
90International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Integrated Software Manufacturing Control System

for a Software Factory with Built-In Rejuvenation

Herwig Mannaert and Jan Verelst

Normalized Systems Institute
University of Antwerp, Belgium

Email: {herwig.mannaert, jan.verelst}@uantwerp.be

Koen De Cock and Jeroen Faes

Research and Development
NSX bv, Belgium

Email: {koen.de.cock, jeroen.faes}@nsx.normalizedsystems.org

Abstract—Software engineers have been attempting for many
decades to produce or assemble software in a more industrial way.
Such an approach is currently often associated with concepts like
Software Product Lines and Software Factories. The monitoring,
management, and control of such factories is mainly based on
a methodology called DevOps. Though current DevOps environ-
ments are quite advanced and highly automated, they are based
on many different technologies and tools. In this contribution, it
is argued that more integrated software manufacturing control
systems are needed, similar to control systems in traditional
manufacturing. This paper presents a scope, overall architecture
and prototype implementation of such an integrated software
manufacturing control system. Several detailed scenarios are
elaborated that can leverage such integrated control systems
to optimize the operations, and improve both the quality and
output of modern software factories. The preliminary findings
and results of this control system are presented and discussed.

Index Terms—Software Factories; Software Product Lines; Dev-
Ops; Control Systems; Evolvability.

I. INTRODUCTION

This article extends a previous contribution which was
originally presented at the Eighteenth International Conference
on Software Engineering Advances (ICSEA) 2023 [1].

The expression “Software is eating the world” was formu-
lated in 2011 by Marc Andreessen [2] to convey the trend
that many industries were being disrupted and transformed by
software. And indeed, more and more major businesses and
industries are being run on software systems and delivered
as online services. These software systems include Enterprise
Resource Planning (ERP) systems to design and manage the
business processes, Supervisory Control and Data Acquisition
(SCADA) systems to manage and control production processes
in real-time, and Manufacturing Execution Systems (MES) to
track and document the transformation of raw materials to
finished goods, enabling decision-makers to optimize condi-
tions and improve production output. As software systems
become more pervasive to manage and control the end-to-
end production processes in factories, it seems logical to
have or create such control systems for the software systems
themselves, i.e., systems to manage and control the building
and assembly of software systems in the software factories. In

this contribution, we explore the creation of such systems to
manage and control software manufacturing and assembly.

The remainder of this contribution is structured as follows.
In Section II, we briefly discuss software factories, the DevOps
methodology, and situate our approach. In Section III, we
describe the software factory used in this case study, and
present a model for the assembly lines or units of such
a factory. In Section IV, we discuss the scope, software
architecture, and the implementation characteristics of the
proposed manufacturing control system for software factories.
We present various use cases and types of added value for
such an integrated control system in Section V. Section VI
discusses some preliminary results and findings of the contin-
uous development of the system in the controlled environment.
Finally, we present some conclusions in Section VII.

II. SOFTWARE FACTORIES AND DEVOPS

A. On Software Factories and Reusability

The idea to produce and/or assemble software in a more in-
dustrial way, similar to automated assembly lines in manufac-
turing, has been pursued for many decades. Such an approach
is currently often associated with concepts like Software
Product Lines (SPLs) and Software Factories, but can easily
be traced back as far as 1968 to the article on mass produced
software components from Doug McIlroy [3]. The concept
of Software Product Lines has been extensively described by
the Carnegie Mellon Software Engineering Institute (SEI) [4],
and refers in general to software engineering methods, tools
and techniques for creating a collection of similar software
systems from a shared set of software assets using a common
means of production. The characteristic that distinguishes
software product lines from previous efforts is predictive
versus opportunistic software reuse, as it stresses that software
artifacts should only be created when reuse is predicted in
one or more products in a well-defined product line [5]. The
term Software Factory emphasizes the techniques and benefits
of traditional manufacturing, and is for instance defined by
Greenfield et al. as a software product line that configures
extensive tools, processes, and content using a template based
on a schema to automate the development and maintenance of



91International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

variants of an archetypical product by adapting, assembling,
and configuring framework-based components [6].

