
Reusing and Deriving Games for Teaching Software Reuse

Diego Castro, Cláudia Werner

COPPE/Computer Systems Engineering Program
Federal University of Rio de Janeiro
{diegocbcastro, werner}@cos.ufrj.br

Rio de Janeiro, Brazil

Abstract—Software Reuse (SR) is a crucial discipline that seeks
to create new products using pre-existing artifacts. Companies
are increasingly looking for members with these skills. However,
they do not always find them. One of the possible causes is
the lack of dedication of students in the classroom. To increase
students’ motivation and engagement in the classroom, many
scholars are already using games as a teaching method, due
to the various advantages that this strategy can bring to the
current teaching method. SR can be related to several areas,
such as Software Engineering, processes, or programming, more
commonly associated with the latter. Based on this, the paper
sought to identify games that aimed to teach programming but
could also be used to teach the fundamentals of software reuse.
Two games were created/derived from those found, and it was
concluded that games could be derived or reused for more than
one teaching context.

Keywords–game; game-based-learning; software reuse; pro-
gramming; systematic mapping.

I. INTRODUCTION

This work is an extension of the paper presented by
Castro and Werner [1] at the 6th International Conference on
Advances and Trends in Software Engineering (SOFTENG -
IARIA), Lisboa, Portugal.

In general, software is still largely built from scratch.
Ideally, existing documents (source code, project documents,
etc.) could be copied and adapted to new requirements. How-
ever, the goal of reuse is still far from ideal [2]. Reuse
is something intrinsic to people, and nothing is made from
scratch - everything is built from something [3]. This is the
basic principle of reuse, creating something from something
previously built.

Software Reuse (SR) is a discipline based on this context,
seeking to use existing elements (which were built to be
reused) to create new ones. In general, the term SR refers
to a situation in which some software is used in more than
one project. In this context, software is defined as one or more
items that are part of a productive organization’s process. Thus,
software can refer to the source code or any other product
in its life cycle, such as requirements, designs, test plans,
documentation, etc. [4]. With the correct use of this discipline,
it can provide several positive impacts in a variety of contexts,
such as quality, cost, productivity, code-making performance,
rapid prototyping, reduced code writing, reliability, and inter-
operability of software [2].

Despite the advantages offered by reuse, discomfort is
usually expressed by statements such as: ”We don’t want to
do extra work to benefit someone else”; ”We can do it better”;

”We won’t use it if it was created by someone else”; and
even competition within organizations can be an obstacle in
this regard [2]. Despite all these problems mentioned, there is
still one that is seen as the main factor for reuse not being
implemented, which is the difficulty of learning in this area
[5].

One of the biggest obstacles that educators face in the
teaching process is the need to use methods that effectively
make students pay attention in class and learn easily. Many
students with little class time have already lost their focus
in the discipline being taught. This can be a reflection of
the passive teaching method being strongly centered on the
teacher, lectures, and slides without approaches that capture
the student’s attention [6].

Based on this, educators are increasingly looking for inno-
vative learning strategies that combine pleasure with education
so that it is possible to solve problems by teaching a subject
[6]. Thus, alternative teaching methods are sought with which
the student can interact and make better use of teaching, in a
practical and attractive way. Based on this, a possible solution
to make this learning more pleasurable is the use of games
as a teaching tool. Most games are interactive, which is one
of the main ways of distraction and pleasure, making them an
excellent way to remind students of what has been taught [7].

The study presented in this paper is part of a more extensive
study that sought to find and produce games for teaching soft-
ware reuse. The study initially did not find any work that made
specific reference to a game for teaching reuse. Still, it was
observed that SR might be contained in different areas, such
as programming, Software Engineering (SE), among others.
However, the programming area is usually the most referenced
[8]. Based on the information provided, this study aims to
identify games that have the purpose of teaching programming
with emphasis/potential for reuse, that is, to find games that
were developed for teaching programming, but could be used
to teach some of the fundamentals of software reuse, such as
logical reasoning development, function development, object
orientation, among others.

Based on each of the games found, a possible modification
or its use for teaching SR was proposed. Based on these
proposals, it was understood that games could be derived or
reused for more than one context. With this, two more games
were derived from those found for SR teaching.

The remainder of this paper is presented as follows: Section
II presents some related works, Section III describes the
research method used in the systematic mapping, Section IV
shows some results that were found, Section V demonstrates

207

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

an example of how one of the games found could be used to
teach SR, and Section VI shows the threats to validity and
concludes with the final remarks.

II. RELATED WORKS

This section aims to briefly present some related works
that served as inspiration for this study. The papers show
studies on teaching programming through games and make
some observations about this method.

According to Combéfis, Beresnevičius, and Dagienė [9]
several game-based platforms offer programming teaching. In
their work, they sought to identify several games that aim to
teach programming; each game’s characteristics and elements
are shown in the paper.

Malliarakis et al. [10] sought to review the features that
should be supported by educational games and which educa-
tional games already support these features for programming.
In this work, several games were reviewed. Their characteris-
tics were demonstrated through a relationship table, showing
each of the observed games’ elements and features.

Miljanovic and Bradbury [11] evaluated 49 games for
teaching programming to find characteristics of friendliness,
accessibility, learning effect, and involvement. From the tables
of elements presented in the paper it was possible to identify
several games that sought to teach concepts involved with
Software Reuse, such as functions, object orientation, and
recursion. It is worth remembering that the research areas
demonstrated in these papers are part of both Programming
and Software Reuse, and there is an intersection of content
between them.

From these works and related information, it was possible
to observe that many of the observed games had essential
characteristics that could be used for teaching Software Reuse.

III. RESEARCH METHOD

Systematic mapping is a secondary study method based on
a structured and repeatable process or protocol that explores
studies and provides a result in the form of an overview of
a particular subject [12]. The mapping presented follows the
protocol proposed by Kitchenham [13].

