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Abstract - Quality management in manufacturing can benefit 
from integration of artificial intelligence to detect and analyze 
errors in production. However, finding the causes of errors 
requires not only accurate predictions, but also suitable 
explanations of the underlying data analysis processes. This 
paper extends our previous work on a novel approach to 
measure the importance of features for error analysis. This 
approach bridges the gap between global and local importance 
and introduces the concept of regional feature importance, 
which captures the impact of features in specific regions of the 
feature space, rather than globally or locally. We generalize this 
method as a task of partitioning the feature space and 
aggregating the local importance of features within these 
regions. Our findings demonstrate that this approach can reveal 
interesting and actionable insights for quality management in 
manufacturing. 
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I. INTRODUCTION 

 In this paper, we expand our earlier work [1] on regional 
feature importance (RFI) measures for quality management 
in manufacturing. This work generalizes the concept of RFI 
as a two-step process of partitioning and aggregation. The 
partitioning step divides the feature space into regions based 
on certain criteria, and the aggregation step combines the 
feature importance values within each region. Additionally, 
we extend our previous work by introducing new measures 
and demonstrate the usefulness of the proposed RFIs on 
synthetic data and a real-world dataset. 
 Feature importance measures are valuable tools for 
analyzing complex, high-dimensional production data to 
identify the causes of errors or defects. Quality management 
in modern manufacturing processes involves extensive testing 
and collection of detailed measurements along production 
lines. However, quality managers often struggle to pinpoint 
error causes within large data sets [2]. Artificial Intelligence 
(AI), combined with eXplainable AI (XAI), can utilize such 
data to predict errors [3] and provide insights to quality 
engineers by identifying potential causes of production errors 
[4]. Feature importance metrics can reveal these features that 
constitute potential error causes and reveal interesting insights 

for quality managers. However, existing feature importance 
measures are not tailored to this task [4] [5]. 
 Our work is rooted in a research project with a German 
manufacturer [6]. Here, combining human expertise with AI-
based data analysis is desirable for error analysis in production 
lines. This is because (a) quality managers seek to understand 
the error causes and may not blindly trust AI-based results, 
and (b) human experts have background knowledge and a 
deep understanding of the production process that the AI does 
not have access to. Hence, this work explicitly involves 
human experts in the loop and focuses on using AI models for 
providing input to human analysts. 
 This work targets typical manufacturing setups, where 
production lines comprise a sequence of production steps and 
several test stations along the production line. Test stations 
perform measurements on each product at different steps of 
the production. This leads to detailed records of individual 
product instances that can include hundreds of thousands of 
measurements per product [7]. However, the high number of 
different measurements poses challenges for finding causes of 
errors in the data. Moreover, errors are rare in modern 
manufacturing processes which usually are highly optimized 
[8]. Quality management is often about driving down rare – 
but still costly – errors. Yet, existing applications have 
successfully used such high-dimensional to build AI models 
for predicting production errors [7][9]. The aim of such 
models is to take measurements from test stations early in the 
production sequence and predict errors that occur downstream 
in the production line. If errors can be predicted early with 
sufficient reliability, products can be removed early in the 
process, and costs for downstream production steps can be 
avoided [2].  
 Furthermore, such AI models can be analyzed to hint at 
the cause of errors. We leverage this capability to provide 
insights to human experts in quality management. Existing 
works use feature importance measures to identify quality 
measurements that are relevant in predicting and explaining 
errors. For example, if a heat measurement of an oven is 
important in predicting errors, then errors may be avoided by 
adjusting the temperature setting. Identifying such interesting 
measurements among the thousands of data points can help 
quality managers to find error causes and improve production 
[9]. However, existing importance measures are not tailored 
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to find features that are interesting for inspection in error cause 
analysis. Instead, they take a global view and capture how 
much a model relies on a given feature on average. As we 
demonstrate in this paper, such a global view often fails when 
it comes to spotting rare but strong relations that lead to 
actionable insight in error analysis.  
 In contrast to global importance measures, XAI methods 
like Shapley Additive Explanations (SHAP) [11] and LIME 
[12] provide local explanations for the impact of features on a 
prediction. These methods estimate the impact of features on 
individual data instances. However, analyzing a single data 
instance in isolation may not yield enough context to draw 
actionable conclusions and, thereby, limiting the usefulness in 
quality management. 
 Our work introduces feature importance measures that 
bridges the gap between global and local feature importance. 
We refer to this as regional feature importance (RFI). Building 
on this concept, we extend and refine our previous paper [1]. 
That is, we analyze sets of local feature importance values for 
interesting effects. The result of this analysis is captured in 
new importance measures that capture different interesting 
aspects. In this paper, we mathematically define our applied 
notion of interestingness. Intuitively, we consider a feature 
interesting if it hints at actionable insight for quality managers. 
Such actions include setting thresholds in quality checks or 
adjusting processes to avoid specific value ranges. Intuitively, 
drastic changes in error rates and high error rates in well-
defined parts of a value range make features interesting. This 
paper presents importance measures that formalize these 
concepts of interestingness and translate them into an 
importance score. Specifically in this work, we make the 
following key contributions: 

1) Extending and formally defining novel feature 
importance measures that are tailored to finding relevant 
features for quality management in manufacturing,  
2) proposing a two-step process of partitioning and 
aggregating to construct the RFI measures,  
3) providing five metrics to determine the RFI 
measures based on different criteria, and  
4) evaluating the proposed measures on real-world data 
and comparing them with established importance 
measures.  

With these contributions, we aim to assist human experts in 
quality management to better leverage results from AI models 
for driving their analysis. 
 The remainder of this paper is structured as follows: In 
Section II, we briefly summarize the corresponding 
background. In Section III, approaches to derive the regional 
feature importance are proposed which are illustrated on 
synthetic data in Section IV, and evaluated on a real-world 
dataset in Section V. In Section VI, we discuss related work 
and conclude in Section VII. 

II. BACKGROUND 

 When using Machine Learning (ML) support for error 
analysis in quality management processes, feature 

importance metrics can become a tool to rank and identify 
features that are suitable to guide Quality Engineers (QE) in 
finding error causes in production. Such a process inspired 
the present work is carried out in the production of an 
industry partner in the research project [5]. ML-driven 
quality management processes here focus on QEs as primary 
actors. Using ML support, QEs are intended to analyze 
production and take corrective maintenance steps in 
production. However, the development and deployment of 
models for the ML support system are embedded in 
automated pipelines and maintained by data scientists. The 
automated ML pipeline includes several steps like data 
preprocessing, i.e., feature selection or evaluation of model 
performances through cost-sensitive metrics [3]. As such, the 
system is designed to enable QEs to use ML support for error 
causes analysis, but not to engage with the technical depth of 
the ML system. 
 A reference process focusing on QEs intended to 
investigate errors in production is laid out in [2]. Key steps 
include the selection of production data for the automated ML 
pipeline. Later steps involve error identification and 
correction in production using ML support. To identify error 
causes the QE is intended to use feature importance to find 
features that suits as explanations for error causes. 
 SHAP is one of the more recent advancements in the field 
of XAI, focusing on the interpretability of ML models. SHAP 
targets instance-based, as opposed to global, model 
explanation. By aggregating explanations of instances, it is 
possible to evaluate the importance of features incorporating 
aspects of interest to guide QEs in error cause analysis [5]. 
SHAP evaluates the marginal contribution a feature has on its 
model output. The contribution 𝜙 ∈ ℝ for a feature 𝑓 with 
model 𝑚  is attributed using Shapley Values from game 
theory: 
 

𝜙 =
|𝑆|! (𝑀 − |𝑆| − 1)!

