

Semaphore Implementations for Testing Concurrent Systems using TTCN-3

Bernard Stepien, Liam Peyton
School of Engineering and Computer Science

University of Ottawa, Ottawa, Canada
Email: {bstepien | lpeyton}@uottawa.ca;

Jacob Wieland, Dirk Tepelmann, Dirk Borowski

Spirent Communications
Berlin, Germany

Email: {Jacob.wieland | dirk.tepelmann | dirk.borowski}
 @spirent.com

Abstract—Testing concurrent systems is a complex task. In
traditional software unit testing, a test sequence is always
composed of a stimulus and its corresponding fully
predictable response. With concurrent systems, this simple
model no longer holds as the state of the system under test
(SUT) changes while several users place their requests. Race
conditions are a particularly challenging problem for testing,
since they will occur and must be identified, but are very
disruptive to the test environment. An easy solution to this
problem is to use semaphores that avoid race conditions.
Since semaphores do not exist in TTCN-3, we have explored
solutions using the TTCN-3 concept of external functions.
This allows us to define behavior in the run-time language
used by the TTCN-3 compiler, in our case Java, without
having to modify the TTCN-3 standard. However, Java
semaphores can block other parallel processes which may
actually defeat parallelism. Thus, we have explored other
solutions based on resource blocking rather than process
blocking. This allows two or more concurrent processes to
perform operations on different resources and thus achieve
more sophisticated concurrency testing.

Keywords- software testing-concurrent systems; TTCN-3; test
oracles; race conditions; semaphores.

I. INTRODUCTION

This paper is a significant extension and update of our
previously published SOFTENG 2020 paper that
presented preliminary results for advanced techniques for
testing concurrent systems [1].

Testing concurrent systems is complex. In traditional
software unit testing, a test sequence is always composed
of a stimulus and its corresponding fully predictable
response [2]. With concurrent systems, this simple model
no longer holds as the state of the system under test
(SUT) changes while several users place their requests.
Race conditions are a particularly challenging problem for
testing, since they will occur and must be identified, but
are very disruptive to the test environment.

Some definitions and implementations of parallel
testing can be found in [3][4][5][6][7]. Obviously there
are different kinds of parallel testing. In the previous
references, the main concern is to run sequential tests in
parallel in order to save time. Instead, we focus on
concurrent testing of states in a (SUT) as the test purpose.
There are two main categories of concurrent testing:

 Response time testing when a large number of
requests are sent to a server as shown in Figure
1. Techniques for addressing this category of
concurrent testing using TTCN-3 are presented
in [8].

 Testing the processing logic of the SUT when
confronted by several requests from parallel
users where the state of the SUT is changing as a
result of requests of the users and thus affecting
each user’s behavior.

Figure 1. Parallel system configuration

In this paper, a case study, using the formal test
specification language TTCN-3[9], illustrates the
challenges for test coordination for this category of
testing, especially with respect to race conditions, and
proposes techniques to address them. We also propose
shared variables and semaphores in the TTCN-3 parallel
test component model as a mechanism to implement
dynamic test oracles. Overall, the motivation to use a
formal test specification language such as TTCN-3 and its
related available execution tools to take full advantage of
its logging information in order to rapidly detect faults
due to race conditions. We also propose enhancements to
the TTCN-3 language by introducing semaphores as a
built-in language feature to make our testing concurrency
problem statement usable.

There are two kinds of race conditions:
 Shared variables racing
 Behavior racing

A. Shared variables racing

The only way to predict a state of a SUT when
multiple users are present is to use a shared variable to
record for example the state of the inventory of a given

194

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

product each user is trying to order. Each time a user
orders a product, the inventory is decreased by one unit.
However, in concurrency, a user trying to make a decision
on the state of the SUT may have the shared variable
overwritten by another user, thus producing a wrong
result. Here the solution would be to lock the shared
variable so that no other user can overwrite it.

B. Behavior racing

We have determined that shared variable locking is
actually not sufficient to solve the race condition problem.
We determined through experimentation that some
sequence of events must also be locked. For instance,
once the expected state of the SUT is determined using
the shared variable, we must prevent another user to place
a request for the same product to the SUT. The SUT also
must decrease its inventory of the product. Thus if another
user places an order while executing the actual purchase
of a product, this will decrease the inventory and the
calculated inventory by the first user will be out of synch
with the real inventory of the SUT once the second user
has interfered.

II. A CASE STUDY

In sub-section A we define the dynamic state problem
to be addressed. In sub-section B we propose three
methods to specify concurrent systems tests.

