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Abstract—Testing concurrent systems is a complex task. In 
traditional software unit testing, a test sequence is always 
composed of a stimulus and its corresponding fully 
predictable response. With concurrent systems, this simple 
model no longer holds as the state of the system under test 
(SUT) changes while several users place their requests. Race 
conditions are a particularly challenging problem for testing, 
since they will occur and must be identified, but are very 
disruptive to the test environment.  An easy solution to this 
problem is to use semaphores that avoid race conditions. 
Since semaphores do not exist in TTCN-3, we have explored 
solutions using the TTCN-3 concept of external functions. 
This allows us to define behavior in the run-time language 
used by the TTCN-3 compiler, in our case Java, without 
having to modify the TTCN-3 standard. However, Java 
semaphores can block other parallel processes which may 
actually defeat parallelism. Thus, we have explored other 
solutions based on resource blocking rather than process 
blocking. This allows two or more concurrent processes to 
perform operations on different resources and thus achieve 
more sophisticated concurrency testing.  

Keywords- software testing-concurrent systems; TTCN-3; test 
oracles; race conditions; semaphores. 

I.  INTRODUCTION 

This paper is a significant extension and update of our 
previously published SOFTENG 2020 paper that 
presented preliminary results for advanced techniques for 
testing concurrent systems [1].  

Testing concurrent systems is complex. In traditional 
software unit testing, a test sequence is always composed 
of a stimulus and its corresponding fully predictable 
response [2]. With concurrent systems, this simple model 
no longer holds as the state of the system under test 
(SUT) changes while several users place their requests. 
Race conditions are a particularly challenging problem for 
testing, since they will occur and must be identified, but 
are very disruptive to the test environment. 

Some definitions and implementations of parallel 
testing can be found in [3][4][5][6][7]. Obviously there 
are different kinds of parallel testing. In the previous 
references, the main concern is to run sequential tests in 
parallel in order to save time. Instead, we focus on 
concurrent testing of states in a (SUT) as the test purpose. 
There are two main categories of concurrent testing:  
 

 Response time testing when a large number of 
requests are sent to a server as shown in Figure 
1. Techniques for addressing this category of 
concurrent testing using TTCN-3 are presented 
in [8]. 

 Testing the processing logic of the SUT when 
confronted by several requests from parallel 
users where the state of the SUT is changing as a 
result of requests of the users and thus affecting 
each user’s behavior. 

 

 
Figure 1. Parallel system configuration 

In this paper, a case study, using the formal test 
specification language TTCN-3[9], illustrates the 
challenges for test coordination for this category of 
testing, especially with respect to race conditions, and 
proposes techniques to address them. We also propose 
shared variables and semaphores in the TTCN-3 parallel 
test component model as a mechanism to implement 
dynamic test oracles. Overall, the motivation to use a 
formal test specification language such as TTCN-3 and its 
related available execution tools to take full advantage of 
its logging information in order to rapidly detect faults 
due to race conditions. We also propose enhancements to 
the TTCN-3 language by introducing semaphores as a 
built-in language feature to make our testing concurrency 
problem statement usable. 

There are two kinds of race conditions: 
 Shared variables racing 
 Behavior racing 

 

A. Shared variables racing 

The only way to predict a state of a SUT when 
multiple users are present is to use a shared variable to 
record for example the state of the inventory of a given 
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product each user is trying to order. Each time a user 
orders a product, the inventory is decreased by one unit. 
However, in concurrency, a user trying to make a decision 
on the state of the SUT may have the shared variable 
overwritten by another user, thus producing a wrong 
result. Here the solution would be to lock the shared 
variable so that no other user can overwrite it. 

B. Behavior racing 

We have determined that shared variable locking is 
actually not sufficient to solve the race condition problem. 
We determined through experimentation that some 
sequence of events must also be locked. For instance, 
once the expected state of the SUT is determined using 
the shared variable, we must prevent another user to place 
a request for the same product to the SUT. The SUT also 
must decrease its inventory of the product. Thus if another 
user places an order while executing the actual purchase 
of a product, this will decrease the inventory and the 
calculated inventory by the first user will be out of synch 
with the real inventory of the SUT once the second user 
has interfered. 

II.  A CASE STUDY 

In sub-section A we define the dynamic state problem 
to be addressed. In sub-section B we propose three 
methods to specify concurrent systems tests. 