𝑀!
⊆ \{ }

[𝑚 (𝑆 ∪ {𝑓}) − 𝑚 (𝑆)], 

 
where 𝑀 is the number of all features, S is the set of input 
values, and |S| is the magnitude of S (for example, 𝑆 =
 𝑥 , 𝑥 , … , 𝑥 , 𝑥 , 𝑥  and |𝑆| = 𝑛 − 1  ). One way to 
compute the feature contributions is an explanation model 
𝑒(𝑧 ) = 𝜙 + ∑ 𝜙 𝑧  where 𝑧 ∈ {0,1} [11]. This is the 
weighted average over all feature contributions. The 
explanation model is computed using the mapping 𝑚 (𝑆) =

𝑚 𝑒 (𝑧 )  which maps all input values 𝑆  to whether the 
feature is being used ( 𝑧 = 1)  or not known ( 𝑧 = 0) . 
However, SHAP values can also be efficient computed using 
model specific methods such as for tree-based model 
exploiting the internal structure of the model [13] . 
 SHAP decomposes the feature contribution into main 
effect and interaction effect with other features [13]. The 
main effect of a feature is the average marginal contribution 
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of that feature across all possible coalitions of other features. 
The interaction effect of a feature with another feature is the 
difference between the joint contribution of both features and 
the sum of their individual contributions. The advantage of 
distinguishing the main and interaction effects is that it can 
reveal how features influence the model output not only by 
themselves, but also by interacting with other features. This 
can help to understand the complex and nonlinear 
relationships between features and the model output. 
Therefore, SHAP values can be decomposed in main and 
interaction effect by: 
  

ϕ (𝑥 ) = ϕ , (𝑥 ) + ϕ , (𝑥 ) 

 
 Where ϕ , (𝑥 ) is the SHAP interaction value between a 
feature f and a feature j on instance 𝑥 . Moreover, ϕ , (𝑥 ) 
then is the main effect which is the resulting effects of feature 
f  with itself. 
 In the following section we propose SHAP-based 
importance measures that are tailored to the task of quality 
management in manufacturing. 

III. REGIONAL FEATURE IMPORTANCE 

RFI is an approach to measure the contribution of a feature 
to the prediction of a model in a specific region of the feature 
space [5]. It bridges the gap between global and local feature 
importance [14][15]. This is unlike global importance, which 
assesses features over the entire dataset, and local 
importance, which focuses on the individual prediction [16]. 
Regional importance focuses on specific regions in the data 
and aims to identify those that are most relevant for 
explaining the error cause in manufacturing processes. 

We propose a two-step process of partitioning and 
aggregation to construct the RFI. Partitioning are methods for 
dividing the feature value range into clusters that capture the 
local patterns and behaviors of the features. The partitioning 
is based on criteria, such as distance of data points, output 
predictions or intervals of feature values. This step isolates 
distinct areas where feature behavior is expected to be similar 
and allows interpretations about different contexts and 
regions. Following the partitioning, SHAP values within the 
region are aggregated to determine an importance score. 
These aggregations are based on criteria such as mean SHAP 
values, error frequency or change in SHAP values to pinpoint 
interesting prediction contributions of features. 

To describe the RFI we define 𝑋 = {𝑥 , 𝑥 , … , 𝑥 } as the 
set of data point in the dataset 𝑋. However, for simplicity we 
also refer to data points as instance 𝑥 ∈ 𝑋. Correspondingly, 
we define the set of labels 𝑌 = {𝑦 , 𝑦 , … , 𝑦 } as the real data 
labels. We denote M as the machine learning model that maps 
instance x to a prediction 𝑀(𝑥) = 𝑦. We use SHAP values 
ϕ (𝑥)  as a measure to quantify the contribution of an 
instance 𝑥  to the prediction for a feature f. We seek to 
evaluate a scoring-function 𝑔: 𝑔(𝑓, 𝑋, 𝑦, 𝑀) → ℝ  that 

aggregates SHAP values and scores "interesting" features 
high. 

In the following sections, we provide the two-step process 
of partitioning and aggregations to construct the RFI in detail. 
Moreover, we propose several methods for partitioning and 
aggregations, provide mathematical formulations and 
intuition for interpretation and reasoning. 

A. Partitionings 

To determine the RFI, first the feature value range is 
partitioned into clusters that optimize the feature importance 
score: 

 
𝑔(𝑓, 𝑋, 𝑦, 𝑀) = max

∈ ( ) 
𝐴 (𝑓, 𝑋, 𝐶) 

 
Here, 𝐴(𝑓, 𝑋, 𝐶)  represents the aggregations later 

defined, which are obtained for sets of clusters 𝐶 ∈ 𝑃(𝑓). 
𝑃(𝑓)  represents the proposed partitioning functions, 
resulting in sets of clusters 𝑃(𝑓)={𝐶 , 𝐶 , … 𝐶 } for feature f. 
Each cluster 𝑐 ∈ 𝐶  is a disjunct subset of the data X such that 
𝑐 ⊆  𝑋. In the following, we describe the used partitioning 
methods 𝑃(𝑓) to obtain 𝐶  in detail.  

Decision-Tree Partitioning: This method divides the 
feature value range into segments based on the splits of a 
decision tree that is trained on the feature values 𝑓 and the 
output labels 𝑦 . Each split is determined by selecting a 
threshold that maximize the reduction in impurity only 
considering one feature 𝑓. As impurity measure, we used the 
Gini 1 − ∑ 𝑝 , where 𝑝  is the proportion of data points in 
class 𝑖 at a given node. Clusters 𝐶 are then determined by the 
node in which data points 𝑥 falls. The intuition is that features 
that have interesting patterns of SHAP values in regions that 
are predictive of the output labels are more indicative of error 
causes. This method can handle complex feature value 
distributions, as it creates partitions that are based on the 
feature value patterns and the output labels 𝑦 regardless of 
the feature value range. 

K-means Partitioning: This method uses the k-means 
algorithm to segment the feature values 𝑓 into clusters, 
aiming to reduce the within-cluster variance. It minimizes the 
within-cluster sum (WCSS) of squares, defined as WCSS = 

∑ 𝑥 − μ∈  where μ  is the centroid of cluster 𝑐 . 

This approach groups feature values close to a segment’s 
centroid and separates those further away, thereby identifying 
areas with consistent feature values and therefore, sheds light 
on the local structure of the data, providing valuable insights 
into feature behavior. 

Interval-based Partitioning: This method linearly divides 
the feature range into equal-sized intervals. This divides the 
entire range of 𝑓 into partitions, into intervals 𝐼  covering an 
equal portion of the feature’s value range. Every data point 𝑥 
is allocated to the cluster 𝑐  based on the intervals 𝐼  range in 
which a feature value 𝑥  lies. This method does not account 
for density or distribution patterns, instead, it examines how 
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the characteristics changes across the features spectrum, and 
therefore, exhibits patterns which changes across the feature 
value range.  

Hierarchical-based Partitioning: This method partitions 
the feature based on hierarchical clustering. Clusters are 
formed based on the pairwise Euclidean distances between 
data points within the feature 𝑓. To obtain the clusters the 
resulting dendrogram is cut at a specific level or the number 
of partitions is specified. Each cluster 𝑐 ∈ 𝐶 comprises data 
points that are closely related in terms of their feature value. 
Therefore, this partitioning emphasizes similarity in the 
feature value. 

With the discussed partitioning approaches, we laid out 
diverse approaches to segment a feature space. Each method 
offers a unique insight, emphasis different aspects of data 
relationships and distribution patterns. We now discuss the 
aggregations, facilitating the interpretation and synthesis of 
findings to gather actionable insights from the RFI. 

B. Aggregations 

After partitioning, we now describe the aggregations as 
second step to construct the RFI score 𝑔(𝑓, 𝑋, 𝑦, 𝑀) =
max
∈ ( )

𝐴 (𝑓, 𝑋, 𝐶)  where 𝐴  denotes the aggregation method 

applied to each cluster 𝐶  that has been derived from a 
partitioning method 𝑃(𝑓) of feature 𝑓. 

