
Graph Based Text Classification

Using a Word-Reduced Heterogeneous Graph

Hiromu Nakajima

Major in Computer and Information Sciences

Graduate School of Science and Engineering,

Ibaraki University

Hitachi, Ibaraki, Japan

e-mail: 22nm738g@vc.ibaraki.ac.jp

Minoru Sasaki

Department of Computer and Information Sciences

Faculty of Engineering, Ibaraki University

Hitachi, Ibaraki, Japan

e-mail: minoru.sasaki.01@vc.ibaraki.ac.jp

Abstract— Text classification, which determines the label of a

document based on cues such as the co-occurrence of words and

their frequency of occurrence, has been studied in various

approaches to date. Traditional text classification methods

utilizing graph structure data represent the connections

between words, words and documents, and between documents

themselves through edge weights between nodes. These are

subsequently trained by feeding them into a graph neural

network. However, such methods require a very large amount

of memory, which can lead to operational issues or an inability

to process large datasets in certain environments. In this study,

we introduce a more compact graph structure by eliminating

words that appear in only one document, deemed unnecessary

for text classification. This approach not only conserves memory

but also enables the use of larger trained models by utilizing the

saved memory. The findings demonstrate that this method

successfully reduces memory usage while maintaining the

accuracy of conventional approaches. By utilizing the saved

memory, the proposed method succeeded in using larger trained

models, and the classification accuracy of the proposed method

was dramatically improved compared to the conventional

method.

Keywords-text classification; graph convolutional neural

network; Word-Reduced Heterogeneous Graph; semi-supervised

learning.

I. INTRODUCTION

This article presents an extended version of the
international conference paper titled "Text Classification
Using a Word-Reduced Graph", which was presented during
DATA ANALYTICS 2023 [1].

Text classification is the task of estimating the appropriate
label for a given document from a predefined set of labels.
This text classification technique has been applied in the real
world to automate the task of classifying documents by
humans. Many researchers are interested in developing
applications that take advantage of text classification
techniques, such as spam classification [2], topic labeling [3],
and sentiment analysis [4].

Conventional text classification studies based on machine
learning can be categorized into two phases: vector
representation of text using feature extraction and machine
learning-based classification algorithms [5]. In vector
representation of text, the vector space model is commonly

used to represent a text as a numerical feature vector in the
Euclidean feature space. Classification algorithms using
machine learning analyze annotated text corpora by
automatically inferring which features of the text are relevant
for classification. Since about a decade ago, with advances in
deep learning, it has become popular to use deep learning to
perform text classification. In this approach, transformer-
based vector representations, which are effective text
embedding techniques, have been studied widely to capture
the contextual meaning of textual documents. In addition, to
utilize global features in text representation, researchers have
been studying graph neural networks (GNNs) [6], which learn
embeddings of nodes by aggregating information from their
neighbors through edges.

Among various types of GNNs, Graph Convolutional
Neural Networks (GCNs) [7], which can take advantage of
data in graph structures, are particularly popular for solving
text classification tasks. TextGCN [8], VGCN-BERT [9], and
BertGCN [10] are examples of text classification methods that
utilize data in graph structures. In TextGCN [8], word and
document nodes are represented on the same graph
(heterogeneous graph), which is input into GCNs for learning.
VGCN-BERT [9] constructs a graph based on the word
embedding and word co-occurrence information in
Bidirectional Encoder Representations from Transformers
(BERT) and learns by inputting the graph into Vocabulary
Graph Convolutional Network (VGCN). BertGCN [10] is a
text classification method that combines the advantages of
transductive learning of GCNs with the knowledge obtained
from large-scale prior learning of BERT. Although the graphs
used in these graph-based text classification methods
represent relationships between words and between words and
documents, they do not use relationships between documents,
which creates the potential for topic drift. Therefore, the work
in [11] proposed a graph structure that combines these
relations with additional document-to-document relations to
solve this problem. This method achieved the best
performance among existing text classification methods on
the three datasets (20NG, R8, and Ohsumed). However, a new
problem arises from the addition of relationships between
documents to the graph, which increases the size of the graph
and requires a lot of memory space. Consequently, we
hypothesized that by compacting the graph structure, we could
mitigate memory constraints and facilitate the utilization of

143International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

larger data sets and the construction of more sophisticated
models.

