption and abnormal behaviour of applications.

Less attention has been given to the possibly hidden reason
behind the occurrence of an observable performance degrada-
tion (root cause) [8], and how to deal with the degradation in
a hierarchically organised cluster setting.

In order to address these challenges in a shared virtualised
environment, third party providers provide some factors that
can be directly observed (e.g., the response time of service
activations) while others remain hidden from the consumer
(e.g., the reason behind the workload, the possibility to predict
the future load behaviour, the dependency between the affected
nodes and their loads in a cluster).

The core solution presented in this paper is a controller
[9],[10] that automatically detects the anomalous behaviour
within a cluster of containers running on cluster nodes, where
a sequence of observations is emitted by the system resource.
The controller remedies the detected anomalies that occur
at the container, node or cluster level. To achieve that this
paper: (i) analyse the possible causes of observable anomalies
in an underlying provider-controlled infrastructure; (ii) define
an anomaly detection, and analysis controller for a self-
adaptive cluster environment, that automatically manages the
resource workload fluctuations. Our objective is to introduce
this controller in terms of its architecture and processing
activities. We expand our earlier work in [1],[18] here by
discussing context and the application of the architecture in
use cases in more detail.

A specific feature of our solution is the differentiation
between two types of observations:
• System states (anomaly/fault) that refer to anomalous

or faulty behaviour, which is hidden from the con-
sumer. This indicates that the behaviour of a system
resource is significantly different from normal behaviour.
An anomaly in our case may point to an undesirable
behaviour of a resource such as overload, or to a desirable
behaviour like underload of a system resource, which can
be used as a solution to reduce the load at overloaded
resources.

• Emission or Observation (observed failure from these
states), which indicates the occurrence of failure resulting
from a hidden state.

We focus on technical concerns in relation to workload and
response time fluctuations.
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To address this problem, we use so-called Hierarchical
Hidden Markov Models (HHMMs) [11] as a stochastic model
to map the observed failure behaviour of a system resource
to its hidden anomaly causes (e.g., overload) through tracking
the detected anomaly to locate its root cause. We implement
the proposed controller for a clustered computing resource
environment targeting specifically container technologies.

The paper is structured as follows. Section II reviews related
work extensively. Section III discusses use cases to clarify the
problem context and how an anomaly solution can address
the problems. Section IV explains the motivation behind our
work in terms of the proposed architecture. Section V gives a
brief introduction of HHMM as the central formal construct.
Section VI explains the mapping of failure and fault. Section
VII explains the controller architecture with its analysis and
recovery components. Section VIII evaluates the proposed
architecture. As an outlook into the transferability of the
architecture, we discuss trust anomalies in Section IX. Section
X concludes the paper.

II. RELATED WORK

There are a number of studies that have addressed workload
analysis in dynamic environments [5],[6],[7]. They proposed
various methods for analysing and modelling workload.

Dullmann [17] provides an online performance anomaly
detection approach that detects anomalies in performance
data based on discrete time series analysis. Peiris et al. [21]
analyse root causes of performance anomalies by combining
the correlation and comparative analysis techniques in dis-
tributed environments. Sorkunlu et al. [22] identify system
performance anomalies through analysing the correlations in
the resource usage data. Wang et al. [7] propose to model
the correlation between workload and the resource utilization
of applications to characterize the system status. Maurya and
Ahmad [24] propose an algorithm that dynamically estimates
the load of each node and migrates the task if necessary.
The algorithm migrates the jobs from overloaded nodes to
underloaded ones through working on pair of nodes, it uses a
server node as a hub to transfer the load information in the
network, which may result in overhead at the node.

Moreover, many works have used the HMM and its deriva-
tions to detect anomaly. In [25], the author proposes various
techniques implemented for the detection of anomalies and
intrusions in the network using the HMM. In [27] the author
detects faults in real-time embedded systems using the HMM
through describing the healthy and faulty states of a system’s
hardware components. In [29], HMM is used to find, which
anomaly is part of the same anomaly injection scenarios.

A fault tolerance management solution for physical and
virtual machines level is presented in [34]. It uses Redundant
Array of Independent Disks technology in order to optimize
storage space and to recover data in case of failure. More
concretely, the author divides a set of VM and PM into sub-
sets of the same size. Then, two services are used to collect

information about a resource status and to manage resources
through adding and removing resources in order to mitigate
resource failure. Here, only two aspects of recovery handling,
namely handling storage disk crash and system crashes are
considered. In [33], the detection of anomalous behaviours
(such as CPU overload or Denial of Service Attacks) are
the topic. The authors provide an adaptation policy based
on a multi-dimensional utility-based model. The score and
likelihood for the anomaly detected to select adaptation policy
is provided in order to scale compute resources. Here, a node
leader for each microservice cluster is selected and each node
maintains the cluster state and preserves the cluster records.
This node leader also decides on the adaptation policy action.
In this work, however, only two types of anomalies are han-
dled. It also limits actions to mitigate the anomalous behaviour
to horizontal and vertical auto-scaling actions. Furthermore,
prediction is not included.

In [35], performance and prediction are the key concerns.
The performance of several machine learning models is in-
vestigated in order to predict attacks on the IoT systems
accurately. A random forest technique is shown to achieve
good anomaly prediction in comparison to other machine
learning solutions. Nonetheless, the focus is on predicting
network anomaly only. In [36], a solution to estimate the
capacity of a microservice is presented. Here measuring the
maximal number of successfully processed user requests per
second for a given service such that no SLO is violated
is the key idea. The authors carry out a number of load
tests and then fit an appropriate regression model to the
acquired performance data. This work investigates the impact
of workload on measures CPU and memory usage. Changing
the number of requests affects the number of virtual CPU cores
does not affect the memory utilization significantly. What is
somewhat neglected is the dependency between nodes and
services. Predicting future workload is not covered.