A. Defining the problem 

Although we have studied extensively testing of 
concurrency problems in industrial applications [10][11], 
the following simplified case study is about testing the 
transition of the state of a system and the kind of 
responses it should reply with. Here we have parallel 
users that send a request to a book ordering system and 
get two kinds of replies depending on the two possible 
states of the SUT: an invoice and shipping details if it has 
stock; or an out of stock notification. The problem is that 
it is impossible to predict the test oracle (predicted 
response) since each user is independent from each other 
and thus does not know the state of the SUT individually. 
This is similar in e-commerce applications like on-line 
ordering of merchandise and hotel booking and train or 
airline reservations systems. A typical warning message 
for a hotel reservation system is to warn the customer that 
there is only one room left at a given rate. Thus from a 
tester point of view, it is hard to predict if a response 
corresponds to a success or a failure. However, if the 
users are coordinated, the response to a given user can be 
predicted.  

The interesting aspect of this simple example is that 
we have tried various approaches to coordination and 
some resulted in race condition problems, thus disturbing 
the test process altogether. Table I shows the values of 
test oracles depending on the state of the SUT, in our 
case: has stock; or out of stock. In short, a test passes if an 

invoice and shipping confirmation is received when there 
is inventory left or when out-of-stock is received and the 
server is out of stock. All other cases are failures. 

Most testers use unit testing that is simple but misses 
some aspects of the test. Unit testing would consist of 
putting the SUT in the appropriate state and check the 
individual responses to a request. 

What is missing from a unit test is the dynamic aspect 
of seeing the state change as the maximum available 
inventory is reached. 

TABLE I. EXPECTED TEST ORACLES DEPENDING ON THE 
STATE OF THE SUT 

Response to 
the User/state 

Has stock Out of stock 

Invoice Pass Fail 
Out of stock Fail Pass 

B. TTCN-3 test case implementation 

The TTCN-3 implementation of the user parallel test 
component (PTC) is based on a simple request/response 
behavior pattern with the response being analyzed with 
the four possible configurations of two states and two 
corresponding responses making use of the TTCN-3 alt 
(alternative) construct. Each alternative is guarded with 
the predicted state of the SUT. The receive statement 
contains what the received message from the SUT should 
match and the predicate between square brackets, the 
predicted state of the SUT. In Figure 2, the state variable 
must be provided. This happens either as setting its value 
while starting the PTC or computing it as the PTCs place 
their orders. 
 
function ptcBehavior() runs on PTCType 
{ 
  p.send("purchase"); 
     
  alt { 
     [state == "has_stock"]  
        p.receive("invoice") { 
  setverdict(pass); 
   } 
 [state == "out_of_stock"]  
        p.receive("invoice") { 
  setverdict(fail); 
   } 
 [state == "out_of_stock"]  
         p.receive("out_of_stock") { 
  setverdict(pass); 
    }   
 [state == "has_stock"]  
    p.receive("out_of_stock") { 
  setverdict(fail); 
    }   
  }; 
}  

Figure 2. PTC Client test verdicts situations 
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Instead, unit testing would break down the problem into 
two separate test cases and especially without the need for 
PTCs. Here the unit is represented by a given state. 
 
First unit test case: 
 
function unitTestBehavior_1() runs on  
                           MTCType { 
  p.send("purchase"); 
     
  alt { 
     [] p.receive("invoice") { 
  setverdict(pass); 
   } 
     [] p.receive("invoice") { 
  setverdict(fail); 
   } 
 
Second unit test case: 
 
     [] p.receive("out_of_stock") { 
  setverdict(pass); 
     }   
     [] p.receive("out_of_stock") { 
  setverdict(fail); 
     } 
   } 
 

The predicates are empty because the state is 
predictable due to the manipulation of the SUT by the 
tester by emptying the data base in the first case and 
populating the database in the second case. Another 
drawback of unit testing is that the testing process would 
not be entirely automated since it requires a manual 
intervention of the tester between the two states. 

Assuming that the SUT has three books on hand, the 
ideal testing results would be to get an invoice response 
for the first three users and an out of stock response for 
the remaining users as shown on Figure 3 and an overall 
pass verdict for the test. 

However, the results shown in Figure 3 are only ideal 
and rarely happen. Instead, we see more results of the 
kind of Figure 4 that show the full effect of race 
conditions because each PTC starts at different times. 

 
The failures shown in Figure 4 are the result of 

mismatches between expected and received messages 
when tests are executed without coordination.  

 
 

 
Figure 3. Ideal testing responses 

 
     This enables the tester to locate rapidly the point of 
failure and investigate the problem rapidly. 
 