The research process presented in this study covers ar-
ticles published by the end of 2018 and aims to conduct
a systematic mapping to identify games that were built for
programming teaching but could be used to teach software
reuse fundamentals, such as logical reasoning development,
function development, object orientation, among others.

A. Research Questions
• Q1: What is the main advantage / motivation of the use

of games to teaching programming language?
• Q2: What is the disadvantage of the use of games to

teaching programming language?
• Q3: What is the main characteristic of the game used?
• Q4: What was the evaluation method used?

The mapping presented followed well-defined steps so that
it was possible to reach a set of articles that were of interest to
the search [13]. The search string was executed in Scopus as
recommended by other studies [14] [15], and then the inclusion
and exclusion criteria were applied to the set of articles that
were found based on the title, abstract, and full text.

B. Inclusion criteria
• The article must be in the context of using games for

programming language teaching;
• The article must provide clues about software reuse
• The article must provide data to answer at least one of

the research questions;
• The article should be written in English.

C. Exclusion criteria
• Book chapters, conference call;
• Studies that can not be fully accessed (i.e., papers that

could not be downloaded).

D. Search string and Analysis
The definition of the search string was based on the

Population, Intervention, Comparison, Outcome (PICO) struc-
ture [16], using three of the four levels. The search string was
defined by grouping the keywords of the same domain with
the logical operator “OR” and grouping the two fields with
the logical operator “AND”. However, we chose to use a date
filter, searching only for articles that were published within
five years, aiming to find more recent works in the area [17].
Table I demonstrates the PICO structure used in conjunction
with the search string. Initially, the search string returned a
total of 507 papers. When analyzed according to the inclusion
and exclusion filters, this number dropped to 17 papers.

According to Motta et al. [14] and Matalonga et al. [15],
the snowballing procedure can mitigate the lack of other search
engines, complement the strategy. Therefore, to minimize the
loss of some articles, the snowballing procedure were chosen,
looking at the references and citations of the articles looking
for relevance [15]. The snowballing process is divided into
two stages, backward and forward. The backward process
aims to identify new articles based on the works that were
referenced in the article that was analyzed, and the forward
refers to the identification of new papers based on the works
that referenced the paper that was analyzed [15]. From the use
of this procedure, it was possible to include nine more papers,
three of them through the forward process, and six through
the backward process, resulting in a total of 26 papers. Figure
2 demonstrates a summary of the data extraction process that
was used in this work. Table II shows how these 26 articles
were obtained, and Table III shows each of these articles,
demonstrating which questions were answered by each paper.

TABLE I. SEARCH STRING

PICO SYNONYMS

Population
Programming language, algorithm experience, algorithm skills,
algorithm alternative, algorithm method, coding experience,
coding skills, coding method, coding alternative

Intervention Tutoring, teach*,instruction, discipline, schooling, education*,
mentoring, course, learn*,train*, syllabus

Comparison Not applicable

Outcome Game*, gami*, play*, “serious games”, edutainment,
“game based learning”, simulation

SEARCH STRING
TITLE-ABS-KEY ((”programming language” OR ”algorithm experience”
OR ”algorithm skills” OR ”algorithm alternative” OR ”algorithm method”

OR ”coding experience” OR ”coding skills” OR ”coding method” OR
”coding alternative”) AND (tutoring OR teach* OR instruction OR

discipline OR schooling OR educat* OR mentoring OR course OR learn*
OR train* OR syllabus) AND (game* OR play* OR ”serious

games” OR gami* OR edutainment) AND (LIMIT-TO (PUBYEAR , 2018)
OR LIMIT-TO (PUBYEAR , 2017) OR LIMIT-TO (PUBYEAR , 2016)

OR LIMIT-TO (PUBYEAR , 2015) OR LIMIT-TO (PUBYEAR , 2014)))

208

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. ANALYSIS OF THE PAPERS

Main Study Snowballing backward Snowballing Forward
Activity Result Number of papers Result Number of papers Result Number of papers
First Execution 507 added 507 389 added 389 123 added 123
Repeated Papers 6 withdraw 501 294 withdraw 95 16 withdraw 107
Papers in another language 0 withdraw 501 14 withdraw 81 13 withdraw 94
Remove conference / workshops 16 withdraw 485 0 withdraw 81 0 withdraw 94
Remove books 0 withdraw 485 0 withdraw 81 0 withdraw 94
Remove by title 368 withdraw 117 46 withdraw 35 58 withdraw 36
Remove by abstract 83 withdraw 34 17 withdraw 18 18 withdraw 18
Papers not found 0 withdraw 34 0 withdraw 18 0 withdraw 18
Remove by full paper 17 withdraw 17 12 withdraw 6 13 withdraw 3
Total papers included 17 papers 6 papers 3 papers
Extracted Papers 26 papers

TABLE III. TRACEABILITY MATRIX.

Title Year Q1 Q2 Q3 Q4
Perceptions of Scratch programming among secondary school students in KwaZulu-Natal, South Africa 2018 X X X
Robo3: A Puzzle Game to Learn Coding 2018 X X X X
Improving programming skills in engineering education through problem-based game projects with Scratch 2018 X X X
Introducing novice programmers to functions and recursion using computer games 2018 X X X
Introducing programming using “scratch” and “greenfoot” 2018 X X X
Developing Educational 3D Games With StarLogo: The Role of Backwards Fading in the Transfer of
Programming Experience 2018 X X X X

Learning to think and practice computationally via a 3D simulation game 2018 X X X
Design and implementation of Robo3 : an applied game for teaching introductory programming 2017 X X X
A cross-cultural review of lightbot for introducing functions and code reuse 2017 X X
Using Digital Game as Compiler to Motivate C Programming Language Learning in Higher Education 2017 X X X
Cubely: Virtual reality block-based programming environment 2017 X X X
Analysis of the learning effects between text-based and visual-based beginner programming environments 2017 X X X
Visual programming language for model checkers based on google blockly 2017 X X X
Educational resource based on games for the reinforcement of engineering learning programming
in mobile devices 2016 X X X