Localizing faulty resources in cloud environments through
modelling correlations among anomalous resources is ad-
dressed in [65]. Graph theory is employed in order to lo-
cate the correlation between pairs of resources. analysing
the amount of occupied memory in a physical server, the
CPU consumption of a virtual machine and the number of
connections accepted by an application is the focus. This
work does not cover anomalies specifically in microservice or
container environments. In [39] the authors focus on detecting
anomalous behaviour of services deployed on VM in cloud
environment. Like our architecture, different anomaly injection
scenarios are created and workload is generated to test the
impact of anomaly on the cloud services. The authors emulated
different anomalies at the CPU, memory, disk, and network.
However, their work does not track the cause of anomalous
behaviour in containerized cluster environment, and it neglects
the dependency between nodes.

More dedicated to microservices and containers are:

• In [69], the authors investigate the mutual impact of
microservices on the same host. This study looks at the
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consequences of these side effects have on failure pre-
diction. For this, the authors measure the CPU, memory
and network usage metrics of the containers and nodes.
The work evaluates the current failure prediction methods
in a microservice architecture, but does not locate or
detect anomalous behaviour. The work focus is CPU-
bound workload.

• Kratzke [43] looks at the impact of network perfor-
mance on containers deployed on VMs. He carries out
a number of experiments in order to analyse the network
performance of containers by using horizontal scaling and
considering the network data transfer rate. Nonetheless,
the focus is on network aspects and their impact on
container performance.

Another couple of studies focus on performance:
• Wert [47] presents a specification language, called the

Performance Problem Diagnostics Description Model, in
order to specify information needed for an automatic
performance problem diagnostics. Here, workload is anal-
ysed to detect performance faults and categorize perfor-
mance faults into three layers: (i) symptoms, which are
externally visible indicators of a performance problem,
(ii) manifestation, which are internal performance indica-
tors, and (iii) finally root-causes, which are the physical
factors whose removal eliminates the manifestations and
symptoms of a performance problem. The author’s ap-
proach does not consider dependencies between faults nor
avoids human interaction. For example, there should be
heuristics to be able to detect performance problems. The
approach is designed to apply for a specific application
domain. A recovery mechanism for the detected faults
is not covered. Also, dependencies between anomalies
are not addressed. The solution is based on predefined
heuristics (rules) in order to detect performance prob-
lems. Consequently, applying the approach on a different
domain or changing the fault model requires heuristics
update.

• Ibidunmoye et al. [72] look at the detection the anoma-
lous behaviour in performance using forecasting model to
estimate the bandwidth, detect performance changes and
decompose time series into components. In this work,
hard thresholds are used in all datasets, which might
not reflect the actual workloads in system accurately.
They only look at the detection of anomalies without
a further analysis. Labelled-time is used there, which is
often not suitable in order to detect all anomalies as some
anomalies could not be discovered during the detection
process and time complexity in terms of data size may
occur.

Prediction is another important concern:
• Predicting the impact of processor cache interference

within consolidated workloads is the focus of [62]. In
order to predict the performance degradation of these
consolidated applications, the proposed prediction solu-
tion is linear in terms of the number of cores sharing

the last-level cache. The authors limit their discussion to
cache contention issues, ignoring other resource types and
resulting faults.

• Guan and co-authors have implemented a probabilistic
prediction model using a supervised learning method in
[48]. This model serves to detect anomalous behaviour
in cloud-based environments by analysing the correlation
between different selected metrics (including CPU, mem-
ory, disk, and network concerns) in order to determine
essential metrics that characterize the correlation between
performance and an anomaly event. Here, directed acyclic
graphs DAGs are used in order to analyse the correlation
of the different performance metrics with failure events
in both virtual and physical machines. The authors de-
termine in the paper the conditional probability of each
metric for the anomaly occurrences. Those metrics where
conditional probabilities are greater than a predefined
threshold are then selected. Nevertheless, their results
show that their model suffers from poor prediction ef-
ficiency when it is used to predict cloud anomalies.

• In [67], the authors introduce a general-purpose predic-
tion model that aims at preventing anomalies in cloud
environment. Their supervised learning-based model
utilised as in our case Markov models. There they com-
bine two dependent Markov chains with a tree augmented
the Bayesian network. Statistical learning algorithms are
applied based on system-level metrics (CPU, memory,
network I/O statistics) aiming to predict anomalous be-
haviour. A limitation is that the authors do not discuss
prediction efficiency.

Nathuji et al. [78] look at a control theoretic consolidation
solution that aims at mitigating effects of anomalies in the
context of cache, memory and hardware contention of co-
existing workloads. Their solution manages the interference
between consolidated virtual machines by dynamically adapt-
ing resource allocations to applications based on workload
SLAs. The focus in that paper is on CPU-bound workload
and compute-intensive applications. Monitoring is at the centre
of [77]. They discuss a technique for localizing anomalies at
runtime using the Kieker monitoring approach. For anomaly
localization, an anomaly score is calculated for each operation
using a specified threshold. A set of rules is given to detect
performance anomaly, which are continuously evaluated based
on the anomaly score by utilising forecasting techniques to
predict future values in time series. Experimentally observed
measurement values such as response times are analysed with
the forecasted values to detect anomalies. Different types of
performance anomalies and anomaly dependencies are how-
ever not considered.

The objective of this paper here is to detect and locate
the anomalous behaviour in containerized cluster environment
[28] through considering the influence of dynamic workloads
on their anomaly detection solutions. The proposed controller
consists of:

• (1) Monitoring, that collects the performance data of
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(services, containers, nodes ’VM’) such as CPU, memory,
and network metrics;

• (2) Detection, that detects anomalous behaviour, which is
observed in response time of a component;

• (3) Identification, which tracks the cause of the detected
anomaly.

• (4) Recovery, that heals the identified anomalous compo-
nents.

• (5) Anomaly injection, which simulates different anoma-
lies, and gathers dataset of performance data representing
normal and abnormal conditions.

III. A DISCUSSION OF USE CASES

In order to better motivate our solution, we look at two use
cases now. One looks at a widely used cloud-based scenario.
Here, we assume a cluster of containers that are managed by
an orchestrator such as Kubernetes or Docker Swarm. The
other use case considers an edge cloud setting, where again
a cluster architecture, but this time deployed on constrained
hardware devices to host the container cluster is considered.

