
23International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

External Representations of Semantically Rich Content
in Complex Systems Using Loose Coupling

Hans-Werner Sehring
Nordakademie

Elmshorn, Germany
e-mail: sehring@nordakademie.de

Abstract—Content-based software systems like websites and
online shops are based on multiple components that collaborate
in different ways while serving users. In recent years, the typical
architecture of solutions centered around CMSs changed from
monolithic to loosely coupled systems. Current approaches are
called “composable architecture” or “composable commerce”
because they focus on substitutability of components that provide
a specific service. Data exchange between system components
takes place in an external format that conforms to a system-
wide agreed schema. Content Management Systems (CMSs) are
one central component of a content-based system. CMSs manage
and publish meaningful content. Such content is represented by
data, but it is not processed under fixed semantics. However,
collaborating systems require a consistent interpretation of data
as content on both ends in order to preserve meaning. We argue
that such a consistent interpretation requires mappings between
the content models underlying CMSs and the data models that
are used for communication, and that these mappings, therefore,
must be shared by all components of the system. In order to
justify this claim, we compare the expressiveness of plain data
formats with that of content modeling languages, and we study
mappings between them. In this paper, we use JSON and JSON
Schema as typical examples of external data representations. We
discuss content models using the example of the Minimalistic
Meta Modeling Language (M³L). Our initial research shows that
schemas for data exchange should be tightly linked to content
models in order to not only represent content as data, but also
to allow for consistent interpretations of content.

Keywords—content model; data schema; schema mapping

I. INTRODUCTION

Content Management Systems (CMSs) are an established
tool for (in particular online) content publication. They are
software systems that incorporate various functions for content
creation, editing, management, (automated) document creation
based on layouts, and document delivery. Over time, many
CMS products started integrating additional functionality to
keep up with emerging requirements. At the same time, such
products became increasingly complex because many of them
incorporate new functions in a monolithic way.

Since they often provide a comprehensive software infras-
tructure comparable to an application server, many content
management solutions are built using a CMS as a platform.
Custom code is integrated into the CMS, making the overall
solution an even larger monolith. This approach is often
suitable for purely content-based functionality.

In recent years, an opposite trend has taken hold under the
name headless CMS. Such CMSs basically focus on basic
content creation, editing and management functions. Content

is published via a delivery service that makes “pure” content
accessible in the form of Application Programming Interfaces
(APIs). All additional services are provided by separate soft-
ware components. This includes document preparation and
delivery that is implemented outside of a headless CMS.
Components are combined using a composable architecture,
also called composable commerce.

Though the idea of using simple interfaces based on a data
exchange format is appealing, it constitutes an “impedance
mismatch” with rich content structures as employed by capable
CMSs. Ideally, a CMS provides various means of structuring
content. Many allow defining a schema or content model. Such
a schema is, on the one hand, used to provide type safety
to functions handling content, and on the other it constitutes
the basis to capture the meaning of content. To make use of
structure and meaning assigned to content, content structure
and semantics defined by content models need to be preserved
in external representations, and they are used as a basis to map
content to an external form.

In this article, we argue that expressive content models
are required to globally describe the meaning of content
so that content is correctly represented as data and data is
interpreted as content. The discussion in this article extends
the presentation in [1].

With the landscape of digital communication solutions
becoming more complex, there is an increasing number of
services that integrate data and services for other entities than
structured content – media files, customer data, product data,
etc. The services need to interface with CMS solutions. Sys-
tems typically require application-specific integrations (see, for
example, [2]). These integrations make systems that rely on
data exchange with a centralized monolithic platform overly
complex since they have to deal with a variety of data
exchange formats and different entity lifecycles.

We discuss complex content-based systems and the various
perspectives on content in such systems in Section II.

Systems that incorporate CMSs using APIs typically are
built following microservice architectures. These consist of
multiple services that provide one functionality each, with the
CMS providing content as one of those services. System prop-
erties are established by service orchestration in the overall
architecture.

APIs for access to content consist of service signatures and
of structured content representations that are used as input and
output parameters. Content representations typically focus on

24International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Customer
Data Platform

User Interaction

Document
Processing

Presentation

Playout

Backend /
Data

Digital Asset Mgmt. SystemCommerce Platform Content Management System

ERP

Webpage Client App Touch App Social Media

Quality
Assurance

Shopping
Basket

Web Tracking

Campaign
Management

Editing DAM

CRM

PLMCatalogue Stock Quotes Pricing
Procurement

Catalogue

Forum and
Support

Print

Web Server

Template Engine

CDN

API Gateway

Image MAM

Document Personalization

Content
Personalization

Video MAM
Content
Tracking

Checkout

Payment Shipping

Mail Banner Ads

Content ManagementTransaction Management

Streaming
Server

A/B Tests
Image

Adaptation

Rating and
Comments

Figure 1. High-level Architecture [3].

structured content – mainly textual content and descriptions
of unstructured content. Unstructured content, be it provided
by a CMS or a Digital Asset Management system, is typically
transferred in some binary format.