Teaching abstraction, function and reuse in the first class of CS1 - A lightbot experience 2016 X X X
From Alice to Python Introducing text-based programming in middle schools 2016 X X X
Visual programming languages integrated across the curriculum in elementary school: A two year case
study using Scratch” in five schools 2016 X X X

Building a Scalable Game Engine to Teach Computer Science Languages 2015 X X X
A mobile-device based serious gaming approach for teaching and learning Java programming 2015 X X
Coding with Scratch: The design of an educational setting for Elementary pre-service teachers 2015 X X X
Droplet, a Blocks-based Editor for Text Code 2015 X X X
Integrating Droplet into Applab – Improving the usability of a blocks-based text edit 2015 X X X
The development of a virtual learning platform for teaching concurrent programming languages in
secondary education: The use of open Sim and Scratch4OS 2014 X X X X

Effects of using Alice and Scratch in an introductory programming course for corrective instruction 2014 X X X
A structured approach to teaching recursion using cargo-bot 2014 X X X
The Effects of Teaching Programming via Scratch on Problem Solving Skills: A Discussion from
Learners, Perspective, Informatics in Education 2014 X X X

IV. RESULTS

The articles found in this study sought to demonstrate
games that could be used in teaching some concepts related
to programming. However, the analysis of the documents was
performed in search of works that could be used to explain
some of the concepts of SR. From this, works that were not
developed with this context but could be used for this purpose
were also found. Figure 2 groups the articles by location and
year of publication. It is possible to see an increase in the
number of publications over the years and that many countries
are looking for improvements in this area.

The bottom of the figure also shows the number of articles
found grouped by game type. However, some papers used more
than one approach. From Figure 2, it is possible to observe that

the most used way to teach programming is through the use
of ”blocks of code”. Although this is not a real game, it uses
many features similar to games, such as the use of graphical
interfaces, sounds, and tasks to be done. Thus, these papers
were also considered in this work.
Q1: What is the main advantage / motivation of the use
of games to teaching programming language?

Video games have been in our lives for more than 50 years,
quickly becoming one of the most important, profitable, and
influential forms of entertainment [19]. A game is an activity
between two or more decision-makers who seek to achieve
their goals in some limited context. A more conventional
definition is that games are systems in which users participate
in an artificial conflict, defined by rules, which ends in a

209

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Summarization of the research protocol based on the model
created by Calderón et al. [18]

Figure 2. General analysis of the articles found.

quantifiable result [20].
Games are a visible and physical representation of a prob-

lematic space, a captured mental model that can be repeated.
They are places to: test new ideas and experiment theories;
repeat the training as many times as necessary; where time
and space can be contracted or expanded; learn more from
failure than from success [21] [19].

Many benefits are associated to the use of games in
education, such as increased collaboration and competition, the
creation of immediate feedback, the possibility of reflecting on
the results achieved and the transfer of content so that learning
is an integral part of gameplay, where the student must use
the knowledge acquired in class to solve a problem within the

TABLE IV. Advantages of using games as a teaching technique.

Advantage References
Entertainment [22, 23, 27, 29–37]
Practical knowledge [20, 23, 27, 37, 38, 38–44]
Engagement and motivation [23, 29, 31, 35, 36]
Knowledge retention [22, 23, 35, 36, 45]
Interactivity [36]
Immediate feedback [29, 31, 32, 35]
Reflection [23, 36]
Immersion [36]
Real Scenery [32, 36]
Risk-free experience [36]

game [22] [23] [24].
Using games as a reinforcement tool to teach skills can be

a very beneficial strategy for students. They have proven to be
a useful tool to complement conventional learning methods.
Games allow visualizing concepts that may be too abstract.
They also help you get acquainted with the knowledge and
methods that may be tedious to study, offering a cycle of
challenges and rewards that drives the learning experience [25].

Many authors claim that games have several characteristics
that can benefit teaching [22] [26]. They have already been
used as successful educational tools in many different fields
and topics, such as engineering, learning languages, theater
and even health [27]. The advantages include: increased stu-
dent motivation and engagement, enhancement of pre-existing
knowledge, increased performance in practical activities, im-
mediate feedback, fun and satisfaction, among others [25].

Finally, some visual programming languages were also
identified that are not directly considered games, but that use
very similar characteristics, such as increased motivation and
student engagement, use of graphical interfaces, among others.
Visual programming is the use of visual expressions in a
programming environment as an editing shortcut to generate
code that may or may not have a different syntax than that
used in textual coding [28]. There are several advantages to
using visual programming, and the main ones are [5] [12]:
Code generation through the combination of blocks; Make pro-
gramming more accessible to a specific audience; Improve the
quality with which people perform programming tasks; Reduce
the number of errors generated by beginning programmers, not
having to worry about the language syntax; Improve the speed
with which people perform programming tasks; feedback and
visual execution; and Minimize the command set.

Several advantages were found in relation to the use of
games as a teaching strategy, Table IV demonstrates each one
of these.

Q2: What is the disadvantage of the use of games to
teaching programming language?

The limited use of serious games in formal education
may be related to the issues surrounding the use of leisure
games, such as a view where games can be addictive, are
not productive, and can teach wrong concepts. Another very
relevant point regarding the non-use of games as a teaching
medium is that players usually learn through repetition, pat-
terns, and exploration, which contrasts with the learning of

210

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

discrete amounts of information, as it occurs in schools and
undergraduate courses in general [46].

Despite the advantages offered by games as a teaching
method, there are also some issues involving this approach.
The first problem found was the comparison of the level of
learning provided by a game as a teaching method and a class
with textual programming. Despite the advantages offered by
games, textual programming can still convey better content
[35]. Despite the advantages offered by visual programming,
it was also observed that text-based programming achieved
better results in relation to knowledge transfer [21].