Mean-Shap: The aggregation 𝐴mean(𝑓, 𝑋, 𝐶)  quantifies 
the average SHAP value across the data points of each cluster 
C. Formally, it is defined as: 
 

𝐴mean(𝑓, 𝑋, 𝐶) =
1

|𝐶|
ϕ (𝑥)

∈

 

 
Here, |𝐶|is the number of data points in cluster 𝐶, and  

ϕ (𝑥) is the SHAP value of feature 𝑓 for a data point 𝑥. This 
aggregation method provides an average measure of the 
influence of a feature within a specific cluster, giving an 
overall indication of its importance within its feature value 
range. 

Main-SHAP: Main SHAP quantifies the average main 
effect within a specific cluster, isolating these effects from 
interactions with other features. This metric measures the 
effect caused by the feature itself rather than of interactions. 
The intuition is that it provides a quantification of the 
contribution from the intrinsic influence of the feature on 
error in production, offering a possibly simple to interpret 
explanation in the domain context. This aggregation method 
is crucial for pinpointing features as explanation, facilitating 
which features are fundamental. The Main-SHAP is defined 
using the main SHAP values ϕ , (𝑥)  described in the 
background section and formally expressed as: 
 

𝐴  (𝑓, 𝑋, 𝐶) =
1

|𝐶|
𝜙 , (𝑥)

∈

 

 

Error-Shap: This aggregation method sums up the 
SHAP values of instances indicating errors or faulty products 
in the data. The intuition is that features that have high SHAP 
values for the errors are more relevant for explaining the 
causes. Formally, let 𝑥  be the subset of data points 𝑥 ⊆ 𝑋 
where the actual labels indicating errors in the products. 
Error-Shap is then defined as: 
 

𝐴err(𝑓, 𝑋, 𝐶) = ϕ (𝑥 )

∈

 

 
Here, ϕ (𝑥 )  represents the SHAP value for the error 

instance 𝑥 . This aggregation sums up the SHAP values for 
across all error instances, emphasizing the relevance of the 
feature in explaining the causes of errors. 

Error-Rate-Shap: This method multiplies the shap value 
of a feature by the error rate of the corresponding feature 
value. The intuition is that features that have high SHAP 
values and high error rates are more interesting for finding 
error causes. Formally, Error-Rate-Shap is defined as: 
 

𝐴erate(𝑓, 𝑋, 𝐶) = ϕ (𝑥)

∈

⋅ 𝑒(𝐶) 

 
where 𝑒(𝐶) represents the error rate within cluster 𝐶and is 
calculated as |𝑥 |/|𝑥 | within the same cluster. Specifically, 
as the proportion of the amount of error instances |𝑥 | 
compared to the amount of non-error instances |𝑥 | for 𝑥  
as subset of data points 𝑥 ⊆ 𝑋  where the actual labels 
indicate a non-error label. This error ratio 𝑒(𝐶)  quantifies 
how often that cluster is associated with errors. 

Slope-Shap: This measure assesses how rapidly the 
SHAP values of a feature change over its value range. It aims 
to identify features with significant SHAP value shifts, 
indicative of potential error causes. After partitioning, a 
rolling window method is applied to calculate the slope of the 
mean SHAP values across the window 𝑤 ∈ 𝑊. The Slope-
Shap aggregation is then defined as the absolute sum of these 
slopes within each window. 
 

𝐴slope(𝑓, 𝑋, 𝐶) =
ϕ (𝑋 ) − ϕ (𝑋 )

Δ
∈

 

 
Here, 𝑊  denotes the set of rolling windows, 𝑋  is the 

subset of 𝑋 for the w-th window, and Δ represents the width 
of each window. ϕ  is denoted as the mean SHAP value of 
𝑋 , the set of all data points where feature 𝑓 is present, and 

calculated as ϕ (𝑋′)  =  
| |

  ∑ 𝜙 (𝑥) ∈   with |𝑋′| 

representing the number of data points of 𝑋′. 
Z-score SHAP: This aggregation quantifies the deviation 

of SHAP values within a specific region from the average 
contribution of a feature. It provides a measure of how 
abnormal extreme feature contributions are in relation to the 
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features typical impact. A high absolute Z-score indicates a 
significant deviation, pointing to features that have an 
unusually strong impact on predictions within regions 
compared to their average impact across all data. The Z-score 
SHAP is defined as follows: 
 

𝐴 (𝑓, 𝑋, 𝐶) =
∑ ϕ (𝑥)∈ − μ

σ
 

 
where μ is the mean SHAP value and 𝜎  is the standard 
deviation of the SHAP values of feature f across the entire 
dataset. 

In this section, we have presented the concept of RFI and 
proposed several partitioning and aggregation methods to 
capture interesting and relevant aspects of features for error 
analysis in manufacturing. To illustrate the usefulness and 
effectiveness of our proposed RFI measures, we now apply 
them to synthetic data scenarios that mimic common error 
situations in manufacturing processes. 

IV. SYNTHETIC DATA EVALUATION 

In the following, we illustrate the proposed regional 
feature importance using synthetic data, specifically designed 
to reflect characteristics of manufacturing situations, 
focusing on identifying features that are most interesting for 
explaining error causes. We focused on two specific error 
scenarios (A) Tail Error, and (B) Segment Error. Each 
scenario was designed to mimic distinct types of errors 
encountered in manufacturing data. 
A) Tail Error: Involves a higher error rate in the tail of a 

normal distribution, representing errors that are rare but 
relevant. 

B) Segment Error: This scenario focuses on a feature that 
strongly impacts the label, but only within a small 
range.  

Global feature importance (GFI) measures aggregate the 
importance of features across the entire data distribution. 
This aggregation dilutes the impact of features for error 
analysis that focuses on rare events which may only occur in 
certain regions of the feature value range. The RFI highlights 
these critical regions, while global importance may overlook 
them due to averaging effects, leading to a misrepresentation 
of the feature’s true impact in error analysis.  

The use of synthetic data has the advantage that the 
ground truth is known. Here the correctness can be assessed 
by determining if the importance metric correctly identifies 
the most relevant feature (i.e., pinpointing relevant features 
as explanations for error analysis). Each synthetic data 
scenario consists of three main features: Target, Trap, and 
Noise. The “Target” feature is directly tied to error rates, 
“Trap” is a deceptive feature that ranks high in global 
importance but is less interesting in error analysis, and 
“Noise” introduces a minimal error rate, serving as a control 
variable. Each scenario is modeled as a binary classification 
task with 1 labeled as an error instance indicating a faulty 

product in production or 0 if not. We employ XGBoost [17] 
as a predictive model trained on 10,000 data points on which 
it achieves a perfect training ROC AUC score of 1. Note, that 
potential overfitting is not a concern for our experiments as 
they target feature importance and not prediction quality. 
Subsequently, global importance measures, such as Weight, 
Gain, Cover, or Abs. Mean SHAP and the RFI is computed. 
This process is repeated 10 times. The findings are presented 
in Table 1 and Table 2 as mean importance scores alongside 
the standard deviations. 

A. Tail Error 

This scenario simulates errors occurring in the tail regions 
of data distributions, often representing rare yet critical error 
cases. These errors are challenging to detect because they 
occur infrequently, yet they can have a considerable impact 
on the overall results in manufacturing. The scenario 
comprises three features “Target”, “Noise”, “Trap”, and the 
binary label y that is affected by the error characteristics. We 
introduced anomalies specifically in the tail of the Target 
feature, ensuring these errors are clearly noticeable but 
overall not frequent.  
- Target: A normally distributed feature that causes a 10% 

error rate based on a 0.02 quantile in the upper tail of its 
value range. 

