
33International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Reliable Color Recognition in Images by Using a Modified HSV Algorithm

Samuel Kosolapov

Department of Electronics

Braude College of Engineering

Karmiel, Israel

e-mail: ksamuel@braude.ac.il

Abstract— There are several situations in which the HSV

(Hue, Saturation, Value) algorithm is a natural choice for

executing color recognition in a specific image. Unfortunately,

whereas Value and Saturation can be calculated in any

situation, Hue cannot be calculated when the specific pixel is

gray. Practically, for dark regions, nearly gray regions, and for

overbleached areas, the calculation of the Hue must be

considered as non-reliable. Inherent to digital camera noise,

makes the calculations of Hue in the above situations

problematic. In an attempt to provide more control during

color manipulations, an extended structure “sHSVF” was

defined, in which F is a "Validity Flag". Additionally, the

structure "sValidityParameters" was defined. To make the

code more clear, names of the fields in this structure were

changed. The specific pixel now can be flagged as "IS

VALID", “IS GRAY”, "HAS DARK COLOR

COMPONENT", “HAS OVERBLEACHED COLOR

COMPONENT", "IS NEARLY GRAY". This flag may be

instrumental for reliable color recognition and for reliable

modification of the color of the pixels in accordance with the

selected rules. By selecting values of the

“sValidityParameters”, the algorithm user can specify

situations when the color of the specific pixel is set to the pre-

defined value, marking problematic situations. The examples

provided demonstrate that this approach can be used for

reliable color recognition and advanced color manipulations

for synthetic and real-life images

Keywords-Image Processing; HSV; reliable color

recognition; reliable color manipulations;.

I. INTRODUCTION

The standard inexpensive color digital camera on its
output produces a sequence of bytes. In order to apply to this
sequence basic imaging processing algorithms, this sequence
is organized as a two-dimensional matrix of picture elements
(pixels). Each pixel is a vector in the {R (red), G (green), B
(blue)} space. In the inexpensive cameras, values of color
components are in the range {0..255}. Presentation of the
color as an {R, G, B} vector is quite natural for a human
observer, having three types of day’s vision color receptors.
However, for applications used in machine vision, this
presentation is not always practical. An alternative
“traditional” presentation uses {H (hue), S (saturation) V
(value)} space or {H, S, L (lightness)} space. Presentations
of the pixels in the RGB, HSV, and HSL spaces are
described in a number of classical image processing books
[2]-[4]. Functions converting pixels in the RGB space to
HSV and HSL spaces and back are well known and can be

found in any programming language, including C-language.
The value of H actually describes the pixel's color and thus
can be used to recognize the pixel's color in a simple and
convenient way.

There is a number of alternative approaches – for
example, a sophisticated approach based on a sequence of
different image processing algorithms designed for the
specific goal [5]. A number of approaches to recognize fruits
[6] and specifically apples [7] were tested. However,
algorithms of that type use additional information about
objects to be recognized and are in most cases too heavy for
real-life applications.

Unfortunately, “traditional” plain and simple HSV and
HSL algorithms have an inherent problem: Hue cannot be
calculated if R, G, and B values are equal. When the
presentation of pixel values in the range of byte {0..255] is
used, “traditional” presentation HSV and HSL become
problematic. One solution is to use the zero value of S
(saturation) as a marker, pointing out that the value of H
cannot be calculated in that case. However, in a practical
situation, when an image has a noise (and images of digital
cameras always have significant noise), the situation
becomes even more problematic. It is clear that pixel
{100,100,100} is gray, and Hue cannot be calculated in this
situation. But if a digital camera produces a noise of, say 5
units, then pixel {98, 101, 104} must be treated as
problematic for the reliable Hue calculation. Even though the
value of Hue can be calculated in that case, it is clear that
using this value for color recognition may lead to unreliable
results.

Known properties of digital cameras' noise' require a
rethinking of the way of Hue calculations in a number of
additional problematic situations. For the synthetic image (an
image created by software), an exemplary pixel {R=100,
G=0, B=0} can be described as a pixel having pure RED
color. However, for the digital camera that has 5 units of
noise, those zero values are electronically problematic. The
same is valid for the value equal to 255: this value, in most
cases, means that the object is overbleached and that its color
is distorted by clipping. Those and some other situations
make the "traditional" HSV/HSL approach at least
problematic for real-life applications.