A. Use Case 1: Cloud-centric Container Orchestration

Container technology is increasingly popular recently. It
is now widely used as the mechanism for software deploy-
ment. Containers as a more lightweight form of virtualisation
compared to virtual machines (VMs) consume less resources.
They compare favourably to VMs in terms of startup time
to memory/storage needs. This applies also to cloud en-
vironments. Many cloud infrastructure (IaaS) providers and
platform service (PaaS) providers provide different container
deployment solutions. In many of these cases, an orchestration
tool like Kubernetes1, see Figure 1, or Docker Swarm, is used
to support the automated deployment, scaling and management
of containerized applications are used by the providers, see
Figures 2 and 3. These are typically homogeneous cloud
container cluster in terms of the underlying infrastructure.

This setting, however, creates problems regarding monitor-
ing and problem detection. A concrete problem that becomes
obvious here is that a service consumer generally have access
to monitoring data at an (application or platform) service level,
but not necessarily at the underlying physical infrastructure
level [44], which is hidden by the service provider. Nonethe-
less, service consumer are often given access to controllers
that can for instance auto-scale the application deployed.

In this case, our solution can be applied. The user could be
provided with a anomaly management architecture (essentially
a trained Hidden Markov Model HMM, as we will see later).
This model then reflects possible underlying (and unobserv-
able) faults for the failures that have been observed by the
service consumer.

1https://kubernetes.io/

FIGURE 1. A CONTAINER CLUSTER ARCHITECTURE BASED ON
KUBERNETES.

FIGURE 2. A DISTRIBUTED CONTAINER SYSTEM SUITABLE FOR CLOUD
AND EDGE COMPUTING.

B. Use Case 2: Edge Cloud Orchestration – Connected Cars

The lightweightness of containers as introduced above
makes them very suitable to be utilised outside a classical
centralised cloud setting. Here, edge cloud infrastructures that
provide computational capabilities for IoT or other remote
application can benefit from the containers’ lightweightness.
This is in particular useful if the edge infrastructure is lim-
ited in terms of its capabilities. For this type of situation,
we assume now a cluster on single-board devices as the

FIGURE 3. AUTO-SCALING WITH KUBERNETES – THE HORIZONTAL POD
AUTOSCALER (HPA).
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FIGURE 4. CONTAINER ORCHESTRATION WITH DOCKER SWARM.

physical infrastructure to host the container cluster platform.
Specifically, we use single-board Raspberry Pi2 devices. In
our experiments, we use Docker Swarm3 as the container
orchestration tool, see Figure 4.

We first introduce the general edge cluster architecture and
then illustrate this through a connected car use case.

Our proposed solution is based on a categorisation of hidden
fault and observable failure cases, in which observable failures
(to meet QoS requirements of the consumer) are mapped
to their root causes, i.e., the underlying hidden faults that
have caused them. Examples are an overloaded container that
simply slows down or a neighbouring container on the same
node on which a concrete container depends (e.g., is waiting
for an answer for a request) [18],[19]. We use Markov models
in our formalisation that reflect the possibility of several causes
and the likelihood of each of these. Typical (hidden) fault types
are CPU hog, network latency or workload contention, while
only response time failures are observable. For each of these
mapping cases, we have associated suitable remedial actions,
such as workload distribution, container migration or resource
rescaling.

A technical term for the connected cars scenario is CCAM.
CCAM stands for connected Cooperative, Connected and
Automated Mobility. We specifically look at connected cars
in this context to make the problem more concrete. CCAM
brings in this context the world of 5G telecommunications,
automotive solutions and cloud and edge computing together.

Concrete use cases are car manoeuvre support, for instance
for lane changing, or video streaming. For lane changing,
several cars might need to be coordinated in their actions using
mobile edge clouds. Here, latency is a critical issue and needs
to be constantly monitored.

There are a number of identifiable problems:

• node overload: both on-board units as well as road-side
units in a connected car situation are very limited in terms
of their computational and storage capacities.

2https://www.raspberrypi.org/
3https://docs.docker.com/engine/swarm/

FIGURE 5. A DOCKER ARCHITECTURE FOR DATA STREAM PROCESSING
HOSTED ON RASPBERRY PI (RPI) DEVICES.

• connection dependency: 5G is normally considered as the
minimum required standard in order to meet the required
latency needs. Even with 5G enabled, a high density of
cars combined with the need to support while the cars are
moving creates capacity challenges also for the network.

Solutions that are applicable as remedial actions are:

• allocate more capacity, e.g., for video buffering
• migrate resources to avoid network problems (migrate

container and/or data/state)
• repurpose nodes (redeploy other containers)

Our work in [20],[46] demonstrates how a container cluster
solution implemented on Raspberry Pis can support this type
of scenario. There, a Docker Swarm based management sup-
ports containers for data stream processing (Apache Spark),
supported by Prometheus as a monitoring tool, Grafana for
analyse/visualised data and databases like InfluxDB to store
data, see Figures 5 and 6.

A concrete technology that involves mobile edge clouds
and additional on-board and road-side assistance is CCAM
– Cooperative, Connected and Automated Mobility.

Both node and connection problem can trigger an anomaly
management system. Once an anomaly is identified, actions
such as moving containers to avoid the node/connection prob-
lem or repurpose nodes to meet changing needs, indicated for
instance by underload, are pursued.

In this context, the decision model can be a Hidden Markov
Model HMM. The probabilities reflected in the HMM repre-
sent the following aspects:

• the adequacy of the failure/fault mapping (identify
anomaly),

• the suitability of the recovery action (recover anomaly).

The HMM identifies different anomaly states [1]. These
are dependent on the monitored performance and work-
load/utilisation metrics. In other works [9],[10], we have used
fuzzy logic to map monitored data to so-called membership
functions that represent these different states. We refer the
reader to these works for more detail. Here, we focus on the
anomaly processing.
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FIGURE 6. A DOCKER CONTAINER DISTRIBUTION FOR THE DATA STREAM PROCESSING APPLICATION ON RPIS.