RESTful APIs are a current de-facto standard for communi-
cation between distributed CMS components. The JavaScript
Object Notation (JSON) is the usual language chosen to rep-
resent (structured) content. Section III names typical aspects
of APIs defined this way.

In Section IV, we introduce the Minimalistic Meta Modeling
Language (M³L) as an example of a rather powerful content
modeling language.

We use the M³L’s capabilities for binding to external rep-
resentations to study some aspects of interfaces for content
access and interchange. In particular, we demonstrate different
cases of JSON generation and parsing in Section V and
discuss general differences of custom generated JSON and
such generated by content models formulated in the M³L in
Section VI.

We conclude the paper in Section VII.

II. INTERFACES IN CONTENT-BASED SYSTEMS

Content in the content management sense is found in a
class of applications that enables digital communication. In a
commercial setting, it primarily addresses the communication
between companies and their customers. These interact using

marketing websites, online shops, customer support systems,
mobile apps, and similar mass communication facilities.

Content used to be of central interest because it provides
the language of companies used in mass communication. This
includes pragmatics, tonality, etc. With a tighter integration
of communication means on digital communication platforms,
other entities received equal interest, first and foremost cus-
tomers (or, more precisely: the relationship of customers to
companies).

With growing digital communication platforms, the need to
exchange content between system components becomes ever
more immanent.

A. Content-Based Information Systems Architecture

Different communications channels that are centered around
customers and content are often integrated in growing content-
based information systems. The increasing number of system
components that contribute to such platforms and the addi-
tional need of integrating content and content-centric processes
pose a challenge that companies have to master today.

Single communication requirements are met by specific sys-
tems, and new approaches and systems continuously emerge.
To guide the creation of information systems from such base
systems, reference architectures have been formulated.

Figure 1 outlines such an architecture for a website in-
frastructure that is typical for online shops, for example.

25International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The architecture introduces layers in which customer-facing
systems are placed on the top of the figure and internal, more
technical components are located at the bottom.

The dotted lines in the figure are used to show functional
clusters of components that in concert provide some service.

The presentation area on the top of the figure lists some
(digital) communication channels. A company’s website is
often at the core of a communication strategy. Other channels
may co-exist, but at best the channels work together in an
omni-channel strategy. For example, a newsletter sent via mail
may hint users to new content on the website, or banner ads
redirect users to the website.

The basic content management functionality is located at the
center of Figure 1. Besides CMSs there are digital asset man-
agement (DAM) and multimedia asset management (MAM)
systems located in this functional area.

Content is delivered on the communication channels by
creating and distributing documents with that content during
playout. Typically, documents are generated from templates
into which content is filled in. Webservers distribute the
documents via a caching layer.

Even though the preparation of content for document cre-
ation is a content management task, documents are post-
processed in some cases. Document processing functions often
are Cloud services that leverage the core systems from opti-
mization tasks.

Besides content management, a transaction management
area drives processes like sales and logistics. These are differ-
ent in nature from content-based processes, but the two closely
interact.

Other means of user interaction allow users to provide own
content, not only to consume the existing one. User-generated
content calls for specific handling that differs from content
management. User interaction also is a very valuable source
of information on the users.

At the core of a content-based system, some data-driven
backend services provide the backbone for all business pro-
cesses.

Inside the dotted areas, there are components that provide
single functions each. In component architectures, the compo-
nents are typically realized by system products. For example,
the area of the content management system is implemented by
one CMS. Often, it will also incorporate functionality of the
playout and the document processing area. In (micro) services
architectures, it is more likely that single functions will be
realized by distinct services. Then the larger functional clusters
are implemented by orchestrated services.

B. Content Semantics

Content is a term for which there is no uniform definition.
In this article, we will not provide a formal definition either.
But we assume a certain notion of the term content as a basis,
and we distinguish content from data.

For the purpose of the discussion in this article, data is
meant to be any formal, digital representation used for storage,
transmission, and processing.

Content may be represented by data, but it is something
valuable and purposeful, where the purpose is some aspect of
digital communication between system users.

Content is also distinguished from documents which are
presentations of content. Documents are also determined by
a layout and other visual properties that define how content
is represented. Depending on the application, the dividing line
may vary. For example, the layout of the text of a news article
may be a presentation issue, where the position of text in a
figure carries semantics.

With these notions, content conveys something people want
to communicate about. It is about domain entities that are the
subject of some communication. The information on and views
of the domain entities may vary and may be subjective. Still,
content is meant to capture domain semantics attached to it.