- Trap: A normally distributed feature that causes a 4% 
error rate over 0.5 quantiles of its range. 

- Noise: A normally distributed feature that introduces a 
small amount (1%) of random noise in the label. 

We argue that feature Target, despite its infrequent yet strong 
relations to errors, presents a more interesting case for error 
analysis than the Trap feature. Although the Trap feature 
encompasses more errors, it’s less interesting as it comprises 
a much broader value range. 
 The global importance measures, as reported in Table 1, 
show that the Trap feature ranks highest, while the Target 

TABLE 1. ”EVALUATION RESULT GFI”: RANKING THE 
DECEPTIVE FEATURE “TRAP” IMPORTANT  

GFI 
Rank 

1 2 3 

Cover 
Trap 
122.94/7.2 

Target 
83.76/7.22 

Noise 
75.28/3.10 

Gain 
Trap 
1.49/0.05 

Target 
1.33/0.05 

Noise 
1.32/0.06 

Mean Abs. 
Shap 

Trap 
0.52/0.05 

Target 
0.26/0.02 

Noise 
0.24/0.04 

Total Cover 
Trap 
77331.80/
5177.75 

Target 
52595.52/ 
3989.74 

Noise 
46620.20/3
220.44 

Total Gain 
Trap 
936.7/34.4 

Target 
839.8/54.5 

Noise 
816.0/58.7 

Weight 
Trap 
623.1/34.9 

Target 
619.0/30.0 

Noise 
607.9/24.7 

Notation: feature (mean/std) 



105International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

feature, which we consider most important, ranks second. As 
anticipated, feature Noise, which was intended to be the least 
important, ranks last. These results show that global feature 
importance assigns higher importance to features that are less 
relevant for error analysis, thereby illustrating the limitations 
of global metrics for error analysis. The RFI aims to 
overcome the limitations of global measures by focusing on 
specific regions. The RFI is computed for every feature f 
using the proposed partitioning methods 𝑃  to determine 
clusters 𝐶 ∈ 𝑃(𝑓). The importance score 𝑔(𝑓, 𝑋, 𝑦, 𝑀) is the 
maximum value of a proposed aggregations A among all 
clusters C: max

∈ ( )
𝐴 (𝑓, 𝑋, 𝐶). 

 In this scenario, Mean SHAP, Error Rate and Error SHAP 
are crucial metrics. The RFI importance scores g are 
presented in Table 2 as importance rank with the average 

importance scores g and its standard deviation over the 10 
repetitions. Over all metrics except the Error SHAP with 
hierarchical partitioning, the feature Target is consistently 
ranked as the most important. 

The RFI can also be illustrated as a scatter plot with 
curves the aggregations of SHAP values across the identified 
clusters as in Figure 1 shown. The blue points symbolize the 
SHAP values of individual data instances. The red points 
highlight the instances associated with errors in products. All 
plots show increased RFI metric scores g on the interval [2,4] 
indicating an increased importance of the region within the 
feature space that is relevant for explaining error causes.  

This visual representation, along with Table 2, aids in 
understanding the connections between features and the 
potential error, i.e., the error in the tail regions of the data 
distribution. In the following, we discuss how these 
aggregations reveal interesting regions. 

Mean SHAP: This aggregation calculates the average 
SHAP value for a cluster across all instances of that cluster. 
SHAP values quantify the contribution of a feature to the 
prediction for an instance. Therefore, the Mean SHAP 

TABLE 2. ” EVALUATION RESULT RFI”: RANKING THE 
INTERESTING FEATURE “TARGET” AS IMPORTANT 

RFI Rank 

A P 1 2 3 

M
ean SH

A
P

 

Tree Target 
1.34/0.13 

Trap 
1.09/0.15 

Noise 
0.5/0.11 

Hierarch. Target 
2.37/0.61 

Trap 
0.88/0.15 

Noise 
0.53/0.34 

Interval Target 
1.07/0.14 

Trap 
1.01/0.13 

Noise 
0.4/0.11 

K-means Target 
2.05/0.42 

Trap 
0.93/0.12 

Noise 
0.42/0.2 

E
rror R

ate SH
A

P
 

Tree Target 
0.18/0.03 

Trap 
0.1/0.02 

Noise 
0.03/0.01 

Hierarch. Target 
0.76/0.35 

Trap 
0.07/0.07 

Noise 
0.07/0.14 

Interval Target 
0.11/0.02 

Trap 
0.08/0.02 

Noise 
0.02/0.01 

K-means Target 
0.56/0.28 

Trap 
0.06/0.01 

Noise 
0.02/0.01 

E
rror S

H
A

P
 

Tree Target 
0.16/0.02 

Trap 
0.14/0.02 

Noise 
0.04/0.01 

Hierarch. Target 
0.13/0.03 

Trap 
0.1/0.01 

Noise 
0.03/0.01 

Interval Target 
0.13/0.04 

Trap 
0.1/0.02 

Noise 
0.03/0.01 

K-means Target 
0.13/0.03 

Trap 
0.1/0.02 

Noise 
0.03/0.01 

M
ain SH

A
P

 

Tree Target 
1.29/0.12 

Trap 
1.15/0.18 

Noise 
0.53/0.11 

Hierarch. Target 
1.92/0.37 

Trap 
0.82/0.18 

Noise 
0.74/0.45 

Interval Target 
1.0/0.09 

Trap 
0.98/0.15 

Noise 
0.41/0.11 

K-means Target 
1.69/0.3 

Trap 
0.91/0.13 

Noise 
0.72/0.34 

Notation: feature (mean/std) 
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Figure 1. “Evaluation RFI Target feature” RFI aggregations over 
all partitions of the Target feature showing increased values for 

features values greater than two. 
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aggregation provides a measure of the average impact of the 
cluster on error predictions, highlighting clusters that have a 
strong relation to errors. Figure 1 Mean SHAP shows the 
increased average impact for a feature value greater than two. 

Main SHAP: Main SHAP quantifies the average main 
effect within a specific cluster, isolating the effects from 
interactions with other features. This metric shed light on the 
standalone contribution of features to the model’s output, 
revealing the intrinsic influence of the feature. This 
aggregation method is crucial for pinpointing features as 
explanations, facilitating which features are fundamental to 
predictions. The Main SHAP metric is instrumental in 
identifying key drivers by focusing on the direct impact of 
individual features. Figure 1 shows the Main SHAP plot. 

Error Rate SHAP: Considers the error rate alongside 
with the region’s impact. It is computed by multiplying the 
cluster mean SHAP with the error rate of the cluster. The 
error rate is the proportion of instances associated with errors 
relative to those that are not. This aggregation highlights 
impactful regions with frequent errors. 

Error SHAP: This measure considerers SHAP values of 
all instances labeled as errors in a region. It offers a direct 
insight into which regions are responsible for errors, 
regardless of how often those errors occur. This highlights 
significant errors even in regions without strong associations 
with errors. SHAP plots for Error and Error Rate SHAP are 
also presented in Figure 1. 

B. Segment-Error  

The second scenario resembles the challenge of 
identifying production errors in a small value range, targeting 
production problem that affects the overall production 
process performance. The scenario follows the setup 
described earlier. However, the following features are 
considered as training data: 
 Target: A uniformly distributed feature that causes a 

higher error rate of 10% in a small segment of its range.  
 Trap: A uniformly distributed feature that causes a 

moderate error rate in five segments of its range in varied 
intensity of 0.2-1 % error rate. 

 Noise: A uniformly continuous variable that accounts for 
1% errors of the data as noise. 