IV. MOTIVATING EXAMPLE FOR THE CONTROLLER
ARCHITECTURE

A failure is the inability of a component to perform its
functions with respect to a specified (e.g., performance) re-
quirements [26]. Faults (also called anomalies) are system
properties that describe an exceptional condition occurring in
the system operation that may cause one or more failures [31].

We assume that a failure is a kind of unexpected response
time observed during system component runtime (i.e., observa-
tion), while fluctuations occurring during a resource execution
of a component are considered as faults or anomalies (state of
a hidden component). For example, fluctuations in workload
such as overload faults may cause delay in a system response
time (observed failure).

Generally, the observed metrics do not provide enough
information to identify the cause of an observed failure. For
example, the CPU utilization of a containerized application
is about 30% with 400 users, and it increases to about 70%
with 800 users in the normal situation. Obviously, the system
is normal with 800 users. But probably the system shows
anomalous behaviour with 400 users, when the CPU utilization
is about 70%. Thus, it is hard to identify whether the system
is normal or anomaly just based on the CPU utilization.
Thus, specifying a threshold for the utilization of resource
without considering the number of users, will raise anomalous
behaviours. Consequently, it is important to integrate the
data of workload into anomaly detection and identification
solutions.

Once provided with a link between faults (workloads), and
failures (response time) emitted from components, we can also
apply a suitable recovery strategy depending on the type of
identified fault.

Thus, a self-adaptation controller will be introduced later in
this paper to automatically manage faults through identifying
the degradation of performance, determining the dependency
between faults and failures, and applying recovery strategies.
We can align the steps of the fault management with the
Monitoring, Analysis, Planning, Execution, and Knowledge
(MAPE-K) control loop as a conceptual framework.

V. HIERARCHICAL HIDDEN MARKOV MODEL (HHMM)

The Hierarchical Hidden Markov Model (HHMM) [11] is
a generalization of the Hidden Markov Model (HMM) that is
used to model domains with hierarchical structure (e.g., in-
trusion detection, plan recognition, visual action recognition).
The HHMM can characterize the dependency of the workload
(e.g., when at least one of the states is heavy loaded). The
states (cluster, node, container) in the HHMM are hidden
from the observer and only the observation space is visible
(response time). The states of HHMM emit sequences rather
than a single observation by a recursive activation of one of
the substates (nodes) of a state (cluster). This substate might
also be hierarchically composed of substates (containers).
Each container has an application that runs on it. In case a
node or a container emits observation, it will be considered
a production state. The states that do not emit observations
directly are called internal states. The activation of a substate
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by an internal state is a vertical transition that reflects the
dependency between states. The states at the same level have
horizontal transitions. Once the transition reaches to the End
state, the control returns to the root state of the chain as shown
in Figure 7. The edge direction indicates the dependency
between states.

We choose the HHMM as every state can be represented
as a multi-level HMM in order to: (1) show communication
between nodes and containers, (2) demonstrate the impact of
workloads on the resources, (3) track the anomaly cause, and
(4) represent the response time variations that emit from nodes
or containers.

VI. FAILURE-TO-FAULT MAPPING

Based on analysing the log file and monitored metrics from
existing systems, we can obtain knowledge regarding (1) the
dependencies between containers, nodes and clusters; (2) re-
sponse time fluctuations emitted from containers or nodes; (3)
workload fluctuations that cause changes in response time. We
need a mechanism that automatically maps a type of anomaly
to its causes. We can identify different failure-fault cases that
may occur at container, node or cluster level as illustrated
in Figure 8. We focus on addressing the correlation between
workload (overload) and the response time at container, node,
and cluster.

A. Low Response Time Observed at Container Level

There are different reasons that may cause this:

• Case 1.1. Container overload (self-dependency): means
that a container is busy, causing low response times, e.g.,
c1 in N1 has entered into load loop as it tries to execute its
processes while N1 keeps sending requests to it, ignoring
its limited capacity.

• Case 1.2. Container sibling overloaded (internal con-
tainer dependency): this indicates another container c2
in N1 is overloaded. This overloaded container indirectly
affects the other container c1 as there is a communica-
tion between them. For example, c2 has an application
that almost consumes all resources. The container has a
communication with c1. At such situation, when c2 is
overloaded, c1 will go into underload. The reason is that
c2 and c1 share the resources of the same node.

• Case 1.3. Container neighbour overload (external con-
tainer dependency): this happens when a container c3
in N2 is linked to another container c2 in another node
N1. In another case, some containers c3 and c4 in N2

dependent on each other, and container c2 in N1 depends
on c3. In both cases c2 in N1 is badly affected once c3 or
c4 in N2 are heavily loaded. This results in low response
time observed from those containers.

B. Low Response Time Observed at Node Level

There are different reasons that cause such observations:

• Case 2.1. Node overload (self-dependency): generally,
node overload happens when a node has low capacity,
many jobs waited to be processed, or problem in network.
Example, N2 has entered into self-load due to its limited
capacity, which causes an overload at the container level
as well c3 and c4.

• Case 2.2. External node dependency: occurs when low
response time is observed at node neighbour level, e.g.,
when N2 is overloaded due to low capacity or network
problem, and N1 depends on N2. Such overload may
cause low response time observed at the node level,
which slow the whole operation of a cluster because of
the communication between the two nodes. The reason
behind that is N1 and N2 share the resources of the same
cluster. Thus, when N1 shows a heavier load, it would
affect the performance of N2.

C. Low Response Time Observed at Cluster Level

If a cluster coordinates between all nodes and containers, we
may observe low response time at container and node levels
that cause difficulty at the whole cluster level, e.g., nodes
disconnected or insufficient resources.

• Case 3.1. Communication disconnection may happen due
to problem in the node configuration, e.g., when a node
in the cluster is stopped or disconnected due to failure or
a user disconnect.

• Case 3.2. Resource limitation happens if we create a
cluster with too low capacity which causing low response
time observed at the system level.

The mapping between faults and failures needs to be for-
malised in a model that distinguishes observations and hidden
states. Thus, HHMM is used to reflect the system topology.

VII. SELF-ADAPTIVE CONTROLLER ARCHITECTURE

This section explains the controller architecture (Figure 9).

