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Abstract—In the era of learning healthcare systems and big data,
observational studies play a vital role in discovering hidden
(causal) associations within a dataset. To reduce bias in these
observational studies, a matching step usually is adopted to
randomly match each case subject with one or more control candi-
dates. A high-quality matching algorithm, RandFlow, is proposed
and compared with the commonly used – Simple Match, Matchit
and Optmatch algorithms. The execution time, the memory usage,
the successful matching rate, the statistical variation of relative
risk, and the randomness computed employing the different
algorithms are compared. The execution time of RandFlow was
at least 30 times faster than commonly used methods, with
at least a 66% reduction in memory usage. The variation of
relative risk computed by RandFlow usually was smaller than
by Simple Match. Simple Match had varying relative entropy,
ranging from 0.2 to 0.95, while RandFlow almost uniformly had
relative entropy close to 1. RanfFlow could find a matching so long
as the maximum matching ratio was not reached. For obtaining
more reliable study results, a two-phase matching is proposed.
The first phase is to identify the maximum matching ratio, then
is followed by matching multiple times and taking an average.

Keywords–matching; observational study; relative entropy.

I. INTRODUCTION

Observational studies are often used for investigating causal
relationships [1]. Given two events α and β, researchers can
analyze whether the occurrence probability of event β is
affected by a previous event α. In the medical field, an event
can be a diagnosis, a prescription or a treatment. To reduce
bias, several approaches have been applied, one of them being
matching [2]. Hence, an observational study process begins by
identifying the study group Gα (those with α), matching to the
control candidates G6=α (those without α), and then performing
statistical analysis to draw a conclusion. For example, Relative
Risk (RR) is used to estimate the relative risk of having β
with and without the previous occurrence of α. For example,
in Table I, there are a+ b individuals with the event α, and a

TABLE I. EXAMPLE OF STUDY GROUP AND ITS MATCHED
CONTROL GROUP

α ¬α
β a c
¬β b d

Sum a+ b c+ d

of them also with the event β. The conditional probability, R1,
which denotes the probability of having β under the condition
of with the event α is therefore a/(a + b). Also, there are
c+ d individuals without the event α, and c of them with the
event β. The conditional probability, R2, which denotes the
probability of having β under the condition of without α is
therefore c/(c+ d). The RR value is defined as RR = R1/R2.
RR values greater than, less than, or equal to 1, respectively,
indicate positive, negative or no relationships, respectively.
Other statistics, such as Odds Ratio (OR), may be used instead
of RR depending on the study design.

Matching is a critical step in the analysis of observational
study. Generally, a matching algorithm randomly permutes the
order of the input of the study case s, with the control candidate
c, and then checks whether the input s-c pair can be matched,
and finally matches s with K-fold eligible controls, one by one.
The constant K is called the matching ratio. Some matching
methods assign a propensity score to each pair [3] and return a
matching with the best total score. However, if the distribution
of cases is skewed, the study case may not be matchable to the
required munber of controls, and so would be dropped to avoid
incurring further bias. Therefore, the output matching needs to
satisfy some quality criteria such as randomness and successful
matching rate. In a good quality matching algorithm, a control
candidate has roughly an equal chance of being matched with
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any of the matchable study cases. It is desirable as well to
retain as many successful matchings as possible.

There are some commonly used matching methods: for
example, Simple Match [4], Matchit [5], [6], and Optmatch [7].
The first is based on a simple greedy approach using SAS and
there is no proof in [4] of it being able to deliver a matching
in reasonable time, and the latter two are variations of the
well-known max flow algorithm [8] having a performance
guarantee, but with no consideration of randomness. If the
matching is only performed once along with a small matching
ratio, the result may not be stable in the sense that there is
the possibility that different matchings may yield fluctuating
statistics such as RR or OR. To obtain a reliable result, it is
better to match multiple times and take an average of all
the outcomes. However, it is not practical to do repeated
matching due to the heavy time consumption. Moreover in
practice, the determining matching ratio is also a cloudy issue.
During the past few decades, the suggested method in case-
control study has been to match each subject with four or five
controls [9]. It was reported that ”beyond a ratio of about 4/1,
little power improvement results from increasing the number
of controls” [10]. However, a matching ratio of 10 or 15 has
also appeared in some studies [11], [12]. In Hennessy’s study,
it was indicated that a higher matching ratio may be needed
when the disease prevalence is low [13], which implies that the
matching ratio should be data dependent [14]. To date, there
has been little study investigating the issue of finding a good
matching ratio.

