
• The methodology shall be independent from any spe-
cific application domain.

• The methodology shall enable a product-line oriented
product development, i.e., the metamodel must allow
modeling of different variants of a product and ensure
a consistent configuration and parametrization.

• The methodology shall enable inclusion of already
existing domain models, i.e., models in a domain-
specific modeling language.

• The methodology shall enable automatic verification
of models, i.e., it shall be possible to check if the
built models adhere to the modeling paradigm and to
user-defined constraints.

• The methodology shall enable consistent modeling not
only of the product itself but also of the context, such
as the industrial system used to build the product
and allow the creation of relationships between the
modeled artifacts.

The requirements for the application framework supporting
this new modeling paradigm are as follows:

• The application framework shall be deployable in the
current corporate IT infrastructure

• The application framework shall allow a heteroge-
neous technology stack to deliver the best solution for
a designated purpose.

• The application framework shall be scalable with
increasing number of models and users.

• The application framework shall be scalable in terms
of model calculation performance.

• The application framework shall support continuous
deployment strategies and agile frameworks to enable
fast delivery and high flexibility.

• The application framework shall be efficient with
regards to computing resources and reduce the com-
pany’s ecological footprint.

A. OOC Process Description
The system lifecycle process as applied by most modern

transportation system manufacturers including Airbus includes
Design, Development, Production, Operation, Support, and
Disposal (Figure 1).

Design DisposalSupportOperationProductionDevelopment
Needs

Figure 1. System lifecycle according to [9]

As described in [9], according to the systems engineering
approach, the system design process can be further divided
into four major phases: conceptual design phase, preliminary
design phase, detailed design phase, and test and evaluation
phase (Figure 2).

The starting point for the current design process are re-
quirements. Based on these requirements, initial design con-
cepts are elaborated, assessed according to their feasibility, and
evaluated against key performance indicators such as operating
cost, weight, and range. A few concepts are then selected
and refined in a preliminary design phase, and after a more
profound analysis one of the design alternatives is chosen

Design

Requirements Conceptual 

Design

Preliminary 

Design

Detailed 

Design

Test and Evaluation

Designed 

System

Figure 2. Major design Activities according to [9]

and further refined during detailed design analysis. To support
the assessment of design concepts, various models describing
different aspects of the aircraft system are developed. However,
developing models to describe design alternatives is usually
expensive and time consuming. In practice, when a new aircraft
program is launched time pressure tends to lead to a situation
where only very few alternative design concepts can be defined
and assessed.

Retrieve Design Models 

from previous programs
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potential technology solutions
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models
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parametric models

Design
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System

“Out of Cycle” Phase

Figure 3. To-Be process with OOC phase

To address this challenge, it is suggested to introduce a new
OOC phase as depicted in Figure 3. This phase is independent
from aircraft programs and theoretically never ends. The aim is
to produce reference architectures. Reference architectures will
be decomposed into SCMs which simultaneously embed the
knowledge of product design, its manufacturing system, oper-
ability, maintainability, cost and lead time. A SCM describes
the technical solution for an architecture item in a reference
architecture decomposition and its interfaces to other parts of
the architecture, i.e., to other SCMs. Within the OOC phase,
a library of SCMs of aircraft systems and components shall
be defined that will grow over time. When a new aircraft
program is launched, these models can be used to set-up
different design concept alternatives. This shall save time and
allow definition and analysis of a greater number of design
alternatives, including more radical design concepts.

As shown in Figure 4, the OOC process can have different
phases, during which the SCMs evolve and are being refined.
The general idea is that a component matures in the OOC
process until it is potentially ready to be used in an actual
aircraft program. Once this stage is reached, the SCM is
uploaded to a central library. At any time during the devel-
opment of a new aircraft, the program can decide to pull the
generic and parametrized component out of the library and
specialize it to its needs. This process increases the reuse of
the SCMs across multiple different programs resulting in an
overall cost reduction and a decrease in the time to market for
new products. This allows Airbus to react more quickly to the
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Figure 4. Evolution of a SCM over time

ever changing demands of the aerospace market.
Current design artifacts, however, do not have the features

required to deal with not-yet specified product configurations
and to support product evolution. They are not able to antici-
pate all features at design time.