In this paper, we propose a text classification method that
uses a graph structure in which words that are considered
unnecessary are removed to solve the problem of memory
shortage problem that occurs when a large graph structure is
used. In this study, two objectives exist. The first is to
successfully save memory by constructing a graph structure
that removes words considered unnecessary in text
classification to solve the problem of insufficient memory.
The second is to improve classification accuracy over
conventional methods by utilizing the reduced memory and
using larger trained models. Specifically, words that appear in
only one document are removed from the graph, reducing both
the weights of edges between word nodes and the weights of
edges between word nodes and document nodes, thereby
saving memory. We believe that this will result in a graph that
is more compact than the graphs created by conventional
methods, saving memory and improving the accuracy of text
classification by using a larger trained model.

This paper is organized as follows. In Section II, we first
describe existing research on text classification using graphs
and graph neural networks used for text classification. In
Section III, we describe the proposed text classification
method using a reduced word graph. In Section IV, we
describe the experiments we conducted to evaluate the
proposed method and show the experimental results. We
discuss the experimental results presented in Section V and
conclude in Section VI.

II. RELATED WORKS

In this section, we provide an overview of three types of
relevant research: Conventional Text Classification Using
Machine Learning, Text Classification Using Deep Learning
Models and Text Classification Using Graph Neural
Networks.

A. Conventional Text Classification Using Machine

Learning

Text classification is one of the core tasks in
understanding language with computers. Conventional text
classification studies based on machine learning can be
categorized into two main phases: vector representation of
text using feature engineering and classification algorithms
using machine learning [5]. Feature engineering involves
leveraging domain knowledge of the data set to develop
meaningful attributes or characteristics that make machine
learning algorithms work. To make text processable
computationally, it is represented as a vector of numbers
while preserving as much original information as possible.
For feature engineering, commonly used features are BOW
(Bag-Of-Words) [12], N-gram [13], TF-IDF (Term
Frequency-Inverse Document Frequency) [14], co-
occurrence relations between words [15], etc. A variety of
classification algorithms have been developed to categorize
textual data based on the extracted features. Among
traditional methods for text classification, general
classification models such as Naive Bayes [16], Logistic

Regression [17], K-Nearest Neighbor [18], Support Vector
Machine [19] and Random Forest [20] have been proposed.

B. Text Classification Using Deep Learning Models

Text classification based on neural networks has been
actively researched since about a decade ago. In early studies,
deep learning architectures were used to learn word
embeddings from large text corpora, which were then
employed for text classification [21]. A typical word
embedding methods are Word2vec [22], Glove [23],
FastText [24], Long Short-Term Memory (LSTM) [25],
ELMo [26], BERT [27] and RoBERTa [28]. Liu et al.
proposed a multi-task deep neural network (DNN) model for
learning representations across multiple tasks [29]. This
multi-task DNN approach addresses both query classification
and ranking tasks within the context of web search. Wang et
al. introduced Label-Embedding Attentive Models (LEAM)
as a method to represent both text and labels within the same
space for text classification [30]. By incorporating label
descriptions, LEAM improves text classification
performance. Shen et al. introduced a new method to text
classification called Simple Word-Embedding-based Models
(SWEMs) [31]. SWEMs employ word embeddings and
parameter-free pooling operations to encode text sequences.
Their research demonstrated the effectiveness of deep
learning methods for this task. Some recent studies have
employed neural networks such as the Multi-Layer
Perceptron (MLP) [32], the Convolutional Neural Network
(CNN) [33], Recurrent Neural Network (RNN) [43] and
Long Short Term Memory (LSTM) [34] as classification
models. A Deep Average Network (DAN) computes a
sentence embedding by averaging pre-trained word
embeddings and then processes this embedding through two
fully-connected layers and a softmax output layer [32].

C. Text Classification Using Graph Neural Networks

Recent text classification research has explored graph-
based approaches where the connections between words and
documents are quantified by edge weights. Graph Neural
Network (GNN) [6] is a neural network that learns
relationships between graph nodes via the edges that connect
them. There are several types of GNNs depending on their
form. Employing GNNs for large-scale text processing comes
at a significant cost in terms of computational resources. To
remove unnecessary complexity and redundant computations
in the model, Wu et al. proposed the Simple Graph
Convolution model (Simplified GCN) by repeatedly
removing the non-linearities and merging weight matrices
between consecutive layers into a single linear transformation
[35]. Graph Convolutional Neural networks (GCNs)
[7][41][42] is a neural network that takes a graph as input and
learns the relationship between nodes of interest and their
neighbors through convolutional computation using weights
assigned to the edges between the nodes. Graph Autoencoder
(GAE) [36] is an extension of autoencoder, which extracts
important features by dimensionality reduction of input data,
to handle graph data as well. Graph Attention Network (GAT)
[37] is a neural network that updates and learns node features
by multiplying the weights of edges between nodes by

144International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. MODEL NAME DEFINITION BASED ON PRE-TRAINING MODELS AND GNN TYPES.