 
Figure 4. Uncoordinated execution results 

 
Figure 5 shows the TTCN-3 tools data inspection feature 
that provides detailed message and test oracle contents 
that enable the tester to understand the reasons for failure 
especially when complex data types with many fields are 
used. 
 

 
Figure 5. Expected vs received values 

 
In this case, one may wonder where the state value 

comes from. This is where the test coordination is taking 
place. TTCN-3 has the concept of main test component 
(MTC) that precisely looks after that. 

In our case the coordination is achieved via abstract 
coordination ports cp that link the master test component 
and the PTCs as shown in Figure 6. 
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Figure 6. Test coordination with MTC 

 
There are three ways to address test coordination.  
 

1) Using coordination messages  
 

The approach consists in using coordination messages 
between the MTC and the PTCs that contain the predicted 
state of the SUT. On the user PTC’s side we need an 
additional line that receives the state from the MTC 
before the user attempts to test the SUT: 
 
cp.receive(charstring:?)->value state; 
 
On the MTC side, we send a message containing the state 
to the PTC that the tester thinks the server is supposed to 
be in. In our case this is achieved by changing the state 
once three requests have been placed as follows: 
 
testcase coordinated_msgs_test() 
   runs on MTCType system SystemType { 
       … 
   cp.send("has_stock") to user1; 
   cp.receive("ack") from user1; 
   
   cp.send("has_stock") to user2; 
   cp.receive("ack") from user2; 
   
   cp.send("has_stock") to user3; 
   cp.receive("ack") from user3; 
   
   // after three purchase requests,  
   // the item is now out of stock 
   
   cp.send("out_of_stock") to user4; 
   cp.receive("ack") from user4; 
   
   cp.send("out_of_stock") to user5; 
   cp.receive("ack") from user5; 
   
   … 
} 

Figure 7. Test coordination by MTC 

In TTCN-3, the receive statement is blocking. Thus, 
the rest of the behavior of the PTC will not execute while 
the coordination message has not been received. 

Note the returned ack message. The ack is used to 
prevent behavior racing. In other words, a new individual 
test cannot occur before the previous test has fully 
completed, otherwise more requests are being sent to the 
server which may change its state before a response is 
sent back to a user resulting in failure. We have observed 
that removing the ack effectively produces race 
conditions. We leave this verification as an exercise for 
the reader. 
 

2) Coordination using PTC Threads operations 
PTCs are in fact translated by the TTCN-3 compiler 

that produces an executable in a general purpose language 
(GPL) such as Java or C++ and many others using 
threads. Thus, one typical thread operation that is 
available in TTCN-3 is to check if the thread has 
terminated. This is represented in TTCN-3 with the 
keyword done. Here, as shown in Figure 8, each PTC is 
started using a parameter representing the function 
behavior that carries the predicted state of the SUT.  

There are in fact two ways to use this feature: the 
first one consists in placing the done statement 
immediately after the corresponding start statement. This 
would result in transforming a concurrent system into a 
sequential execution system with effects similar to the 
coordination messages solution shown in the previous 
section.  
 
testcase thread_operations_test() 
   runs on MTCType system SystemType { 
       … 
   user1.start(purchasingBehavior 

     ("has_stock")); 
   user2.start(purchasingBehavior 
                       ("has_stock")); 
   user3.start(purchasingBehavior 
                       ("has_stock")); 
 
   user1.done; 
   user2.done; 
   user3.done; 
 
   user4.start(purchasingBehavior 
                    ("out_of_stock")); 
   user5.start(purchasingBehavior 
                    ("out_of_stock")); 
   user6.start(purchasingBehavior 
                    ("out_of_stock"));
  
   user4.done; 
   user5.done; 
   … } 

Figure 8. MTC behavior using PTC threads operations 
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In this second approach, we have chosen to place all 
the done statements after all the start statements for the 
first three PTCs to simulate the database reaching the zero 
inventory point. This has the advantage to at least 
conserve some of the concurrent behavior of the system 
and thus avoiding a full sequential test execution of PTCs. 

 
3) Introducing semaphores to TTCN-3 
In a way the second approach is less sequential than the 

first one but still somewhat sequential. Thus, we have 
explored a third solution that would eliminate some 
aspects of the sequential aspect of this test behavior. The 
method consists in using shared variables and Java 
semaphores among PTCs. The shared variable keeps track 
of the inventory on hand and enables a PTC to determine 
the state of the SUT on its own. However, TTCN-3 does 
not have the concept of shared variables, nor semaphores. 
We have explored how we could implement semaphores 
in the Spirent TTworkbench tool [12] using the TTCN-3 
concept of external functions to link the TTCN-3 abstract 
behavior description to functions that are written in a GPL 
(e.g., Java in our case). This avoids changing the ETSI 
standard which would require a lengthy approval process. 
 