The upper image in Figure 1 demonstrates a real-life
photo of the mandarins. This image was taken with a typical
smartphone camera. Nowadays, those cameras have
powerful internal automatic image processing algorithms. In
most cases, this results in an image optimized for a human
observer. However, this, in many situations, results in color

34International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

distortion, which is "bearable" and even "preferable" for a
human observer but is obviously a "no-go" for color
recognition algorithms designed for a machine vision
application. Callout P1a points to the pixel of the mandarin,
the color of which is clearly different from other pixels of the
same mandarin. Analyzing the profile of the line containing
this pixel, one can see that the colors of the pixels in this
region are clearly distorted: overbleached. Specific pixel
marked as P1a on the image has a color (R=255, G=254,
B=150) (see callout P1B). Value 255 for a real-life image
must be considered as an "electronically clipped value" and
must be treated as a "distorted value." Analyzing the pixel
marked as P2a of the image, one can see that this pixel has a
value {R=105, G=30, B=0} (see callout P2B on the lower
profile). Value 0 for a real-life image must be considered as
an "electronically clipped value" and treated as a "distorted
value." Even though human observer probably recognize
those pixels as "pixels of orange", machine vision must reject
Hue's calculations of those pixels as non-reliable.

In order to better specify the problem with “traditional”
Hue calculations, a special synthetic image was created. This
synthetic Image (presented in Figure 2 - upper left image)
has 6 strips {R, G, B} values of each strip are specified in the
callouts. In order to demonstrate the challenge of reliable
Hue calculations, strips have a slight green tint: the green
component is “amplified” by adding values like 1 (in strip
#1), 2 (in strip #2), etc. Additionally, low-level pseudo-
random noise was added. Profile (presented in Figure 2 in
the lower right image) and scaled-up fragment of strip #2
with saturation set to maximum (see the lower right image in
Figure 2) demonstrate the effect of noise on the color of the
specific pixel: when the color of the pixel is close to GRAY,
the effect of noise can be significant (see strips #1, #2, and
#3). It is clearly seen that while the original colors are a clear
mixture of GREEN and GRAY, the colors in the lower right
fragment in Figure 2 are actually pseudo-random. This effect
of noise can be seen numerically in Figure 3. The upper
image represents the Hue map of the original image after the
addition of the noise. For strip #6 (the right part of the
synthetic image), Hue value is about 85 – that is – mostly
green (see an explanation of the Hue values in the Hue map
later in the text). However, for strips #1, #2, and #3 (left
parts of the synthetic image), the Hue value jumps
unpredictably from 0 to 250, which means that the color in
those strips is changed unpredictably, making the resulting
values of Hue in this regions at least unreliable.

Again, even if the human observer probably recognizes
pixels of this synthetic image as GREEN (because the human
brain definitely can effectively eliminate noise in many
practically important situations, machine vision algorithms
must reject Hue's calculations of those noised pixels as non-
reliable and mark them as “problematic”.

Earlier attempts to improve the HSV/HSL algorithm
were described in [8] and [9]. The last published version is
described in [1]. This article describes a more elaborate
approach based on a number of additional modifications of
the previously published versions in an attempt to provide a
simpler algorithm that enables the implementation of reliable
color recognition and reliable color manipulation.

As in the previous versions, an extended structure,
“sHSVF,” is used, in which F stands for a "validityFlag".

Based on the previous experiments, the structure
"sValidityParameters" was modified. Values of the fields in
this structure make it possible to classify the specific pixel as
"IS VALID", “IS GRAY”, "HAS DARK COLOR
COMPONENT", “HAS OVERBLEACHED COLOR
COMPONENT", "IS NEARLY GRAY", and properly set
the "validityFlag" for each pixel of the image. By selecting
values of the “sValidityParameters”, the user of the modified
HSV algorithm can specify situations when the gray level of
the specific pixel in the H-map is changed to the pre-defined
color value, clearly marking problematic situations.