Since the SCMs are being defined outside of any particular
aircraft program, when requirements are not yet fixed, they
have to be parametric in order to anticipate scalability and
variability features and enriched with their associated limits.
In case that the models are originating from previous pro-
grams, technologies have to be applied to parametrize them.
Alternatively, the models may also be defined from scratch in
a parametric way based on anticipation of future needs and
technology trends.

SCMs provide an opportunity to capitalize interconnected
multi-functional knowledge present in the organization, and
also the capability to quickly generate new product designs
by efficiently generating parametrized versions of components
while maintaining its consistency in the overall architecture
and considering its impact on integration and manufacturing
processes. Their use will also naturally encourage reuse prac-
tices, which promise to make the development cycle faster and
more cost-efficient.

B. Relation to other modeling languages
The most popular general purpose modeling language for

systems engineering is SysML [8], which is itself an adap-
tion of Unified Modeling Language (UML) [10] for systems
engineering, yet it has still not become widely accepted [11],
[12]. Karban et al. state challenges in using SysML, which
have been figured out in the Active Phasing Experiment (APE)
project of the SE2 challenge team of the Gesellschaft für
Systems Engineering, German INCOSE chapter (GfSE) [13].
They propose several tasks for the advancement of SysML,
which underlines that the language is still under development
and will be further advanced in the future. Common points
of criticism are: that SysML is too complex, which in turn
causes complexity of SysML modeling tools; that it lacks
a precise semantic; and that it does not come with a ready
to use methodology, which is rooted in the fact that SysML
was designed as a general purpose modeling language that
should not impose a certain modeling approach. Currently, a
completely reworked version 2 of SysML is being developed
with the goal to increase adoption and effectiveness of MBSE
by enhancing precision and expressiveness of the language,

consistency and integration among language concepts and
usability by model developers and consumers.

On the other hand, there are Domain-specific language
(DSL), languages that are tailored to a specific application
domain. They offer substantial gains in expressiveness and ease
of use compared with general-purpose modeling languages
in their domain of application but generally require both
domain knowledge and language development expertise to
develop [14].

It seems to be an interesting question whether it is better to
develop a new DSL from scratch by adding modeling elements
iteratively, or start with a general purpose modeling language
and restricting it until it fits the specific use.

[15] is talking about a ”yo–yo effect here: in the 1990s,
many methods and modeling languages were popularized. [15]
is talking about a ”yo–yo effect here: in the 1990s, many
methods and modeling languages were popularized. Then, for
a while, unification based on UML was very helpful. T hen,
DSLs that were developed from scratch began to emerge. The
next trend may be a repository of UML/SysML-based DSLs
that actually unify DSLs and UML/SysML thinking.”

Our approach can be considered such a unified thinking.
As already explained, we define our own DSL but it is closely
aligned with SysML and we try to diverge only when we see
a possibility for improving beyond the standard.

III. ARCHITECTURE PARADIGMS

This Section provides background information regarding
the two main architecture paradigms that are used today:
monolithic software and MSA. Service-oriented architectures
(SoA) and serverless architecture [16] are not described in
detail as SoA, especially from a deployment perspective, still
resembles monolith software [17] and serverless can be seen
as taking MSA one step further [18].

A. Monolithic software
[19] defines a monolith as ”a software application whose

modules cannot be executed independently”. This architecture
is a traditional solution for building applications. A number
of problems associated with monolithic applications can be
identified:
• Due to their inherent complexity, they are hard to

maintain and evolve. Inner dependencies make it hard
to update parts of the application without disrupting
other parts.

• The components are not independently executable and
the application can only be deployed, started and
stopped as a whole [20].

• They enforce a technology lock-in, as the same lan-
guage and framework has to be used for the whole
application.

• They prevent efficient scaling as popular and non-
popular services of the application can only be scaled
together [21].

Nevertheless, monolithic software is still widely used and,
except for green-field new developments, there is hardly a
way around it. [22] notes that a monolithic architecture is
”often a more practical and faster way to start”. Furthermore,
if software from external parties is involved in a tool chain, it
is not possible to change its architecture style.