Content follows the semantics of the application domain,
data a formal semantics. Both are required in communi-
cation. For example, products and services are of central
importance on commercial websites. They are described by
both content that represents people’s views and by data that
provides objective facts and figures. While content needs to be
interpreted by people with similar views, data can formally be
interpreted based on the semantics of some formal domain like
mathematics. Product descriptions on commercial websites
exhibit this twofold description feature. Marketing texts, legal
texts, etc. are provided as content. Product data, like price,
physical properties, shipping information, etc. is described by
data.

Similar to a data model that conforms to a data schema,
a content model is an abstraction of a content set. A content
model serves two purposes. Like a data schema, it describes
how content is formed. But it also captures some domain
semantics, for example, by describing how certain domain
entities are meant to be represented in content.

C. Content Management Interfaces

Websites and mobile apps are an important user interface to
information sources, and they constitute a means for compa-
nies to get in touch with their customers. These applications
are based on content that is presented to users in a suitable
form.

Contemporary implementations of CMSs, online shops,
campaign management solutions, and other content-based sys-
tems deal with content in various places: databases, application
code, user interfaces, remote calls, URL formatting, HTTP
request handling with content lookup and caching, tracking,
targeting, campaign attribution, and many more. Figure 2 gives
a rough overview.

Technically, content is stored, processed, and transferred
as data. The multitude of content applications is reflected
in diverse interfaces between the different components that
together form a content-based system. Different kinds of
interfaces are in place.

Editors collaborate on centrally stored content. To support
this collaboration, instances of the content editor tool use a
synchronous interface to the central CMS. It is characterized

26International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Browser

Webpage

CMS

App

Content Editor Tool Search Engine

Storage

HTML Rendering External JSON Rendering

 Marshaling / Transmission Indexer API

Updates / Transmission

Content Model

Data Schema

Editing Forms Feature VectorsData Objects

Data Objects

Figure 2. Content model references in a typical content management system.

by loose coupling with message passing, so that editors are
notified about changes, and concurrent work is enabled by
locking strategies.

Tightly coupled systems like the search engine, on the other
hand, exchange copies of content. A search index is built up
from content that is analyzed according to its structure.

For publication, documents are created from content. For
example, web pages are created to publish content on the
web. In particular in this scenario, document generation is
called content rendering. It differs depending on the kind
of generation used. Server-side rendering, where documents
are created by the service provider, works in a synchronous
fashion, because documents have to be completely generated
before they can be shipped. Client-side rendering, on the other
hand, may improve user experience by dynamically loading
and rendering content in an asynchronous fashion. Hybrid
approaches are usually in place today, and these need both
kinds of interfaces to the central CMS.

Each of the indicated functionalities is related to the under-
lying content model, and all share a common notion of both
this model and all content constellations. Or, viewed the other
way round, a content model defines multiple interfaces that
are consumed by different audiences, for example in a CMS:

• editors that are guided by the editing tool when entering
content into forms, and that are supported during quality
assurance of webpages,

• an editor-in-chief sees content before publication during
quality assurance,

• compliance officers also receive pre-final presentations
plus differences from previous versions to conduct legal
and compliance reviews,

• application programmers that customize the CMS (ser-
vices, editor, search engine),

• application programmers that develop client-side apps
(JavaScript apps, mobile apps),

• template programmers that implement the rendering of
content into documents,

• search engine optimization (SEO) managers who look
after content descriptions, and

• last but not least users who think in content categories
(product, contact, etc.) while browsing and reading, and
who may use a refined search function.

In fact, each of the roles uses more than one interface, and
all need to agree on the conceptual content model in order
to use and serve the interfaces correctly. In particular, content
needs to be encoded as data, and data need to be interpreted
as content. Figure 2 names some of the technical interfaces
where this applies.

A common content model is not only required for technical
reasons of using APIs. Also, there needs to be a globally
agreed domain semantics of content as argued in the previous
section. For example, an editor maintains the content that is
included in documents. For the user of the system to perceive
what the editor had in mind, the editor’s interface, the schema
for content storage, and the APIs used by template program-
mers all have to be in line with a common understanding of
content semantics.

Therefore, for coherence in content-based applications,
there is a need for central models that are consistently imple-
mented, or schemas and code for such systems are generated
from such models. The upper left of Figure 2 symbolizes this.

III. STANDARDS: RESTFUL APIS, JSON, AND GRAPHQL

Approaches for (remote) APIs and their implementations
are of general interest since the advent of distributed systems.
After a series of technological approaches, a current de-facto

27International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

standard for online interfaces of CMSs has emerged from
REST, JSON, and GraphQL.

A. RESTful APIs

Representational State Transfer (REST) was proposed by
Fielding as the principle of communication in the Internet [4].
It calls for stateless servers and clients that handle state
between requests. In conjunction with URLs that represent
services calls, the definition of so-called RESTful APIs allows
defining simple APIs for Web-based services.