We argue that feature Target, as of its localized yet significant 
relations to errors, presents a more interesting case for error 
analysis than the Trap feature. Although the Trap feature 
encompasses more errors, it’s less interesting as it again 
comprises a broader value range. The global importance 
measures, as reported in Table 3, show that the Trap feature 
ranks highest, while the Target feature, which we consider 
most important, ranks second. As anticipated, feature Noise, 
which was intended to be the least important, ranks last. 
These results show that global feature importance assigns 
higher importance to features that are less interesting for error 
analysis, thereby illustrating the limitations of global metrics 
for error analysis. 

 Subsequently, the RFI is computed for every feature f 
using the proposed partitioning methods 𝑃  to determine 
clusters 𝐶 ∈ 𝑃(𝑓).  The importance score 𝑔(𝑓, 𝑋, 𝑦, 𝑀)  is 
than examined as the maximum value among all clusters 
C: max

∈ ( )
𝐴 (𝑓, 𝑋, 𝐶). This illustration focuses on the proposed 

aggregations Slope SHAP and Z-Score SHAP for which the 
results of g in Table 3 are reported based on 10 repetitions, 
and the scatter plots with its RFI curves in Figure 2.  
 The RFI results in Table 4 shows that both metrics rank 
the more interesting feature Target as more important. The 
scatter plots in Figure 2 show the increased mean SHAP 

TABLE 3. ” EVALUATION RESULT GFI” RANKING THE 
DECEPTIVE FEATURE “TRAP” AS IMPORTANT  

GFI 
Rank 

1 2 3 

Cover Trap  
144.75/12.76 

Target  
116.39/8.49 

Noise  
105.70/9.51 

Gain Trap  
1.64/0.07 

Target  
1.59/0.06 

Noise  
1.53/0.06 

Mean Abs. 
Shap 

Trap  
0.31/0.02 

Target  
0.22/0.02 

Noise  
0.16/0.02 

Total 
Cover 

Trap  
93895.74/78
66.96 

Target  
77933.30/7
179.09 

Noise  
67254.76/6
711.44 

Total Gain Trap  
1066.32/41.3 

Target  
1063.8/54.0 

Noise  
975.96/59.6 

Weight Target  
669.90/44.50 

Trap  
649.10/18.3 

Noise  
636.50/35.3 

Notation: feature (mean/std) 

TABLE 4. ” EVALUATION RESULT RFI”: RANKING THE 
INTERESTING FEATURE “TARGET” AS IMPORTANT  

RFI Rank 
A P 1 2 3 

S
lope SH

A
P

 

Tree Target  
0.46/0.08 

Trap 
0.29/0.07 

Noise 
0.25/0.06 

Hierarch. Target  
0.43/0.05 

Trap 
0.27/0.07 

Noise 
0.23/0.05 

Interval Target 
0.44/0.05 

Trap 
0.27/0.07 

Noise 
0.23/0.06 

K-means Target 
0.42/0.06 

Trap 
0.27/0.08 

Noise 
0.22/0.06 

Z
-Score S

H
A

P
 

Tree Target 
559/119.3 

Trap 
421/66.63 

Noise 
284/41.46 

Hierarch. Target 
486/73.44 

Trap 
377/52.87 

Noise 
245/59.44 

Interval Target 
470/34.6 

Trap 
348/40.74 

Noise 
230/26.65 

K-means Target 
479/59.99 

Trap 
351/40.95 

Noise 
233/42.2 

Notation: feature (mean/std) 
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values in the interval [0.4,0.425]. In the following, we discuss 
how the other both aggregations reveal interesting regions.  
 Z-Score SHAP: The Z-Score SHAP metric quantifies 
the deviation of SHAP values within a specific region from 
the average contribution of a feature. It is measured in 
standard deviations from the mean impact of a feature across 
the entire dataset. It provides a measure of how anomalously 
a feature behaves in relation to its general impact. A high 
absolute Z-score indicates a significant deviation, pointing to 
features that have an unusually strong impact on predictions 
within regions compared to their average impact across all 
data. In this illustration, this can be observed over the interval 
[0.4,0.425] in the scatter plots in Figure 2. 
 Slope-SHAP: This metric is used to identifying points 
or regions where the contribution of the feature changes 
significantly. Slope SHAP quantifies the rate of change in the 
mean SHAP values by calculating the slope of these values 
using a rolling window over the partitioned feature value 
range. This aggregation considers the absolute values, 
thereby capturing the overall variability in the feature’s 
impact. High Slope-SHAP values indicate features that 
exhibit pronounced shifts in their influence at specific 
thresholds, signaling potential transition points that could 
lead to errors in production. This method enables the 
pinpointing of errors that are caused by exceeding a 

threshold, which can be mitigated by setting or adjusting an 
alarm threshold in production. In this illustration, this can be 
observed over the intervals [0.3,0.4] and [0.4,0.5] in the 
scatter plots in Figure 2. 

These illustrations shows that the regional feature 
importance extend the insights gained from global feature 
importance measures in identifying the features that are most 
relevant for explaining the causes of errors in the synthetic 
data. The regional feature importance measures can capture 
the features that are more interesting for error analysis, while 
the global feature importance measures can be misleading or 
insufficient, as they take a global view and ignore rare but 
strong relations. 

V. REAL WORLD DATA EXPERIMENT 

 In this section, we evaluate the RFI measures on a real-
world data set form the steel manufacturing domain [18]. The 
dataset contains 27 features and 52407 instances related to 
the quality of steel plates, and 158 binary labels indicating a 
product error, i.e., a production fault. We trained an XGBoost 
model which achieves a ROC AUC of 1 on the training data. 
Again, potential overfitting is not a concern for our 
experiments as they target feature importance and not 
prediction quality. This high performance ensures that the 
model can effectively capture the relationships within the 
data, making it suitable for evaluating the feature importance 
measures. 
 The RFIs are computed as each feature is divided in 20 
partitions resulting in different cluster sizes depending on the 
feature. To compute the Slope SHAP aggregation a window 
size of five is used. In the following discussion, we compare 
the global and the regional feature importance rankings 
alongside with the RFI scatter plots.  
 The scatter plots show the curves of partitioning 
methods, where each break represents the mean of the cluster 
location over the feature value. For each cluster, the 
aggregations method is annotated on the right. As references 
the SHAP values of instances for error labels (red dots) are 
highlighted. However, only the Mean SHAP plot shows the 
real value of the error SHAP values. For all other scatter 
plots, the value is linearly scaled. Therefore, they show the 
right amplitude and position relative to each other, however, 
not the resulting SHAP values. These visualizations help in 
understanding how feature importance varies across different 
regions of the feature space, providing a nuanced view of 
feature contributions. 

To identify the features that are most interesting for 
explaining the error causes and providing insights for quality 
management, we discuss the GFI and RFI of the top five 
rankings. The rankings are presented in the Table 5. The 
results show commonalities; however, there are also 
disagreements, which form the basis for the following 
discussion. Our analysis highlights the strengths and 
weaknesses of each method and provides a comprehensive 
understanding of feature importance in the context of 
manufacturing errors.  
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Figure 2. “Evaluation RFI Target feature” RFI aggregations over 
all partitions of the Target feature showing increased values for 

features values between 0.4 and 0.45. 
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TABLE 5. “TOP FEATURE RANKINGS”: STEEL DATA TOP 5 RANKINGS OF RFI AND GFI– HIGHLIGHTED TOP FIVE RANKINGS. 
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Tree 4 6 21 3 13 18 20 9 1 8 17  11 12 10 5 2 

R
F

I 

Hierarch. 2 7 17 23 11 9 15 4 1 6 13  12 5 10 3 22 
Interval 3 5 22 4 13 19 20 14 1 6 12  9 11 10 8 2 