A. Defining the problem

Although we have studied extensively testing of
concurrency problems in industrial applications [10][11],
the following simplified case study is about testing the
transition of the state of a system and the kind of
responses it should reply with. Here we have parallel
users that send a request to a book ordering system and
get two kinds of replies depending on the two possible
states of the SUT: an invoice and shipping details if it has
stock; or an out of stock notification. The problem is that
it is impossible to predict the test oracle (predicted
response) since each user is independent from each other
and thus does not know the state of the SUT individually.
This is similar in e-commerce applications like on-line
ordering of merchandise and hotel booking and train or
airline reservations systems. A typical warning message
for a hotel reservation system is to warn the customer that
there is only one room left at a given rate. Thus from a
tester point of view, it is hard to predict if a response
corresponds to a success or a failure. However, if the
users are coordinated, the response to a given user can be
predicted.

The interesting aspect of this simple example is that
we have tried various approaches to coordination and
some resulted in race condition problems, thus disturbing
the test process altogether. Table I shows the values of
test oracles depending on the state of the SUT, in our
case: has stock; or out of stock. In short, a test passes if an

invoice and shipping confirmation is received when there
is inventory left or when out-of-stock is received and the
server is out of stock. All other cases are failures.

Most testers use unit testing that is simple but misses
some aspects of the test. Unit testing would consist of
putting the SUT in the appropriate state and check the
individual responses to a request.

What is missing from a unit test is the dynamic aspect
of seeing the state change as the maximum available
inventory is reached.

TABLE I. EXPECTED TEST ORACLES DEPENDING ON THE
STATE OF THE SUT

Response to
the User/state

Has stock Out of stock

Invoice Pass Fail
Out of stock Fail Pass

B. TTCN-3 test case implementation

The TTCN-3 implementation of the user parallel test
component (PTC) is based on a simple request/response
behavior pattern with the response being analyzed with
the four possible configurations of two states and two
corresponding responses making use of the TTCN-3 alt
(alternative) construct. Each alternative is guarded with
the predicted state of the SUT. The receive statement
contains what the received message from the SUT should
match and the predicate between square brackets, the
predicted state of the SUT. In Figure 2, the state variable
must be provided. This happens either as setting its value
while starting the PTC or computing it as the PTCs place
their orders.

function ptcBehavior() runs on PTCType
{
 p.send("purchase");

 alt {
 [state == "has_stock"]
 p.receive("invoice") {
 setverdict(pass);
 }
 [state == "out_of_stock"]
 p.receive("invoice") {
 setverdict(fail);
 }
 [state == "out_of_stock"]
 p.receive("out_of_stock") {
 setverdict(pass);
 }
 [state == "has_stock"]
 p.receive("out_of_stock") {
 setverdict(fail);
 }
 };
}

Figure 2. PTC Client test verdicts situations

195

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Instead, unit testing would break down the problem into
two separate test cases and especially without the need for
PTCs. Here the unit is represented by a given state.

First unit test case:

function unitTestBehavior_1() runs on
 MTCType {
 p.send("purchase");

 alt {
 [] p.receive("invoice") {
 setverdict(pass);
 }
 [] p.receive("invoice") {
 setverdict(fail);
 }

Second unit test case:

 [] p.receive("out_of_stock") {
 setverdict(pass);
 }
 [] p.receive("out_of_stock") {
 setverdict(fail);
 }
 }

The predicates are empty because the state is
predictable due to the manipulation of the SUT by the
tester by emptying the data base in the first case and
populating the database in the second case. Another
drawback of unit testing is that the testing process would
not be entirely automated since it requires a manual
intervention of the tester between the two states.

Assuming that the SUT has three books on hand, the
ideal testing results would be to get an invoice response
for the first three users and an out of stock response for
the remaining users as shown on Figure 3 and an overall
pass verdict for the test.

However, the results shown in Figure 3 are only ideal
and rarely happen. Instead, we see more results of the
kind of Figure 4 that show the full effect of race
conditions because each PTC starts at different times.

The failures shown in Figure 4 are the result of

mismatches between expected and received messages
when tests are executed without coordination.

Figure 3. Ideal testing responses

 This enables the tester to locate rapidly the point of
failure and investigate the problem rapidly.

Figure 4. Uncoordinated execution results

Figure 5 shows the TTCN-3 tools data inspection feature
that provides detailed message and test oracle contents
that enable the tester to understand the reasons for failure
especially when complex data types with many fields are
used.