The reuse of software artifacts seems crucial in contempo-
rary efforts to realize the benefits of traditional manufacturing
through software factories. Nevertheless, the systematic reuse
of software artifacts is not a trivial task. Saeed recently
argued that software reusability is not just facing legal issues,
but methodological issues as well. Even when only reusing
software to save time, and leverage off the specialization
of other authors, the end-user must also have the technical
expertise to search, adapt and merge these reusable assets into
the larger software infrastructure [7]. We have argued in our
previous work that software reuse is even more challenging,
and impeded by some fundamental issues related to software
evolvability [8] [9]. The sustained technological evolution
leads to a continuous sequence of new versions and variants
of the software artifacts that need to be reused. These new
artifact versions often require changes in their usage that
ripple through the entire software structure, causing an impact
that is dependent on the size of the system, and limiting the
evolvability of software systems [8] [10].

B. From DevOps to Integrated Control Systems

The aim of this contribution is to explore the creation of
systems to manage and control the building and assembly of
software systems in software factories, similar to SCADA or
MES systems in traditional manufacturing. The main approach
today in the software development and IT industry to control
the building and assembly of software is a methodology
called DevOps. Used as a set of practices and tools, DevOps
integrates and automates the work of software development
(Dev) and IT operations (Ops) as a means for improving
and shortening the systems development life cycle [11]. It
also supports consistency, reliability, and efficiency within
the organization, and is usually enabled by a shared code
repository or version control. As DevOps researcher Ravi
Teja Yarlagadda hypothesizes, Through DevOps, there is an
assumption that all functions can be carried out, controlled,
and managed in a central place using a simple code [12].

Figure 1 presents a traditional overview diagram of a typi-
cal DevOps infrastructure environment. While the continuous
integration of the software development and IT operations
is represented by the infinity symbol, the representation also
contains a typical set of tools and technologies being used
in such an infrastructure. We distinguish for example tools
for tracking features and user stories (Jira), source control
management (Git and Bitbucket), software quality control
(SonarQube), automation of build pipelines (Jenkins), auto-
mated testing (Cucumber, JUnit), deployment infrastructure
(Kubernetes), analytics visualization (Grafana), logging (Gray-
log), automated deployment (Docker, Ansible), and connecting
cloud providers (AWS, Digital Ocean). While the tools in such
a DevOps or Continuous Integration Continuous Deployment
(CICD) infrastructure are in general numerous and versatile,
there is a clear need for integrated control systems, similar

to SCADA or MES systems, encompassing these processes
and tools. However, software factories differ significantly from
traditional industrial factories, as software is less tangible and
the desired control systems need to interface with — often
complex — software tools instead of physical equipment.

C. Related Work and Methodology

While academic research is available on various aspects
of DevOps, like maturity assessment [13], and management
challenges and practices [14], the development of integrated
control systems does not seem to be one of them. DevOps
platforms are considered to be based on a mix of open
source and proprietary software, glued together and built into
the platform by a platform team. At the same time, trade
publications describe the necessity to breakdown the DevOps
phases and tools to increase security and reduce technical
debt [15], and acknowledge the need for solutions to scale
up DevOps, as nearly a third of DevOps teams’ time is spent
on manual approaches that are not scalable [16].

The methodology of this contribution is based on Design
Science Research [17], where we design the integrated control
system for software factories as an artifact, and use a case
study to evaluate it in depth in a business environment. Within
the context of this case study, this contribution performs a
controlled experiment, i.e., study the artifact in a controlled
environment for qualities, in order to refine the artifact grad-
ually as part of the design search process.

III. THE SOFTWARE FACTORY AND ASSEMBLY LINES

In this section, we describe the specific software factory
that is used for the case-based design and evaluation of the
software manufacturing control system. Within the context of
this software factory, we present a model for an assembly line,
a core concept in traditional manufacturing processes.

A. The NST Software Factory Case

To design and evaluate the integrated control system arti-
fact, we use the case of NSX, the spin-off company that is
developing and operating a software factory in accordance
with Normalized Systems Theory (NST) [8] [9]. The software
factory, described in detail in [18], encompasses both the
metaprogramming environment, i.e., tools and code generators
to generate and rejuvenate applications based on NST, and
actual Normalized Systems (NS) applications, i.e., multi-tier
web information systems generated in that environment. The
various DevOps tools and technologies of the NSX factory
correspond to a large extent to those in Figure 1. Though the
company is limited in size, i.e., about 50 people, its DevOps
environment supports the development and operations of a
wide range of heterogeneous and interlinked software artifacts.