A. Managed Component Pool

The system under observation consists of a cluster that
is composed of a set of nodes that host containers as the
application components. A node could be a virtual machine
that has a given capacity. The main job of the node is to
assign requests to its containers. Containers are stand-alone,
executable packages of software. Multiple containers can run
on the same node, and share the operating environment with
other containers. Each component either cluster, node, or
container may emit observations. Observations are emissions
of failure from a component resource.

We install an agent on each node to collect metrics from
the pool, and to expose log files of containers and nodes
to Real-Time/Historical Data storage. The agent adds data
interval function to determine the time interval at which the
data collected belongs. The data interval function specifies the
lower and upper limits for the data arrivals. The response time,
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FIGURE 7. THE HHMM FOR WORKLOAD.

FIGURE 8. DEPENDENCIES BETWEEN CLUSTER, NODES AND CONTAINERS.

FIGURE 9. THE ANOMALY MANAGEMENT CONTROLLER ARCHITECTURE.

and the state of the component are assigned to each interval.
Moreover, the agent gathers data regarding the workload
(i.e., no. of requests issued to component), and monitored
metrics (i.e., CPU, Memory) to characterize the workload of
components processed in an interval. The agent pushes the data

to be stored in the Real time/Historical storage to be used by
the Fault Management Model.
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B. Fault Management Model

The model is based on the history of the overall system
performance. This can be used to compare the predicted status
with the currently observed one to detect anomalous behaviour.
The fault management model consists of:

a) Detection (Monitor): To detect anomaly, the monitor
collects system data from the Real time/Historical storage.
Then, it checks if there is anomalous behaviour at the man-
aged components through utilizing spearmans rank correlation
coefficient to estimate the dissociation between the response
time and the number of requests (workload). If there is a
decrease in the correlation degree, then the metric is not
associated with the increasing workload, which means the
observed variation in performance is not an anomaly. In case
the correlation degree increase, this refers to the existence
of anomaly occurred as the impact of dissociation between
the workload and the response time exceeds a certain value.
To achieve that we wrote an algorithm to be used as a
general threshold to highlight the occurrence of anomaly in the
managed pool under different workloads. We added a unique
workload identifier to the group of workloads in the same
period to achieve traceability through the entire system. We
specified that the degree of dissociation (DD = 15) can be
used as an indicator for performance degradation considering
different response time, and different workloads. The value of
DD will be compared against the monitored metrics (i.e., CPU,
Memory utilization) to detect anomalous behaviour within the
system. In case an anomaly is detected, the controller moves
to the fault management to track the cause of anomaly in the
system.

b) Identification (Analysis and Plan): Once there is ap-
pearance of anomaly, we build HHMMs to identify anomalies
in system components as shown in Figure 7.

The HHMM vertically calls one of its substates N2
1 =

{C3
1 , C

3
2}, N2

2 , N2
3 = {C3

3 , C
3
4} with vertical transition χ and

d index (superscript), where d = {1, 2, 3}. Since N2
1 is abstract

state, it enters its child HMM substates C3
1 and C3

2 . Since C3
2

is a production state, it emits observations, and may make hor-
izontal transition γ, with i horizontal index (subscript), where
i = {1, 2, 3, 4}, from C3

1 to C3
4 . Once there is no another

transition, C3
2 transits to the end state End, which ends the

transition for this substate, to return the control to the calling
state N2

1 . Once the control returns to the state N2
1 , it makes a

horizontal transition (if exist) to state N2
2 , which horizontally

transits to state N2
3 . State N2

3 has substates C3
3 that transits

to C3
4 which may transit back to C3

3 or transits to the End
state. Once all the transitions under this node are achieved,
the control returns to N2

3 . State N2
3 may loop around, transits

back to N2
2 , or enters its End state, which ends the whole

process and returns control to the cluster. The model cannot
horizontally do transition unless it vertically transited. Further,
the internal states do not need to have the same number of
substates. It can be seen that N2

1 calls containers C3
1 and C3

2 ,
while N2

2 has no substates. The horizontal transition between
containers reflect the request/reply between the client/server

in our system under test, and the vertical transition refers to
child/parent relationship between containers/node.

The observation O is denoted by Fi = {f1, f2, ..., fn} to
refer to the response time observations sequence (failures). An
observed low response time might reflect workload fluctuation.
This fluctuation in workload is associated with a probabil-
ity that reflects the state transition status from OL to NL
(PFOL→NL) at a failure rate <, which indicates the number
of failures for a N , C or cluster over a period of time.

We use the generalized Baum-Welch algorithm [11] to
train the model by calculating the probabilities of the model
parameters: (1) the horizontal transitions from a state to
another. (2) probability that the O is started to be emitted for
statedi at t. statedi refers to container, node, or cluster. (3) the
O of statedi are emitted and finished at t. (4) the probability
that stated−1 is entered at t before Ot to activate state statedi .
(5) the forward and backward transition from bottom-up.

The output of algorithm is used to train Viterbi algorithm to
find the anomalous hierarchy of the detected anomalous states.
As shown in ”(1)-(3)”, we recursively calculate = which is the
ψ for a time set (t̄ = ψ(t, t+k,Cd

i , C
d−1)), where ψ is a state

list, which is the index of the most probable production state
to be activated by Cd−1 before activating Cd

i . t̄ is the time
when Cd

i is activated by Cd−1. The δ is the likelihood of the
most probable state sequence generating (Ot, · · · , O(t+k)) by
a recursive activation. The τ is the transition time at which
Cd

i is called by Cd−1. Once all the recursive transitions are
finished and returned to cluster, we get the most probable
hierarchies starting from cluster to the production states at T
period through scanning the state list ψ, the states likelihood
δ, and transition time τ .