Figure 5. Expected vs received values

In this case, one may wonder where the state value

comes from. This is where the test coordination is taking
place. TTCN-3 has the concept of main test component
(MTC) that precisely looks after that.

In our case the coordination is achieved via abstract
coordination ports cp that link the master test component
and the PTCs as shown in Figure 6.

196

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Test coordination with MTC

There are three ways to address test coordination.

1) Using coordination messages

The approach consists in using coordination messages
between the MTC and the PTCs that contain the predicted
state of the SUT. On the user PTC’s side we need an
additional line that receives the state from the MTC
before the user attempts to test the SUT:

cp.receive(charstring:?)->value state;

On the MTC side, we send a message containing the state
to the PTC that the tester thinks the server is supposed to
be in. In our case this is achieved by changing the state
once three requests have been placed as follows:

testcase coordinated_msgs_test()
 runs on MTCType system SystemType {
 …
 cp.send("has_stock") to user1;
 cp.receive("ack") from user1;

 cp.send("has_stock") to user2;
 cp.receive("ack") from user2;

 cp.send("has_stock") to user3;
 cp.receive("ack") from user3;

 // after three purchase requests,
 // the item is now out of stock

 cp.send("out_of_stock") to user4;
 cp.receive("ack") from user4;

 cp.send("out_of_stock") to user5;
 cp.receive("ack") from user5;

 …
}

Figure 7. Test coordination by MTC

In TTCN-3, the receive statement is blocking. Thus,
the rest of the behavior of the PTC will not execute while
the coordination message has not been received.

Note the returned ack message. The ack is used to
prevent behavior racing. In other words, a new individual
test cannot occur before the previous test has fully
completed, otherwise more requests are being sent to the
server which may change its state before a response is
sent back to a user resulting in failure. We have observed
that removing the ack effectively produces race
conditions. We leave this verification as an exercise for
the reader.

2) Coordination using PTC Threads operations
PTCs are in fact translated by the TTCN-3 compiler

that produces an executable in a general purpose language
(GPL) such as Java or C++ and many others using
threads. Thus, one typical thread operation that is
available in TTCN-3 is to check if the thread has
terminated. This is represented in TTCN-3 with the
keyword done. Here, as shown in Figure 8, each PTC is
started using a parameter representing the function
behavior that carries the predicted state of the SUT.

There are in fact two ways to use this feature: the
first one consists in placing the done statement
immediately after the corresponding start statement. This
would result in transforming a concurrent system into a
sequential execution system with effects similar to the
coordination messages solution shown in the previous
section.

testcase thread_operations_test()
 runs on MTCType system SystemType {
 …
 user1.start(purchasingBehavior

 ("has_stock"));
 user2.start(purchasingBehavior
 ("has_stock"));
 user3.start(purchasingBehavior
 ("has_stock"));

 user1.done;
 user2.done;
 user3.done;

 user4.start(purchasingBehavior
 ("out_of_stock"));
 user5.start(purchasingBehavior
 ("out_of_stock"));
 user6.start(purchasingBehavior
 ("out_of_stock"));

 user4.done;
 user5.done;
 … }

Figure 8. MTC behavior using PTC threads operations

197

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In this second approach, we have chosen to place all
the done statements after all the start statements for the
first three PTCs to simulate the database reaching the zero
inventory point. This has the advantage to at least
conserve some of the concurrent behavior of the system
and thus avoiding a full sequential test execution of PTCs.

3) Introducing semaphores to TTCN-3
In a way the second approach is less sequential than the

first one but still somewhat sequential. Thus, we have
explored a third solution that would eliminate some
aspects of the sequential aspect of this test behavior. The
method consists in using shared variables and Java
semaphores among PTCs. The shared variable keeps track
of the inventory on hand and enables a PTC to determine
the state of the SUT on its own. However, TTCN-3 does
not have the concept of shared variables, nor semaphores.
We have explored how we could implement semaphores
in the Spirent TTworkbench tool [12] using the TTCN-3
concept of external functions to link the TTCN-3 abstract
behavior description to functions that are written in a GPL
(e.g., Java in our case). This avoids changing the ETSI
standard which would require a lengthy approval process.

III. IMPLEMENTING SHARED VARIABLES AND

SEMAPHORES IN TTCN-3

In Java, shared variables are implemented using
independent classes that contain the shared variable as an
attribute. In TTCN-3, there is a simple way to reproduce
this model using TTCN-3 user defined data types that
allow the creation of PTCs that are actually translated into
Java classes by the compiler.