• Run-time libraries providing basic software utilities to
various applications and tools.

• Expansion resources consisting of bundles of Normalized
Systems code generation modules [9].



92International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. A traditional representation of a typical DevOps infrastructure.

• Web Information Systems, software applications based on
the Java Enterprise Edition (JEE) standard.

• Domain software components, JEE components that are
shared across multiple JEE applications.

• Integrated Development Tool, called µRadiant, to enable
the model-driven development of NS applications.

• Small tools and plugins providing additional features in
tools like Maven or IntelliJ, and the µRadiant itself.

The various build pipelines, defined in the corresponding
software repositories, typically contain the following tasks.

• Expanding applications or components based on the NST
metaprogramming environment.

• Building usable libraries, archives, or executables for
components, applications, and tools.

• Unit testing of various software coding artifacts within
the software repositories.

• Reporting on the repositories, such as test coverage or
software quality metrics.

• Deploying live instances of applications or tools.
• Integration testing invoking live deployments.

B. A Model for Assembly Lines or Units

Assembly lines, as an implementation of the Division of
Labor [19], are crucial to traditional manufacturing processes
for mass production. To study and control a software factory,
it is imperative to identify and model these basic building
blocks that determine the sequential organization of adding
and assembling parts. We propose to identify the fundamental
assembly primitives of our software factory based on source
code repositories. These repositories correspond to the units of
work where programmers can contribute to the software, and
are in general tightly connected to the automated DevOps build
pipelines. We also propose to call them assembly units, as the
number of steps or phases is limited, while the interactions
with other units are diverse.

The architecture that we propose for such an assembly unit
in the software factory is represented in Figure 2. The core

of the unit is a repository, e.g., a git repository on Bitbucket
or Github, with a corresponding configuration defining one or
more build pipelines for an automation server such as Jenkins.
Though not always present in every unit, we distinguish in
general three activity phases in an assembly unit.

• Expand phase
In the NST software factory, expansion or code gen-
eration of the skeletons precedes the compilation and
building of the applications. Using modules or libraries
of expanders, called expansion resources, this step is
controlled by NS configuration settings that select (ver-
sions of) expansion resources. The automation server
also performs a feedback cycle on the codebase, i.e.,
harvesting NS custom code and performing code analysis
using tools like SonarQube and Dependency-Track.

• Build phase
Compilation and building of the codebase is driven by a
build automation tool like Maven, selecting through con-
figuration the appropriate runtime libraries. The feedback
cycle on the generated artifacts include an analysis of de-
pendencies and vulnerabilities using tools like Renovate
and Sourcegraph, and running (unit) tests.

• Deploy phase
Generated artifacts that are executable can be deployed in
containers using platform as a service tools and engines
like Docker. This allows to perform live integration
testing, possibly configured by tools like Cucumber.

The interaction or integration between the different as-
sembly units is organized through a central repository of
executable artifacts like expansion resources, runtime libraries,
and application images. Assembly units can both retrieve
these executable artifacts from, and submit them to, such an
enterprise repository or registry. These registries are typically
organized using tools as Sonatype Nexus Repository that
offer additional functionality like access control. The reports
generated by the various feedback cycles can also be stored
and published on this central registry.



93International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. A representation of the architecture of a software factory assembly unit.

C. Hierarchical Structure of Assembly Units

The manufacturing of more complex products implies the
existence of hierarchies of assembly lines. For instance, a
car assembly line does not transform elementary screws and
bolts into a car, but uses higher level modules like engines
that are themselves produced in other assembly lines. In the
same way, advanced digital platforms or applications cannot
merely be built from simple source files, but use higher-level
modules as well during their assembly. Explicitating these
hierarchical assembly structures should be one of the features
of the software manufacturing control system.