L = max
(1≤r≤Nd

i )

{
δ(t̄, t+ k,Nd+1

r , Nd
i ) a

Nd
i

End

}
(1)

= = max
(1≤y≤Nj−1)

{
δ(t, t̄− 1, Nd

i , N
d−1)aN

d−1

End L
}

(2)

stSeq = max
cluster

{
δ(T, cluster), τ(T, cluster), ψ(T, cluster)

}
(3)

Once we have trained the model, we compare the detected
hierarchies against the observed one to identify the type of
workload. The hierarchies with the lowest probabilities are
considered anomaly. Once we detect and identify the workload
type (e.g., OL), a hierarchy of faulty states (e.g., cluster,
N2

1 , C3
1 and C3

2 ) that is affected by the anomalous component
(C3

1 ) is obtained that reflects observed anomalous behaviour.
We repeat these steps until the probability of the model states
become fixed. Each state is correlated with time that indicates:
the time of it’s activation, it’s activated substates, and the time
at which the control returns to the calling state. The result
of the fault management model (anomalous components) is
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stored in Knowledge storage. This aid us in the recovery
procedure as the anomalous state is recovered as first come-
first heal.

C. Fault-Failure Recovery Cases

Based on the fault type, we apply a recovery mechanism
that considers the dependencies between components, and
the current component status. The recovery mechanism is
specified based on historic and current observations of a
response time for a container or node and the hidden states
(containers or nodes). The following steps and concerns are
considered by the recovery mechanism:

• Analysis: relies on current and historic observation.
• Observation (failure): indicates the type of observed fail-

ure (e.g., low response time).
• Anomaly (fault): reflects the fault type (e.g., overload).
• Reason: explains the causes of the problem.
• Remedial Action: explains different solutions that can be

applied to solve the problem.
• Requirements: constraint that might apply.

We look at two anomaly cases and suitable recovery strate-
gies, which exemplify recovery strategies for the fault-failure
mapping cases 1.3 and 2.1. These strategies can be applied
based on the observed response time (current and historic
observations) and related faults (hidden states).
1) Container neighbour overload (external container depen-
dency) Analysis: current/historic observations, hidden states
Observation (failure): low response time at the anomalous
container and the dependent one.
Anomaly: overload in one or more containers results in
underload for another container at different node.
Reason: heavily loaded container with external dependent one
(communication)
Remedial Actions:

Option 1: Separate the overloaded container and the external
one depending on it from their nodes. Then, create a new node
containing the separated containers considering the cluster
capacity. Redirect other containers that in communication to
these 2 containers in the new node. Connect current nodes with
the new one and calculate the probability of the whole model
to know the number of transitions (to avoid the occurrence of
overload) and to predict the future behaviour.

Option 2: For the anomalous container, add a new one to the
node that has the anomalous container to provide fair workload
distribution among containers considering the node resource
limits. Or, if the node does not yet reach the resource limits
available, move the overloaded container to another node with
free resource limits. At the end, update the node.

Option 3: create another (MM ) node within the node with
anomalous container behaviour. Next, direct the communica-
tion of current containers to (MM ). We need to redetermine
the probability of the whole model to redistribute the load
between containers. Finally, update the cluster and the nodes.

Option 4: distribute load.

Option 5: rescale node.

Option 6: do nothing, this means that the observed failure
relates to regular system maintenance or update happened to
the system. Thus, no recovery option is applied.
Requirements: need to consider node capacity.

2) Node overload (self-dependency) Analysis: current and
historic observations
Observation (failure): low response time at node level.
Anomaly: overloaded node.
Reason: limited node capacity.
Remedial Actions:

Option 1: distribute load.

Option 2: rescale node.

Option 3: do nothing.
Requirements: collect information regarding containers and
nodes, consider node capacity and rescale node(s).

D. Recovery Model

The recovery model (Execute stage in MAPE-K) receives
an ordered list of faulty states from the identification step.
It applies a recovery mechanism considering the type of
the identified anomaly and the resource capacity. We have
configured the fault management model to have a specific
number of nodes and containers because increasing the number
of nodes and containers leads to a large amount of different
recovery actions (Load balancing rules), which reduces model
performance.

We are mainly concerned with two workload anomalies:
(1) overload as it reflects anomalous behaviour, (2) underload
category, as it is considered anomaly but it represents a
solution to migrate load from heavy loaded component. We
define different recovery actions for each fault-failure case.
Consequently, for an identified anomaly case, we need to
select the most appropriate action from the time and cost
perspectives.

The Recover Job Scheduler (RJS) heals the identified
anomaly based on first identified-first heal. It mitigates the
anomalous state, by distributing the load to the underloaded
components considering their status.

The recovery actions are stored in the Knowledge storage to
keep track of the number of applied actions to the identified
anomalous component. Before applying any of the recovery
option, ”Restart” option is applied to save the cost of trying
multiple recovery options if the component does not reach its
restart action number limit. In case a restart option does not
enhance the situation, RJS checks the existence of underloaded
component identified by the fault management model and
stored in the knowledge storage. If there is underloaded
component, the HMM is trained using the Forward-Backward
algorithm to select the most probable action for the anomalous
component as shown in Figure 10. The states Ai in the model
refer to the hidden recovery actions. The rejuvenation hidden
state refers to the restart action, and Pi(r), is the probability of
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FIGURE 10. HMM FOR RECOVERY ACTIONS.

the recovery actions. We estimate Pi(r) based on computing
the maximum likelihood. The result of the HMM will be,
for instance, the most probable action for anomalous state
C3

1 is ’distribute load’. The RJS apply the selected action to
the fault component in the ”Managed Component Pool”. In
case, RJS could not find underloaded components, the ”pause”
action is applied. If the number of applied recovery actions for
the anomalous component exceeds a predefined threshold, a
terminate action is applied after backing up the component.
For each component, we further keep a profile of the type of
applied action to enhance the recovery procedure in the future.

a) Metrics for Recovery Plan Determination: In order to
better capture the accuracy of the proposed fault identification,
we estimate the Fault Rate to capture (1) the number of faults
during system execution <(FN), and (2) the overall length of
failure occurrence <(FL) as depicted in ”(4)” and ”(5)”. This
aids us later in reducing the fault/failure occurrence through
providing the best suited recovery mechanism, for instance
for frequent or long-lasting failures. The observed behaviour
is analysed in terms of failure rates for each state – e.g., low
response times may result from overload states or normal load
states – in order to determine the number of failures observed
for each state and to estimate the total failure numbers for all
the states. We define < as follows:

<(FN) =
No of Detected Faults

Total No of Faults of Resource
(4)

<(FL) =
Total T ime of Observed Failures

Total T ime of Execution of Resource
(5)

The Average Failure Length (AFL), as in ”(6)”, might also
be relevant to judge the relative urgency of recovery. Other
relevant metrics that impact on the decision which strategy to
use, but which we do not detail here, are resilience metrics
addressing recovery times.