K-means 2 9 16 21 8 11 14 4 1 3 12  13 5 7 10 23 

E
rror R

ate 

Tree 1 2 14 5 8 3 17 6 10 7 12  13 15 4 9 16 
Hierarch. 2 5 13 24 8 1 15 3 4 6 12  16 10 7 9 23 
Interval 1 2 14 6 7 3 17 12 11 5 9  13 16 4 8 15 

K-means 1 4 11 24 9 6 14 3 2 5 12  16 10 7 8 23 

E
rror S

H
A

P
 

Tree 1 2 14 7 5 3 19 10 4 13 8  12 6 9 17 16 
Hierarch. 1 2 11 15 7 3 17 6 4 10 8  13 5 9 14 21 
Interval 1 3 14 4 7 2 19 10 6 12 8  11 5 9 18 17 

K-means 1 3 11 14 5 2 17 7 4 10 8  13 6 9 16 21 

M
ean SH

A
P

 

Tree 1 2 13 4 9 3 18 6 5 10 12  11 8 7 15 16 
Hierarch. 1 3 13 27 7 2 15 6 4 9 10  12 5 8 11 25 
Interval 1 2 13 5 8 3 17 10 4 9 11  12 6 7 15 16 

K-means 1 4 11 27 9 3 14 5 2 7 10  12 6 8 15 25 

M
ain SH

A
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Tree 1 3 12 5 7 2 16 8 4 11 9  10 6 14 17 19 
Hierarch. 1 3 12 26 6 2 14 7 4 9 8  10 5 13 15 25 
Interval 1 3 12 5 7 2 17 9 4 11 8  10 6 14 16 18 

K-means 1 3 12 25 7 2 14 6 4 9 8  10 5 13 16 26 
S

lope SH
A

P
s 

Tree 1 2 7 4 9 3 6 5 13 10 8  14 12 11 17 18 
Hierarch. 1 5 3 15 6 2 4 7 11 16 8  12 9 10 13 19 
Interval 1 3 2 5 9 4 8 6 14 7 11  13 10 12 18 17 

K-means 1 3 4 13 5 2 6 7 9 16 11  14 10 8 15 21  
  

           
 

     

 

Weight 9 3 18 13 1 8 22 11 4 6 2  5 7 12 17 14 

G
F

I 

Gain 2 3 1 14 6 9 4 8 15 5 17  16 10 7 23 21 
Cover 2 8 1 3 14 6 4 5 10 9 19  16 7 11 18 21 

Total Gain 1 2 4 14 3 6 16 10 8 5 9  12 7 11 22 17 

Total Cover 1 3 5 2 7 6 15 8 4 10 11  12 9 13 20 17 

Abs. Mean SHAP 1 4 2 6 5 3 8 9 12 13 10  14 11 7 18 19 



109International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Features with Global and Regional Importance 

 The following discussion presents the results about 
features which are important based on both GFI and RFI. 
 The GFI ranks Orientation_Index, as shown in Table 4, 
as the first and second most important feature, based on Total 
Gain, Total Cover, Gain, and Cover. This indicates that 
Orientation_Index on average impacts many data points in its 
splits which lead to substantial improvement in performance. 
In addition, Mean Abs. SHAP also places it on the first rank, 
highlighting the feature’s overall contribution to the 
prediction.  

The RFI measures allow a more nuanced picture. Mean 
SHAP ranks Orientation_Index as first and second most 
important, showing its positive influence in the [0.5, 1] range, 
as shown in Figure 3. Main SHAP metrics provides an 
indication of how much the feature itself (rather than 
interactions with other features) can be considered as error 
explanation. The increased Main SHAP values in the interval 
[0.5,1] suggest that the feature is an interesting candidate for 
explaining errors in this region. Error SHAP quantifies the 
average impact of error instances. Error SHAP ranks it high 

across all partitioning methods, indicating a strong relation to 
error causes in the [0.5, 0.9] region. Error Rate SHAP ranks 
the feature as important on all partitioning methods. This 
aggregation considers the mean SHAP value and the error 
rate, focusing on regions with small numbers of data points 
with a significant amount of error instances. Error Rate 
SHAP shows increased values in the region of [0.5, 1], 
indicating separable errors for which the feature serves as a 
suitable explanation. The Slope SHAP metric exhibits a steep 
increase over the feature range of [0,0.5], where the feature 
shows a sharp increase of SHAP values. This indicates that 
the feature has a significant impact on the prediction of errors 
above the threshold of 0.5. Z-Score SHAP ranks the feature 
highly, indicating above-average impact. Overall, the RFI 
indicates that Orientation_Index is an interesting candidate to 
consider as explanation of error cause for the region above a 
feature value of 0.5. 

GFI ranks Length_Of_Conveyer (Figure 4) as second to 
fourth, showing its frequent use and high impact. RFI also 
places it in the top five, with Mean SHAP showing increased 
values in [1690, 1700] and Main SHAP identifying it as the 
main driver. Error SHAP highlights strong relations to errors 
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Figure 3. “Orientation_Index” The feature significantly influences error prediction within the range of [0.5, 1]. Main SHAP values 
indicates importance, Error SHAP indicates a strong association with error causes, and Error Rate SHAP underscores the feature’s 

relevance in regions with few data points but substantial error instances. Finaly, the Slope SHAP metric reveals a steep increase over the 
feature range [0, 0.5], where SHAP values exhibit a sharp incline. 
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Figure 4. “Length_of_Conveyer”: Mean SHAP reveals increased SHAP values within the range of [1690, 1700] and Main SHAP values 
suggest that the feature itself is the primary driver in this region. Error SHAP  emphasize a strong association with errors in the region 
[1600, 1700]. Additionally, Slope SHAP identifies a threshold, and Z-Score SHAP indicates an impact higher than on average above a 

feature value of 1400. 
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in [1400, 1700], and Error Rate SHAP points to a critical 
error rate at 1700. Z-Score SHAP confirms its above-average 
impact above 1400, suggesting its critical role in product 
quality at high values. 
 The GFI measures rank Edges_Y_Index as the most 
important feature, highlighting its broad impact. 
Additionally, Mean Abs. SHAP also ranks the feature as the 
most important, indicating a substantial impact on the 
model’s overall performance. The Slope SHAP aggregation 
ranks Edges_Y_Index high. Slope SHAP measures the 
change in mean SHAP values over the feature value range. 
Specifically, as shown in Figure 5, the slope is high in the 
region [0.9, 1], where Edges_Y_Index has a sharp increase of 
SHAP values. This presents a threshold where quality 
engineers could adjust production alarms to. 
 The GFI measure ranks Empty_Index as the first and the 
third most important feature, based on Weight and Total 
Gain. This shows that the feature is often used as split criteria, 
although it leads to improvements in prediction only in a few 
instances. The Mean Abs. SHAP ranks the feature fifth, 
indicating that it decently contributes to the overall model 
predictions. The RFI ranks Empty_Index (Figure 5) on Error 
SHAP and Slope SHAP as the fifth most important feature, 

according to the K-mean and the Tree partitioning method. 
The feature shows an increased contribution of errors in the 
interval [0.2,0.3] with decreasing effects up to 0.4 where the 
Slope SHAP also shows a threshold. Leveraging this 
threshold for production alarms could be valuable.  
 The GFI measures rank Outside_X_Index as the second 
and third most important feature, based on Total Cover and 
Cover. These indicate that the feature influences a large 
number of data points both in total and on average when used 
in the splits. The RFI, as shown in Figure 6, reveals that for 
error causes analysis, the interval [0, 0.01] is particularly 
interesting. The Mean SHAP in this region shows increased 
values, supported by the Error Rate metric, which shows an 
increased error rate in this region. Furthermore, the Main 
SHAP values are also increased, suggesting that 
Outside_X_Index itself is the primary driver of the effects. 
The Slope aggregation displaying the change of SHAP values 
shows a steep decrease, potentially indicating a threshold 
leading to actionable insights. Additionally, the Z-Score 
SHAP indicates above average performance of feature values 
<0.007. This shows that Outside_X_Index is important for 
explaining errors in production for small feature values. The 
GFI ranks Minimum_of_Luminosity as the fourth most 
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Figure 6. “Outside_X_Index”: The interval [0, 0.01] is particularly interesting. Within this region, Mean SHAP values increase, supported 
by the Error Rate metric, which indicates an increased error rate. Moreover, Main SHAP values are higher, suggesting that 