Previous researches have focused on the impact of the
matching ratio [14], and whether to use a matching or not [15].
But how to determine the matching ratio is less discussed.
To resolve the above problems, we proposed a high-quality
matching algorithm called RandFlow, which adopts the idea
from maximum flow in graph theory. In RandFlow, we have
added some vital functions towards raising the randomness
and matching efficiency. Furthermore, we leveraged the high
efficiency of RandFlow to determine the optimal matching ratio.
By using RandFlow, the maximum matching ratio of each data
set is calculated, and the range of the suitable matching ratio
is also determined. The researcher can choose a preferred
matching ratio according to the suggested range.

The remains of this paper are organized as follows: In
Section II, we describe our matching algorithm, the data source
used in this study, and the factor compared between different
matching methods. In Section III, we show the experiment
results of RandFlow and comparison between RandFlow and
the original method. In Section IV, we discuss the comparison
results. Finally, in Section V, we conclude this paper.

II. METHODS

The approach of our method is to formulate our problem in
the well-known framework of flows in networks [8]. Hence our
methods come with performance and correctness guarantees. In
our study, we used Taiwan’s National Health Insurance Research
Database (NHIRD) [16] as the data source and examined the
validity of RandFlow by three causal relations reported in the
published papers [17], [18]. We then compared RandFlow with
the above matching methods with regard to execution time and
memory, successful matching rates, RR values and quality of
randomness.

A. RandFlow Algorithm

We illustrate the idea of the original matching problem in
Figure 1(a). The study cases are listed on the left-hand side,
and the control candidates are listed on the right-hand side.
The dashed line indicates the potential matching between a
study case and a control candidate. We transform the matching
problem in Figure 1(a) to the well-known max flow problem [8]
in Figure 1(b) by adding one source node, one sink node,
outgoing edges from the source to all study nodes, and incoming
edges from the control nodes to the sink. There is a capacity
constraint set on each edges where the outgoing edges of the
source is K, and the rest of the edges are 1. Each edge (x, y) in
E is associated a non-negative number called a weight w(x, y)
and, for each pair of intermediate nodes, namely not sources
or sinks, x and y, the equality w(x, y) = w(y, x) always holds.
Thus w is function on E.

In a max flow problem, we assign maximum integer weights
w, not exceeding the pre-assigned capacity, to the edges so
that for each vertex other than the source and sink, the sum of
weights on its incoming edges equals the sum of weights on
its outgoing edges.

We consider a subset f of w, which we shall call a flow.
We shall require three things for this flow to be a legal flow:
(1) the weight of each edge is not exceeding the pre-assigned
capacity, (2) for each vertex other than the source and sink,
the sum of weights on its incoming edges equals the sum of
weights on its outgoing edges, (3) the sum of weights on the
outgoing edges of the source equals to the sum of weights on
the incoming edges of the sink. A legal flow f in the max
flow problem is a possible matching in the original matching
problem. Those control candidates in the chosen f , whose
incoming edges have nonzero weight, are the matched control
cases in the original matching problem. Therefore, we can
calculate the corresponding RR values of a legal flow f .

A study case Si is matched with those control candidates
Cj so that the weight of the edge from Si to Cj is 1. The
outcome is called a max flow. We further require that each
study case has the same sum of incoming edge weights, which
is called the maximum matching ratio, denoted by r. Thus
each study case is matched with exactly r candidates, and each
candidate is matched at most once. Since a max flow is to be
found, r is should be as large as possible. Note that the value
of r is data dependent. Each data set has its own maximum
matching ratio. In addition to whether a matching of a specified
size can be found efficiently or not, we also are concerned
whether the resulting matching is random or not, i.e., whether
each candidate has an equal chance of being selected by any
case subject. Without considering constraints incurred from
competitions between case subjects, we use the well-known
entropy [19] E of the ideal distribution among all possible
candidates that can be matched to a case subject. Then we
measure the entropy E′ of the actual distribution of candidates
being found by applying the matching repeatedly say 1000
times. To quantify the quality of randomness in the matching
obtained, we define the relative entropy to be E′

E . Some of our
results infra show that finding matchings with ratio exactly r
provides good randomness properties.

There are known algorithms for finding such a max flow
in O(|E||F |) time, where E is the set of edges and F , called
flow, is the set of edges with weight 1 between the study cases
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and candidates. The value of |F | is the number of edges inside.
In the general case, there are certain known algorithms, which
we shall call special augmentation algorithms, for augmenting
given legal flows step by step, eventually leading to legal flows
taking on the maximal flow value for such a flow.