Section II describes the definitions of “sHSVF” structure
(subsection ‘A’), “sValidityParameter” (subsection ‘B’), and
flags used in specific situations (subsection ‘C’).

Section III presents changes in the “traditional” HSV
algorithm.

Section IV presents exemplary analyses and processing
of synthetic and real-life images demonstrating the properties
of a modified algorithm.

Section V shortly summarizes the results obtained.

II. STRUCTURES SHSVF, SVALIDITYPARAMETER AND

FLAGS

To store {R, G, B} values of the pixel, standard “sRGB”
structure was used without changes:

 struct sRGB

 {

 unsigned char r;

 unsigned char g;

 unsigned char b;
};

Standard “sHSV" structure was modified by using the

“double” type and by adding the integer “valifityFlag”.

A. Structure “sHSVf”

The resulting “sHSVf” structure was defined as:
 struct sHSVf

 {

 double H; // Hue

 double S; // Saturation

 double V; // Value

 int validityFlag; // Validity flag
}; .

B. Structure “sValidityParameter”

Structure “sValidityParameter” was designed to set
numerical values needed to mark problematic pixels. It was
defined as:

 struct sValidityParameter

 {

 double colorComponentMinValue;

 double colorComponentMaxValue;

 double saturationMinValue;

 };

35International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Usage of this structure will be described later.

C. Definitions of FLAGS

In order to properly mark different situations, a number
of FLAGS were defined.

#define IS_VALID (0)
 This flag is set when the value of HUE can be

calculated. Traditionally, the Hue value is in the range
{0..359}. However, in order to present Hue values as a gray
image on the PC monitor, a scaling factor of 255/360 is
applied. Then, the pixel in the Hue map is presented as a
gray pixel having a value in the range {0..255}. For example,
for the GREEN Hue, the “traditional” value is 120.
However, in the Hue map (after applying the factor
255/360), the resulting value is 85. For the saturation map,
value 0 means that the pixel is gray, whereas value 255
means that this pixel has a pure color (maximal saturation).

The following flags are used to mark a problematic
situation in which Hue cannot be calculated, or this
calculation can be considered as non-reliable. All
problematic pixels are marked as COLOR (and not gray)
pixels so that, as a human operator, as a machine vision
algorithm can easily discard problematic pixels from a
recognition process.

#define IS_GRAY (1)
In the classical HSV algorithm, DELTA of the specific

pixel is calculated as a difference between the maximal and
minimal values of the {R, G, B} values of the specific pixel.
If DELTA is ZERO, this means that R=G=B and that this
pixel is gray. In this case, Hue value cannot be calculated.
Hence, this flag is set when DELTA of the specific pixel is
ZERO. In this situation, the problematic pixel in the Hue
map and in the Saturation map has MAGENTA color.

#define HAS_DARK_COLOR_COMPONENT (2)
This flag is set when at least one of the {R, G, B} values

of the specific pixel is lower than the value specified in the
parameter “colorComponentMinValue” in the structure
“sValidityParameter”. This situation is electronically
problematic, hence those pixels of the Hue and Saturation
maps are marked by a RED color.

#define
HAS_OVERBLEACHED_COLOR_COMPONENT (3)

This flag is set when at least one of the {R, G, B} values
of the specific pixel is higher than the value specified in the
parameter “colorComponentMaxValue” in the structure
“sValidityParameter”. This situation is electronically
problematic hence those pixels of the HUE and Saturation
maps are marked by a YELLOW color.

#define IS_NEARLY_GRAY (4)
This flag is set if the calculated saturation value is lower

than the value of “saturationMinValue” in the structure
“sValidityParameter.” A GREEN color marks those pixels
on the Hue and Saturation maps.

Again, if none of the above flags were set,
"sValidityParameter" would be set to the IS_VALID value
(defined as zero). In this case, pixels in the Hue and
Saturation maps are gray pixels, whereas the level of gray
mapping Hue and Saturation values to the range of [0..255}.
It must be noted that historically, in the Windows OS, values

of Hue and Saturation were mapped in the {0..239} range.
Some authors mapped values of Hue in the {0..360} range;
however, this range cannot be presented in the standard
displays designed for humans. Hence, the range [0..255} is
better suited to the goal of this research.