Another problem identified was the complexity of the game
created. If the teaching tool used is too complicated, students
can reduce the time spent solving problems to focus more on
the tool. This is an unwanted distraction, and any game used
should be easy to use, allowing the student to focus on solving
the problem rather than how to use the game [38].

Finally, the last problem identified was that although games
provide several advantages, they are not seen as self-sufficient.
Professional follow-up and feedback on the course are required
to solve any problem that may arise throughout the learning
process [38]. Therefore, it is unlikely to teach students new
content just by using games. They are mostly used to reinforce
content that has already been presented by a teacher.

Q3: What is the main characteristic of the game used?
This study identified several games that sought to teach

programming through increased motivation and engagement
through fun. Most of these games were designed to be used
by users with minimal or no knowledge of programming
languages [45].

The first game found was LightBot, which is a game to
teach programming logic and has features such as multi-level,
difficulty progression, feedback, challenges, use of similar
tasks, concepts of functions, abstraction, flow control and
recursion [29] [31] [34]. Another game very similar to the one
described above is Cargo-Bot, which has the same characteris-
tics, but with other gameplay that revolves around a crane that
moves and stacks a set of colored boxes. Players write small
programs to move boxes from one initial setup to another [23].
Another game called Robo3 was found that had characteristics
very similar to those described [25].

Another game very similar to the ones listed above was a
game designed to teach Java programming that, to advance the
levels, the player needs to overcome different levels. As the
player surpasses these levels, he or she can progress through
the story, unlocking new elements and gaining experience
points to unlock new content [45].

Another game found was Lost in Space, which includes,
among other components, a game rules system, a physics
engine, and a rendering engine. The game screen is divided
into two parts. The left side containing the code interpreter
text area and a help window and on the other side, the game
phase. Through this game, some features were highlighted,
such as obstacles, code interpreter (pseudocode of the game),
collisions, movement, enemy and attack system [27].

In this research, we also identified some visual program-
ming languages that are not considered as games directly, but
that uses ”block” approach to building programs. The first

TABLE V. Characteristics used in games as teaching techniques.

Characteristics References
Score [17, 23, 25, 27, 29, 31, 45, 50]
Levels [23, 25, 27, 29, 31, 45]
Checkpoints [23, 25, 29, 31, 45]
Competition and collaboration [22]
Feedback [23, 25, 27, 29, 31]
Simulation [36]
Final result [23, 27, 29, 31, 36, 45]
Real scenario [36]
Challenge [22, 23, 25, 27, 29, 31, 36, 45]
Dependence between contents [22, 29]
Stimulating graphics [22, 23, 27, 29, 36]

two to be identified were Alice [32] and Scratch [30], which
are block-based visual programming languages designed to
promote media manipulation for new programmers. From these
languages, it is possible to upload media projects and scripts,
animated stories, games, book reports, greeting cards, music
videos, tutorials, simulations, and art and music projects. Two
other languages very similar to those described are StarLogo
TNG [35] and Droplet [47] [48], which are also drag-and-drop
visual languages.

Greenfoot is an integrated tool that aims to teach object-
oriented programming. Also, the tool allows teachers to intro-
duce the most essential and fundamental concepts of object
orientation in an easily understandable way [49]. Finally, the
last visual language found is called Google Blockly [43],
which is a library for building visual programming editors.

Finally, another feature that was used to create these games
was the use of virtual and augmented reality. The Cubely game
made use of these technologies to develop an idea that blended
block programming concepts and the Minecraft game [36].

Several characteristics were found in the games that were
evaluated. Table V shows each of them.

Q4: What was the evaluation method used?
Several evaluation methods were identified in this research.

However, in general, all evaluations have a questionnaire
applied to a specific population after using the tool to validate
it [35] [32] [43].

Another possible means of the evaluation was the use of
control groups where one group used the tool, and the other
did not, and the same questionnaire was applied to both groups
[27]. Through this assessment, it is possible to find out if
there was a gain of experience through the tool use since it is
possible to compare the results of the two groups.

The last evaluation method found was about the use of the
tool as part of the discipline — the tool as a complement to
the teaching of programming [42].

V. DISCUSSION

A. Reusing games to teach SR
This mapping found several games; however, none of them

was produced to teach SR. Nevertheless, these games, with
only a few or no modifications, could be used to explain certain
concepts of SR, such as the importance of reusing, software
components or code reuse.

211

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Thinking about this idea of teaching SR, visual language
platforms, such as Scratch [30], Alice [32], Droplet [47], and
Google Blockly [43] could, for example, be used to teach code
reuse or software components. A software component can be
understood as a software unit with a well-defined interface and
explicitly specified dependencies. It can have different sizes
and can be characterized in different ways, from a small piece
of code, a software package, a web service, a module that
encapsulates a set of functions, or it can even be as large as
a program [2]. All the visual languages have a strong base of
reuse, where the user creates programs by joining blocks (i.e.,
pre-produced components). Therefore, it is possible to under-
stand the “blocks” of visual programming code as software
components. Both (blocks and components) can be seen as
pieces of code that exercise a specific functionality and must
be reused to produce a new program.

Robo3 [25], CargoBot [23] and Lightbot [29] are games
of puzzle type and are very similar. The general idea of these
games is to create sequences of activities (which are described
as functions) that perform a task, such as taking the avatar
from point A to point B or moving boxes from one initial setup
to another. Thinking about this type of games, these functions
can be used in the game several times, teaching the student the
concept and importance of code reuse. Cubely [36] is a game
based on Minecraft, and its mechanics can be understood as
combining a puzzle game with a bit of visual programming.
In this game, the user must create cubes with a pre-defined
action that looks like a software component. With this in mind,
it is possible to use the game to teach components and the
importance of reusing software, forcing the user to reuse to
complete the puzzle.