Such APIs consist of service call signatures composed of
an HTTP method and a URL that specify the service to be
used and the input parameters. The response to a service call
is a regular HTTP response. A typical response format for
structured data is JSON as discussed in the subsequent section.

RESTful APIs can be implemented with existing Web
technologies, for example, typical software libraries available
for all relevant programming languages and existing software
components to build a service infrastructure.

B. Content Interchange with JSON

JSON is an object language for JavaScript, allowing to
formulate JavaScript object instances, where instance refers
to data contained in object properties, not any internal object
state. It can be used for data storage, transmission, and
aggregation.

JSON is typically used as a response format of RESTful
interfaces. It provides a simple means of structuring data with
typical collection types, and encoding of data as character
strings.

Most API-based CMSs use JSON to distribute content. They
typically do so by representing content in a straight-forward
manner using the structuring means and primitive data types
of JSON.

Internally, CMSs allow the definition of content models that
describe content. Such models are the basis for describing
content, for content editing, and also for JSON generation.

Depending on the kind of CMS, such content models are
more expressive than data models in JSON. In structured
CMSs, content models are used to capture domain semantics
attached to content. In contrast, Digital Experience Platforms
(DXPs) focus on associating content with visual layouts.
Content models describe visual building blocks in this case.

Document rendering presents content in visible form for
consumption, for example, in the form of HTML files. In
API-based CMS solutions, rendering is performed by exter-
nal rendering engines (on client-side or on server-side). The
rendering process is driven by templates that define how to
layout content. Template code makes use of knowledge about
the meaning of content to be represented, either the domain
semantics (CMS) or the kind of visual building block (DXP).

The external form of content in a JSON representation
is rather generic, though. JSON can be generated in an
application-specific form, but basically contains structured
data. The representation of content in JSON and interpretation
from that format rely on consistent code on both producer’s

and consumer’s side. Such interpretation cannot rely on JSON
representations of content alone.

C. JSON Schema Languages

JSON as a format is appealing because of its simplicity com-
bined with reasonable expressiveness. It was defined merely
for the description of single records of data. Many applications
call for a schema, though, that describes how classes of data
are structured.

Several schema languages have been defined for JSON,
most prominently JSON Schema [5]. Another proposal for
a JSON schema language is JSound [6]. Other approaches
are Joi [7] for JavaScript applications and Mongoose [8] for
configurations of the database system MongoDB.

In this paper, we use JSON Schema for the discussion of
schema properties.

D. GraphQL

GraphQL is a query language for structured data. Queries
select data from a database, and they describe a JSON format
in which the response to a query is expected.

JSON-based APIs often face the problems of “underfetch-
ing” (there is no call that delivers all data required in a
situation so that a sequence of related remote calls is required)
and “overfetching” (a service delivers too much data in a
situation, so that too much data is transmitted and a client
has the task of selecting the required data).

Using GraphQL as a service interface language helps avoid-
ing these problems. Clients can select the exact dataset they
need in a specific situation. On the other hand, GraphQL
is dynamic by nature leading to more computation and less
options for caching of results.

IV. A SHORT INTRODUCTION INTO THE MINIMALISTIC
META MODELING LANGUAGE (M³L)

For the discussion in this paper, we use the M³L since
it proved to be a suitable language for the modeling of
various aspects of content management. To this end, we briefly
introduce the M³L, and we present some exemplary base
models for content management and for content interchange
based on RESTful APIs.

A. A Short Introduction into the M³L

In this section, we briefly introduce the M³L by highlighting
those features that are central to the underlying experiments.

The basic M³L statements are:
• A: the declaration of or reference to a concept named A
• A is a B: refinement of a concept B to a concept A.

A is a specialization of B, B is a generalization of A.
• A is a B { C }: containment of concepts. C belongs

to the content of A, A is the context of C.
• A |= D: the semantic rule of a concept. Whenever A is

referenced, actually D is bound. If D does no exist, it is
created in the same context as A.

• A |- E F G.: the syntactic rule of a concept that
defines how a string is produced from a concept, re-
spectively how a concept is recognized from a string.

28International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

When the representation of A is requested, it is produced
by a concatenation of the strings produced out of E, F,
and G. When no syntactic rule is defined, a concept
is represented by its name. Vice versa, an input that
constitutes the name of a concept without a syntactic rule
leads to that concept being recognized.

If a concept that is referenced by one of the statements exists
or if an equivalent concepts exists, then this one is bound.
Otherwise, the concept is created as defined by the statement.

Existing concepts can be redefined. For example, with the
definitions above, a statement
A is an H { C is the I }

redefines A to have another generalization H and C (in the
context of A) to have I as its only generalization.

Every context constitutes a scope. A redefinition of a
concept in a context is only applied in that context. When
a redefinition of a concept takes place in another context as
the original definition, we call that redefinition a derivation.