III. IMPLEMENTING SHARED VARIABLES AND 

SEMAPHORES IN TTCN-3 

In Java, shared variables are implemented using 
independent classes that contain the shared variable as an 
attribute. In TTCN-3, there is a simple way to reproduce 
this model using TTCN-3 user defined data types that 
allow the creation of PTCs that are actually translated into 
Java classes by the compiler. 
 
For semaphores, we will use two different types of 
approaches: 
 

 A semaphore data type related to an external 
function written in Java that creates an instance 
of the Java Semaphore class. 

 Our own definition of semaphores directly in 
TTCN-3. 

 
The second approach is for the purpose of using a 

more flexible kind of semaphore as opposed to the Java 
semaphore that blocks any process that did not acquire the 
semaphore. The second approach allows blocking 
individual resources rather than processes (here PTCs). 
 

A. implementing shared variables 
 

This is achieved by creating a datatype to keep track 
of the inventory. In this case we are trying to keep track 
of the inventory of two different products, product_A and 
product_B. 

  type component InventoryCompType 
  { 
     var integer inventory_A := 3;     
     var integer inventory_B := 4; 
  } 

 
This data type is then used to create an instance of a PTC 
that will receive requests from users, compute the state of 
the inventory and reply with that state. Therefore we need 
to add a communication port that will be used to receive 
or send messages with the users: 
 

port CoordPortType ip; 
 

The basic inventory component is found on Figure 9. It is 
composed of two groups of events: 

 Receive a request from a user 
 Compute the actual state of the inventory 
 Return that state to the user 

 
function InventoryBehavior()  
          runs on InventoryCompType { 
 
var InventoryCompType user;   
 
alt { 
  [] ip.receive("purchase_A")  
                  -> sender user { 
 
     if (inventory_A > 0) {  
  ip.send("has_stock") to user; 
              
      inventory_A := inventory_A - 1; 
     } 
     else { 
 ip.send("out_of_stock") to user; 
     } 
     repeat; 
  } 
  [] ip.receive("purchase_B")  
                  -> sender user { 
     
     if (inventory_B > 0) {   
 ip.send("has_stock") to user; 
  inventory_B := inventory_B - 1; 
     } 
     else { 
 ip.send("out_of_stock") to user; 
     } 
     repeat; 
  } 
  [] api.receive("stop") { 
     setverdict(pass); 
  } 
 } 

Figure 9. Inventory computation behavior 
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B. Test configuration 

 
There are four basic types of parallel test components 

as shown in Figure 10: 
 

 The master test component (MTC) 
 The inventory component 
 The users components 
 The System Under Test component (SUT) 

 
 

 
Figure 10. Shared variable handled in a separate PTC 

 
The SUT component defined as follows: 
 
type component SUTType { 
 port MyPortType up;  
 port MyAdminPortType aps; 

port MyAdminPortType api; 
} 
 
     The port up will carry all the communication messages 
between the SUT and the individual user PTCs. The 
admin port aps is used at the very end of the test in order 
to terminate the SUT that otherwise is in a constant loop 
trying to receive messages from the users. The port api is 
used to terminate the inventory PTC that is in a similar 
continuous loop. 
 
The user’s component is defined as follows: 
 
type component PTCType { 
 port MyPortType sp; 
 port InventoryPortType ip; 
} 
 
     The port sp is used to communicate with the SUT 
while he port ip is used to communicate with the 
inventory PTC to inquire about the state of the inventory.  
 
     Finally, we define the master test component (MTC) as 
follows: 
 

type component MTCType {  
 port MyAdminPortType aps; 
 port MyAdminPortType api; 
} 
 

The port aps is used to communicate with the SUT 
while the port api is used to communicate with the 
inventory PTC. 

C. Testcase configuration under Java semaphores using 
TTCN-3 external functions 

 
A TTCN-3 test case in our particular PTC 

configuration is shown in the following TTCN-3 code.  
As shown in Figure 11, it consists of creating an instance 
of a Semaphore object in the MTC that is passed on to 
each created user PTC and connections between the MTC 
and each instance of user PTCs. This enables a user to 
acquire or release that centralized Semaphore object.  