Lost in Space [27] was another game found that could be
used to teach software components. A tittle modification in the
game mechanics would be enough, the idea would be to use
components to control the game ship or change the dynamics
of the game and make the player have to create a component
that aims to destroy the ship.

Finally, a similar puzzle game was also found to teach Java
programming [45]. This game has a collection of activities
divided into levels where the user needs to write code snippets,
taking the character from point A to point B to avoid obstacles.
This game with minor modifications could also be used to
teach software components, where at each phase, the player
would need to create a component to reuse throughout the
other levels.

B. Derivation games
Most games are built from derivations of others with minor

modifications to sprites, stories, or mechanics. The reason so
many games look similar is that they use the same set of
mechanics with small changes [51].

When discussing modifications and derivations of games, a
well-known term in this area is mod. This term can be defined
as any form of non-commercial change of a proprietary digital
game [52]. Through this term, it is possible to notice that many
games are built from others, for example, when entering the
website moddb.com, it is possible to find more than 21000
modified projects (accessed on June 28, 2020). There are other
terms to define games that were created from others. This
characterization depends on the size of the modification that
was made. Table VII demonstrates each of the categorizations

and presents a discussion of whether such a modification is a
derivation or not [52] [53].

Games are formed by different elements that combined give
life to the experience lived by the player. Small changes in
these elements make it possible to derive a new game that
will provide new experiences. Different authors divide these
elements in different ways, and in the following three ways to
divide these elements will be demonstrated.

The first method of dividing game elements is MDA. This
method is divided into three essential elements: mechanics,
dynamics, and aesthetics. Mechanics can be understood as the
rules and actions that can happen during the game. Dynamics
represent the behavior that occurs as a result of actions. Finally,
aesthetics are the emotions experienced by the player [54].

The second method of dividing the elements of games that
was found was the proposal made by Jesse Schell [51]. In
this method, every game consists of four essential elements:
aesthetics, mechanics, history, and technology. Aesthetics, in
this case, can be understood as what gives the appearance
to the game, anything that interacts with the player, such as
images and sounds. Mechanics is the rules and actions that
can happen; history is the narrative of the game, the events
that are happening throughout the game. Finally, technology
is the junction point of all others; it is where the game is built
[51].

The last method found was that proposed by Aki Jarvinen
[55]. This method divides the elements into some groups:
mechanics that have already been defined; rules that are
the procedures with which the game system restricts and
moderates the game; theme that is the subject of the game,
the plot; and information that can be understood as what the
system stores and presents to the player.

Based on these elements that make up the games, it is
possible to create derivations of existing games by making
small changes to parts of these elements. For example, think
of a simple card game like canasta. This game has several
variations that use the same technology (the cards), mechanics,
aesthetics and dynamics similar to just a few changes in the
rules. However, it is important to note that it is not any change
in an element that generates a new game. For example, a
change in technology or appearance (sprites, sounds) in the
game will not create a new game. To try to make it more
transparent to the reader what can be modified to derive one
game from another, Table VII groups the similar elements and
presents a brief discussion about each one.

Based on the idea of derivation, two games were built using
the main mechanics and characteristics found in this mapping.
The idea was to create games derived from those found to
teach SR. The first game was a simple quiz to demonstrate
the information to be taught in an SR discipline in a way that
was not only through the reading of books and slides. The
quiz used characteristics such as response time, demonstration
of the right and wrong answers as feedback, progress bar, and
difficulty levels. Thinking about derivation, this game could be
easily modified and applied in other contexts different from
teaching of SR. It would be enough to modify the questions
in the game to satisfy the criteria of another discipline. The
second game explored the derivation idea further and was
inspired by the Lightbot, using a similar mechanic with some
modifications. The game created was called CodeBoy and can

212

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VI. CATEGORIZATION OF CHANGES, ADAPTED FROM [52, 53]

Name Description Discussion
Mutators
or
tweaks

Minor modification, such as changing the speed of the game.
Mutators can also be additions that do not influence the game
and its mechanism, having only an aesthetic effect.

It is not considered a derivation because
it has only aesthetic effects, or very small
modifications.

Add-ons Provides some extensions, such as new maps, new units, and
new skins, among others.

It is not considered a derivation because it
is just an extension.

Mods
Can include add-ons and mutators, or rather, they also manipulate
the rules system and the visual layer. Often, they try to establish
a new version of the game by modifying much of it.

Total
conversions

Manipulate the original game in so many ways that a new game is
created. Still, these changes can be applied to different levels of
the game.

Alter the original game significantly, and
therefore considered a derivation.

TABLE VII. DISCUSSION OF ELEMENTS.

Element Discussion

Mechanic
(Actions)

Modifications to the actions that the user can
perform in a game will create a derivation.
For example, think in a chess where the pieces
have different movements.

Mechanic
(Rules)

Changes in the rules that the user can execute in
a game will create a derivation. For example,
think of a target shooting game where the player
must play blindfolded, the game will be more
difficult through this new rule added.

Dynamic

Dynamics represents the behavior that occurs as a
result of actions. To have a change in the dynamics
of the game, you must change part of the mechanics.
Therefore, an isolated change in this
element would not occur.

Aesthetic

Aesthetics are the emotions experienced by the
player. It will hardly be possible to make an
isolated change in this element. It will be
necessary to modify another element to influence it.

Aesthetic
(Appearance)
Information

Modifications in the appearances (sprites, sounds)
of games will not create a new game. Playing Zelda
without music is still the same game.

Story/Theme

Changes in stories or themes of games will result in
a new game. Many developers use this approach,
creating new games that only change the story.
For example, there are several action games with
walking and shooting mechanics but with different
stories.