94

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



B. Microservices
There is no single definition of what a MSA actually is. A

commonly used definition by Lewis and Fowler says it is ”an
approach for developing a single application as a suite of small
services, each running in its own process and communicating
with lightweight mechanisms, often an Hypertext Transfer
Protocol (HTTP) resource Application Programming Interface
(API)” [23]. Microservices typically consist of stateless, small,
loosely coupled and isolated processes in a ”share-as-little-as-
possible architecture pattern” [24] where data is ”decentralised
and distributed between the constituent microservices” [25].

The term ”microservices” was first introduced in 2011 [23]
and publications on architecting microservices are rapidly in-
creasing since 2015 [26]. In 2016, a systematic mapping study
found that ”no larger-scale empirical evaluations exist” [27]
and concluded that MSA is still an immature concept.

The following main benefits can be attributed to MSA:

• Relatively small components are easier for a devel-
oper to understand and enable designing, developing,
testing and releasing with great agility.

• Infrastructure automation allows to reduce the manual
effort involved in building, deploying and operating
microservices, thus enabling continuous delivery [26].

• It is less likely for an application to have a single point
of failure because functionality is dispersed across
multiple services [17].

• MSA does not require a long-term commitment to any
single technology or stack.

[4] notes the obvious drawback of the current popularity of
microservices that ”they’re more likely to be used in situations,
in which the costs far outweigh the benefits” even when
monolithic architecture would be more appropriate.

In a study regarding the challenges of adopting microser-
vices, [3] lists the distributed nature of MSA, which leads to
debugging problems, the unavailability of skilled developers
with intimate knowledge of MSA and finding an appropriate
separation into services.

IV. DEPLOYMENT INFRASTRUCTURE

Corporate IT environments imply very strict regularities
when it comes to hard- and software architectures and deploy-
ments. Bringing in innovation in such an environment requires
following a heterogeneous approach.

While it is more challenging to adapt hardware in a
corporate context to cope with the latest innovations, service
and software developments, e.g., Advanced RISC Machine
(ARM) Central Processing Unit (CPU) platform based servers,
Graphics Processing Unit (GPU) assisted computing or wide-
usage of Field Programmable Gate Arrays (FPGAs), the ap-
plication platform layer adaption is typically less demanding
because almost any state-of-the-art deployment form, like bare-
metal, Infrastructure as a Service (IaaS), Platform as a Service
(PaaS) or PaaS can be rolled out on standard server hardware.

The rationale for choosing a specific deployment form is
based on various constraints imposed by corporate policies and
long-term strategy decisions:

• Is the envisaged deployment form available in the
corporate infrastructure?

• Has the deployment form limitations due to corpo-
rate policies, e.g., restricted internet access, restricted
repository access?

• Are there any license limitations?
• Are there geolocation limitations for certain services,

e.g., in a multinational company with multinational
regulations according to law?

• Is the service available on premise or only on public
cloud?

• Does a deployment form for a particular service fit in
the long-term corporate IT strategy, e.g., make or buy
decisions?

For the SCM modeling prototype, it was necessary to make
use of a heterogeneous software and hardware infrastructure
provided by the corporate IT. Therefore, the deployment
took place on IaaS, PaaS and Function as a Service (FaaS)
platforms. Also, end user devices are involved, for example
for running the SCM workbench (see Figure 14). That variety
of platform types was chosen to provide inside information on
how a new engineering concept could be supported by differ-
ent software architecture approaches to be efficient in terms
of development time, Continuous Integration (CI), resource
efficiency and scalability.

A. Infrastructure as a Service
In the context described above, IaaS is used to describe a

hosting platform based on bare-metal and hosted hypervisors.
It provides a variety of virtualized operating systems that are
in compliance with corporate IT regulations.

For the prototype, the services hosted on classical vir-
tual machines are mainly databases used as persistent layers
for distributed Web applications. The main reason for not
hosting the web applications together with their respective
persistence layer are resource restrictions. Current company
policies prevent external access to the databases if they are part
of the same microservice image as the hosting environment.
This would either limit database management to a web-based
command line interface or require the implementation of a
Web service deployed in the same container. Also, other
external services could not be used to access the databases.
This limitation is purely based on a decision made by the
company’s IT governance, but reflects day to day reality in
corporate environments.