AFL =

∑
Time of Failure Occurrence

Number of Observed Failures
(6)

VIII. EVALUATION

The proposed architecture runs on Kubernetes and Docker
containers. We deploy the TPC-W4 benchmark on the con-
tainers to validate the architecture. We focus on three types
of faults the CPU hog, Network packet loss/latency, and
performance anomaly caused by workload congestion.

A. Environment Set-Up

To evaluate the accuracy of the proposed architecture, the
experiment environment consists of three VMs. Each VM is
equipped with Linux OS, 3 VCPU, 2 GB VRAM, Xen 4.11 5,
and an agent. Agents are installed on each VM to collect the
monitoring data from the system (e.g., host metrics, container,
performance metrics, and workloads), and send them to the
Real-Time/Historical storage to be processed by the Monitor.
The VMs are connected through a 100 Mbps network. For
each VM, we deploy two containers, and we run into them
the TPC-W benchmark.

The TPC-W benchmark is used for resource provisioning,
scalability, and capacity planning for e-commerce websites.
The TPC-W emulates an online bookstore that consists of 3
tiers: client application, web server, and database. Each tier is
installed on VM. We do not consider the database tier in the
anomaly detection and identification, as a powerful VM should
be dedicated to the database. The CPU and Memory utilization
are gathered from the web server, while the Response time
is measured from clients end. We ran the TPC-W for 300
minutes. The number of records that we obtain from the TPC-
W is 2000 records.

We further use docker stats command to obtain a live data
stream for running containers. The SignalFX Smart Agent6

monitoring tool is used and configured to observe the runtime
performance of components and their resources. We also use
the Heapster7 to group the collected data, and store them in a
time series database using the InfluxDB8. The gathered data
from the monitoring tool, and from datasets are stored in
the Real-Time/Historical Data storage to enhance the future
anomaly detection and identification. The gathered dataset is
classified into training and testing datasets 50% for each. The
model training last 150 minutes.

To simulate real anomaly scenarios, script is written to inject
different types of anomalies. The anomaly injection for each
component last 5 minutes. The anomaly scenarios are: (1) CPU
Hog, consumes all CPU cycles by employing infinite loops. (2)
Memory Leak, exhausts the component memory. The stress9

tool is used to create pressure on the CPU and Memory.

Furthermore, workload contention is generated to test the
controller under different workloads. To generate workload,

4http://www.tpc.org/tpcw/
5https://xenproject.org/
6https://www.signalfx.com/
7https://github.com/kubernetes-retired/heapster
8https://www.influxdata.com/
9https://linux.die.net/man/1/stress
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TABLE I. DETECTION EVALUATION.

Metrics HHMM DBN HTM
RMSE 0.23 0.31 0.26
MAPE 0.14 0.27 0.16
CDA 96.12% 91.38% 94.64%
AD 0.94 0.84 0.91
FAR 0.27 0.46 0.31

the TPC-W web server is emulated using client application,
which generates workload (using Remote Browser Emulator)
by simulating a number of user requests that is increased
iteratively. Since the workload is always described by the
access behaviour, we consider the container is gradually loaded
within [30-2000] emulated users requests, and the number of
requests is changed periodically. To measure the number of
requests and response (latency), the HTTPing10 is installed on
each node. Also, the AWS X-Ray11 is used to trace of the
request through the system.

B. The Detection Assessment

The detection model is evaluated by the Root Mean Square
Error (RMSE), Mean Absolute Percentage Error (MAPE),
and False Alarm Rate (FAR), which are the commonly used
metrics [32] for evaluating the quality of detection. We further
measure the Number of Correctly Detected Anomaly (CDA)
and Accuracy of Detection (AD).

a) Root Mean Square Error (RMSE): It measures the
differences between the detected value and the observed one
by the model. A smaller RMSE value indicates a more
effective detection scheme.

b) Mean Absolute Percentage Error (MAPE): It mea-
sures the detection accuracy of a model. Both the RMSE
and MAPE are negatively-oriented scores, which means lower
values are better.

c) Number of Correctly Detected Anomaly (CDA): It
measures the percentage of the correctly detected anomalies
to the total number of detected anomalies in a given dataset.
High CDA indicates the model is correctly detected anomalous
behaviour.

d) Accuracy of Detection (AD): It measures the com-
pleteness of the correctly detected anomalies to the total
number of anomalies in a given dataset. Higher AD means
that fewer anomaly cases are undetected.

e) False Alarm Rate (FAR): The number of the normal
detected component, which has been misclassified as anoma-
lous by the model.

The efficiency of the model is compared with the Dynamic
Bayesian network (DBN), see Table I. The results show that
the HHMM and HTM model detects anomalous behaviour
with promised results comparing to the DBN.

10https://www.vanheusden.com/httping/
11https://aws.amazon.com/xray/

TABLE II. ASSESSMENT OF IDENTIFICATION.

Metrics HHMM DBN HTM
AI 0.94 0.84 0.94
CIA 94.73% 87.67% 93.94%
IIA 4.56% 12.33% 6.07%
FAR 0.12 0.26 0.17

C. The Identification Assessment

The accuracy of the results is compared with the Dynamic
Bayesian Network (DBN), and Hierarchical Temporal Mem-
ory (HTM), and it is evaluated based on different metrics such
as: the Accuracy of Identification (AI), Number of Correctly
Identified Anomaly (CIA), Number of Incorrectly Identified
Anomaly (IIA), and FAR.

a) Accuracy of Identification (AI): It measures the com-
pleteness of the correctly identified anomalies to the total
number of anomalies in a given dataset. Higher AI means
that fewer anomaly cases are un-identified.

b) Number of Correctly Identified Anomaly (CIA): It is
the number of correct identified anomaly (NCIA) out of the
total set of identification, which is the number of correct
Identification (NCIA) + the number of incorrect Identification
(NICI)). The higher value indicates the model is correctly
identified anomalous component.