For semaphores, we will use two different types of
approaches:

 A semaphore data type related to an external
function written in Java that creates an instance
of the Java Semaphore class.

 Our own definition of semaphores directly in
TTCN-3.

The second approach is for the purpose of using a

more flexible kind of semaphore as opposed to the Java
semaphore that blocks any process that did not acquire the
semaphore. The second approach allows blocking
individual resources rather than processes (here PTCs).

A. implementing shared variables

This is achieved by creating a datatype to keep track
of the inventory. In this case we are trying to keep track
of the inventory of two different products, product_A and
product_B.

 type component InventoryCompType
 {
 var integer inventory_A := 3;
 var integer inventory_B := 4;
 }

This data type is then used to create an instance of a PTC
that will receive requests from users, compute the state of
the inventory and reply with that state. Therefore we need
to add a communication port that will be used to receive
or send messages with the users:

port CoordPortType ip;

The basic inventory component is found on Figure 9. It is
composed of two groups of events:

 Receive a request from a user
 Compute the actual state of the inventory
 Return that state to the user

function InventoryBehavior()
 runs on InventoryCompType {

var InventoryCompType user;

alt {
 [] ip.receive("purchase_A")
 -> sender user {

 if (inventory_A > 0) {
 ip.send("has_stock") to user;

 inventory_A := inventory_A - 1;
 }
 else {
 ip.send("out_of_stock") to user;
 }
 repeat;
 }
 [] ip.receive("purchase_B")
 -> sender user {

 if (inventory_B > 0) {
 ip.send("has_stock") to user;
 inventory_B := inventory_B - 1;
 }
 else {
 ip.send("out_of_stock") to user;
 }
 repeat;
 }
 [] api.receive("stop") {
 setverdict(pass);
 }
 }

Figure 9. Inventory computation behavior

198

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Test configuration

There are four basic types of parallel test components

as shown in Figure 10:

 The master test component (MTC)
 The inventory component
 The users components
 The System Under Test component (SUT)

Figure 10. Shared variable handled in a separate PTC

The SUT component defined as follows:

type component SUTType {
 port MyPortType up;
 port MyAdminPortType aps;

port MyAdminPortType api;
}

 The port up will carry all the communication messages
between the SUT and the individual user PTCs. The
admin port aps is used at the very end of the test in order
to terminate the SUT that otherwise is in a constant loop
trying to receive messages from the users. The port api is
used to terminate the inventory PTC that is in a similar
continuous loop.

The user’s component is defined as follows:

type component PTCType {
 port MyPortType sp;
 port InventoryPortType ip;
}

 The port sp is used to communicate with the SUT
while he port ip is used to communicate with the
inventory PTC to inquire about the state of the inventory.

 Finally, we define the master test component (MTC) as
follows:

type component MTCType {
 port MyAdminPortType aps;
 port MyAdminPortType api;
}

The port aps is used to communicate with the SUT
while the port api is used to communicate with the
inventory PTC.

C. Testcase configuration under Java semaphores using
TTCN-3 external functions

A TTCN-3 test case in our particular PTC

configuration is shown in the following TTCN-3 code.
As shown in Figure 11, it consists of creating an instance
of a Semaphore object in the MTC that is passed on to
each created user PTC and connections between the MTC
and each instance of user PTCs. This enables a user to
acquire or release that centralized Semaphore object.

Testcase
 inventory_semaphore_approach()
 runs on MTCType system SystemType {

 var Users user;
 var SemaphoreType semaphore;

 semaphore := Semaphore.new();

This instance of Semaphore is then passed on to each
user PTC when starting their behavior function.

 for (var integer i:=0; i <nb_users;
 i:=i + 1) {
 user[i].start(
 purchasingBehaviorSemaphore(
 semaphore))
 }

Figure 11. Java semaphore integration

In creating a SUT PTC and each user PTC and starting
them using a specific behavior function, we also create an

199

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

inventory PTC that keeps track of the inventory level for
each product and that is connected to each PTC that query
it.

TTCN-3 is based on strong typing. Thus, while the
TTCN-3 source code is converted to Java, semaphores in
TTCN-3 need to be typed. The translator then maps the
two versions automatically. The definition of TTCN-3
semaphore is based entirely on external functions
definitions as follows:

First the abstract definition of semaphores:

module Semaphore {
 type integer SemaphoreType;

 external function new()
 return SemaphoreType;

 external function acquire
 (SemaphoreType semaphore);

 external function release

(SemaphoreType semaphore);
}

 We have explored the approach of using the existing
external functions definition feature of TTCN-3 to link
the above abstract semaphore to the underlying Java
semaphores as shown in Figure 12.