III. CHANGES IN THE CLASSICAL HSV ALGORITHM

Classical function RGBtoHSV which is described at [2]-
[4], and C-code of which is available in the public domain
was modified by adding flags defined before. A complete
code of the reworked function “ConvertRGBtoHSVf” is
presented in Figure 4. This function is defined as:

 void ConvertRGBtoHSVf(

 sRGB rgb, sHSVf & hsvf,

 sValidityParameter param,
 int useLimits);
Arguments of the function are: “rgb” values of the

current pixel as defined in the "sRGB" structure; values of
the Hue, Saturation, Value, and Validity Flag of the above
pixel to be calculated as defined in the "sHSVF" structure;
“param” - specifying parameters used for the processing of
this pixel; and flag "useLimits", which can be set to FALSE
or TRUE. The value of the “V” can be calculated in any
situation. When this flag is set to FALSE, values of Hue and
Saturation are calculated in the “traditional way” without
taking into account validity parameters (see lines 9-62 in
Figure 4). Then, in the situation when Hue value cannot be
calculated, values of Hue and Saturation are set to 0, which
creates some well-known ambiguity: Hue=0 can mean RED
color and/or GRAY pixel. When this flag is set to TRUE,
{R, G, B} values of the pixel in the test are compared with
the values specified in the “param” values (see lines 66-100
in Figure 4). A relevant color marks problematic pixels (see
lines 76, in Figure 4), which enables to exclude them later
from the following image analysis.

The reverse function ConvertHSVfToRGB is defined as:

 void ConvertHSVfToRGB(

 sHSVf hsvf,
 sRGB& rgb);
This function has no significant differences from the

“traditional” code.
As a reasonable self-test, a sequence of functions

“ConvertRGBtoHSVf” - “ConvertHSVfToRGB” was run for
a different sets of {R,G,B} values. No errors were found
during those tests.

Additionally, functions converting source image to the
Hue, Saturation, and Value maps, and to the image
presenting “validityFlag” values as a human-readable gray
map, in which different values are encoded by using different
levels of gray were defined.

To demonstrate this approach to the well-known
procedure of “recoloring”, the exemplary function
ChangeHue was defined as:
void ChangeHue(

 unsigned char trueColorSource[][..][..],

 unsigned char trueColorDestination[][..][..],

 double oldHue, double newHue,

36International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 double hueHalfRange,
 sValidityParameter param, int useLimits);
It must be noted that most recoloring algorithms replace

the specified value of Hue with a new one. However, this
approach is adequate only for synthetic images. The noise of
the cameras “widens” the values of the selected Hue value.
Hence, the additional parameter “hueHalfRange” is added to
this function. Then, all pixels having valid values of Hue in
the range from "(oldHue – hueHalfRange)" to the "(oldHue +
hueHalfRange)" will be replaced with the "newHue" value.
Naturally, this function uses validity parameters to exclude
problematic pixels from processing. By setting values of
those parameters, different image processing and color
manipulation effects can be achieved.

IV. EXAMPLES OF ANALYSIS AND PROCESSING OF

SYNTHETIC AND REAL-LIFE IMAGES

The upper image in Figure 5 presents a synthetic image
specially prepared for the tests of a modified approach and
its HSVF maps. This image contains 12 strips. The first
strips are nearly gray (see callouts), whereas the last six have
colors close to the six primary colors. The lower image
presents profiles. Figure 6 demonstrates a color map of the
upper image created by using a “traditional” algorithm (flag
“useLimits” was set to “FALSE”). In this situation, three
strips were marked as problematic: Hue cannot be calculated
in those cases. Then, a low-level pseudorandom noise was
applied to the image presented in Figure 6. The upper image
in Figure 7 demonstrates profiles after the addition of the
noise, whereas the lower image represents the Hue map. Hue
recognition for most strips (except strips #4 and #5) is
problematic – Hue calculations in those specially created
problematic situations are non-reliable.