For any other Web application around the SCM prototype
development, IaaS was avoided as the resource overhead
cannot compete with PaaS or FaaS.

B. Platform as a Service
In the following Section, PaaS refers to an on-premise

deployment of the Red Hat OpenShift [28] platform. It is a
platform built around Docker [29] containers orchestrated and
managed by Kubernetes on a foundation of Red Hat Enterprise
Linux.

In the prototype, PaaS plays a critical role for the con-
tinuous integration strategy. The image format used for the
deployments follows the Source-to-image (S2I) concept. S2I
is a toolkit and workflow for building reproducible container
images from source code [30]. S2I produces ready-to-run
images by injecting source code into a container image and
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letting the container prepare that source code for execution.
The source code itself is hosted on an on-premise Github En-
terprise [31] instance and the dependent resources are provided
via an on-premise Artifactory [32] deployment that reflects the
official sources of the required development environment such
as Maven [33], npm, Python or NuGet.

The whole continuous deployment chain is secured via an
exchange of keys and certificates to prevent disruptions for
example due to company introduced password cycles for the
developer and deployment accounts. The deployment speed is
improved by using system instances for the S2I chain in the
same geolocation of the company to prevent larger inter-site
data transfers and round-trip times.

The microservice concept, together with PaaS, allows a
massive reduction of resource allocations compared to an
IaaS deployment, especially if the services are single and
independent web applications.

There are still limitations in the corporate environment
that currently prevent larger scale use of the technology. The
current setup allows a limited number of pods per node,
which becomes an issue when a service uses the scaling
capability of the OpenShift platform. A second limitation is
linked to the allocated sub-network and the deployment of
the platform. All inter-service communication is routed via a
unique company internal network. The PaaS instance does not
re-use a network range that is already present in the company
for inter-service communications as it would impose other
challenges regarding communication from within the PaaS
instance towards other company services. The rationale for
the chosen PaaS implementation is primarily the reduction of
classical virtual machines for simple hosting jobs and only
secondarily the creation of a massively scalable infrastructure

for new service applications.
To cope with these limitations the prototype furthermore

reduces the deployment footprint of single services for certain
applications as described below.

C. Function as a Service
FaaS is used for tiny stateless jobs, e.g., rendering of

images. These services are monitored by an orchestrator that
decommissions containers after idling for a defined time. This
reduces resource usage further and has advantages in a scenario
with a larger number of services.

The deployment architecture of the FaaS instance allows
launching service containers within milliseconds. The applied
software stack is OpenFaaS based on Docker Swarm running
on a Debian [34] Virtual Machine (VM).

One FaaS instance consumes resources similar to a pod on
the above mentioned PaaS environment and hosts numerous
services without performance limitations. While PaaS exposes
containers under their distinct Internet Protocol (IP) addresses,
FaaS comes with a reverse proxy that hides all containers and
requires less IP addresses. This reduces the effort for routing
name resolution and their documentation.

V. IMPLEMENTATION AND INTEGRATION

The implementation of the prototype framework is split
into different logical bricks as depicted by Figure 5. The
services and applications itself can be mapped to their specific
deployment paradigm as listed in Table I. The Architect
Cockpit allows a system architect to use existing models, to
schedule the execution of simulations and to review results.
The SCM Workbench enables SCM developers to create and
version SCMs. The Back End provides different services such
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Smart Component Model creationArchitecture modeling

System/Aircraft Architect

Architecture 

Web Frontend

SCM Developer

Smart Component 

Library

Discipline Model Developers

▪ Behavioral Models

▪ Performance Models

▪ Surrogate Models

Discipline

Modeler Tooling

SCM Workbench

SCM Engine Processors

Legend

Function-as-a-Service

Custom tool

Persistent layer

Microservice

Monolithic application

Support Functions

Discipline Models

Figure 5. Service Environment & Deployment Infrastructure
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as the orchestration of different processors to perform the
execution of simulations.