 
Testcase   
   inventory_semaphore_approach() 
   runs on MTCType system SystemType { 
   
   var Users user; 
   var SemaphoreType semaphore; 
  
   semaphore := Semaphore.new(); 
 

This instance of Semaphore is then passed on to each 
user PTC when starting their behavior function. 

 
   for (var integer i:=0; i <nb_users;  
                           i:=i + 1) { 
 user[i].start( 
          purchasingBehaviorSemaphore( 
                           semaphore)) 
   } 

 

 
 

Figure 11. Java semaphore integration 
 

In creating a SUT PTC and each user PTC and starting 
them using a specific behavior function, we also create an 
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inventory PTC that keeps track of the inventory level for 
each product and that is connected to each PTC that query 
it.  
 
TTCN-3 is based on strong typing. Thus, while the 
TTCN-3 source code is converted to Java, semaphores in 
TTCN-3 need to be typed. The translator then maps the 
two versions automatically. The definition of TTCN-3 
semaphore is based entirely on external functions 
definitions as follows: 
 
First the abstract definition of semaphores: 
 
module Semaphore { 
  type integer SemaphoreType; 
   
  external function new()  
        return SemaphoreType; 
   
  external function acquire 
            (SemaphoreType semaphore); 
   
  external function release 

(SemaphoreType semaphore); 
} 
 
     We have explored the approach of using the existing 
external functions definition feature of TTCN-3 to link 
the above abstract semaphore to the underlying Java 
semaphores as shown in Figure 12. 
 
 

 
 

Figure 12. TTCN-3 external functions 
 
 
The external function Java code is as follows: 
 
package com.spirent.externalfunctions. 
                            semaphore; 
import java.util.HashMap; 

import java.util.concurrent.Semaphore; 
import org.etsi.ttcn.tri.TriStatus; 
import com.testingtech.ttcn.annotation 

       .ExternalFunction; 
import com.testingtech.ttcn.tri. 
    AnnotationsExternalFunctionPlugin; 
 
  @ExternalFunction.Definitions( 
                   ExtSemaphore.class) 
  public class ExtSemaphore extends    
   AnnotationsExternalFunctionPlugin { 
 
   private HashMap<Integer, Semaphore> 
         semaphores = new HashMap<>(); 
  
   @ExternalFunction(name = "new",  
                 module = "Semaphore") 
   public int newSemaphore() { 
     int result = semaphores.size(); 
     semaphores.put(result,  
                    new Semaphore(1)); 
     return result; 
   } 
  
   // external function acquire( 
             SemaphoreType semaphore); 
   @ExternalFunction(name = "acquire",  
                 module = "Semaphore") 
   public void acquire(int semaphore)  
   { 
 try { 
    
   semaphores.get(semaphore). 
                            acquire(); 
 } catch (InterruptedException e) 
        {throw new  
                RuntimeException(e); 
   } 
    } 
 
    // external function release 
            (SemaphoreType semaphore); 
   @ExternalFunction(name = 
      "release", module = "Semaphore") 
   public void release(int semaphore)  
   {    
      semaphores.get(semaphore). 
                            release(); 
   } 
  
   @Override 
   public TriStatus tearDown() { 
 semaphores.clear(); 
 return super.tearDown(); 
   } 
} 
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While executing the test case based on external Java 
Semaphores, we have noticed that the results look like 
another type of sequence comparable to our first approach 
shown on Figure 3, with the only difference a random 
order of execution of user PTCs behavior and the 
calculation of the inventory state rather than the 
hardcoded state used in this first approach.  

 
     The user behavior is merely framed by the invocation 
of the semaphore acquire and release statements as shown 
in Figure 13. 
 
 
function purchasingBehaviorSemaphore( 
              SemaphoreType semaphore) 
                     runs on PTCType { 
  var charstring state; 
         
  timer t := rnd(); 
  t.start; 
  t.timeout; 
 
  Semaphore.acquire(semaphore); 
       
  //  communication with inventory PTC 
        
  ip.send("purchase_A"); 
  ip.receive(charstring:?) ->  
                          value state; 
        
  // communication with SUT 
              
  sp.send(request_product_A_t); 
    
  alt { 
    [state == "has_stock"] 
     sp.receive(myInvoiceResponse_t) { 
     setverdict(pass); 
    } 
    [state == "out_of_stock"]  
     sp.receive(myInvoiceResponse_t) { 
     setverdict(fail); 
   } 
   [state == "out_of_stock"]  
  sp.receive(myOutOfStockResponse_t) { 
     setverdict(pass); 
  } 
  [state == "has_stock"]  
  sp.receive(myOutOfStockResponse_t) { 
     setverdict(fail); 
  } 
 }; 
      