Technology

The change in technology does not create a new
game. It can change the experiences experienced
by the player. However, it remains the same game.
Computer chess remains a game of chess.

be used to demonstrate the importance of SR, showing the
student that there are certain moments when it is essential
and often indispensable. CodeBoy used movement mechanics
similar to Lightbot as jumping, rotating, and walking. This
game is also integrated with the idea of the FODA (Feature-
oriented domain analysis) language tree in the context of SR
to permit the construction of functions [56].

The Codeboy derivation process followed three phases,
namely: analysis, division, and derivation. The analysis seeks
to obtain an understanding of the game to be derived, collecting
information such as the objective of the game and how it
works. The division aims to separate the game according to the
elements of the Table VII, to understand each one separately.
Finally, in the derivation phase, each element is reviewed to

understand which elements will be modified or reused. Table
VIII shows the division phase with each of the elements of the
two games. It is worth remembering that when an element was
reused, its discussion will be demonstrated only once. Figure
3 demonstrates Lightbot [29] at the top and CodeBoy [56] at
the bottom. A better understanding of the games created and
their evaluations can be found in Castro and Werner [56].

Figure 3. Lightbot [56] and Codeboy [29]

VI. FINAL REMARKS

A. Threats to Validity
Through a critical analysis of the mapping, it is possible

to perceive some threats that may have affected the final result
of the work. The first to be highlighted is about the period
in which the mapping was performed, collecting information
from just five years. The second threat is the problem of
interpreting the information found, which is up to the author
to understand the game found and think of a way that could
be applied in the teaching of SR.

213

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VIII. LIGHTBOT VS CODEBOY.

Element LightBot CodeBoy

Objective Teach programming logic through sequence
of movements as an algorithm

Teach reuse through the development of software
components

Mechanic
(Actions)

1 - Drag and drop blocks to move the robot
2 - Create functions with a sequence of steps for
character movement
3 - Turn on the lights along the way

1 - Drag and drop blocks of codes to move the boy and
solve the phase algorithm
2 - Create functions with a sequence of steps for character
movement
3 - Catch the gold star
4 - Open the magic chest

Mechanic
(Rules)

Create the sequence of correct movements
to move the robot

The basis of the game is through the construction of
components. It is worth remembering that these created
components can be saved and reused in later stages

Dynamic Watch the robot move and turn on the lights
along the route

After creating the algorithm, it will be validated through
metrics and a score will be calculated for the player,
encouraging the user to create better programs to achieve
higher grades

Aesthetic The user must think about the correct movement
sequence (challenge)

The user must develop his own component (expression)
based on the algorithm described in the phase, so that he
can get an adequate grade to advance to the next phase
(challenge)

Aesthetic
(Appearance)
Information

1 - Maps divided into squares where the game
character moves around the squares.
2 - Group of commands to be executed positioned
on the right side of the screen.

1 - Maps divided into squares where the game character
moves around the squares.
2 - Group of commands to be executed positioned on the
right side of the screen, within the tree.

Story/Theme Help the robot to move from point A to point B
by raising the lights along the way.

Help the character move from the start to capture the gold
star and then open the treasure chest.

Technology Mobile Mobile e desktop

B. Conclusion and Future Work

For many people who are not directly linked to the software
reuse area, they refer to it as just code. Due to this fact,
this mapping sought to find programming teaching games that
could be used to teach reuse concepts that are often abstract to
many students. From this, it was possible to identify six games
and six block-based programming languages. The game, and
the visual programming language that were identified in more
articles were LightBot [29] and Scratch [30], respectively.
The main characteristics found were the use of rules, phases,
difficult progression, feedback, challenges, and the use of
similar tasks in sequence.

As mentioned before, software reuse is inserted in several
contexts, and the most common are propagation and engineer-
ing. This work sought to identify games that were created to
teach programming but could be used to explain some of the
fundamentals of software reuse, thus looking at works from the
first context. To better understand how these games are used as
teaching methods, it is intended to perform another mapping
to identify games that aim to teach software engineering, since
as software reuse is inserted in the engineering and possibly
similar features can be used to the teaching of the two subjects.

Although this work has found some games that could be
used to teach some reuse fundamentals such as components,
functions, and object orientation, none of these games were
specifically designed to teach software reuse. Based on each
of the games found, a possible modification or use of it for
teaching SR was proposed. Based on these proposals, it was
understood that games could be derived or reused for more
than one context. Most games are created from others with

minor modifications, this process is called derivation. In order
to test this process, a three-step protocol was built and used
to create a game from it.

Games can be a new method to complement the current
teaching method due to its main advantages, such as increased
practice and engagement through challenges, rewards, fun,
and feedback. However, it is still something new that needs
attention due to problems such as the complexity of the game
that can affect learning, and the level of learning provided by
games is still lower than current teaching methods.

As mentioned before, several block-based programming
languages have been found, showing that this strategy has also
been used on a large scale for teaching programming. Based
on this, it is intended to create games that use this strategy to
help teaching Software Reuse.

To conclude, it is expected to improve and systematize the
game evolution showed in this paper to continue the derivation
of games more transparently and efficiently.

REFERENCES

[1] D. Castro and C. Werner, “Mapping on the use of games
for programming teaching with an emphasis on software
reuse,” The Sixth International Conference on Advances
and Trends in Software Engineering, SOFTENG, Febru-
ary, 2020.

[2] J. Sametinger, Software engineering with reusable com-
ponents. Springer Science & Business Media, 1997.

[3] O. Serrat, “Harnessing creativity and innovation in the
workplace,” in Knowledge solutions. Springer, 2017,
pp. 903–910.

214

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[4] R. J. Leach, Software Reuse: methods, models, and costs.
McGraw-Hill New York, 1997.

[5] N. Niu, D. Reese, K. Xie, and C. Smith, “Reuse a” soft-
ware reuse” course,” in American Society for Engineering
Education. American Society for Engineering Education,
2011.

[6] U. Ritterfeld, M. Cody, and P. Vorderer, Serious games:
Mechanisms and effects. Routledge, 2009.