TABLE I. Service Mapping to Deployment Paradigm

Deployment
Paradigm

Service or Application

IaaS Persistence Layers (Smart Component Library, MongoDB, Internal
GitHub, Internal Artifactory)

PaaS SCM Engine, Architecture Web Frontend, Service Dashboard,
OpenTURNS Sampler, Node-Red, SCM Processors, Jenkins

FaaS JSONata, Parallel-Coordinates

End User
Device

SCM Workbench

A. Architect Cockpit
In order to reduce the workload and make the work for

the architects as convenient as possible the interface for the
cockpit is setup as an Angular Single Page Application (SPA).
This allows using this entity without installing custom software
and without bothering the user with update and migration
procedures. The site is built using a Jenkins pipeline and
then deployed on a specific git repository branch. A webhook
on this branch triggers an OpenShift instance to build an
Express.js server serving the previously build site on a PaaS
cluster.

From a functional point of view the Architect Cockpit
gives a reduced view on SCMs. Only information, which is
necessary for the work of an architect is available and can
be modified. This results in a nearly full intuitive usage of
the interface and prevents faulty configurations. For example,
some parameters can only be changed within a certain range.
Ranges are defined by the model developer who knows the
limitations best. The architect does not need to have a deep
understanding of these limitations when using the predefined
models.

Figure 6. Architect entry point for gathering information on an SCM

Figure 6 shows the Architects entry point into using a SCM.
In this case it is an aircraft architect opening a parametric
aircraft model. He can then start a new study and set or
change parameters of this model which Figure 7 shows. After
running a calculation in the mixed-paradigm back-end the
front-end renders an executive result and presents it to the
architect. Figure 8 shows the result. If deeper insights into the
calculation chain is required the architect can open a more

Figure 7. User interface for defining parameter values

Figure 8. User interface for launching calculation with a SCM

detailed interactive report rendered as a bubble chart as shown
in Figure 9. When selecting a range of values for a set of
parameters an additional representation appears rendering all
distinct runs of a study into a parallel coordinates plot. Figure
10 shows this interactive diagram. It is a data analytics tool that
allows highlighting specific runs, filtering specific parameter
and characteristic values as well as removing parameters from
the diagram.

B. SCM Workbench
The SCM Workbench is a full-fledged graphical editor to

work with SCMs implemented as a monolithic rich-client
application. It is implemented in an Eclipse Rich Client
Platform (RCP) and based on the Eclipse Modeling Framework
(EMF) [35]. It is a modeling framework and code generation
facility for building tools and other applications based on a
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Figure 9. Bubble chart for browsing through the propagation of calculated values

Figure 10. Design of Experiment explorer for navigation through large sets of sampled
simulation runs

structured data model. EMF provides tools and run-time sup-
port to produce a set of Java classes from a model specification,
along with a set of adapter classes that enable viewing and
editing of the model, and a basic editor.

EMF is the basis for the Obeo Designer tool [36], which
builds on the Eclipse Sirius project [37] and allows definition
of graphic editors based on a defined EMF metamodel. This
enables rapid prototyping of modeling solutions, which is ideal
for a research/prototyping environment such as Airbus Central
R&T. Changes to the metamodel are almost instantly available
in the SCM Workbench, our prototype SCM modeling tool. On
the other hand, EMF and Obeo Designer are mature and have
been proven in industrial practice, e.g., Capella, the modeling
tool from Thales that implements the Arcadia method is built
with EMF and Obeo Designer as well [38].

Starting the SCM Workbench opens an application that
is shown in Figure 11. The left toolbar allows browsing
through the SCMs that exist in a project. A project is split
into SCMs and representations. While the SCMs contain all
functionality required for computing it, the representation adds
additional information on how to render the SCMs within the
workbench. Figure 12 shows the parameter view that allows
the SCM Developer to model the propagation of parameters
and characteristics through the SCM. Selecting entities in this
view leads to its properties to show up in an editor at the
bottom of the window. This example shows the parameter

Figure 11. SCM Workbench showing the representations

Figure 12. Parameter view in SCM Workbench

”Weight” of the SCM ”Wing”. The structure view shown in
Figure 13 describes the architectural interdependency between
underlying SCMs. In this case the ”Engine” is attached at
the ”Pylon” to the ”Wing” and the ”Wing” is attached to the
”Fuselage” at the ”Belly”.