At the same time, not every phase or step is present in
every assembly unit. For instance, assembly units for basic
expansion resources or runtime libraries will neither have an
expand phase, nor a deploy phase.

IV. A SOFTWARE MANUFACTURING CONTROL SYSTEM

In this section, we elaborate the purpose, scope, architecture,
and implementation features of the software manufacturing
control system, i.e., the artifact that is being designed and
refined within the context of this case study.

A. Purpose and Scope

Consistent with the overall goal of software factories and
product lines, many applications and tools in this DevOps
environment are expanded and built by reusing and assembling
various other software artifacts that are built in other reposito-
ries and pipelines. In order to have an idea of, for instance test
coverage and code quality, in a certain version of a software
application, we need an overview of these parameters across
the versions of all the runtime libraries, expansion resources
and components that are being used in that application. In

other words, we need a Software Bill of Materials (SBOM),
and we want to be able to assess various parameters across this
SBOM. Moreover, in the same way that manufacturers attempt
to keep track of all the individual parts and ingredients that
are part of delivered products, we want to track the various
deployments, including the configurations of these deployment
instances, for every version of every application.

This type of functionality, i.e., to manage and control end-
to-end the building and assembly of software systems in
software factories, is indeed similar to MES systems, i.e.,
to track and document the transformation of raw materials
to finished goods, and SCADA systems, i.e., to manage
and control real-time production processes, in manufacturing.
And though almost all the required information is available
somewhere in one of the various DevOps tools, the integrated
overviews and aggregations are not easily accessible. This
means that tracing specific parameters from various software
parts to the deployed product instances requires in general
manual effort in current state-of-the-art DevOps environments.
Making this information instantly available is one of the goals
of the proposed software manufacturing control system.

B. Software Architecture

The integrated software manufacturing control system arti-
fact for the NSX software factory is implemented itself as a
Normalized Systems (NS) application, allowing us to take ad-
vantage of the NST metaprogramming environment. Moreover,
as NST was proposed to provide a theoretic foundation to build
information systems that provide higher levels of evolvability
[8] [10], NS applications are intrinsically suited for systems
that need to integrate with various rapidly changing technolo-
gies and protocols. This should enable us to cope with the
many, and rapidly changing, DevOps tools and technologies.



94International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

NS applications provide the main functionality of information
systems through the instantiation of five detailed design pat-
terns, termed element structures [8] [20]:

• Data elements to represent data or domain entities.
• Action elements to implement computing actions or tasks.
• Workflow elements to orchestrate flows or state machines.
• Connector elements to provide user or service interfaces.
• Trigger elements to trigger or activate tasks or flows.

At the core of every information system is its data model,
consisting of the various domain entities and their relation-
ships. A central part of the data model of our software
manufacturing control system is represented in Figure 3. As
every software artifact that is built resides in a Repository,
we define an AssemblyUnit for every repository. For every
assembly unit, automated Pipelines can be defined with differ-
ent PipelineVersions. A first category of artifacts produced by
assembly units are NS Applications, belonging to a Domain,
and having different ApplicationVersions that can have various
ApplicationDeployments themselves. The expansion of the
NS applications is configured in ExpansionResourceSettings,
and ElementModelMeasures and CustomCodeMeasures cap-
ture and track various measures of the application versions
regarding both model and custom code. A second category
of software artifacts are the expander bundles or Expansion-
Resources and their different versions. While the concept of
an ExpansionResourceDependency is used to represent their
mutual dependencies, various characteristics of these versions
are stored in ExpanderBundleMeasures. A third category of
software artifacts are (versions of) DeveloperTools. As these
tools, including the µRadiant and various plugins, exhibit
less predefined structure, we are limited here to capturing
traditional software measures like technical debt.

The action or task elements serve to import, collect, and or
compute various types of data for the software factory control
system. Indeed, the manual entering of data in such a system
would not only be extremely time consuming, it would also
lead to consistency problems. More specifically, types of data
that has to be collected, or computed, include:

• Versions of applications and developer tools with the
corresponding versions of their dependencies.

• Aggregated information measures on NS applications,
like the number of model entities, or the number and
size of custom source code extensions and insertions.

• Aggregated information measures on NS expansion re-
sources, like the number of individual expanders, or the
number and size of expander templates.