Model Name Pre-Trained Model GNN type

BertGCN bert-base (bert-large) GCN

BertGAT bert-base (bert-large) GAT

RoBERTaGCN roberta-base (roberta-large) GCN

RoBERTaGAT roberta-base (roberta-large) GAT

Figure 1. Schematic Diagram of the Proposed Method.

Attention, a coefficient representing the importance of
neighboring nodes. GNNs are used in a wide range of tasks in
the field of machine learning, such as relation extraction, text
generation, machine translation, and question answering, and
have demonstrated high performance. The impressive
performance of GNNs across these wide-ranging tasks has
inspired researchers to explore GNN-based approaches for
text classification, with a particular focus on GCN models. In
TextGCN [8], document and word nodes are represented on
the same graph (heterogeneous graph), which is input into
GCNs for training. In recent years, text classification methods
that combine large-scale pre-trained models such as BERT
with GCNs have also been studied extensively. VGCN-BERT
[9] constructs a graph based on word co-occurrence
information and BERT's word embedding and inputs the
graph into GCNs for learning. In BertGCN, a heterogeneous
graph of words and documents is constructed based on word
co-occurrence information and BERT's document embedding,
and the graph is input into GCNs for learning [10]. In [11], we
propose a graph structure that exploits relationships between
documents. TensorGCN, a model proposed by Liu et al.,
addresses text classification by combining intra-graph and
inter-graph information propagation [29]. This enables the
model to learn effective representations for both individual
text elements and the overall document. The detailed
description of the proposed text classification model is given
in Section Ⅲ.

III. TEXT CLASSIFICATION METHOD USING

A WORD-REDUCED GRAPH

In this section, we describe the text classification method
using a word-reduced graph.

A. Definition of Classification Models Based on Pre-

training Models and GNN Types

BertGCN is a text classification method that combines
BERT model obtained by large-scale pre-training language
model utilizing large unlabeled data with the GCN models for
transductive learning [9]. In the BertGCN model, documents
are encoded by BERT to yield document vectors, which serve
as initial node representations in a GCN. The GCN is trained
on a heterogeneous graph composed of documents and words.

Lin et al. distinguish the model names according to the
pre-trained BERT model and the type of GNN used [10].
Table I shows the definitions of the model’s name,
corresponding pre-trained models and GCN types. This study
focuses on enhancing the performance of RoBERTaGCN, a
model that integrates roberta-base and GCN.

B. Text Classification Based on GCN Using Word-reduced

Graph

This subsection describes the details of the proposed
classification method. Figure 1 shows a schematic diagram of
the proposed method. First, a reduced heterogeneous graph
of words and documents is constructed from documents.
Next, the graph information (weight matrix and initial node
feature matrix) is input into the GCN, and the document
vector is input into the feed-forward neural network. Finally,

145International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Methods for Removing Word Nodes in the Proposed Method.

a linear interpolation of the two predictions is computed and

the result is used as the final prediction.

1) Build Heterogeneous Graph
First, a heterogeneous graph containing word and document
nodes is constructed from given documents. The proposed
method uses a heterogeneous graph as shown in the existing
study [11]. Figure 3 shows the weighting methods for three
types of nodes. As shown in Equation (1), the proposed
method represents relationships among documents, among
words, and between words and documents as weights on the
edges of the graph. In the existing study [11], a node is created
for every word that appears in the dataset and the weights of
the edges are calculated. However, in this study, to reduce the
number of nodes, the word nodes with a document frequency
of 1 for a word (𝑑𝑓(𝑤) = 1) are removed from the
heterogeneous graph and the PPMI and TF-IDF are not
calculated, as shown in Figure 2. By removing the
unimportant word nodes in the graph, we expect to make
efficient use of the memory space that is required for the
representation of the graph.

Figure 3. Weighting methods for three types of nodes.