 Semaphore.release(semaphore); 
} 

 
Figure 13. User behavior with Java semaphore 

 
 
 

D. Semaphores defined in TTCN-3 

 
Effectively, the Java semaphore blocks completely the 

execution of user PTCs that didn’t acquire the semaphore 
as of yet. Here we have determined that this does not 
provide a full concurrency behavior. Thus, instead, we 
have focused on a resource-oriented semaphore that 
would block the inventory rather than the user processes. 
This would allow a user to purchase product A while 
another user would purchase product B. There are no race 
condition in such a case. 

 
In this approach, we need a mechanism in the 

inventory PTC to block its access by any PTC that did not 
successfully acquire the semaphore. 
 

The test case is similar to the one used for the Java 
semaphore example with one major difference, there is no 
instance of a Java semaphore. Our own semaphore is 
actually implemented in the Inventory behavior where the 
inventory shared variables are protected. 
 

1) User behavior 
 

The user no longer uses the Java semaphore but instead 
invokes our own semaphore using TTCN-3 procedure 
invocations (call acquire) as shown on Figure 14. Since 
TTCN-3 procedures are non-blocking, the semaphore call 
will wait until the resource (inventory) is released again. 
This is indicated by the getreply statement that is 
triggered only if the call to acquire is accepted.  The rest 
of the user behavior is identical to the one used for Java 
semaphores. 
 
Function   
     purchasingBehaviorInventoryComp()  
                runs on InventoryPTC { 
  var charstring state; 
              
  semaphore.call(acquire:{}, 100.0) { 
     [] semaphore.getreply {} 
     [] semaphore.catch(timeout) { 
       setverdict(inconc, "could  
              not acquire semaphore"); 
  return; 
 } 
  } 
     
  inventory.send("purchase_A"); 
  inventory.receive(charstring:?) ->  
                          value state; 
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  p.send(request_product_A_t); 
  alt { 
   [state == "has_stock"]  
     p.receive(myInvoiceResponse_t) { 
 setverdict(pass); 
     } 
   [state == "out_of_stock"]  
     p.receive(myInvoiceResponse_t) {     
 setverdict(fail); 
     } 
   [state == "out_of_stock"]  
     p.receive(myOutOfStockResponse_t)  
                                    { 
     setverdict(pass); 
     } 
   [state == "has_stock"]  
      p.receive 
           (myOutOfStockResponse_t) { 
        setverdict(fail); 
      } 
   } 
 } 
     
 semaphore.call(release:{}); 
} 

Figure 14. user behavior with our definition of semaphores 
 

2) Use of semaphores in the inventory PTC 
 

The procedures acquire_A and release_A and their 
corresponding names for product B are residing in the 
inventory behavior. Here we are using the variables 
inventory_A_blocked and its counterpart for B to control 
which part of the inventory calculation code can be 
reached. 
 
function InventoryBehavior()  
          runs on SemaphoreInventory { 
  var integer blockedBy_A := -1; 
  var integer blockedBy_B := -1; 
  var InventoryPTC user; 
  var boolean inventory_A_blocked :=  
                                false; 
  var boolean inventory_B_blocked := 
                                false; 
 
  alt {   
   [inventory_A_blocked == false] any 
     from sem_p.getcall(acquire_A:{})  
         -> @index value blockedBy_A { 
   
 inventory_A_blocked := true; 
           
      sem_p[blockedBy_A].reply( 
                 acquire_A:{}); 
 repeat; 
   }  

   [inventory_A_blocked == true]     
       sem_p[blockedBy_A].getcall( 
                     release_A:{}) { 
           
 blockedBy_A := -1; 
   
 inventory_A_blocked := false; 
 repeat; 
   }  
   [inventory_B_blocked == false] any  
      from sem_p.getcall(acquire_B:{})  
         -> @index value blockedBy_B { 
   
 inventory_B_blocked := true; 
 sem_p[blockedBy_B].reply( 
                      acquire_B:{}); 
         repeat; 
   }     
   [inventory_B_blocked == true]  
          sem_p[blockedBy_B].getcall( 
                       release_B:{}) { 
 blockedBy_B := -1; 
 inventory_B_blocked := false; 
 repeat; 
   }  
 