• Overviews of automated tasks that have been performed
in build pipelines with their result status.

• Various quality measures that have been computed for the
various applications, expansion resources, and tools.

• Aggregated values for the use of various technologies,
libraries and expansion resources in applications.

C. Implementation Features

A system or artifact for the monitoring and control of
software manufacturing processes should be able to track the
various parameters and data sets over time. This means that we
need to track data over time for most data entities, like sizes
of models and custom code, success rates of build processes,
or software quality parameters. Therefore, the history or
log tables are a crucial part of the data model. In the NS
metaprogramming environment, expanders or code generators
exist to automatically add —and even populate— an history
element for every data element. These history tables can then
be represented in graphs and analyzed over time, looking for
possible improvements in productivity and/or output quality.

A large part of the relevant data for the software manu-
facturing control system is already present or computed in
one of the many external tools or technologies represented
in Figure 1. This implies that the automated collection and
or computation of software factory data in automated tasks
needs to integrate with these tools and technologies, such
as Bitbucket repositories, Maven dependency declarations,
Jenkins build engines, SonarQube code quality assessment,
and Dependency-Track vulnerability analysis. In accordance
with NST, there is a decoupling between the functionality
of the data collection in the task element, e.g., build engine
results or quality measurements, and the actual implementation
(class) of the task element, e.g., getting data from Jenkins or
SonarQube. In this way, the software manufacturing control
system is able to support additional versions or variants of
these tools and technologies with limited impact.

V. TOWARD A CONTROL LAYER FOR IMPROVEMENTS OF
THE SOFTWARE FACTORY AND ITS OPERATIONS

As stated in Section I, by tracking and documenting the
transformation of raw materials to finished goods, MES sys-
tems enable decision-makers to optimize conditions and im-
prove production output. In the same way, a software manu-
facturing control system should provide an analysis platform
and control layer to improve and optimize various aspects and
characteristics of the software factory operations and output. In
this section, we discuss some use cases and their added value,
as they are being developed as part of the iterative case-based
design process.

A. Monitoring Evolutions over Time

A first avenue to optimize and improve the output and
quality of the software factory, is to monitor the evolution
of certain parameters over time. As explained in [9], NS
information systems distinguish between software skeletons,
instantiations of element structures generated by modular
code generators, termed expanders, and custom code being
additional software artifacts or classes, i.e., extensions, or
code snippets added to the generated artifacts or classes, i.e.,
insertions. From a quality and evolvability point of view, it
is important to monitor the amount, size, and location of



95International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fi
gu

re
3.

A
re

pr
es

en
ta

tio
n

of
th

e
da

ta
m

od
el

of
th

e
in

te
gr

at
ed

so
ft

w
ar

e
m

an
uf

ac
tu

ri
ng

co
nt

ro
l

sy
st

em
.



96International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Sample graphs monitoring the amount of custom insertions and the normalized total size of insertions.

these extensions and insertions. As an example, some sample
graphs are shown in Figure 4. They represent, for a specific
information system, the evolution of the total amount of
insertion snippets, and the total size of those insertion snippets.
As shown in the second graph, these values can be made
relative with respect to the evolving size of the model, i.e., the
number of element structures. Different graph colors represent
the various layers of the multi-tier web information systems.
Higher levels of custom code can be specifically related to
certain applications, but can also point to structural needs to
provide additional expansion features in a specific layer.

This type of monitoring, based on automated data collection
from the source code repositories, has been performed for
quite some time in the NSX software factory. It has provided
valuable insights into the actual project phases when such
custom code typically grew fast, and the software layers
where such custom snippets where needed the most. This
last parameter provided an indication in which layer the
development of the code generators should be prioritized to
provide more out of the box functionality. Of course, other
types of software systems and factories, without the typical
NS distinction between element structures and custom code,
should monitor other structural measures to improve software
structure and productivity.