The upper left image in Figure 8 represents GREEN
RAMP mixed with low-intensity RED RAMP. The lower
left image represents the profile of this image. The upper
right image represents the Hue map, and the lower right
image is the profile of the Hue Map. It can be seen that Hue's
calculations are not reliable for the "dark” regions. Hue
values calculated for other parts of the ramp are noisy but
reliable.

The upper left image in Figure 9 is a slightly problematic
real-life photo of lemons and mandarins. The upper right
image represents a Hue map calculated with the flag
“useLimits” set to TRUE. Lower images represent
corresponding profiles. Callout P1 points to the pixel having
overbleached values for all color components; they are seen
as pure white. They are marked by MAGENTA color, which
is reserved for GRAY color (white in the HSV concept is
gray because the saturation in this case is ZERO). Callout P2
points to the Hue value of a “typical” lemon. Callout P3
points to the pixel having a Hue value of the “typical”
mandarin. The left image in Figure 10 represents parts of

lemons as they were recognized by the modified algorithm.
It can be seen that nearly all parts of lemons are reliably
recognized and “recolored’ to a strong blue color (except
small overbleached regions marked by callout {253, 255,
254} and a small part of “too dark” lemons, which was not
recolored). The right image demonstrates reliable recognition
of mandarins.

Figure 11 represents another problematic image of
mandarins. It can be seen that overbleached pixels are
excluded from recognition.

V. SUMMARY AND CONCLUSIONS

The presented recognition and recoloring algorithm can
be fine-tuned by setting dedicated for that goal parameters
and flags. Examples given in Section IV demonstrated that
the described approach could be used to analyze and process
real-life photos. It is planned to rewrite the algorithm by
using pointers and Q-numbers to improve the speed of the
algorithm.

REFERENCES

[1] S. Kosolapov, “Color Manipulation in Images by Using a

Modified HSV Algorithm”, Think Mind, CONTENT 2023:
The Fifteenth International Conference on Creative Content
Technologies, Think Mind, pp. 1-6, 2023.

[2] J. Russ and F. Neal, “The Image Processing Handbook”, CRC
Press, 2017.

[3] R. Jain, R. Kasturi, and D. Schunck, “Machine Vision”, MIT
Press and McGraw Hill, Inc. 1995.

[4] J. Foley, A. van Dam, S. Feiner, and J. Hughes, “Computer
Graphics Principles and Practice”. Second Edition in C,
ADDISON-WESLEY, 1997.

[5] J. Siyi and C. Heng, “Color Recognition Algorithm Based on
Color Mapping Knowledge for wooden Building Image”,
Scientific Programming, Volume 2022, pp. 1-15, 2022.

[6] W.C. Seng and S.H. Mirisaee, “A new method for fruits
recognition system”, Electrical Engineering and Informatics,
2009. ICEEI '09. International Conference, Volume 01, 2009.

[7] W.Ji, D. Zhoo et al,, “Automatic recognition vision system
guided for apple harvesting robot”, Computers & Electrical
Engineering, Volume 38, Issue 5, pp. 1186 – 1195, September
2012.

[8] S. Kosolapov, “Comparison of Robust Color Recognition
Algorithms”, Journal of International Scientific Publications,
Materials, Methods and Technologies, Volume 15, pp. 274 –
283, 2021.

[9] S. Kosolapov, “Evaluation of Robust Color Recognition
Algorithms”, Journal of International Scientific Publications,
Materials, Methods & Technologies, Volume 16, pp. 83-93,
2022.

37International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Upper image: real-life image of mandarines obtained by using typical smartphone camera (Samsung Galaxy Note 20). Image in the middle:

profile for the line marked as P1a. The color of the pixel P1a is {R=255, G=245, B=150} (marked as P1b). It is clearly seen, that color of this pixel is
distorted (overbleached). The Lower image is a profile of the line marked as P2a. The color of the pixel is {R=105, G=30, B=0} (marked as P2b). It can be

stated that the color of this pixel is distorted (B component has a zero value).