To each special augmentation algorithm corresponds an
integer n. When one applies such an algorithm to a given legal
flow f , which is not a maximum flow, the algorithm identifies
an edge (s, c) between intermediate nodes and a set X of n
edges (x, y) in the domain of f such that the nodes x are all
distinct and such that each edge (a, x) is in the domain of f .
Let D denote the union of three sets: the domain of f , the
set {(s.c), (c, t)} and the set of all (y, x) such that x is in X .
The special augmentation algorithm acts in such a way that the
restriction f ′ of w to D is again a legal flow. It follows from
the weight property w(x, y) = w(y, x) that the flow value of
f ′ exceeds the flow value of f by the weight w(s, c).

For our application here we set all weights equal to 1,
and so each application of a special augmentation algorithm
increases the flow value by 1.

We extend the original algorithm by finding a random
augmenting flow, instead of a fixed one using a randomized
version of Depth First Search (RDFS). In addition, we use a
merging technique so that given two candidates Ci and Cj , they
are merged if they have incoming edges from the same set of
study cases. Furthermore, we randomly shuffle the ordering of
study cases from the input to obtain better randomness quality.
Our revised algorithm runs faster and uses less memory in
practice than the original one. The technical details can be
found in our technique report [20].

B. Data source
The NHIRD is a nationwide database extracted from the

claim data of the National Health Insurance (NHI) program
in Taiwan for research purposes. In recent years, NHIRD has
been widely used to identify potential causal relationships. Our
study also used NHIRD as the data source and was reviewed
by the Institutional Review Board of Academia Sinica, Taiwan
(approval number: AS-IRB-BM-16043). As a benchmark,
we randomly generated data sets according to NHIRD data
distribution. We denote Pα as the probability that an α event
happens, and Pβ|6=α = Pβ as the probability that a β event
happens without an α event happens. And the probability that
a β event happens after an α event happens is denoted as
Pβ|α = RR × Pβ . In the following, Pα and Pβ is selected
from {0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50},
and RR is selected from {1/2, 2/3, 4/5, 1, 5/4, 3/2, 2}. There
are 10 possible values of Pα, 10 possible values of Pβ and
7 possible values of RR. The total number of test cases is
700. For each test case, we randomly draw 1,000 person from
NHIRD. According to Pα and Pβ , we randomly pick α and β.
We executed the RandFlow Algorithm 1,000 times and calculate
the average and the standard deviation of R1, R2, and RR,
respectively. Additionally, we selected three distinct causal
relations from two published papers [17], [18]. One paper
investigated the bidirectional relationship between obstructive
sleep apnea (OSA) and depression [17]. The study showed the
positive relationship that patients with OSA have increased
risk of occurring depression, and vice versa. The other paper
examined whether previous statin use in patients with stroke
affects the subsequent risk of dementia [18]. The study found
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Figure 1. An example of transforming the matching problem into a flow
problem.
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a negative relationship in such a way that statin use in patients
with stroke decreases the risk of dementia. In our study, we
define an event pair to be one for which the former event affects
the occurrence of the following event. Hence, the relationship
between depression and subsequent OSA is denoted as Event
Pair I, and the reverse is Event Pair II. The relationship between
statin use in patients with stroke and subsequent dementia is
Event Pair III.

C. Comparisons between matching methods
We identified the study cases of the selected event pairs

according to the case criteria of [17], [18] and matched them
to the control candidates by the following matching algorithms:
Simple Match [4] in SAS, Matchit [5], [6] in R, Optmatch [7]
in R, and RandFlow in C. Because Simple Match is the
most popular matching program used in epidemiology, we
implemented Simple Match using C, which we denote by
Simple (C) in the sequel, in order to compare with RandFlow
from a common basis. Because of software limitations and
language nature, programs and packages in SAS and R run
much slower and use more memory than those in C. As for
Simple (C) and RandFlow, the time complexity of the former
is O(nm) and that of the latter is O(n2m), where n is the
number of nodes and m is the number of edges in the graph.
Therefore, it is expected that Simple (C) will run faster than
RandFlow.

In the original studies, Event Pairs I and II were performed
by the exact match method. Among these two event pairs, each
study case was matched with five controls. Regarding Event Pair
III, each study case was instead matched with one control by
propensity score match [21]. In our study, all experiments were
done by exact match. We used the ratio of control candidates to
study cases on order to conjecture the maximum matching ratio.
The number of total edges provided an estimate of computing
time and memory consumption.