𝐴𝑖,𝑗 =

{

 𝐶𝑂𝑆_𝑆𝐼𝑀(𝑑𝑖 , 𝑑𝑗),

𝑃𝑃𝑀𝐼(𝑤𝑖 , 𝑤𝑗),

𝑇𝐹 − 𝐼𝐷𝐹(𝑑𝑖 , 𝑤𝑗),

1,
0,

𝑑𝑖 , 𝑑𝑗 (𝑖 ≠ 𝑗) 𝑎𝑟𝑒

𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠
𝑤𝑖 , 𝑤𝑗 (𝑖 ≠ 𝑗) 𝑎𝑟𝑒 𝑤𝑜𝑟𝑑𝑠 𝑎𝑛𝑑

𝑑𝑓(𝑤𝑖) > 1, 𝑑𝑓(𝑤𝑗) > 1

𝑑𝑖 𝑖𝑠 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡, 𝑤𝑗 𝑖𝑠

𝑤𝑜𝑟𝑑 𝑎𝑛𝑑 𝑑𝑓(𝑤𝑗) > 1

𝑖 = 𝑗
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

The weights of the edges between document nodes in the

equation (1) represent the cosine similarity 𝐶𝑂𝑆_𝑆𝐼𝑀(𝑑𝑖 , 𝑑𝑗)
between the two document nodes 𝑑𝑖 and 𝑑𝑗 , which is a

measure of how similar the two documents are. This

𝐶𝑂𝑆_𝑆𝐼𝑀(𝑑𝑖 , 𝑑𝑗) is defined as follows:

𝐶𝑂𝑆_𝑆𝐼𝑀(𝑑𝑖 , 𝑑𝑗) =
𝑑𝑖 ∙ 𝑑𝑗

‖𝑑𝑖‖‖𝑑𝑗‖
, (2)

where 𝑑𝑖 and 𝑑𝑗 are document embeddings of the document 𝑖
and 𝑗.

Each document is converted into a sequence of tokens that
can be entered into BERT. A special classification token
([CLS]) is added to the beginning of the document and a
special separator token ([SEP]) is added to the end of the
document. These are special tokens. The [CLS] token
indicates the beginning of the sentence, and the [SEP] token
indicates the end of the sentence. In this study, a single
document was considered to be a single sentence. For long
documents (more than 512 words), we extract the first 510
words and add special tokens to make it 512 words long. For
short documents (less than 510 words), we fill them with 0s to
reach the 512-word limit for BERT.

Each tokenized document is fed into BERT to obtain a
[CLS] vector of the last hidden layer in BERT. The [CLS]
vector is a representation of the entire document that captures
the context of the document. We compute the cosine distance
between the [CLS] encodings of each document and add edges
between corresponding document nodes if the cosine
similarity is greater than a predefined threshold, where the
weight of each edge is the cosine similarity of the [CLS]
vectors.

146International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The function 𝑃𝑃𝑀𝐼(𝑤𝑖 , 𝑤𝑗) represents positive point-

wise mutual information (PPMI) that is used to weight edges

between word nodes [38]. This 𝑃𝑃𝑀𝐼(𝑤𝑖 , 𝑤𝑗) gives more

importance to measure the semantic similarity between the
word 𝑤𝑖 and the word 𝑤𝑗 in a document. For any word pair

(𝑤𝑖 , 𝑤𝑗), point-wise mutual information (PMI) is defined as

the log ratio between their joint probability and product of
their marginal probabilities as follows [39]:

𝑃𝑀𝐼(𝑤𝑖 , 𝑤𝑗) = log2
𝑝(𝑤𝑖 , 𝑤𝑗)

𝑝(𝑤𝑖)𝑝(𝑤𝑗)
, (3)

Therefore, as shown in Equation (4), the PPMI converts the
maximum of the calculated PMI and 0 as the weight of edges
between word nodes 𝑤𝑖 , 𝑤𝑗 .

𝑃𝑃𝑀𝐼(𝑤𝑖 , 𝑤𝑗) = max (0, 𝑃𝑀𝐼(𝑤𝑖 , 𝑤𝑗)) (4)

Term frequency-inverse document frequency (TF-IDF)

[40] is used for the weights of edges between word nodes and
document nodes. TF-IDF values are larger for words that
occur more frequently in one document but less frequently in
other documents, i.e., words that characterize that document.
The TF-IDF value can be calculated by multiplying the TF
value by the IDF value. The TF value is a value representing
the frequency of occurrence of a word. The TF value is
calculated by Equation (5).