38International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Upper Left: Synthetic image – 6 strips, having mix of GRAY + GREEN colors. (see callouts). Pseudo-random noise is added. Lower left:
Profile of a row = 359. Specific values of the pixel of cursor are {R=202, G= 230, B = 202}, and because of noise values are slightly differ from declared

values {R=200, G=232, B=200}. Lower right: scaled UP fragment from the strip #2. Saturation and brightness were set to maximum to emphasize that

because of noise, nearly gray pixels (with some green tint) now have pseudorandom colors (red, green, blue, etc.).

Figure 3. Upper image: Hue map calculated by a “traditional” algorithm. Lower image: profile of the upper image. It can be seen that the Hue value in

strip #6 is about 85 (which corresponds to GREEN). Additionally, it can be seen that for lower intensities, Hue value is nearly pseudorandom – so that colors

of the pixels are nearly pseudorandom – as it can seen in the lower right image in Figure 2.

39International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Full code of the modified function ConvertRGBtoHSVf. Code between lines 3-62 is a classical well-known code. Lines 54-99 contains proposed

modifications. See additional explanations in the text.

40International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Upper Image: Synthetic Test Image containing 12 strips having selected {R, G, B} values. Callouts specified those values for every strip. Lower

image: R, G and B profiles of the upper image. The strip #1 is totally black : {0,0,0}. Considering future tests, some 0 values were shifted to value 1, or to

another value (see values in callouts). See additional explanations in the text.

Figure 6. H-Map of the Test Image presented in Figure 5. Flag “useLimits” was set to “FALSE”, hence the processing was provided by a “traditional” part
of the function “ConvertRGBtoHSVf”, without modifications. The strips #1, #3, and #6 were marked by the “traditional” algorithm by MAGENTA color

because their original pixels are exact gray pixels (see callouts in Figure 5. In this case, pair of strips #2 and #8 has the same Hue =42 (corresponding to a

YELLOW color), despite the fact that most human observers will not be able to detect color of the very dark strip #2. The same is true for strips #5 and #9
(Hue = 85, which corresponds to the GREEN color of the strips). In this case, the human observer can validate that strip #5 has a GREEN tone. Original

{R,G,B} values {127, 137, 127} (see callout 5 in Figure 5) confirmed that this color is a mix of gray {127, 127, 127} with dark GREEN {0,10,10}.

41International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Pseudo-random noise was added to the Test Image from the Figure 5. This pseudo-random noise can be clearly seen in the Upper Image –

profiler of row 385. Lower image: Flag “useLimits” was set to “TRUE”; hence the processing was provided with a “modified” part of the function

ConvertRGBtoHSVf. It is clear that even small level of noise makes color recognition for the selected values problematic.

Figure 8. Upper left: Synthetic image GREEN RAMP mixed with low-ntensity RED RAMP. A low-level pseudo-random noise was added. This noise can

be seen in the Lower Left image: profile of the Upper left image. Upper right image: Hue map of the Upper Left image. It can be seen that for most pixels
reliable color recognition is possible (Hue value is about 85 which corresponds to GREEN – see Lower Right profile). However, values of Hue for dark”

regions of this ramp are marked by RED color (signalling that at least some values of some color components are too low).

42International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. Upper left: Real-life image of lemons and mandarines. Upper right: H-Map of the Upper left image. Lower right: profile of the line of pixel

marked as P1. Lower right: profile of row marked as P3. See the discussion in the text.

Figure 10. Left image: Recognition of lemons from the upper left image in Figure 9. Recognized parts of lemons are recolored to the bright BLUE color.

Non-recognized pixels retain their original colors. Right Image: Recognition of mandarins from the upper left image in Figure 9. Recognized parts of

mandarines are recolored to the bright BLUE color. Non-recognized pixels retain their original color. See additonal details in the text.

43International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Upper image: results of recognition of the mandarines from the image presented in Figure 1. Lower image: profile of the line marked as P1a.
Pixels near P1a have an obvousely distorted color {255, 253. 205}. Experienced human operator without hesitations would mark those pixels as “part of the

mandarine”; however, in the frames of the discussed approach, they must not be recognized as having reliable Hue value, and, thus, those pixels were not

recolored.