We then compared the matching methods with regard to
execution time and memory usage, successful matching rates,
RR values and quality of randomness. The successful matching
rate is defined to be the percentage of matched study cases that
are not dropped. We assessed the average execution time, the
corresponding successful matching rates and the RR values with
matching ratios from 1 to 30 (to 90 in the case of Event Pair
II). To further understand the variation of RR values, we also
examined the standard deviation of RR for R1 and R2 where R1

and R2, respectively, represent the risks of β occurring in the
study group (Gα) and control group (G6=α), respectively. The
ratio of R1/R2 is RR. For quality of randomness, we calculated
the relative entropy of the matched control candidates using
three different matching ratios: 70%, 100% and 110% of the
maximum matching ratio. The RR values and relative entropies
were run 100 times, after which the average was taken. In our
study, we used only Event Pair I as the benchmark to evaluate
the execution time and memory usage. Because the programs
implemented in C are more efficient and memory sparing,
we just compared C implementations in terms of successful
matching rates, RR value and quality of randomness. All the
experiments were performed on a Ubuntu 14.04 system with
an Intel(R) Core(TM) i7-3770 CPU 3.40 GHz, and 16 Gbytes
RAM.

III. RESULTS

We present our experiment results in the follows.

TABLE II. THE STATISTIC RESULTS OF REAL RR VALUE AND THE
ESTIMATED RR VALUE OF RANDFLOW.

Real RR Estimated RR ∆ Variance STD
0.50 (1/2) 0.462 0.038 0.021 0.144
0.66 (2/3) 0.658 0.002 0.033 0.182
0.80 (4/5) 0.854 0.054 0.041 0.202
1.00 (1/1) 1.016 0.016 0.029 0.169
1.25 (5/4) 1.259 0.009 0.049 0.209
1.50 (3/2) 1.542 0.042 0.056 0.236
2.00 (2/1) 2.049 0.049 0.105 0.325

A. General result of the randomly sampled data

Figure 2 shows the result of the randomly generated data.
The x-axis denotes the real RR value, and the y-axis denotes
the estimated RR value, which is calculated by RandFlow. Each
point in Figure 2 represents one data set. For each real RR
value, there are 100 test data sets. The results show RandFlow
can get an estimated RR value very close to the real RR value.
The statistic results are summarized in Table II. The first and
second column denotes the real RR value and the estimated
RR value. The third to fifth column denotes the absolute error
between the real and the estimated RR value, the variance
of the estimated RR value and the standard deviation of the
estimated RR value. The experiment results show the absolute
error RandFlow Algorithm is less than 0.06 and the variance
and standard deviation is only 0.10 and 0.33, respectively.

B. General information of the selected event pairs

Table III shows the general information of the selected
event pairs from the original papers together with our results,
including the number of controls/control candidates, the ratio of
control candidates to study cases, and the maximum matching
ratio.

Among these event pairs, the greatest number of study
cases was found in Event Pair I. With such a larde number of
study cases, there were a total of more than 149 million edges
generated while matching using RandFlow. We speculated that
the maximum matching ratio would be different among the
event pairs since it turned out to be the ratios 11, 51 and
zero, respectively, for Event Pair I, II and III, respectively. In
addition, these event pairs covered both positive and negative
relationships. As a result, we believed that they can serve
as representatives for testing matching quality - Event Pair I
especially for execution time and memory usage comparison.

C. Execution time and memory usage

The benchmark experiments used the Event-Pair I dataset
to measure the performance. Table IV shows the comparison
of average execution times and memory usage among the
selected matching methods. We measure the amount of memory
usage at a matching ratio equals 1. And we only shows two
digits after decimal point for execution time. Because of the
different time complexity, Simple (C) ran faster than RandFlow.
Regarding memory usage, these two methods are comparable.
However, the average execution times of Matchit increased
roughly linearly with the increase of the required matching
ratio (Figure 3).

252

International Journal on Advances in Software, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

E
st
im
a
it
e
 R
R
 v
a
lu
e

Real RR value

Random Data Set

Figure 2. The distribution of real RR value and the estimated RR value of RandFlow.

TABLE III. GENERAL INFORMATION OF THE SELECTED EVENT PAIRS.