Figure 12. TTCN-3 external functions

The external function Java code is as follows:

package com.spirent.externalfunctions.
 semaphore;
import java.util.HashMap;

import java.util.concurrent.Semaphore;
import org.etsi.ttcn.tri.TriStatus;
import com.testingtech.ttcn.annotation

 .ExternalFunction;
import com.testingtech.ttcn.tri.
 AnnotationsExternalFunctionPlugin;

 @ExternalFunction.Definitions(
 ExtSemaphore.class)
 public class ExtSemaphore extends
 AnnotationsExternalFunctionPlugin {

 private HashMap<Integer, Semaphore>
 semaphores = new HashMap<>();

 @ExternalFunction(name = "new",
 module = "Semaphore")
 public int newSemaphore() {
 int result = semaphores.size();
 semaphores.put(result,
 new Semaphore(1));
 return result;
 }

 // external function acquire(
 SemaphoreType semaphore);
 @ExternalFunction(name = "acquire",
 module = "Semaphore")
 public void acquire(int semaphore)
 {
 try {

 semaphores.get(semaphore).
 acquire();
 } catch (InterruptedException e)
 {throw new
 RuntimeException(e);
 }
 }

 // external function release
 (SemaphoreType semaphore);
 @ExternalFunction(name =
 "release", module = "Semaphore")
 public void release(int semaphore)
 {
 semaphores.get(semaphore).
 release();
 }

 @Override
 public TriStatus tearDown() {
 semaphores.clear();
 return super.tearDown();
 }
}

200

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

While executing the test case based on external Java
Semaphores, we have noticed that the results look like
another type of sequence comparable to our first approach
shown on Figure 3, with the only difference a random
order of execution of user PTCs behavior and the
calculation of the inventory state rather than the
hardcoded state used in this first approach.

 The user behavior is merely framed by the invocation
of the semaphore acquire and release statements as shown
in Figure 13.

function purchasingBehaviorSemaphore(
 SemaphoreType semaphore)
 runs on PTCType {
 var charstring state;

 timer t := rnd();
 t.start;
 t.timeout;

 Semaphore.acquire(semaphore);

 // communication with inventory PTC

 ip.send("purchase_A");
 ip.receive(charstring:?) ->
 value state;

 // communication with SUT

 sp.send(request_product_A_t);

 alt {
 [state == "has_stock"]
 sp.receive(myInvoiceResponse_t) {
 setverdict(pass);
 }
 [state == "out_of_stock"]
 sp.receive(myInvoiceResponse_t) {
 setverdict(fail);
 }
 [state == "out_of_stock"]
 sp.receive(myOutOfStockResponse_t) {
 setverdict(pass);
 }
 [state == "has_stock"]
 sp.receive(myOutOfStockResponse_t) {
 setverdict(fail);
 }
 };

 Semaphore.release(semaphore);
}

Figure 13. User behavior with Java semaphore

D. Semaphores defined in TTCN-3

Effectively, the Java semaphore blocks completely the

execution of user PTCs that didn’t acquire the semaphore
as of yet. Here we have determined that this does not
provide a full concurrency behavior. Thus, instead, we
have focused on a resource-oriented semaphore that
would block the inventory rather than the user processes.
This would allow a user to purchase product A while
another user would purchase product B. There are no race
condition in such a case.

In this approach, we need a mechanism in the

inventory PTC to block its access by any PTC that did not
successfully acquire the semaphore.

The test case is similar to the one used for the Java
semaphore example with one major difference, there is no
instance of a Java semaphore. Our own semaphore is
actually implemented in the Inventory behavior where the
inventory shared variables are protected.

1) User behavior

The user no longer uses the Java semaphore but instead
invokes our own semaphore using TTCN-3 procedure
invocations (call acquire) as shown on Figure 14. Since
TTCN-3 procedures are non-blocking, the semaphore call
will wait until the resource (inventory) is released again.
This is indicated by the getreply statement that is
triggered only if the call to acquire is accepted. The rest
of the user behavior is identical to the one used for Java
semaphores.