The concepts that are defined by such statements are eval-
uated when used. Context, specializations, and semantic rules
are employed for concept evaluation. A concept evaluates to
the result of its syntactic rule, if defined, or to its narrowing.
A concept B is a narrowing of a concept A if

• A evaluates to B through specializations or semantic rules,
and

• the whole content of A narrows down to content of B.
To evaluate a concept, syntactic rules and narrowing are
applied repeatedly.

Given the sample M³L statements:
Person { Name is a String }
PersonMary is a Person { Mary is the Name}
PersonPeter is a Person {Peter is the Name

42 is the Age
}

the result of an additional statement
Person { Peter is the Name 42 is the Age}

is PersonPeter since PersonPeter is specialization of Person
and its whole content matches. The statement
Person { Mary is the Name 42 is the Age }

is not evaluated further. It does not match PersonPeter since
Name has a different specialization, and it does not match
PersonMary since that has no matching content concept called
Age or 42.

B. Basic Content Management and Document Rendering

The M³L is universal and has many applications. Among
other modeling tasks, it has proven useful to describe content
as lined out in, for example, [9]. This applies both to content
models as well as content items since the M³L does not
distinguish model layers, such as type and instance.

For example, with a content model like:
Article is a Content {

Title is a String
Text is a FormattedString }

according content can be created:

NewsArticle123 is an Article {
"Breaking News" is the Title
"This is a report on . . ." is the Text }

For textual formats, like HTML and JSON, documents can
be rendered from content through syntactic rules of content
as introduced in the previous subsection. On the level of the
content model, syntactic rules describe document templates, on
the content item level they render single document instances.

For the sample content definitions above, a JSON template
for a piece of content of type Article may look like:

Article |- "{\"title\":\"" Title
"\",\"text\":\"" Text "\"}"

This syntactic rule produces JSON output for the concept
NewsArticle123 from above:

{"title":"Breaking News","text":"This is a
report on . . ."}

The syntactic rule defines a JSON structure into which
the concepts from the content are integrated. These may
themselves evaluate to content strings of embedded JSON
structures.

Please note that, for example, {\"title\":\" is a valid concept
name, as is \"}. Since new concepts are declared the first time
they are referenced, and because they syntactically evaluate to
their name by default, they can be used like string literals. The
concept name \" is an escape sequence for the quote character
(not a quote sign for identifiers).

V. PRODUCING JSON USING THE M³L

As outlined in the preceding section, the M³L can serve as
an example of a an expressive content modeling language. For
API-driven content distribution, structured content needs to be
represented in an external form. In state-of-the-art services,
this external form is JSON.

The same holds for JSON generation. JSON Schema allows
defining valid forms of JSON structures so that content can be
transferred in a reliable manner. It is not expressive enough by
itself, however, to recover equivalent content on the receiver’s
side. Custom code is required to generate JSON out of rich
content structures. Appropriate code that shares the same
conception of content is required to interpret JSON data.

Schema design for JSON requires careful consideration.
Even finding sample instances for a given schema is a non-
trivial task since semantics is scattered over a set of definitions
and constraints [10].

JSON Schema provides various ways of defining and relat-
ing schemas. There are multiple ways of expressing equivalent
schemas and equivalence cannot generally be proven [11].

One way of sharing content concepts between sender and
receiver is to have a common content model and mappings to
and from external representations. We exemplify this by uti-
lizing the capabilities of the M³L for some sample constructs.

29International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Defining Lexical Rules for JSON

M³L’s lexical rules can produce JSON code out of concepts
as sketched in Section IV-B.

The M³L does not distinguish between types and instances
of content, let alone other incarnations (materializations,
metatypes, etc.). This distinction is, however, required in
classical approaches as JSON and JSON Schema.

In addition to the above sample rules that generate JSON,
the lexical rules of other concepts may produce JSON Schema.
See the following simple rules for the content example. A M³L
definition:
Article |-
"{\"type\":\"object\",\"properties\":{\""

Title "\":{\"type\":\"string\"},"
Text "\":{\"type\":\"string\"}}}"

results in the production of the following JSON Schema
definition:
{ "type": "object",

"properties": {
"Title": { "type": "string" },
"Text": { "type": "string" }}}

Lexical rules for both JSON and JSON Schema require to
distinguish between schema and instances. Contextual defini-
tions allow defining both layers for a concept. The decision
between schema and instance has to be made explicitly, for
example, by providing separate sets of syntactic rules in
different contexts:
SchemaRules { Article |- . . . }
InstanceRules { Article |- . . . }

The distinction between schema and instance level is atypical
for M³L applications. Usually, concepts my play both roles.
Therefore, it is possible that the same concept will sometimes
be represented by JSON (as an instance) and sometimes as
JSON Schema (when it contributes to the structure of another
concept)

In any case, a fair amount of extra code is required to state
the obvious lexical rules per concept. It is approximately the
same effort like providing custom mappings in software.