[7] H. Ludens, “A study of the play element in culture,”
Trans. by RFC Hull.(London, 1949), vol. 168, 1955.

[8] T. Mikkonen and A. Taivalsaari, “Software reuse in the
era of opportunistic design,” IEEE Software, vol. 36,
no. 3, 2019, pp. 105–111.

[9] S. Combéfis, G. Beresnevičius, and V. Dagienė, “Learn-
ing programming through games and contests: overview,
characterisation and discussion,” Olympiads in Informat-
ics, vol. 10, no. 1, 2016, pp. 39–60.

[10] C. Malliarakis, M. Satratzemi, and S. Xinogalos, “Edu-
cational games for teaching computer programming,” in
Research on e-Learning and ICT in Education. Springer,
2014, pp. 87–98.

[11] M. A. Miljanovic and J. S. Bradbury, “A review of
serious games for programming,” in Joint International
Conference on Serious Games. Springer, 2018, pp. 204–
216.

[12] I. Steinmacher, A. P. Chaves, and M. A. Gerosa, “Aware-
ness support in distributed software development: A sys-
tematic review and mapping of the literature,” Computer
Supported Cooperative Work (CSCW), vol. 22, no. 2-3,
2013, pp. 113–158.

[13] B. Kitchenham, “Procedures for performing systematic
reviews,” Keele, UK, Keele University, vol. 33, no. 2004,
2004, pp. 1–26.

[14] R. C. Motta, K. M. de Oliveira, and G. H. Travassos,
“Characterizing interoperability in context-aware soft-
ware systems,” in 2016 VI Brazilian Symposium on
Computing Systems Engineering (SBESC). IEEE, 2016,
pp. 203–208.

[15] S. Matalonga, F. Rodrigues, and G. H. Travassos, “Char-
acterizing testing methods for context-aware software
systems: Results from a quasi-systematic literature re-
view,” Journal of Systems and Software, vol. 131, 2017,
pp. 1–21.

[16] M. Petticrew and H. Roberts, Systematic reviews in the
social sciences: A practical guide. John Wiley & Sons,
2008.

[17] S. Jiang, H. Zhang, C. Gao, D. Shao, and G. Rong,
“Process simulation for software engineering education,”
in Proceedings of the 2015 International Conference on
Software and System Process. ACM, 2015, pp. 147–156.

[18] A. Calderón, M. Trinidad, M. Ruiz, and R. V. O’Connor,
“Teaching software processes and standards: A review of
serious games approaches,” in International Conference
on Software Process Improvement and Capability Deter-
mination. Springer, 2018, pp. 154–166.

[19] S. Ramı́rez-Rosales, S. Vázquez-Reyes, J. L. Villa-
Cisneros, and M. De León-Sigg, “A serious game to
promote object oriented programming and software en-
gineering basic concepts learning,” in 2016 4th Interna-
tional Conference in Software Engineering Research and
Innovation (CONISOFT). IEEE, 2016, pp. 97–103.

[20] K. Salen, K. S. Tekinbaş, and E. Zimmerman, Rules of

play: Game design fundamentals. MIT press, 2004.
[21] C. Caulfield, J. C. Xia, D. Veal, and S. Maj, “A sys-

tematic survey of games used for software engineering
education,” Modern Applied Science, vol. 5, no. 6, 2011,
pp. 28–43.

[22] T. Jordine, Y. Liang, and E. Ihler, “A mobile-device
based serious gaming approach for teaching and learning
java programming,” in 2014 IEEE Frontiers in Education
Conference (FIE) Proceedings. IEEE, 2014, pp. 1–5.

[23] E. Lee, V. Shan, B. Beth, and C. Lin, “A structured
approach to teaching recursion using cargo-bot,” in Pro-
ceedings of the tenth annual conference on International
computing education research. ACM, 2014, pp. 59–66.

[24] R. O. Chaves, C. G. von Wangenheim, J. C. C. Furtado,
S. R. B. Oliveira, A. Santos, and E. L. Favero, “Exper-
imental evaluation of a serious game for teaching soft-
ware process modeling,” ieee Transactions on Education,
vol. 58, no. 4, 2015, pp. 289–296.

[25] F. Agalbato, “Design and implementation of robo3: an
applied game for teaching introductory programming,”
Scuola di Ingegneria Industriale e dell’Informazione,
2017.

[26] R. Atal and A. Sureka, “Anukarna: A software engineer-
ing simulation game for teaching practical decision mak-
ing in peer code review.” in QuASoQ/WAWSE/CMCE@
APSEC, 2015, pp. 63–70.

[27] Á. Serrano-Laguna, J. Torrente, B. M. Iglesias, and
B. Fernández-Manjón, “Building a scalable game engine
to teach computer science languages,” IEEE Revista
Iberoamericana de Tecnologias del Aprendizaje, vol. 10,
no. 4, 2015, pp. 253–261.

[28] M. M. Burnett, “Visual programming,” Wiley Encyclo-
pedia of Electrical and Electronics Engineering, 2001.

[29] E. V. Duarte and J. L. Pearce, “A cross-cultural review
of lightbot for introducing functions and code reuse,”
Journal of Computing Sciences in Colleges, vol. 33, no. 2,
2017, pp. 100–105.

[30] D. Topalli and N. E. Cagiltay, “Improving programming
skills in engineering education through problem-based
game projects with scratch,” Computers & Education,
vol. 120, 2018, pp. 64–74.

[31] R. Law, “Introducing novice programmers to functions
and recursion using computer games,” in European Con-
ference on Games Based Learning. Academic Confer-
ences International Limited, 2018, pp. 325–334.

[32] C.-K. Chang, “Effects of using alice and scratch in
an introductory programming course for corrective in-
struction,” Journal of Educational Computing Research,
vol. 51, no. 2, 2014, pp. 185–204.