Using such a rapid prototyping approach for the SCM
Workbench can be easily misunderstood as just a proof-of-
concept study. The final look and feel of the graphical editor
for the SCMs is only limited by the amount of development
time used for user experience (UX) polishing. The workflow
and information accessibility as well as the connection to a ver-
sioning system is comparable to other commercially available
modeling tools, which are well known by the developers. It is
assumed that a SCM developer has to take a short on-boarding
training before using the SCM Workbench.
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Figure 13. Structure view in SCM Workbench

C. Back End
The back-end is built from several different entities that

are based on different paradigms. These entities are described
in the following paragraphs.

1) SCM Library: The SCM Library stores the models that
have been created using the SCM Workbench. It is based on
Connected Data Objects (CDO) a Java model repository for
EMF models and metamodels. The specific implementation in
use is the Obeo Designer Team Server (ODTS), which enables
concurrent engineering of EMF models. A custom plug-in
allows other services and applications to access the model
repository through a Representational State Transfer (REST)
interface. Due to its complex deployment strategy the SCM
Library is deployed in an IaaS environment, which allows more
user interaction during updates.

2) SCM Engine: The SCM Engine can interpret SCMs,
check constraints and run parametric calculations either as a
single simulation run or as a Design of Experiments (DoE)
setup with multiple samples. It is a Java application executed
in an OpenJDK VM. Access to the engine is established
through REST interfaces that are hosted on a Jetty server.
The endpoints are described and documented using the Jersey
framework. The SCM Engine is hosted on a PaaS instance and
allows rolling updates, automated builds and scaling.

3) Model Processors: The Performance Model API serves
as a glue between external domain-specific models with their
own solver or simulation engine and the SCM Engine. A
Model Processor is an application that implements this API
to execute a specific model type. The API enables the SCM
Engine to orchestrate simulations tools in a unified way and
guides developers through the process of integrating additional
simulation tools into this environment. In order to include
a new model type in the SCM application framework, a
model type specific Model Processor has to be implemented
that implements the Performance Model API and connects
to the model type specific solver or simulator. A reference
implementation shows how this works for Excel models. An
Excel model is processed by a Java application running in an
OpenJDK VM using the Apache POI framework. Depending
on the type of model and, e.g., the license and installation

requirements of the model solver or simulator, the Model
Processor can be deployed in any of the available deployment
options IaaS, PaaS and FaaS.

Figure 14 depicts how the components of the SCM tool
framework prototype are deployed in our infrastructure.
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Figure 14. Prototype tool deployment

To make the polyglot approach of the MSA work and
integrate each service all participating entities need to agree
to a commonly understood interface. For the prototype REST
over HTTP was chosen as the default interface combined
with JavaScript Object Notation (JSON) as serialization for-
mat. REST over HTTP is a de facto standard since almost
every technology stack provides at least an HTTP API if not
specialized REST frameworks and clients such as Java API
for RESTful Web Services (JAX-RS). JSON as a serialization
format is accepted and provides solid tooling on all integrated
technologies. In addition many front-end frameworks natively
support JSON such as JavaScript or Ruby. This eases the
integration work needed to be done for the implementation of
our demonstrators mainly the Architect Cockpit. As an added
bonus it is easily digestible by human user, which helped
tremendously with debugging. To build up process chains
utilizing the deployed microservices we selected Node-RED. It
provides all the tools necessary to handle HTTP based REST
APIs and JSON based message bodies and is integrated well
into the existing environment.

If we dissect the service environment infrastructure shown
in Figure 5 we can see what protocols are being used in
the communication between the different services. As Figure
15 shows the communication through the HTTP RESTful
web services is the predominate form of communication in
our prototype. The only deviation from this paradigm occurs
in the communication between the SCM Workbench and the
SCM Library where the tool provider specifies Transmission
Control Protocol (TCP) as interface. We did not challenge this
implementation since it is provided by the Obeo Designer
Team Server; however, we implemented a Mapper Plugin
that provides access to the stored SCM Models via a REST
interface to incorporate it in our service environment. The
HTTP REST approach is especially useful for incorporating
the various Discipline Models Processors into the overall pro-
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Figure 15. The use of REST interfaces in our prototype

cess. Since every processor works on a dedicated technology
stack designed for his task utilizing a unified interface makes
integration into the overall process network easy.