The effort of mapping an internal content model to its
external forms is beneficial, though, to be able to recover the
semantics of content. This way, schema definitions contribute
to the exchange of meaningful content. In the subsequent
subsections, we compare the modeling capabilities of JSON
Schema and the M³L for the generation of JSON representa-
tions of content.

B. Basic Model Mapping from M³L to JSON

Simple M³L expressions that represent content instances
can be expressed in a straight-forward manner as outlined by
the content example. Some information is lost in the JSON
representation, though. In the example above, the concept
name Article is not communicated.

Such concept information may be reflected in dedicated
properties. But more information on the content is lost if we
add content types and descriptions, for example in M³L:

Person {
FirstName is a String
LastName is a String
Address }

Address {
Street is a String
City is a String }

JohnSmith is a Person {
John is the FirstName
Smith is the LastName
JohnSmithsAddress is the Address {
"Main Street" is the Street
Lincolnshire is the City } }

Syntactic rules may produce the following JSON:

{ "FirstName": "John",
"LastName": "Smith",
"Address": { "Street": "Main Street",

"City": "Lincolnshire" } }

The intended data structure can be defined by means of
JSON schema that is also generated from the content concepts,
for example, as follows:

{"title": "Person",
"type": "object",
"properties": {
"FirstName": {"type": "string"},
"LastName": {"type": "string"},
"Address": {"$ref":"#/$defs/Address"} },

"$defs": {
"Address": {
"type": "object",
"properties": {
"Street": {"type": "string"},
"City": {"type": "string"} } } } }

Here, the concept names Person and JohnSmith are not
present in JSON. The content name JohnSmithsAddress is also
missing; the “type” name Address is used instead.

Note that information is distributed over two structures,
instance and schema, and declared in different languages. A
JSON (instance) file does not make reference to the schema it
is intended to comply with. Therefore, the matching schema
has to be found by distinct means. Names – concept names
in the case of the M³L – are not included in JSON, but are
required for schema selection (Person in the above example).

Additional information that relates data to its schema has
to be added on top of the standard data formats. One option
is the use of a kind of envelope structure which adds type
information to data, for example,

{ "JohnSmith": { "Firstname": "John",. . . },
"type": "Person" }

For a second option we may introduce well-defined property
names under which we give metadata as part of the data in a
JSON structure. For example, assume that the property names
$name and $type are defined to hold such metadata:

30International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

{ "$name": "JohnSmith",
"$type": "Person",
"Firstname": "John", . . . }

In order to generate two external forms – JSON and JSON
Schema – out of one integrated internal content representation,
two lexical rules are required as mentioned in Section V-A.
When parsing JSON on the receiver’s side, the unrelated files
need to be recombined in a content representation. JSON
(Schema) provides no means to do so.

C. Capturing Type Variations

Variants of content are commonly found in CMSs since
one schema alone typically does not cover all aspects under
which content is used for communication. Few CMSs cover
variations explicitly in content models. The M³L, however,
allows reflecting variants by means of concept refinement and
by contextualization.

Consider concepts modeled after an example from [12]:
Address {

street_address" is a String
city is a String
state is a String
Type }

BusinessAddress is an Address {
Business is the Type
Department is a String }

ResidentialAddress is an Address {
Residential is the Type }

An example from [12] reflects the above M³L definitions:
{ "type": "object",

"properties": {
"street_address": {"type": "string"},
"city": { "type": "string" },
"state": { "type": "string" },
"type": {

"enum": ["residential", "business"]
}

},
"required": ["street_address",

"city", "state", "type"],
"if": {

"type": "object",
"properties": {

"type": { "const": "business" }
},
"required": ["type"]

},
"then": {

"properties": {
"department": { "type": "string" }

}
},
"unevaluatedProperties": false }

In this example, an address has a type with possible values
from the enumeration: residential and business.

The additional department property from the example above
can be introduced conditionally using the "if"..."then"..."else"
construct in JSON schema. This allows representing subtypes.
The information that a BusinessAddress is an Address is lost,
however, both on instance and schema level. Therefore, this
is not a suitable representation of refinement that conveys
semantics.

In the M³L, we have extra concepts for a BusinessAddress
and a ResidentialAddress. Therefore, the Type is not actually
needed as content. It could be generated into JSON from the
concept information.

In fact, M³L would (also) work the other way round: if an
Address with an extra Department is given, it is derived to be a
BusinessAddress. The derived base type matching of the M³L
– and a similar, but typically implicit behavior of typical CMS
applications – makes matching JSON data to JSON Schema
definitions yet more difficult.

The M³L can make those type variations explicit, though.
In the above example, we can assign a Type property as re-
quired by JSON schema based on the presence of Department
information:
Address {
street_address is a String
city is a String
state is a String

} |= Address {
street_address is the street_address
city is the city
state is the state
Residential is the Type }

BusinessAddress is an Address {
Department is a String

} |= BusinessAddress {
street_address is the street_address
city is the city
state is the state
Business is the Type }

ErrorneousAddress is an Address {
Department is a String
Residential is the Type

} |= Error

This is not considered a typical M³L application, though.