Function
 purchasingBehaviorInventoryComp()
 runs on InventoryPTC {
 var charstring state;

 semaphore.call(acquire:{}, 100.0) {
 [] semaphore.getreply {}
 [] semaphore.catch(timeout) {
 setverdict(inconc, "could
 not acquire semaphore");
 return;
 }
 }

 inventory.send("purchase_A");
 inventory.receive(charstring:?) ->
 value state;

201

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 p.send(request_product_A_t);
 alt {
 [state == "has_stock"]
 p.receive(myInvoiceResponse_t) {
 setverdict(pass);
 }
 [state == "out_of_stock"]
 p.receive(myInvoiceResponse_t) {
 setverdict(fail);
 }
 [state == "out_of_stock"]
 p.receive(myOutOfStockResponse_t)
 {
 setverdict(pass);
 }
 [state == "has_stock"]
 p.receive
 (myOutOfStockResponse_t) {
 setverdict(fail);
 }
 }
 }

 semaphore.call(release:{});
}

Figure 14. user behavior with our definition of semaphores

2) Use of semaphores in the inventory PTC

The procedures acquire_A and release_A and their
corresponding names for product B are residing in the
inventory behavior. Here we are using the variables
inventory_A_blocked and its counterpart for B to control
which part of the inventory calculation code can be
reached.

function InventoryBehavior()
 runs on SemaphoreInventory {
 var integer blockedBy_A := -1;
 var integer blockedBy_B := -1;
 var InventoryPTC user;
 var boolean inventory_A_blocked :=
 false;
 var boolean inventory_B_blocked :=
 false;

 alt {
 [inventory_A_blocked == false] any
 from sem_p.getcall(acquire_A:{})
 -> @index value blockedBy_A {

 inventory_A_blocked := true;

 sem_p[blockedBy_A].reply(
 acquire_A:{});
 repeat;
 }

 [inventory_A_blocked == true]
 sem_p[blockedBy_A].getcall(
 release_A:{}) {

 blockedBy_A := -1;

 inventory_A_blocked := false;
 repeat;
 }
 [inventory_B_blocked == false] any
 from sem_p.getcall(acquire_B:{})
 -> @index value blockedBy_B {

 inventory_B_blocked := true;
 sem_p[blockedBy_B].reply(
 acquire_B:{});
 repeat;
 }
 [inventory_B_blocked == true]
 sem_p[blockedBy_B].getcall(
 release_B:{}) {
 blockedBy_B := -1;
 inventory_B_blocked := false;
 repeat;
 }

 [inventory_A_blocked == true]
 inventoryPort.receive(
 "purchase_A") -> sender user {
 if (inventory_A > 0) {
 inventoryPort.send(
 "has_stock") to user;

 inventory_A := inventory_A -
1;
 }
 else {
 inventoryPort.send(
 "out_of_stock") to user;

 repeat;
 }
 [inventory_B_blocked]
 inventoryPort.receive(
 "purchase_B") -> sender user {

 if (inventory_B > 0) {
 inventoryPort.send("has_stock")
 to user;

 inventory_B := inventory_B - 1;
 }
 else {

 inventoryPort.send(
 "out_of_stock")
 to user;

202

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 }
 repeat;
 }
 [] api.receive("stop") {
 setverdict(pass);
 }

 }
}

Figure 15. Inventory behavior with TTCN-3 semaphores

The execution of a single component’s behavior
produces the sequence of events shown on Figure 16. We
can clearly observe that when the inventory PTC replies
with the has_stock message, the actual purchase message
sent to the SUT results in an invoice coming back from
the SUT.

Figure 16: Single user sequence of events

E. Mutually Exclusive Behavior Blocks

As can be seen easily, this way of modeling
semaphores is very complicated and the code obfuscates
the intent, reducing the manageability.

We therefore propose to add a new feature to TTCN-3
that allows controlled, shared access to component
variables from the scope of other component behaviors.

This would be syntactically modelled by an on-
statement of the following form:

on ComponentRef [@readonly] StatementBlock

The StatementBlock would be allowed to access
component variables of the component referenced via
ComponentRef via dotted notation.

The on-statement uses an implicit read lock (in case of
@readonly) or read-write lock behavior otherwise of a re-
entrant lock associated with the referenced component. It
is assumed that there is one such re-entrant execution lock
associated with every created component. If the read-

write lock is acquired by any component, no other
component can acquire the lock of that component. If the
read-lock of a component is acquired by any component,
the read-write lock of the component can not be acquired.

Components trying to acquire a lock that can currently
not be acquired block their execution until the lock
becomes available again or their behavior is terminated.