Event Pair I Event Pair II Event Pair III
Original results

No. study cases 27,073 6,427 5,527
No. control cases 135,365 32,135 5,527
Matching ratio 5 5 1

Our results
No. control candidates 562,707 619,904 9,102
Control candidates/Study cases ≈21 ≈97 ≈2
Maximum matching ratio 11 51 0
Total edge 149,676,628 38,629,676 404,835

TABLE IV. AVERAGE EXECUTION TIMES (IN SECONDSB ) AND MEMORY USAGE (IN GB) OF EACH METHOD.

Method Lang. Average execution times at different matching ratio(sec) Memory
1 5 10 15 20 25 30 usage (Gb)

Simple Match SAS 1221.00 959.00 894.00 859.00 2350.00 1228.00 1078.00 1.039
Optmatch R 8473.28 9132.34 9676.67 9407.05 9605.70 9037.06 8399.11 0.277
MatchIt R 182.81 928.57 1956.58 2890.76 3891.28 4821.20 5924.35 0.232
Simple (C) C 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.068
RandFlow C 7.06 7.03 7.04 5.97 5.56 5.19 4.71 0.070

D. RR values and Successful matching rates

Flow-based matching methods in nature continue matching
until they use up all the matchable control candidates. They are
expected to have the same traits in terms of RR value variation
and successful matching rate. Hence, in Section III, we only
show the comparisons between Simple (C) and RandFlow.

Figure 4 shows the comparison results between RandFlow
and Simple Match. Each column denotes the experiment
results of different event pair, and each row denotes one
specific comparison. The first row (Figure 4(a)-4(c)) shows the
comparison of the RR value under different matching ratio.
The second row (Figure 4(d)-4(f)) shows the comparison of the
standard deviation of the RR value under different matching
ratio. And the last row (Figure 4(g)-4(i)) shows the standard
deviation of R1 and R2, which are performed by RandFlow
under different matching ratio.

Overall, the average RR values of Simple (C) were greater
than the values of RandFlow. In both methods, the average
RR values were fairly stable while the matching ratio was
small, and then gradually decreased when the matching ratio
exceeded a certain value. In RandFlow, the decline occurred
at the maximum matching ratio. By contrast, the decline of
Simple (C) occurred earlier than that (Figure 4(a) and 4(b)). In
the case of a negative relationship in Event Pair III, the average
RR values increased rather than decreased (Figure 4(c)).

Generally speaking, the variation of RR values of Simple
(C) was more unstable than that of RandFlow. In both methods,
the variation of RR values steadily decreased and then turned
up after a certain matching ratio. The least variation of the RR
values of RandFlow occurred right at the maximum matching
ratio. That of Simple (C) occurred before the maximum
matching ratio (Figure 4(d)-4(f)).
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Figure 3. Average execution times of the flow-based matching methods.

Since RR is calculated as R1 divided by R2, we examined
the variation of R1 and R2 in RandFlow to survey further
where the RR variation originates. When the matching ratio
was less than the maximum matching ratio, no study cases
were dropped; thus, the standard deviation of R1 remained zero.
On the other hand, the standard deviation of R2 decreased with
matching ratio, until it reached its maximum. As the size of the
control group increased up to a certain number, the standard
deviation of R2 continued relatively small and steady. Beyond
the maximum, the standard deviation of R1 surged, resulting
from the dropping of study cases (Figure 4(g)-4(i)).

Figure 5 shows the comparison of successful matching
rates between Simple (C) and RandFlow. Because Simple (C)
is based on a simple greed algorithm, its matching results
may vary. We used both the minimal (Simple min) and
the maximal (Simple max) results from the 100 trials for
comparison. Whether or not we used the minimal or the
maximal result from Simple (C), the successful matching rates
dropped before reaching the maximum matching ratio, whereas
those of RandFlow remained at 100%. At any fixed matching
ratio, RandFlow had the highest successful matching rates.
Although Simple (C) ran faster than RandFlow, when the
execution time was fixed it failed to achieve the successful
matching rate of RandFlow.

E. Quality of randomness
Optmatch and Matchit are both flow-based matching meth-

ods and do not randomly shuffle the input graph. In other
words, their matched results remain unchangeable with no
randomness at all. By contrast, we implemented RandFlow
with inputting random graph and RDFS to enhance the quality
of randomness. In this section, we present a comparison of
quality of randomness between RandFlow and Simple (C).

Figure 6 shows the relative entropy of the chosen control
candidates of the study cases in Event Pair I and Event pair
II. The first column shows the result of Event Pair I, and the
second column shows the result of Event Pair II. Each row
denotes different matching ratio, the first row, the second row,
and the last row shows the experiment result with matching ratio
equals to 70%, 100%, and 110% of the maximum matching
ratio, respectively.