[33] N. Pellas and S. Vosinakis, “Learning to think and
practice computationally via a 3d simulation game,”
in Interactive Mobile Communication, Technologies and
Learning. Springer, 2017, pp. 550–562.

[34] M. Aedo Lopez, E. Vidal Duarte, E. Castro Gutierrez, and
A. Paz Valderrama, “Teaching abstraction, function and
reuse in the first class of cs1: A lightbot experience,” in
Proceedings of the 2016 ACM Conference on Innovation
and Technology in Computer Science Education. ACM,
2016, pp. 256–257.

[35] N. Boldbaatar and E. Şendurur, “Developing educational
3d games with starlogo: The role of backwards fading

215

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in the transfer of programming experience,” Journal of
Educational Computing Research, vol. 57, no. 6, 2019,
pp. 1468–1494.

[36] J. Vincur, M. Konopka, J. Tvarozek, M. Hoang,
and P. Navrat, “Cubely: Virtual reality block-based
programming environment,” in Proceedings of the
23rd ACM Symposium on Virtual Reality Software
and Technology, ser. VRST ’17. New York, NY,
USA: ACM, 2017, pp. 84:1–84:2. [Online]. Available:
http://doi.acm.org/10.1145/3139131.3141785

[37] M. Marimuthu and P. Govender, “Perceptions of scratch
programming among secondary school students in
kwazulu-natal, south africa,” African Journal of Informa-
tion and Communication, vol. 21, 2018, pp. 51–80.

[38] N. Pellas, “The development of a virtual learning plat-
form for teaching concurrent programming languages
in the secondary education: The use of open sim and
scratch4os,” Journal of e-Learning and Knowledge Soci-
ety, vol. 10, no. 1, 2014, pp. 129–143.

[39] H. Pötter, M. Schots, L. Duboc, and V. Werneck, “In-
spectorx: A game for software inspection training and
learning,” in 2014 IEEE 27th Conference on Software
Engineering Education and Training (CSEE&T). IEEE,
2014, pp. 55–64.

[40] N. Tabet, H. Gedawy, H. Alshikhabobakr, and S. Razak,
“From alice to python. introducing text-based program-
ming in middle schools,” in Proceedings of the 2016
ACM Conference on innovation and Technology in Com-
puter Science Education, 2016, pp. 124–129.

[41] F. Kalelioglu and Y. Gülbahar, “The effects of teaching
programming via scratch on problem solving skills: A
discussion from learners’ perspective.” Informatics in
Education, vol. 13, no. 1, 2014, pp. 33–50.

[42] L. A. Vaca-Cárdenas, F. Bertacchini, A. Tavernise,
L. Gabriele, A. Valenti, D. E. Olmedo, P. Pantano,
and E. Bilotta, “Coding with scratch: The design of an
educational setting for elementary pre-service teachers,”
in 2015 International Conference on Interactive Collabo-
rative Learning (ICL). IEEE, 2015, pp. 1171–1177.

[43] S. Yamashita, M. Tsunoda, and T. Yokogawa, “Visual
programming language for model checkers based on
google blockly,” in International Conference on Product-
Focused Software Process Improvement. Springer, 2017,
pp. 597–601.

[44] J.-M. Sáez-López, M. Román-González, and E. Vázquez-
Cano, “Visual programming languages integrated across
the curriculum in elementary school: A two year case
study using “scratch” in five schools,” Computers &
Education, vol. 97, 2016, pp. 129–141.

[45] A. Sierra, T. Ariza, F. Fernández-Jiménez, J. Muñoz-
Calle, A. Molina, and Á. Martı́n-Rodrı́guez, “Educa-
tional resource based on games for the reinforcement of
engineering learning programming in mobile devices,”
in 2016 Technologies Applied to Electronics Teaching
(TAEE). IEEE, 2016, pp. 1–6.

[46] D. Valencia, A. Vizcaino, L. Garcia-Mundo, M. Piattini,
and J. P. Soto, “Gsdgame: A serious game for the
acquisition of the competencies needed in gsd,” in 2016
IEEE 11th International Conference on Global Software
Engineering Workshops (ICGSEW). IEEE, 2016, pp.
19–24.

[47] D. Bau, “Droplet, a blocks-based editor for text code,”

Journal of Computing Sciences in Colleges, vol. 30, no. 6,
2015, pp. 138–144.

[48] D. A. Bau, “Integrating droplet into applab—improving
the usability of a blocks-based text editor,” in 2015 IEEE
Blocks and Beyond Workshop (Blocks and Beyond).
IEEE, 2015, pp. 55–57.

[49] H. Chandrashekar, A. G. Kiran, B. Uma, and P. Sunita,
“Introducing programming using “scratch” and “green-
foot”,” Journal of Engineering Education Transforma-
tions, 2018.

[50] R. d. A. Mauricio, L. Veado, R. T. Moreira, E. Figueiredo,
and H. Costa, “A systematic mapping study on game-
related methods for software engineering education,”
Information and software technology, vol. 95, 2018, pp.
201–218.

[51] J. Schell, The Art of Game Design: A book of lenses.
CRC press, 2008.

[52] A. Unger, “Modding as part of game culture,” in Com-
puter Games and New Media Cultures. Springer, 2012,
pp. 509–523.

[53] O. Sotamaa, “When the game is not enough: Motivations
and practices among computer game modding culture,”
Games and Culture, vol. 5, no. 3, 2010, pp. 239–255.

[54] R. Hunicke, M. LeBlanc, and R. Zubek, “Mda: A formal
approach to game design and game research,” in Proceed-
ings of the AAAI Workshop on Challenges in Game AI,
vol. 4, no. 1, 2004.

[55] A. Järvinen, “Introducing applied ludology: Hands-on
methods for game studies.” in DiGRA Conference. Cite-
seer, 2007.

[56] D. Castro and C. Werner, “Use of games as a strategy
for teaching software reuse,” SBGAMES, 2020 (in Por-
tuguese).

216

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