The read-write lock is acquired whenever the
component starts executing behavior or when a non-read
only on-statement for that component is entered. It is
released when the component terminates its current
behavior or starts waiting in an alt statement or when the
outermost on-statement referencing the component in the
behavior of another component is left.

The read-lock of a component is acquired whenever a
read-only on-statement for that component is entered.
Thus, it is possible that several components read the
component variables of one component in parallel or that
a single component has read-write access to the
referenced components variables at any one time.

The advantage of this more declarative approach is
that the code is more readable and that it is possible to
statically analyse the types and names of the used
variables, whether they are only read in read only on-
statements.

Using this construct, the inventory component
becomes a simple shared variable container without any
executed behavior and is passed as a reference to each
PTC for referencing when starting the following behavior.

function purchasingBehaviorInventory
(InventoryComp inventory)
runs on PTCType {
 on inventory {
 // acquired read-write lock of
 // inventory
 var charstring state;
 if (inventory.inventory > 0) {
 state := "has_stock";
 inventory.inventory :=
 inventory.inventory - 1;
 } else {
 state := "out_of_stock";
 }
 p.send(myRequest_t);
 alt {
 [state == "has_stock"]
 p.receive(myInvoiceResponse_t) {
 setverdict(pass);
 }
 [state == "out_of_stock"]

203

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 p.receive(myInvoiceResponse_t) {
 setverdict(fail);
 }
 [state == "out_of_stock"]
 p.receive(myOutOfStockResponse_t) {
 setverdict(pass);
 }
 [state == "has_stock"]

 p.receive(myOutOfStockResponse_t) {
 setverdict(fail);
 }
 }
 } // release read-write lock of
 // inventory
}

F. Mixing blocked and free behavior

Testing web applications has been studied intensively

for several decades. An early attempt can be found in
[14]. However, none of them mention race conditions.

So far, we have shown the simple behavior of users
that create race conditions. This is achieved by blocking
shared variables and behavior sequences. However,
events in an e-commerce application are not always
subject to race condition. The race condition occurs only
when a user is trying to make a purchase and thus the
state of the inventory must be determined. On the other
hand, browse events are not subject to race conditions at
all. They can occur any time without affecting inventories
states. Thus, we have created an example where browse
events precede the purchasing event and we have
introduced sequences of different purchase events.

With several users and the alternate blocked and
unblocked behaviors of users we may end up with various
sequences of events interleaving between the users. The
sequence in Figure 17 shows that user2 places its order of
product A before user1 places its order for product B. The
actual specification of a user’s behavior may suggest that
a given user may place orders for product A and product b
in strict sequence without interruption by another user but
this figure clearly shows that this is not the case. Here the
unblocked browse event allowed such an interleaved
sequence. However, it is to be noted that block portions of
behavior remain together and thus cannot be interrupted
by another user.

IV. TTCN-3 AS A MODELLING LANGUAGE

Normally, testing activities can take place only once
the SUT has been fully developed and is runnable.
However, planning and developing automated test cases
can be done in parallel to the SUT development phase.
More importantly, the missing SUT can be emulated
using TTCN-3. This enables us to find any flaws in the

automated test suites before we apply them to the SUT
and thus reduce time to market.

Figure 17. Multiple users: possible sequence of events

In our case study, this means finding a way to portray

a behavior that replies with “invoice” when there is
inventory on hand and replies “out of stock” when
inventory has reached zero. At the abstract level, there is
no need to implement a full system, in our case probably a
web application and a related database. The
implementation of such an abstract system is as follows:

function SUTbehavior() runs on SUTType
{
 var integer inventory := 3;
 var PTCType ptc := null;
 var MTCType mtc_ := null;

 alt {
 [] p.receive("purchase") ->

204

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 sender ptc {
 if(inventory > 0) {
 p.send("invoice") to ptc;
 inventory := inventory -1;
 }
 else {
 p.send("out_of_stock") to
 ptc;
 };
 repeat
 }
 [] ap.receive("stop")

-> sender mtc_
 setverdict(pass)
 }
 }
}

Figure 18. SUT behavior

We use a simple variable to portray the inventory that
we set at 3 units. Every time a request to purchase an item
comes in, we decrease the inventory. A simple if-then-
else statement provides the correct response of invoice or
out-of-stock state. At the abstract level, this is all we need.