   [inventory_A_blocked == true]  
    inventoryPort.receive( 
     "purchase_A") -> sender user { 
 if (inventory_A > 0) {  
   inventoryPort.send( 
              "has_stock") to user; 
             
   inventory_A := inventory_A - 
1; 
 } 
 else { 
    inventoryPort.send( 
            "out_of_stock") to user; 
            
      repeat; 
 } 
   [inventory_B_blocked] 
     inventoryPort.receive( 
       "purchase_B") -> sender user { 
     
     if (inventory_B > 0) {  
 inventoryPort.send("has_stock") 
                             to user; 
    
 inventory_B := inventory_B - 1; 
     } 
     else { 
    
 inventoryPort.send( 
                     "out_of_stock") 
                              to user; 
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    } 
    repeat; 
  } 
  []  api.receive("stop") {  
 setverdict(pass); 
  } 
       
 } 
} 
 

Figure 15. Inventory behavior with TTCN-3 semaphores 
 

The execution of a single component’s behavior 
produces the sequence of events shown on Figure 16. We 
can clearly observe that when the inventory PTC replies 
with the has_stock message, the actual purchase message 
sent to the SUT results in an invoice coming back from 
the SUT. 

 

 
Figure 16: Single user sequence of events 

 

E. Mutually Exclusive Behavior Blocks 

As can be seen easily, this way of modeling 
semaphores is very complicated and the code obfuscates 
the intent, reducing the manageability. 
 

We therefore propose to add a new feature to TTCN-3 
that allows controlled, shared access to component 
variables from the scope of other component behaviors.  
 

This would be syntactically modelled by an on-
statement of the following form: 

on ComponentRef [@readonly] StatementBlock   
 

The StatementBlock would be allowed to access 
component variables of the component referenced via 
ComponentRef via dotted notation.  
 

The on-statement uses an implicit read lock (in case of 
@readonly) or read-write lock behavior otherwise of a re-
entrant lock associated with the referenced component. It 
is assumed that there is one such re-entrant execution lock 
associated with every created component. If the read-

write lock is acquired by any component, no other 
component can acquire the lock of that component. If the 
read-lock of a component is acquired by any component, 
the read-write lock of the component can not be acquired. 
 

Components trying to acquire a lock that can currently 
not be acquired block their execution until the lock 
becomes available again or their behavior is terminated. 
 

The read-write lock is acquired whenever the 
component starts executing behavior or when a non-read 
only on-statement for that component is entered. It is 
released when the component terminates its current 
behavior or starts waiting in an alt statement or when the 
outermost on-statement referencing the component in the 
behavior of another component is left. 
 

The read-lock of a component is acquired whenever a 
read-only on-statement for that component is entered. 
Thus, it is possible that several components read the 
component variables of one component in parallel or that 
a single component has read-write access to the 
referenced components variables at any one time. 
 

The advantage of this more declarative approach is 
that the code is more readable and that it is possible to 
statically analyse the types and names of the used 
variables, whether they are only read in read only on-
statements.  
 

Using this construct, the inventory component 
becomes a simple shared variable container without any 
executed behavior and is passed as a reference to each 
PTC for referencing when starting the following behavior. 
 
function purchasingBehaviorInventory 
(InventoryComp inventory)  
runs on PTCType { 
  on inventory {  
  // acquired read-write lock of  
  // inventory 
    var charstring state; 
    if (inventory.inventory > 0) { 
      state := "has_stock"; 
      inventory.inventory :=  
        inventory.inventory - 1; 
    } else { 
      state := "out_of_stock"; 
    } 
    p.send(myRequest_t); 
    alt { 
    [state == "has_stock"]  
      p.receive(myInvoiceResponse_t) { 
        setverdict(pass); 
      } 
    [state == "out_of_stock"]  

203

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 
 

      p.receive(myInvoiceResponse_t) { 
        setverdict(fail); 
      } 
    [state == "out_of_stock"]        
   p.receive(myOutOfStockResponse_t) { 
        setverdict(pass); 
      } 
    [state == "has_stock"]  
        
   p.receive(myOutOfStockResponse_t) { 
        setverdict(fail); 
   } 
    } 
  } // release read-write lock of  
    // inventory 
} 
 

F. Mixing blocked and free behavior 

 
Testing web applications has been studied intensively 

for several decades. An early attempt can be found in 
[14]. However, none of them mention race conditions. 

So far, we have shown the simple behavior of users 
that create race conditions. This is achieved by blocking 
shared variables and behavior sequences. However, 
events in an e-commerce application are not always 
subject to race condition. The race condition occurs only 
when a user is trying to make a purchase and thus the 
state of the inventory must be determined. On the other 
hand, browse events are not subject to race conditions at 
all. They can occur any time without affecting inventories 
states. Thus, we have created an example where browse 
events precede the purchasing event and we have 
introduced sequences of different purchase events. 