Outside_X_Index itself drives the resulting effects. Slope SHAP displays a steep decrease, potentially indicating a threshold for actionable 
insights. Additionally, the Z-Score SHAP indicates above average performance of feature values < 0.0075. 
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Figure 5. “Edges_Y_Index and Empty_Index”: Edges_Y_Index (left) exhibits high importance in the Slope aggregation. The slope of this 
feature sharply increases in the region [0.9, 1]. Quality engineers can leverage this threshold to adjust alarms.  Empty_Index (right) shows 

increased relations to errors in the interval [0.2, 0.3] indicated by Error SHAP. 
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important feature, based on Mean Abs. SHAP. This indicates 
a high impact over the entire feature value range for both 
error and non-error cases. The RFI ranks 
Minimum_of_Luminosity, as shown in Figure 7, second and 
third on Mean, second on Main, second and third for Error, 
second to fifth for Error Rate, and third and fourth rank for 
the Slope SHAP metrics. Specifically, Mean SHAP shows a 
positive influence on predicting errors in the region of [0, 75], 
highlighting its critical role for error analysis. In the same 
[0,75] region, the Main SHAP metric shows increased values, 
suggesting that the feature itself drives errors rather than 
interactions. The Error SHAP metric shows increased value 
for Minimum_of_Luminosity in the region of [0, 75], 
implying that the feature is more likely to cause errors in this 
region. 
 For feature values smaller than 25, the Error Rate SHAP 
shows increasing error rates, indicating a sparse region with 
high error ratio. The increased Z-score SHAP values for the 
region [0,75] emphasizes its impact in this region beyond the 
feature average. The Slope SHAP shows a sharp change of 
SHAP values which suggests a potential threshold for a 
feature value of 75. Overall, the RFI underscores that 
Minimum_of_Luminosity is a critical factor for the quality of 

products. It implies that the feature is more likely to serve as 
explanation in the region [0,75] with potential threshold of 
around 75 for identifying errors. 

The GFI measures ranks Log_X_Index as one of the top 
five most important features, based on Gain and Cover. This 
indicates that the feature produces splits that affect a great 
number of data points and have a great impact on the 
prediction. For the RFI, as shown in Figure 8, Slope SHAP 
ranks the feature on fourth place on the hierarchical 
partitioning method and shows a threshold at a feature value 
of 1.25. The minor importance assigned from others RFIs 
points to the negative SHAP value above the feature value of 
1.25, suggesting that feature is indicative of non-error 
instance above that threshold.  

The GFI ranks Steel_Plate_Thickness (Figure 8) as the 
fifth most important feature, based on Cover. This indicates 
that the feature splits affect a large amount of data. However, 
the RFI reveals the relations to error causes. The error rate 
aggregation ranks the feature high for the hierarchical and k-
means partitioning, showing that the error rate of 
Steel_Plate_Thickness is higher in the region of [100, 200]. 
The Z-Score SHAP ranks this feature on fourth, indicating a 
greater-than-on average impact in the region. The Slope 
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Figure 8. “Log_X_Index and Steel_Plate_Thickness”: Log_X_Index (left) is of minor interestingness for error explanation, except the 
threshold of around 1.25. Steel_Plate_Thickness (mid and right) exhibits and increased error rate and greater than average impact in the 

region of [100, 200], as indicated by Error Rate and Z-Score. The Slope SHAP also shows a threshold of around 100. 
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Figure 7. “Minimum_of_Luminosity”: An important feature for explaining error causes, especially in the region of [0, 75]. In this region, 
the feature has a positive impact on predicting errors, and not because of interactions. The feature shows a high error rate and a higher 

impact than on average in this region. The threshold of 75 could be a potential threshold for detecting errors. 
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metric indicates a threshold at a feature value of about 100. 
Consequently, Steel_Plate_Thickness is likely a critical 
factor in the range [100, 200], with increased error frequency 
and sufficient SHAP effects. 

Feature Y_Minimum, as shown in Figure 9, is ranked as 
the fourth most important feature, based on Weight and Total 
Cover. This indicates a frequent use and many influenced 
data points, at least in some splits.  

The Mean SHAP ranks Y_Minimum on second to fifth 
place, driven by positive effects in the region [5M, 15M]. 
This implies a critical influence on the product in this region. 
Main SHAP ranks the feature on fourth, showing increasing 
influence of the feature from [2M, 15M]. This indicates that 
the influence is caused by the feature itself. The Error SHAP 
metric ranks the feature in fourth and sixth place, showing 
increasing influence in the interval [2M, 7.5M] and above 
10M. Error SHAP provides an indication of contribution to 
errors in products in these regions. The error rate SHAP 
metric ranks Y_Minimum high for the k-means and 
hierarchical partitioning. These partitioning methods focuses 
on separated regions, which also reveal patterns in sparse 
regions. The error rate is higher in the region of >10M, 
implying clearly separable product errors. Moreover, the Z-
Score SHAP shows increasing values, indicating an impact 
greater than average.  Therefore, Y_Minimum is interesting 
for error analysis and likely to explain the errors in the region 
of a feature value <5M. 

The GFI ranks X_Minimum, as shown in Figure 10, as one 
of the five most important features, based on Gain and Total 

Gain. This suggests that using the feature as splitting criteria 
improves the predictive performance both in total and on 
average. The RFI ranks the feature as important on the Error 
Rate and the Z-Score metrics. Specifically, the feature shows 
an increased error rate at a feature value of about 1500, 
indicating separable errors with high frequency and a strong 
association with errors in that region. The Z-Score SHAP 
ranks the feature third for the K-means partition method, 
indicating an effect greater than average in this region. 
Consequently, X_Minimum is a promising candidate for 
explaining error on high feature values. 

B. Features with Global Importance  

In the following, we focus on the features that are ranked 
as important only GFI measures, but not by the RFI. The GFI 
ranks Edges_Index (Figure 11) as the second most important 
feature, based on Weight. This indicates that Edges_Index is 
frequently used in the splits of the model. However, the 
regional feature importance measures reveal that the feature 
is not particularly useful for explaining error causes. The 
SHAP values over the entire feature range have small effects. 
Moreover, the feature is often used as indicated by Weight, 
however, without effect on the predictive performance. The 
GFI rank Luminosity_Index (Figure 11) as the fifth important 
feature, based on Weight. This indicates that the feature is 
frequently used in the splits of the model. Luminosity_Index 
is not ranked as important from the RFI. The feature is placed 
on rank twelfth for Mean SHAP and tenth on the Main SHAP 
metrics, indicating some influence of the feature to the model 
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Figure 10. “X_Minimum, Luminosity_Index and Edges_Index”: X_Minimum (left and mid) shows a high importance in the region around 
1500, where the Error Rate and the Z-Score SHAP indicates a strong association with errors and a greater than average impact.  
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Figure 9. “Y_Minimum”: The feature has an increasing impact on predicting errors in the region of [5M, 15M], and not because of 
interactions. It shows a high error rate and a higher than average impact in the region of >10M. Slope SHAP suggests some thresholds for 

<5M. Y_Minimum is a key factor for error analysis, especially in the regions of >5M. 
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performance. However, due to its weak effects, this feature is 
not interesting for error analysis. 