After the explanation of all the building blocks we will
present a case study to demonstrate the framework in action.

VI. CASE STUDY

This section describes a case study that has been made
using the SCM Workbench with the purpose of showing
individual features of the tool-chain.

The described model has been provided showing an Air-
craft consisting of Fuselage, Wing and Engine. The hierarchi-
cal view, depicted in Figure 16, of the SCMs shows that all
models are placed in one package. The hierarchical view is
equivalent to SysML’s class diagram. This view shows that
the Aircraft is decomposed into Fuselage, Wing and Engine.
However, it does not show their interdependency.

Figure 16. Case study: Hierarchy view

All models are SCMs. The Aircraft is a special case,
because it is decomposed into other SCMs.

In order to describe the interdependency within the Aircraft
SCM the internal structure diagram was used, shown in Figure
17. It shows that the Fuselage and Wing are connected with
each other at the Belly. Wing and Engine are connected at
the Pylon. This diagram is similar to SysML’s internal block
diagram. The blue box shows the scope of the SCM. The green
boxes represent the decomposition into other SCMs.

Figure 17. Case study: Structure view

Additionally there is the parameter view, shown in Figure
18, which describes in-transient calculation of the model char-
acteristics from the set of parameters. All parameters appear in
purple color and all characteristics in green color. This specific
SCM describes the calculation of the Aircraft’s weight and
range from its length, cross-section and payload. Light yellow
color represents an aggregation function that generates one
value from a list of values. In this case both aggregation nodes
compute a sum. Direct calculations on performance models are
represented by the orange boxes. They refer to a domain model
manifest, describe machine-readable how these domain models
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shall be executed and how parameters and characteristics are
transmitted to and from them.

In order to ensure compatibility between parameters and/or
characteristics a common type system is available. It allows to
specify the data to be exchanged during the simulation between
the components. Besides the typical basic types it allows
structured types like lists and key-value-pairs. An additional
feature is to nest types as references into other types. As an
example the Aircraft parameters are shown in Figure 19. As
an example for a basic type the weight is shown in Figure 20.

VII. EVALUATION

Evaluating the mixed-paradigm approach, we experienced
that developers where able to create a working deployment
much faster compared to the traditional approach using virtual
machines. This also includes the amount of times that a new
version of the service was built from once a week to several
times a day using the automated CI pipeline. This increased the
general development velocity as well as the prototypes feature
set, which helped us to tailor the application to our stakeholder
needs.

The raised deployment speed increased the number of times
we experienced broken client applications. This was due to
a violated interface contract between the services if the new
features where not integrated properly. A well-defined and
adhered to interface specification is paramount for the success
of introducing this mixed-paradigm approach.

In general, we noticed a greater sense of ownership of
single developers over their service/code, which lead to a hike
in the overall implementation quality. The mandatory usage
of the git version control system increased the maintainability
of the code base. The combination of git and the OpenShift
framework made it easy to recover from failures and faulty
builds, which lead to a constant up-time of all services.
In the future the introduction of additional agile software
development principles like Test Driven Development could
further increase the code quality.

However, the deployed solution is marked as a proof of
concept or prototype which lead to the conclusion that it is
not ready for operational use for various reasons. The main
focus of the development lay on the proof of feasibility of the
SCM modeling methodology as described in [6]. As soon as
first parts of the prototype were available selected engineering
departments started trials with the solution, which lead to fur-
ther improvements of the underlying methodology as well as
the overall usability. The overall perception was very positive,
which lead to the conclusion that the developed methodology
points in the right direction as well as the performance of
the proposed tool set based on the described approach in this
paper.

The mixed-paradigm approach that was used to develop
and deploy the prototype discussed in this paper led to reduced
complexity, lower coupling, higher cohesion and a simplified
integration. This in turn enabled agile collaboration for con-
tinuous delivery and integration of the solution.