CIA =
NCIA

NCIA+NICI
(7)

c) Number of Incorrectly Identified Anomaly (IIA):
The IIA is the number of the identified component, which
represents an anomaly but misidentified as normal by the
model. The lower value indicates that the model correctly
identified anomaly component.

IIA =
FN

FN + TP
(8)

d) False Alarm Rate (FAR): The number of the normal
identified component, which has been misclassified as anoma-
lous by the model.

FAR =
FP

TN + FP
(9)

The false positive (FP) means the detection/identification of
anomaly is incorrect as the model detects/identifies the normal
behaviour as anomaly. True negative (TN) means the model
can correctly detect and identify normal behaviour as normal.

As shown in Table II, the HHMM and HTM achieved
promising results for the identification of anomaly. While
the results of the DBN a little bit decayed for the CIA
with approximately 7% than the HHMM, and 6% than the
HTM. Both the HHMM and HTM show higher identification
accuracy as they are able to identify temporal anomalies in the
dataset. The result interferes that the HHMM is able to link
the observed failure to its hidden workload.
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TABLE III. RECOVERY EVALUATION.

Evaluation Metrics Results
RA 99%

MTTR 60 seconds
OA 97%

D. The Recovery Assessment

To assess the recovery decisions of the model, we measure:
(1) the Recovery Accuracy (RA) to be the number of success-
fully recovered anomalies to the total number of identified
anomalies, (2) the Mean Time to Recovery (MTTR), the aver-
age time that the architecture takes to recover starting from the
anomaly injection until recovering it. (3) The Overall Accuracy
(OA) to be the number of correct recovered anomalies to the
total number of anomalies. The results in Table III show that
once the HMM model is configured properly, it can efficiently
recover the anomalies with an accuracy of 99%.

IX. BEYOND PERFORMANCE: TRUST ANOMALIES

Traditionally, anomaly detection and analysis is addressing
performance and resource management if applied to software
systems management. Another wide area is security and trust.
An open system has security vulnerabilities. Checking contin-
uously for anomalies showing unusual behaviour that might
indicate attacks or loss of information in some form is here
also an important anomaly detection objective. Trust is here
a related concern that covers security as well as performance
and other technical factors.

Trust problems occur if different providers and consumers
of services meet in a context without any prior trust rela-
tionship. A trust anomaly here is any situation in which the
delivery of a previously guaranteed service (or its quality)
is in doubt. An anomaly detection solution can help here
to proactively invoke a remedial action or to record more
information (in a tamper-proof way) to allow for later analysis
and resolution of disputes.

So, we briefly discuss here the handling of trust regarding
QoS compliance using a trust anomaly detection architecture.
Since trust does not exist, it is important to capture and
store relevant information in a tamper-proof way. The use of
blockchains as a reaction to anomalies is here an option, if a
consumer needs trustworthy documentation in failure cases,
but blockchains maybe also always be used if a provider
need assurance about having provided as planned/promised
in contract. A blockchain is a distributed data store for dig-
ital transactions, resembling a ledger [76]. Blockchains have
been used for various applications [50],[52],[53],[54],[55]. The
blocks are linked and secured using cryptography. Each block
typically contains a cryptographic hash of the previous block,
a timestamp and transaction data. By design, a blockchain is
inherently tamper-proof, i.e., resistant to modification of stored
data.

In more concrete terms, an anomaly detection solution as
we discuss here could, if QoS compliance is under threat, then

switch on blockchains [45],[49]. This could act as remedial
(support) action for later analysis and providing tamper-proof
information for recovery.

We have not implemented this solution yet as part of our
anomaly management solution, but we want to point out with
this discussion that the solution presented is not limited to
performance concerns and immediate remedial actions only.

X. CONCLUSIONS

Service management in virtualised, third-party environments
has both benefits and limitations. Virtualisation allows re-
sources assigned to application services to be adjusted dy-
namically to meet changing need. However, the reason for
changes is often hidden from the service consumer. We present
a controller architecture for the detection, and recovery of
anomalies in hierarchically organised clustered computing
environments. We pay specific attention to recent container
cluster orchestration tools like Kubernetes or Docker Swarm
that are now widely used to deploy software [30].

Our key objective here is to provide an analysis feature, that
maps observable quality concerns onto hidden resources in a
hierarchical clustered environment, and their operation in order
to identify the reason for performance degradations and other
anomalies [1],[68]. From this, a recovery strategy that removes
the workload anomaly, thus removing the observed perfor-
mance failure is the second step. We have proposed to use
the Hidden Markov Models (HMMs) to reflect the hierarchical
nature of the unobservable resources, and to support the de-
tection, identification, and recovery of anomalous behaviours.
We have further analysed mappings between observations and
resource usage based on a clustered container scenario. The
objective of this paper is to introduce the complete controller
architecture with its key processing steps. Specifically, we try
here to motivate the context of container-based deployment,
illustrating different use case scenarios in more detail.

As part of our future, we will continue to complete the
current controller implementation. Here, further simulations
and experimental evaluations are planned [44],[75],[76].

With the focus on containers, we will also address practical
concerns such as the relevance for microservice architectures
as an architectural style [12]. Microservices are often linked
to their container-based deployment. Here it would be worth
investigating to which extend common microservice architec-
tural patterns cloud influence the occurrence of anomalies in
systems in which microservices are deployed as containers
[13],[15],[64]. A stronger emphasis shall also be given to self-
adaptive systems [14],[16],[66],[73].

Another direction is to link observed failures more into
the context of the user. Here, adding semantics [71],[74]
would help to link an observed anomaly to the processes
and changing circumstances a user is involved in. We are
thinking here of looking at educational technology systems
[57],[58],[59],[61],[63],[60], where anomalies and failure are
not just technical aspects, but might impact on cognitive
processes as well.
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