𝑇𝐹(𝑤𝑖 , 𝑑𝑗) =
𝑓(𝑤𝑖 , 𝑑𝑗)

∑ 𝑓(𝑤𝑘 , 𝑑𝑗)𝑤𝑘∈𝑑𝑗

(5)

𝑑𝑗 is a document. 𝑤𝑖 is a word that appears in 𝑑𝑗. The function

𝑓(𝑤𝑖 , 𝑑𝑗) is the frequency of the word 𝑤𝑖 in the document 𝑑𝑗.
The IDF value of a word 𝑤𝑖 is calculated by taking the
logarithm of the total number of documents 𝑛𝑑𝑜𝑐 in the data
set divided by the number of documents containing the word
𝑤𝑖 as shown in Equation (6).

𝐼𝐷𝐹(𝑤𝑖) = log (
𝑛𝑑𝑜𝑐

𝑑𝑓(𝑤𝑖) + 1
) (6)

𝑁 is the total number of documents. df is the number of

documents in which 𝑤𝑖 appears. TF-IDF value is calculated
by Equation (7).

𝑇𝐹‐ 𝐼𝐷𝐹(𝑤𝑖 , 𝑑𝑗) = 𝑇𝐹(𝑤𝑖 , 𝑑𝑗) ∙ 𝐼𝐷𝐹(𝑤𝑖) (7)

2) Creating the Initial Node Feature Matrix
Each document is converted into a sequence of tokens that

Creating the Initial Node Feature Matrix
Next, we create the initial node feature matrix to be input

into the GCNs. We use BERT to obtain document embeddings
and treat them as the input representations of the document
nodes. The embedded representation 𝑋𝑑𝑜𝑐 of a document

node is represented by 𝑋𝑑𝑜𝑐 ∈ ℝ
𝑛𝑑𝑜𝑐×𝑑 , where 𝑛𝑑𝑜𝑐 is the

number of documents and 𝑑 is the number of embedding
dimensions. Overall, the initial node feature matrix is given
by (8).

𝑋 = (
𝑋𝑑𝑜𝑐
0
)
(𝑛𝑑𝑜𝑐+𝑛𝑤𝑜𝑟𝑑)×𝑑

(8)

3) Input into GCN (GAT) and Learning by GCN (GAT)

The weights of the edges between nodes and the initial

node feature matrix are input into GCNs for training. The

output feature matrix 𝐿(𝑖) of layer 𝑖 is computed by (9).

𝐿(𝑖) = 𝜌(�̃�𝐿(𝑖−1)𝑊(𝑖)) (9)

𝜌 is the activation function and �̃� is the normalized

adjacency matrix. 𝑊𝑖 ∈ ℝ𝑑𝑖−1×𝑑𝑖 is the weight matrix at

layer 𝑖. 𝐿(0) is 𝑋, the input feature matrix of the model. The

dimension of the final layer of 𝑊 is (number of embedded

dimensions) × (number of output classes). The output of the

GCNs is treated as the final representation of the document

node, and its output is input into the softmax function for

classification. The prediction by the output of the GCNs is

given by (10). The function 𝑔 represents the GCNs model.

The cross-entropy loss in labeled document nodes is used to

cooperatively optimize the parameters of BERT and GCNs.

𝑍𝐺𝐶𝑁 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑔(𝑋, 𝐴)) (10)

When GAT is used, the feature update of node 𝑖 is given

by Equation (11).

ℎ⃗ 𝑖
′ = 𝜌(∑ 𝛼𝑖𝑗𝑊ℎ⃗ 𝑗

𝑗∈𝒩𝑖

) (11)

ℎ⃗ is a vector, of each node. 𝒩 is some neighborhood of node

𝑖. 𝛼 is the attention between node 𝑖 and node 𝑗. Attention 𝛼 is

given by Equation (12).

𝛼𝑖𝑗 =
𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎 𝑇[𝑊ℎ⃗ 𝑖‖𝑊ℎ⃗ 𝑗]))

∑ 𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎 𝑇[𝑊ℎ⃗ 𝑖‖𝑊ℎ⃗ 𝑘]))𝑘∈𝒩𝑖

(12)

The attention mechanism 𝑎 is a single-layer feedforward

neural network and applying the 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 nonlinearity.

GAT's prediction is given by the following Equation (13).

𝑍𝐺𝐴𝑇 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑔𝑎𝑡(𝑋, 𝐴)) (13)

C. Interpolation of Predictions with BERT and GCN

A linear interpolation is computed with 𝑍𝐺𝐶𝑁 , the

prediction from RoBERTaGCN, and 𝑍𝐵𝐸𝑅𝑇 , the prediction

from BERT, and the result of the linear interpolation is

adopted as the final prediction. The result of the linear

interpolation is given by the following Equation (14).