Figure 6 shows that Randflow had better quality of ran-
domness than Simple (C). The estimated relative entropy of
RandFlow was about 1 and generally higher than that of Simple
(C). In addition, RandFlow had consistently stable entropy for
all matching ratio and study cases. Even when the ratio was set
at 110% of the maximum matching ratio, the relative entropy
of Randflow only decreased slightly. For those study cases
having small sets of control candidates, the relative entropy of
Randflow remained high. By contrast, the relative entropy of
Simple (C) fluctuated widely as the matching ratio increased.
For those study cases having less matchable control candidates,
that of Simple (C) plunged.

IV. DISCUSSION

In this study, we adopted maximum flow theory to develop a
highly efficient and good-quality matching method, RandFlow,
for matching subjects with multiple controls. This method
can accomplish difficult matching tasks, such as matching
20 thousand study cases to each to 30 controls within a few
seconds. Compared with the most popular matching method,
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Figure 4. RR values and standard deviation of RR, R1 and R2 of Simple (C) and RandFlow.

Simple Match (on a SAS platform), it consumed merely 0.5-
2.4% of execution time and 7% of memory usage. Among the
flow-based matching methods, Optmatch and RandFlow are
much alike in terms of execution time versus matching ratio. In
both of these methods, the average execution times remained
about the same until the required matching ratio exceeded the
maximum matching ratio, after which they decreased because
more and more case subjects were subsequently dropped.

Most importantly, RandFlow exhibited a good quality of
randomness and rather than dropping study cases found a
matching whenever such a matching existed. Matching is used
to cause study cases and controls to have similar distributions
across confounding variables. During the matching process,
the controls are expected to be randomly selected from all
the control candidates. Anything that may affect the sampling
design, such as the dropping of cases, should be avoided. Our
study used relative entropy to quantify randomness, and then

verified that RandFlow had a good quality of randomness.
The randomness of RandFlow does not vary with the chosen
matching ratios since it is no more than the maximum
ratio. With regards to successful matching rate, RandFlow
outperformed simple greedy algorithms due to the nature of
those algorithms. Overall, RandFlow surpassed those commonly
used matching methods. It is not only a highly efficient
matching method but also includes processes for avoiding
undesirable biases during matching.

The matching ratio is data dependent and should be
set differentially at the maximum matching ratio to obtain
consistent results. During the past few decades, the suggested
matching method of case-control study was to match each
case subject with four or five controls. Previous studies had
indicated that a higher matching ratio might be desired [10],
[13], [14]. Beyond the previous studies, we tested three distinct
data sets and performed matching multiple times at a range
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Figure 5. Successful matching rate of Simple (C) and RandFlow. Simple min
and Simple max represent the minimal and the maximal matching rate from

the 100 trials run by Simple (C).

of matching ratios. In our experiments, we found that the
maximum matching ratio varied with the input data set and
the least variation of RR values always occurred when we set
the matching ratio to be the maximum. This can be explained
from the perspective of graph theory. If the matching ratio

h requested is no more than the maximum matching ratio w,
then we have many possible different matchings. From the
law of large numbers, the RR value calculated from many
instances must be stable and close to the real average case. If h
is more than w, then we do not have many choices in selecting
the pairings. The deviation of the computed RR tends to be
higher than in the former case. Therefore, rather than using an
empirical fixed matching ratio for any given study, we suggest
matching at the maximum matching ratio multiple times and
then taking an average for consistent results.

RandFlow being an exact matching has an inherent limi-
tation: that of being unable to match some study cases with
the required number of controls when the distribution of the
confounding variables is skewed. In the extreme case, even
a 1:1 match cannot be reached; thus, the RR values will be
unstable at any matching ratio. In this circumstance, in order
to obtains reliable results, other matching methods should be
considered.

V. CONCLUSIONS

In this study, we developed a highly efficient matching
method and demonstrated that it provides a good quality of
randomness. From our experiments, we further concluded
that the matching ratio is data dependent and should be set
differentially at the maximum matching ratio. For future study,
we suggest that matching should be done in two phases. The
first phase is to identify the maximum matching ratio. Then,
the second phase is to carry out matching using the maximum
matching ratio several times and taking an average statistics.
Using this two-phase matching, researchers can obtain stable
results and accordingly draw unbiased study conclusions.
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