VIII. OUTLOOK AND FUTURE CHALLENGES

In the previous sections, we described how MSA can
support the chosen polyglot approach utilizing a variety of
different technology stacks and storage solutions. This enabled

us to select the most fitting technical solution for the required
functionality. Additionally the network based architecture pro-
vides an environment that is well suited for a multinational
company like Airbus with sites scattered throughout different
sites and IT domains. It also provided a commonly understood
deployment layer for our cross-functional project team.

MSA supports us with the agility and velocity needed to
convince our customers of our approach and implement a
prototype that can handle the complexity of our SCM mod-
eling approach. However, during the development we found
stumbling blocks that need awareness once the scale changes
from a research project prototype to a full scale industrial roll
out.

Corporate IT – The proposed environment builds and
hosts microservices in an agile and automated way. This
requires the setup and maintenance of a CI pipeline (in our
case OpenShift/GitHub), which results in additional costs as
well as an IT department that is capable of dealing with
those investments. Additionally setting up certificate chains
and firewalls to allow for secure communication inside the
corporate network need to be accounted for. On the developer
side roadblocks like proxy server hindering communication
and enabling cross-origin resource sharing (CORS), which
allows for communication between different domains need to
be taken care of.

Service discovery – Once we reached a critical mass of
microservices environment we discovered that it is hard to keep
track of what services have already been implemented and
what functionality each service provides. Even in our research
project this point was reached rather quickly. Thus, we intro-
duced Swagger [39] as a Web based documentation for all our
services and implemented a simple dashboard where services
could be registered against. This allowed for manual service
discovery across the team. In the future automated service
discovery through bots and processable service descriptions
will bring more value to the MSA approach by handling the
sprawling service environment.

Now that we optimized the CI pipeline in the first half
of the project we experience a rapid increase in deployed
services. This allowed us to swiftly introduce new functionality
as microservices, boosting the capabilities of our proof of
concept prototype. It shows that MSA can initially speed up the
implementation velocity of a new project. Once we continue
with the project more efforts will go towards managing the
volume of services as well as (network) performance and
reliability.

IX. CONCLUSION

Past experience shows that current aircraft and aircraft
system development processes are not suitable for keeping
up with the rising complexity of products. Those processes
are under pressure from market-driven demands for faster, and
from business-driven demands for cheaper aircraft programs.
In this paper, we presented a proposal for a change from a
traditionally linear development approach to one that includes
a parallel, OOC component development phase. This approach
required a supporting IT infrastructure that was built as a pro-
totype at Airbus in the frame of a research project. To reduce
both time and resources required for building this prototype
state-of-the-art architecture and deployment paradigms were
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Figure 18. Case study: Parameter view

Figure 19. Case Study: Aircraft parameter modeled in the type system

Figure 20. Case Study: Basic parameter representation in the type system

used and mixed with more classic approaches to get the best
of both worlds.

A direct, specific and measurable comparison between the
described mixed-paradigm and a classical approach is not
possible as it would have required the same infrastructure
landscape to have been developed and deployed multiple times
using different concepts. Nevertheless, implementers were
given the freedom to decide for every distinct artifact to freely
choose the paradigm used for implementation. Furthermore,
developers were allowed to split artifacts, which enables to
select the right paradigm for each problem within. Later the
interface documentation allowed the developers to easily re-
implement an artifact using a different paradigm in case the

initial decision for a specific paradigm reveals to have been
not an optimal choice. Therefore, the selection of the right
paradigm appears to be inherent and native. To support a newly
developed MBSE approach called SCM modeling, a support-
ing application framework prototype had to be developed.
Instead of a single architecture and deployment paradigm, a
mixed-paradigm approach was followed to take the advantages
of the different options and to consider external constraints
coming from the IT governance. The software bricks were
implemented in monolithic, SoA, microservice and serverless
architecture glued together by REST interfaces over HTTP.
The deployment took place on desktop-PC, IaaS, PaaS and
FaaS platforms. It provided insight into how a new engineering
concept could be supported by different software architecture
approaches to be efficient in terms of development time,
continuous integration, resource efficiency and scalability.
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