Also, the test suite is developed in two different
levels of abstraction. First, we use simplified messages
like simple strings. Once we simulate the abstract system
and we are happy with the results, in a second step we
merely redefine the abstract data types and its
corresponding templates (test oracles for received
messages and data content for sent messages) as follows:

1st step: Data types and templates declarations:

type charstring RequestType;
type charstring ResponseType;

template RequestType myRequest_t :=

"purchase";

template ResponseType

myInvoiceResponse_t
:= "invoice";

template ResponseType
myOutOfStockResponse_t:=

 "out_of_stock";
Figure 19. Simplified data types and templates

2nd step: Real data types and templates:

type record RequestType {
 charstring bookName,
 charstring ISBN
}

type record ResponseType {

 charstring bookName,
 charstring ISBN,
 charstring status,
 charstring action
}

template RequestType myRequest_t := {
 bookName := “ttcn-3 in a
nutshell”,
 ISBN := “978-2-345-678”
}

Template ResponseType myResponse_t :=
{

bookName := “war and peace”,
 ISBN := “978-2-345-678”,
 Status := “on hand”,
 Action := “invoice”
}

Figure 20. Fully realistic data types and templates

Note that both datatypes and templates are defined using
the same identifiers. Only their content is different.

V. CONCLUSION

Despite its long history, testing concurrent systems
remains complex and does not always provide accurate
results. In this paper we have shown that using formal
methods for testing such as TTCN-3 helps to locate
problems accurately because of the wide choice of results
visualization features that the various commercial and
open source editing, and execution tools provide. We
also have experimented with the TTCN-3 external
functions concept in order to implement shared variables
and Java semaphore features for the MTC and the PTCs.
We have discovered that the traditional Java semaphores
approach prevents true concurrency testing and we have
developed a system that allows blocking resources rather
than processes to avoid racing conditions which provides
a considerably more flexible concurrency testing.

 ACKNOWLEDGMENT

The authors would like to thank NSERC for funding
this research.

REFERENCES
[1] B. Stepien and L, Peyton, Test Coordination and Dynamic

Test Oracles for Testing Concurrent Systems, in
Proceedings of SOFTENG 2020

[2] E. Boros and T. Unluyurt, Sequential Testing of Series-
Parallel Systems of Small Depth, in ISBN 978-1-4613-
7062-8

[3] A. Bertolino, Software Testing Research: Achievements,
Challenges, Dreams in Proceedings of FOSE ’07 pp. 85-
103

[4] T. Hanawa, T. Banzai, H. Koyzumi, R. Kanbayashi, T.
Imada and M. Sato, Large-Scale Software Testing
Environment Using Cloud Computing Technology for

205

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Dependable Parallel and Distributed Systems in 2010 Third
International Conference on Software Testing, Verification
and Validation Wokshops Procedings

[5] A. M. Alghamdi and F. Eassa, Software Testing
Techniques for Parallel Systems: A Survey in IJCSNS
International Journal of Computer Science and Network
Security, vol 19, No. 4, April 2019, pp. 176-184

[6] L. Parobek, 7 Reasons to Move to Parallel Testing in white
paper on https://devops.com/7-key-reasons-make-move-
sequential-parallel-testing/, last accessed December 14th,
2020

[7] B. Rao G. , K. Timmaraju, and T. Weigert, Network
Element Testing Using TTCN-3: Benefits and Comparison
in SDL 2005, LNCS 3530, pp. 265–280, 2005

[8] G. Din, S. Tolea, and I. Schieferdecker, Distributed Load
Test with TTCN-3, in Testcom 2006 Proceedings, pp. 177-
196

[9] ETSI ES 201 873-1, The Testing and Test Control Notation
version 3 Part 1: TTCN-3 Core Language, May 2017.
Accessed March 2018 at

http://www.etsi.org/deliver/etsi_es/201800_201899/201873
01/04.09.01_60/es_20187301v040901p.pdf

[10] B. Stepien, K, Mallur, L. Peyton, Testing Business
Processes Using TTCN-3, in SDL Forum 2015
proceedings, Lecture Notes in Computer Science, vol 9369.
Springer, Cham. Pp. 252-267

[11] B. Stepien, L. Peyton, M. Shang and T. Vassiliou-Gioles,
An Integrated TTCN-3 test framework architecture for
interconnected object-based applications in IJEB vol. 11,
No. 1, 2014

[12] TTworkbench,Spirent,
https://www.spirent.com/Products/TTworkbench, last
accessed December 14th, 2020

[13] Titan, https://projects.eclipse.org/proposals/titan, last
accessed December 14th, 2020

[14] F. Ricca and P. Tonella, Testing Processes of Web
Applications in Annals of Software Engineering 14, pp. 93-
114 (2002)

206

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