While this monitoring of custom code has been performed
for some time, its integration in the overall software manu-
facturing control system provides additional added value. It
will enable for instance a faster and broader analysis across

multiple applications, comparisons between time periods and
teams, and correlations with versions of expansion resources.
Moreover, the monitoring over time is not limited to the source
code repositories. History tables are also being created for
success rates of build pipelines, quality measures of the custom
source code, test overage percentages and numbers of failed
tests, numbers of live system deployments, etc. Of course,
this implies the integration with various DevOps tools and
technologies, either through REST interfaces or reporting files.

B. Aggregating over Manufacturing Chains

It is often considered to be a crucial characteristic of
software factories and software product lines that software
artifacts should only be created when their reuse is predicted
in one or more products [5]. And for instance in the NSX
software factory, a typical JEE application uses various other
software artifacts produced by the factory, such as:

• Several runtime libraries providing various utilities like
file handling or protocol adapters.

• Several reusable components supporting more generic
functionality like workflows or notifications, and/or pro-
viding more domain-specific building blocks, such as
components for project planning or employee benefits.

• Several expander bundles that are used during the expan-
sion of the application, such as the expanders to generate
the instances of the NST element structures, or extensions
such as the Relational State Transfer (REST) interfaces.



97International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

These artifacts are in general stored in other repositories and
built in other CICD pipelines. And while the dependency
on the code generation modules may be specific to NS
applications, the dependencies on various runtime libraries and
domain components are valid for nearly every software factory.

While parameters related to, for instance test coverage and
code quality, can be monitored for every individual software
artifact that is created in the factory, it seems quite relevant to
offer instant overviews and aggregations of these parameters
for all artifacts that are part of a specific aggregated artifact,
such as a JEE application. While such integrated quality
measures across a Software Bill of Materials (SBOM) are
clearly relevant to the customers using or licensing such
an application, this could also enable the optimization and
improvement of the overall quality of the software factory
itself [21]. Indeed, it would allow to identify the relatively
weak or low quality parts in such aggregated artifacts, and to
prioritize these software artifacts for improvements.

C. Tracking Technology Use Across Projects

Software applications are in general dependent on multiple
external artifacts and technologies, e.g., libraries and plugins,
that are build outside the software factory by commercial
software vendors, or within open source projects. To address
transparency around software applications, these components
should also be part of a software inventory or SBOM. While
these dependencies are available in configuration files, it is
important to surface overviews and aggregations of these
dependencies. Such overviews and their added value include:

• immediate overviews of the impacted applications when
a vulnerability is detected in a library or technology.

• straightforward assessments of the impact when retiring
a certain (version of a) technology.

• regular evaluations of the usage and adoption rate of
libraries or expander bundles from the factory itself.

Obviously, such integrated information would also support
decisions concerning internal resource allocation, both for
supporting internal and external technologies.

VI. PRELIMINARY RESULTS OF THE CONTROL SYSTEM

The proposed software manufacturing control system aims
to provide a transparent and traceable overview on the software
factory, and to enable its steady improvement through a control
layer. Though optimizations based on such a control layer
takes time, we can already describe some basic results and
findings from the initial implementation and data import.

A. On Software Applications

As mentioned in the previous section, the (versions of)
NS software applications in this software factory have been
analyzed on a continuous basis monitoring both the size of the
models, i.e., data, task and flow elements, and the custom code,
i.e., number and size of extensions and insertions. Therefore,
it was pretty straightforward to import this data in the software

manufacturing control system for the dozens of applications
of the factory, corresponding to thousands of data elements.

Importing the expansion settings was relatively easy as well,
and has already given insightful information, not just on the
use of the various expansion resources, but also on the various
versions that are being used at a specific point in time. This
will clearly support the process of streamlining versions.

Constructing the SBOM or software inventory for external
runtime libraries and technologies has proven to be less
straightforward. As dependencies in Maven POM (Project
Object Model) files are defined in a recursive way, we are
currently investigating the integration of a suitable SBOM tool
to flatten the resource and library dependencies.

B. On DevOps Infrastructure

Implementing the data import, we have observed a clear
need for more structure and consistency across repositories
and CI/CD pipelines. While some software applications were
based on a single repository, others had one or multiple
additional repositories, separating for instance authentication
mechanisms, project-specific expanders, testing, master data,
et cetera. This lack of consistency was also present in the
definition of the pipelines in the various application reposi-
tories. Though other software factories may exhibit a supe-
rior consistency in the organization of the repositories and
pipelines, consistent structure is something that typically arises
during process automation. Therefore, it is quite possible that a
structural improvement of this consistency could be a specific
added value of a software manufacturing control system.