With several users and the alternate blocked and 
unblocked behaviors of users we may end up with various 
sequences of events interleaving between the users. The 
sequence in Figure 17 shows that user2 places its order of 
product A before user1 places its order for product B. The 
actual specification of a user’s behavior may suggest that 
a given user may place orders for product A and product b 
in strict sequence without interruption by another user but 
this figure clearly shows that this is not the case. Here the 
unblocked browse event allowed such an interleaved 
sequence. However, it is to be noted that block portions of 
behavior remain together and thus cannot be interrupted 
by another user.  

IV. TTCN-3 AS A MODELLING LANGUAGE 

Normally, testing activities can take place only once 
the SUT has been fully developed and is runnable. 
However, planning and developing automated test cases 
can be done in parallel to the SUT development phase.  
More importantly, the missing SUT can be emulated 
using TTCN-3. This enables us to find any flaws in the 

automated test suites before we apply them to the SUT 
and thus reduce time to market. 

 
Figure 17. Multiple users: possible sequence of events 

 
In our case study, this means finding a way to portray 

a behavior that replies with “invoice” when there is 
inventory on hand and replies “out of stock” when 
inventory has reached zero. At the abstract level, there is 
no need to implement a full system, in our case probably a 
web application and a related database. The 
implementation of such an abstract system is as follows: 
 
function SUTbehavior() runs on SUTType  
{ 
   var integer inventory := 3; 
   var PTCType ptc := null; 
   var MTCType mtc_ := null; 
   
   alt { 
 [] p.receive("purchase") ->  
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                          sender ptc { 
    if(inventory > 0) { 
  p.send("invoice") to ptc; 
  inventory := inventory -1; 
    } 
    else {  
            p.send("out_of_stock") to  
                                  ptc; 
    }; 
         repeat 
 }  
 [] ap.receive("stop")  

-> sender mtc_ 
            setverdict(pass) 
 } 
   } 
} 

Figure 18. SUT behavior 

We use a simple variable to portray the inventory that 
we set at 3 units. Every time a request to purchase an item 
comes in, we decrease the inventory. A simple if-then-
else statement provides the correct response of invoice or 
out-of-stock state. At the abstract level, this is all we need.   

Also, the test suite is developed in two different 
levels of abstraction. First, we use simplified messages 
like simple strings. Once we simulate the abstract system 
and we are happy with the results, in a second step we 
merely redefine the abstract data types and its 
corresponding templates (test oracles for received 
messages and data content for sent messages) as follows: 
 
1st step: Data types and templates declarations: 
 
type charstring RequestType; 
type charstring ResponseType; 
  
template RequestType myRequest_t :=  

"purchase"; 
  
template ResponseType  

myInvoiceResponse_t  
:= "invoice"; 

template ResponseType  
myOutOfStockResponse_t:= 

   "out_of_stock"; 
Figure 19. Simplified data types and templates 

 
2nd step: Real data types and templates: 
 
type record RequestType { 
    charstring bookName, 
    charstring ISBN 
} 
 
type record ResponseType { 

    charstring bookName, 
    charstring ISBN, 
    charstring status, 
    charstring action 
} 
 
template RequestType myRequest_t := { 
    bookName := “ttcn-3 in a 
nutshell”, 
    ISBN := “978-2-345-678” 
} 
 
Template ResponseType myResponse_t := 
{ 

bookName := “war and peace”, 
     ISBN := “978-2-345-678”, 
     Status := “on hand”, 
     Action := “invoice” 
} 

Figure 20. Fully realistic data types and templates 
 

Note that both datatypes and templates are defined using 
the same identifiers. Only their content is different. 

V. CONCLUSION 

Despite its long history, testing concurrent systems 
remains complex and does not always provide accurate 
results. In this paper we have shown that using formal 
methods for testing such as TTCN-3 helps to locate 
problems accurately because of the wide choice of results 
visualization features that the various commercial and 
open source editing, and execution tools provide.  We 
also have experimented with the TTCN-3 external 
functions concept in order to implement shared variables 
and Java semaphore features for the MTC and the PTCs. 
We have discovered that the traditional Java semaphores 
approach prevents true concurrency testing and we have 
developed a system that allows blocking resources rather 
than processes to avoid racing conditions which provides 
a considerably more flexible concurrency testing. 
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