VI. COMPARISON OF PLAIN JSON AND M³L CONSTRUCTS

In contrast to typical data schemas, content models are not
only concerned with constraints on values, references, and
structure, but additionally try to capture some semantics. Fur-
thermore, while data aims at representing one consistent state
of entities, content deals with varying forms and utilizations
used in communication: different communication scenarios,
contexts of users who perceive content, language and other
localizations, etc.

This section points out some of the differences in ex-
pressiveness of data schemas and content models using the
examples of JSON schema and the M³L.

31International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Subtypes

Type hierarchies allow intensional descriptions of schema
elements and are, therefore, found in content models. They
are not ubiquitous in data models, though. JSON schema does
not feature subtyping.

JSON Schema does have means to express schema variants
("if", "dependentRequired") and to relate different schemas
("dependentSchemas", "allOf", "anyOf", "oneOf").

These can be used to model specializations of data as
variants. An example is presented in Section V-C above.

Any forms of refinements (“subtypes”) in JSON weakens
the constraints of a JSON Schema since not all properties can
be "required" or "additionalProperties" and "unevaluatedPro-
perties" must be allowed - very much as in the M³L.

The M³L as a notion of refinement that does not explicitly
distinguish between subtyping and instantiation. In the follow-
ing definitions, for example,
Employee is a Person {
Salary is a Number }
JohnSmith is an Employee {
John is the FirstName
Smith is the LastName
5000 is the Salary }

present a concept hierarchy where Person and Employee
would presumably be handled on the schema level in external
representations and JohnSmith at instance level. Then Person
and Employee are in a subtype relationship with inheritance.

In JSON Schema, this would be expressed as:
{ "title": "Person",

"type": "object",
"properties": {

"FirstName": { "type": "string" },
"LastName": { "type": "string" },
"Salary": { "type": "number" },
"is_employee": { "type": "null" }

},
"required": ["FirstName", "LastName"],
"dependentRequired": {

"is_employee": ["Salary"]
} }

Again, the Employee as a concept is not represented.

B. Single and Multi-valued Relationships

It is quite common in content models to be vague about
arity. For example, some pieces of content may typically have
a 1:1-relationship, making it unary in the content model. But
there are exceptions of n-ary cases that also need to be covered.
The M³L allows to define concepts with is a and is the to take
this into account.

A typical data model would define an n-ary relationship,
even though in most cases the data are 1:1.

JSON itself allows to easily vary between unary and n-ary
properties by simply stating either "a":"b" or "a":["b","c"].
JSON Schema, though, needs to define arity or to define
variations with "if"..."then"..."else".

Consider as an example a person with two addresses:
Person {
FirstName is a String
LastName is a String
Address }

Address {
Street is a String
City is a String }

JohnSmith is an Employee {
John is the FirstName
Smith is the LastName
JohnSmithsAddress is an Address {
"Main Street" is the Street
Lincolnshire is the City }

JohnSmithsOffice is an Address {
"High Street" is the Street
Lincolnshire is the City } }

A JSON structure reflecting this content is:
{ "FirstName": "John",

"LastName": "Smith",
"Address": [
{ "Street": "Main Street",
"City": "Lincolnshire" },

{ "Street": "High Street",
"City": "Lincolnshire" }

] }

Though this is a small change to the JSON structure, it has
to be explicitly foreseen in JSON Schema. It is not as easy
to vary between one or multiple addresses (in this example)
as it is in content models like the M³L or the Java Content
Repository [13].

C. Content Conversions and Computed Values
It is common for content models to not only contain

content itself but also descriptive information about the content
(sometimes referred to as metadata).

For example, a simple data property like
{"price": 42}

requires additional information to be interpreted correctly (the
currency, for example). In simple data models, there is an
additional documentation that establishes an agreement on
how applications should deal with the data. The possibility
to state the unit of measurement is typically found in Product
Information Management systems.

In these cases, the information needs to be stated explicitly,
as it is done in typical master data management systems:
{"price": {"value":42, "currency":"C"}}

Such a record allows a mutual understanding of the value.
It prevents an easy mapping from JSON to a numeric price
variable, though.

As a slight improvement, values should be replaced by
named concepts. The M³L captures meaning by defining
relevant concepts. For example, a concept like EuroCurrency
as a refinement of a concept Currency would be used instead
of the string value C.

32International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

On top of descriptive information on content, a content
model may also define a limited set of computational rules
in order to define consistent arithmetics.

The M³L is expressive enough to define some (symbolic)
computation. Assume, for example, a concept Integer, concrete
“instance” concepts like 100, and concepts describing compu-
tations like FloatDivision, the division of numeric values.