The integration of information from DevOps technologies
like Jenkins and SonarQube needs to be performed carefully.
As calling REST services to retrieve information from these
tools could open up a path from the web-based manufactur-
ing control system to those mission-critical servers, files are
currently used to share information, and we are considering
a callback architecture, where REST services on the control
system are called from scripts in the external technologies.

C. On Expansion Resources

In the same way that model and custom code data have been
imported for NS applications, retrieving data from (versions
of) expander bundles or expansion resources has been inte-
grated in the control system. Figure 5 presents for a number
of expansion resources a schematic overview of the amount of
expanders, i.e., the modular NS code generators, of expander
features, i.e., feature modules within the expanders, and the
total size of the templates (in bytes). Currently, the software
manufacturing control system has imported (versions of) 66
different expansion resources. Besides showing that some
expansion resources contain many heterogeneous expanders
and need to be further modularized, this has also made clear
that some additional streamlining and taxonomy is needed for
the expansion resources.

Based on their configuration, the system also imports the
dependencies between the (versions of) expansion resources.



98International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Sample graphs monitoring the amount of expanders and features and the total template size (bytes) of expansion resources.

As we represent and track these dependencies ourselves, the
flattening of these dependencies to construct a SBOM has
already been implemented.

VII. CONCLUSION

For many years, software engineers have strived to produce
and/or assemble software in a more industrial way. In today’s
software factories, building and assembling software systems
is mainly controlled using a methodology called DevOps.
These DevOps environments are quite advanced and highly
automated, but are in general based on many different tech-
nologies and tools. As previously experienced in the automa-
tion of business processes and traditional manufacturing, this
often leads to a need for more integrated systems. In this
contribution, we have investigated the creation of an integrated
software manufacturing control system, similar to SCADA or
MES systems in traditional manufacturing.

As part of a case-based design science approach, we have
presented a functional scope and overall architecture for such
a software manufacturing control system, and have described
the design and prototype implementation of the artifact for
the case of a specific software factory. This software manu-
facturing control system prototype does not provide fundamen-
tally new information, but collects, aggregates and integrates
information over time, across various repositories and build
pipelines, and from different DevOps tools and technologies.
Therefore, this control system does not provide new possi-
bilities per se to optimize processes and improve output in
software factories, as this can be done today by analyzing
in detail the data produced by the various tools. However,
aggregating and providing this information with short latency
times, offers the opportunity to fundamentally reduce the lag
times for such optimizations and improvements. Though the
design as a search process is still ongoing, we have presented
some use cases where the added value was validated in the

case study. We have also discussed some preliminary findings
and results of the implementation in the target software factory.

Investigating the creation of such a software manufacturing
control system is believed to make some contributions. First,
we have identified and validated a need for integrated control
in today’s state of the art automated DevOps environments.
Second, we have designed an architecture that enables the
rather straightforward creation of such integrated software
manufacturing control systems in most contemporary software
factories. Third, we have described and validated a number of
detailed scenarios that can leverage such an integrated control
system to improve the output of such software factories.
Fourth, we have empirically shown that the implementation
of such a control system can improve the consistency and
structure across a state-of-the-art DevOps infrastructure.

Next to these contributions, it is clear that this investigation
is also subject to a number of limitations. First, the case-based
approach means that the integrated system has been created for
a single software factory, though this factory does include for
instance code generators. Second, the major part of the added
value through optimizations and improvements, enabled by the
drastic reduction of the lag times in the control processes,
has yet to be confirmed empirically. However, its design has
been validated by some key actors in our case study, and we
have already verified empirically improvements in structure
and consistency across the factory infrastructure, such as
streamlining expansion settings and DevOps configurations
across application projects.

REFERENCES

[1] H. Mannaert, K. De Cock, and J. Faes, “Exploring the creation and
added value of manufacturing control systems for software factories,”
in Proceedings of the Eighteenth International Conference on Software
Engineering Advances (ICSEA 2023), 2023, pp. 14–19.