C. Features with Regional Importance Only 

In the following, we focus on the features that are ranked 
in the top five by the RFI measures, but not by the GFI 
measures. These features are interesting because they reveal 
the limitations of the GFI measures in capturing the local 
patterns and behaviors of the features that are relevant for 
error analysis.  

The GFI do not rank X_Perimeter, as shown in Figure 11, 
in the top five. The Z-Score SHAP on the tree and interval 
partitioning methods show increased effects in the interval 
[8,10]. However, Main SHAP ranks the feature with minor 
importance which shows that these effects are resulting from 
interactions with other features. The GFI do not rank 
X_Maximum (Figure 11) in the top five. The Z-Score SHAP 
on the tree and hierarchical partitioning methods show 

increased effects for feature values greater than 1500. Error 
Rate SHAP ranks the feature eighth and ninth, indicating 
some separable errors. However, Main SHAP ranks the 
feature with minor importance which shows that these effects 
also result from interactions. 

The GFI do not rank Maximum_of_Luminosity, as shown 
in Figure 11, in the top five. However, the RFI rank the 
feature on the fifth most important. Error SHAP for the tree 
and the interval partition method indicate increased SHAP 
values of error instances on the interval [125, 200]. In the 
same region, the Main SHAP metrics also show that the 
feature is likely the primary driver of the effect. The increased 
Z-Score SHAP metric indicates an impact greater-than-
average in the region. Therefore, Maximum_of_Luminosity 
is an interesting feature for error analysis.  

The GFI does not rank Square_Index (Figure 12) in the 
top five. However, Error Rate SHAP ranks the feature fourth 
for both the tree and interval partitioning methods, indicating 

M
ean SH

A
P

 

M
ean SH

A
P

 

M
ean SH

A
P

 

M
ean SH

A
P

 

 
M

ain SH
A

P
 

 

Z
-Score 

      

Figure 11. “X_Perimeter, Edges_Index, Luminosity_Index and X_Maximum”: Edges_Index (top left) and Luminosity_Index (bottom left) 
are both important, based on Weight. The SHAP values of both features are small and do not show any clear patterns. Therefore, both 
feature are not very interesting. X_Perimeter (mid) shows increased main effects in the region [8, 10], indicating that the feature itself 

primarily causes the effect. X_Maximum (right) shows increased Z-Score SHAP values for feature values greater than 1500, indicating a 
higher than average impact of the feature in this region. 
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Figure 12. “Maximum_of_Luminosity and Square_Index”: Maximum_of_Luminosity (left and mid) is a critical factor for the error 

analysis within the region [125, 200]. Error SHAP exhibits increased values, Main SHAP indicates that the feature itself influences the 
effect, with an impact greater than on average, as indicated by Z-Score SHAP. Square_Index (right) shows increased error SHAP in the 
region of [0.1, 0.2], which indicates a separated errors and identifies the feature as an interesting candidate for explaining errors in this 

region. 
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an increased error rate in the region of [0.1, 0.2]. This implies 
that the feature has separable regions with higher error 
frequency. Consequently, the feature is an interesting 
candidate for explaining these errors. 

In summary, we evaluated the RFI on the dataset from the 
steel manufacturing domain using an XGBoost model. The 
RFI measures, applied across 20 partitions for each feature, 
provided insights that GFI measures could miss, particularly 
in identifying specific feature value intervals crucial for error 
prediction. This nuanced understanding of regional effects is 
vital for actionable insights in error analysis. The analysis 
revealed common assignments of importance across features 
comparing GFI and RFI. This shows that RFI captures the 
notion of importance as embedded by the GFI, which is 
global, or model performance-based. Moreover, the RFI 
revealed interesting features, and the provided interesting 
insights about patterns that the GFI missed. Understanding 
these regional nuances can lead to actionable insights for 
error analysis in manufacturing. 

VI. RELATED WORK 

Root cause analysis in the production environment has 
been well studied [19] and several methods for model 
interpretability through XAI have been reported [20]. 
However, we argue that the proposed metrics are more 
related to feature importance measures. The metrics may be 
used in root cause analysis to incorporate expert knowledge. 
Applied XAI in the manufacturing domain is used to extract 
explanations from a machine learning model to, e.g., enhance 
trust in the model, used for model optimization or to assist 
domain experts. In [21] saliency maps and class activation 
maps are extracted from a deep learning model. In [4] the 
authors use an isolation forest as model to determine normal 
production line behavior and feature importance to explain 
the model. Mehdiyev and Fettke apply local and global 
explanations to examine the impact of different views on the 
generated insights [14]. However, neither work addresses the 
problem of which feature provides the most promising 
insights given the possible tremendous feature space and the 
corresponding effort required to examine all explanations. To 
the best of our knowledge, we are the first to provide SHAP-
based importance measures tailored to the task for quality 
management.  

Lundberg et al. introduced the idea of SHAP-based 
feature importance [13]. To determine a feature’s overall 
effect the absolute SHAP value across all considered 
instances is averaged and thus a global importance measure. 
In contrast, our proposed measures just consider instances 
that possibly encompass interesting properties for quality 
management. Other global importance measures used in the 
domain have a broad history. A detailed description of the 
following global importance measures is laid out by Molnar 
[22]. In [23] Permutation Feature Importance is introduced. 
A global measure where the features are perturbed and the 
resulting performance loss of the model is taken as a measure 
of the feature’s importance. Mehdiyev and Fettke [18] used 

Individual Conditional Expectation (ICE) [24] as the global 
importance. Another method possibly used are Partial 
Dependence Plots (PDP) [25]. However, neither ICE nor 
PDP accumulates a single importance score. Both are used as 
visualizations of global model behavior.  

Overall, one of the most influential global importance 
measures is the Gini index [26]. According to Lundberg [27], 
the Gini index is equivalent to the in XGBoost [17] 
implemented importance measure Gain, which uses the 
average training loss reduction gained when using a feature 
for splitting. Lundberg [27] also describes Weight as the 
number of times a feature is used to split the data across all 
trees and Cover as the number of times a feature is used to 
split the data across all trees weighted by the number of 
training data points that go through those splits. Both the 
total importance scores used for comparison are described in 
the XGBoost documentation [28] for Total Gain as the total 
gain across all splits the feature is used in and Total Cover 
as the total coverage across all splits the feature is used in. 
For local feature importance also LIME [12] could be 
considered. However, to compute explanations LIME uses 
sampling which is not restricted to solely interesting areas. 

VII. CONCLUSION 

In this paper, we introduced RFI measures that aim at 
identifying interesting features for quality management in 
manufacturing. We discussed the underlying notion of 
interest and provided corresponding formal definitions. 
Conceptually, RFIs are between established global and local 
feature importance measures and highlight regional effects 
which are helpful in finding production error causes. We 
illustrate the usefulness of the new measures through 
experiments using synthetic and real-world data. 

Our experiments show that the proposed measures 
provided detailed insights on features – based on our 
experience [5] – are interesting; moreover, are partly missed 
by established methods. Therefore, we conclude that with the 
help of the proposed importance measures, quality managers 
get hints about interesting relations that are reflected in the 
prediction model to drive deeper analysis. Thus, quality 
managers benefit from adding the proposed importance 
measures to the pool of XAI methods and we thereby 
improve XAI for error prediction in manufacturing. 

Subject to future work are questions about the integration 
of RFI in the machine learning pipeline. We assume that the 
measures are applied at the end of the pipeline, potentially 
after feature engineering and model optimization. However, 
the proposed measures may drive the analysis of features 
earlier in the pipeline as well. Additionally, future work may 
expand the range of partitioning and aggregation methods to 
enhance the detection of complex error patterns. 
Investigating the measures in larger datasets and diverse 
manufacturing settings could further validate and refine their 
applicability. 
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