On the basis of such definitions, it is possible to state
conversion rules like the following:
Price {

Value is a FloatNumber
Currency }

PriceInEuro is a Price {
C is the Currency }

PriceInEuroCents is a Price {
Value is an Integer
Cents is the Currency }

|= PriceInEuro {
Value is a FloatDivision {

Value is the Dividend
100 is the Divisor } }

These sample definitions describe (on schema level) how
values are converted so that all clients using this model share
the same arithmetics.

D. General Variations

The M³L provides extra flexibility by both considering
(internal) definitions and (external) representations. Other ap-
proaches like CMSs handle these two aspects separately.

By overriding lexical rules in the M³L, the marshaling
format can deviate from the schema. These rules are restricted
to very simple grammar rules, though, in order to work both
as producers as well as recognizers.

For example, a definition:
Person {
firstName is a String
lastName is a String }

|- "{\"name\":\"" firstName " " lastName
"\"}" .

combines first name and last name into one name field. When
reading data, it will just break up the name value at the first
whitespace.

The simple rules suffice in some situations. In very simple
cases, they allow, for example, to adapt legacy JSON or to
provide backwards compatibility to previous schema versions.
They are not capable of full parsing of input data.

VII. CONCLUSION

We conclude with a summary and an outlook.

A. Summary

We compare rich content models – using the example of the
modeling capabilities of the M³L – with typical data schemas,
in particular JSON Schema. We conclude that models for
meaningful content cannot adequately be expressed by data
schemas alone.

JSON became a de-facto standard for content exchange. We
present examples showing that the currently evolving schema
language, JSON Schema, is not sufficient for content modeling
in its current form.

B. Outlook

Additional research is required to identify the full ex-
pressiveness required to define external representations of
content for modern content management approaches. This will
guide future investigations towards a suitable set of modeling
capabilities for marshaling formats.

The M³L is not intended to be a data schema language.
Therefore, it lacks some features of such languages. It will be
an experiment, though, to define a M³L derivative that is able
to serve as an alternative schema language for JSON.

ACKNOWLEDGMENT

The author thanks numerous colleagues, partners, and
clients for fruitful discussions on various topics centered
around digital communication. The Nordakademie is acknowl-
edged for the chance to continue work in the field.

REFERENCES

[1] H.-W. Sehring, “On the Generation of External Representations of
Semantically Rich Content for API-Driven Document Delivery in the
Headless Approach,” Proceedings of the Fifteenth International Confer-
ence on Creative Content Technologies, CONTENT 2023, ThinkMind,
2023, pp. 17–22.

[2] H.-W. Sehring, “On the integration of lifecycles and processes for
the management of structured and unstructured content: a practical
perspective on content management systems integration architecture,”
International Journal On Advances in Intelligent Systems, volume 9,
numbers 3 and 4, pp. 363–376, 2016.

[3] H.-W. Sehring, “Architectural Considerations for the System Landscape
of the Digital Transformation,” Proceedings of the Twelfth International
Conference on Creative Content Technologies, CONTENT 2020, 2020,
pp. 5–10.

[4] R. T. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” Doctoral dissertation, University of California,
2000.

[5] A. Wright, H. Andrews, B. Hutton, and G. Dennis, “JSON Schema:
A Media Type for Describing JSON Documents,” Internet Engineering
Task Force, 2022.

[6] C. Andrei, D. Florescu, G. Fourny, J. Robie, and P. Velikhov, JSound
2.0. [Online] Available from: http://www.jsound-spec.org/publish/en-
US/JSound/2.0/html-single/JSound/index.html. 2024.3.22

[7] The most powerful schema description language and data validator
for JavaScript. [Online]. Available from: https://joi.dev/ [retrieved: May,
2023]

[8] Mongoose. [Online] Available from: https://mongoosejs.com/. 2024.3.22
[9] H.-W. Sehring, “On Integrated Models for Coherent Content Man-

agement and Document Dissemination,” Proceedings of the Thirteenth
International Conference on Creative Content Technologies, CONTENT
2021, ThinkMind, 2021, pp. 6–11.

[10] L. Attouche et al., “A Tool for JSON Schema Witness Generation,”
Proceedings of the 24th International Conference on Extending Database
Technology. OpenProceedings.org, March 2021, pp. 694–697.

[11] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč, “Finding
Data Compatibility Bugs with JSON Subschema Checking,” Proceedings
of the 30th ACM SIGSOFT International Symposium on Software Test-
ing and Analysis, ISSTA 2021. Association for Computing Machinery,
July 2021, pp. 620—632.

[12] M. Droettboom, “Understanding JSON schema,” Space Telescope Sci-
ence Institute, 2023.

[13] D. Nuescheler et al., “Content Repository API for Java™ Technology
Specification,” Java Specification Request 170, version 1.0, May 2005.