[2] A. Marc, “Why Software Is Eating the World,” URL:
https://a16z.com/2011/08/20/why-software-is-eating-the-world/, 2011,
[accessed: 2023-07-27].



99International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[3] M. D. McIlroy, “Mass produced software components,” in Proceedings
of NATO Software Engineering Conference, Garmisch, Germany, Octo-
ber 1968, pp. 138–155.

[4] S. E. Institute, “Software Product Lines Collection,” URL:
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=513819,
2023, [accessed: 2023-07-27].

[5] C. Krueger, “Introduction to the emerging practice software product line
development,” Methods and Tools, vol. 14, no. 3, 2006, pp. 3–15.

[6] J. Greenfield, K. Short, and S. Cook, Steve; Kent, Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools.
Wiley, 2004.

[7] T. Saeed, “Current issues in software re-usability: A critical review of
the methodological & legal issues,” Journal of Software Engineering and
Applications, vol. 13, no. 9, 2020, pp. 206–217.

[8] H. Mannaert, J. Verelst, and P. De Bruyn, Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design. Koppa, 2016.

[9] H. Mannaert, K. De Cock, P. Uhnak, and J. Verelst, “On the realization
of meta-circular code generation and two-sided collaborative metapro-
gramming,” International Journal on Advances in Software, no. 13, 2020,
pp. 149–159.

[10] H. Mannaert, J. Verelst, and K. Ven, “The transformation of require-
ments into software primitives: Studying evolvability based on systems
theoretic stability,” Science of Computer Programming, vol. 76, no. 12,
2011, pp. 1210–1222, special Issue on Software Evolution, Adaptability
and Variability.

[11] M. Courtemanche, E. Mell, and A. S. Gills,
“What Is DevOps? The Ultimate Guide,” URL:
https://www.techtarget.com/searchitoperations/definition/DevOps,
2023, [accessed: 2023-07-27].

[12] R. T. Yarlagadda, “Devops and its practices,” International Journal of
Creative Research Thoughts (IJCRT), vol. 9, no. 3, 2021, pp. 111–119.

[13] A. Kumar, M. Nadeem, and S. M., “Assessing the maturity of devops
practices in software industry: An empirical study of helena2 dataset,”
in Proceedings of the 26th International Conference on Evaluation and
Assessment in Software Engineering (EASE 22), 2022, pp. 428–432.

[14] S. M. Faaiz, S. U. R. Khan, S. Hussain, W. Wang, and N. Ibrahim,
“A study on management challenges and practices in devops,” in
Proceedings of the 27th International Conference on Evaluation and
Assessment in Software Engineering (EASE 23), 2023, pp. 430–437.

[15] M. Bhat, “How to Select DevSecOps Tools for Secure Software
Delivery,” URL: https://www.gartner.com/en/documents/4131199, 2023,
[accessed: 2023-10-10].

[16] Dynatrace, “Observability and security convergence: En-
abling faster, more secure innovation in the cloud,” URL:
https://assets.dynatrace.com/en/docs/report/bae1393-rp-2023-global-
cio-report-observability-security-convergence.pdf, 2023, [accessed:
2023-10-10].

[17] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in
information systems research,” MIS Quarterly, vol. 28, no. 1, 2004, pp.
75–105.

[18] H. Mannaert, T. Van Waes, and F. Hannes, “Toward a rejuvenation
factory for software landscapes,” in Proceedings of the Sixteenth Interna-
tional Conference on Pervasive Patterns and Applications (PATTERNS
2024), 2024, pp. 13–18.

[19] R. Sturn, “Division of labor: History of the concept,” in International
Encyclopedia of the Social & Behavioral Sciences. Oxford: Elsevier,
2015, pp. 601–605.

[20] H. Mannaert, J. Verelst, and K. Ven, “Towards evolvable software
architectures based on systems theoretic stability,” Software: Practice
and Experience, vol. 42, no. 1, 2012, pp. 89–116.

[21] N. Telecommunications and I. A. (NTIA), “Software Bill of Ma-
terials,” URL: https://www.ntia.gov/page/software-bill-materials, 2021,
[accessed: 2024-03-05].