147International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. OPTIMAL VALUE FOR COSINE SIMILARITY THRESHOLD.

Dataset Optimal Threshold Value

20NG 0.99

R8 0.975

R52 0.96

Ohsumed 0.965

MR 0.97

TABLE III. INFORMATION OF EACH DATA SET.

Dataset Number of Documents Training Data Test Data Average of Words

20NG 18846 11314 7532 206.4

R8 7674 5485 2189 65.7

R52 9100 6532 2568 69.8

Ohsumed 7400 3357 4043 129.1

MR 10662 7108 3554 20.3

TABLE IV. DETAILS OF THE SPECIFICATIONS OF GOOGLE COLLABORATORY PRO+.

GPU
Tesla V100（SXM2）

／A100（SXM2）

Memory

12.69GB（standard）

／51.01GB (CPU／GPU (high memory))

／35.25GB (TPU (high memory))

Disk
225.89GB（CPU／TPU）

／166.83GB（GPU）

𝑍 = 𝜆𝑍𝐺𝐶𝑁 + (1 − 𝜆)𝑍𝐵𝐸𝑅𝑇 (14)

𝜆 controls the trade-off between the two predictions. 𝜆 = 1

means using the full RoBERTaGCN model, while 𝜆 = 0

means using only the BERT module. When 𝜆 ∈ (0, 1), the

predictions from both models can be balanced, making the

RoBERTaGCN model more optimal. Experiments by Lin et

al. using the graph structure in (1) show that 𝜆 = 0.7 is the

optimal value of 𝜆 [10].

IV. EXPERIMENTS

In this study, two experiments were conducted.
Experiment 1: Experiment to confirm the effectiveness of the
graphs of the proposed method.

In Experiment 1, the classification performance of the
proposed method using compact graphs was compared with
other methods. The parameter λ, which controls the balance
between predictions from BERT and predictions from GCNs,
was fixed at 0.7. Preliminary experiments were conducted on
the validation data, and the optimal values of the threshold of
the cosine similarity for each dataset are shown in Table Ⅱ.
We used the values in Table Ⅱ as our threshold values. The
trained model used was roberta-base. Accuracy was used to
evaluate the experiment. Positive is the label of the correct

answer, negative is the label of the incorrect answer, and
negative is all the remaining labels except the correct label.

Experiment 2: Experiment to check classification accuracy
when changing to a larger trained model.

In Experiment 2, we take advantage of the memory
savings and check the accuracy of the proposed method by
applying a larger trained model. Specifically, the learned
model is changed from roberta-base to roberta-large. λ and
cosine similarity values are set to the same values as in
Experiment 1.

A. Data Set

We evaluated the performance of the proposed method by
conducting experiments using the five data sets shown in
Table Ⅲ. We used the same data used in RoBERTaGCN.
Each dataset was already divided into training and test data,
which we used as is. The ratio of training data to test data is
about 6:4 for 20NG, about 7:3 for R8 and R52, about 4.5:5.5
for Ohsumed, and about 6.5:3.5 for MR. All five datasets were
used in the experiments after the preprocessing described in
the next subsection.

1) 20-Newsgroups (20NG)
20NG is a dataset in which each document is categorized

into 20 news categories, and the total number of documents is

148International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE V. CLASSIFICATION PERFORMANCE OF THE PROPOSED METHOD.

 20NG R8 R52 Ohsumed MR

Text GCN 86.34 97.07 93.56 68.36 76.74

Simplified GCN 88.50 - - 68.50 -

LEAM 81.91 93.31 91.84 58.58 76.95

SWEM 85.16 95.32 92.94 63.12 76.65

TF-IDF+LR 83.19 93.74 86.95 54.66 74.59

LSTM 65.71 93.68 85.54 41.13 75.06

fastText 79.38 96.13 92.81 57.70 75.14

BERT 85.30 97.80 96.40 70.50 85.70

RoBERTa 83.80 97.80 96.20 70.70 89.40

RoBERTaGCN 89.15 98.58 94.08 72.94 88.66

Extended RoBERTaGCN [11] 89.82 98.81 94.16 74.13 89.00

Proposed method（base） 90.02 98.58 96.88 73.53 89.65

Proposed method（large） 89.95 98.58 96.81 76.08 91.50

18846. 11314 documents, corresponding to about 60% of all
documents, are training data. 7532 documents, corresponding
to about 40% of all documents, are test data.

2) R8, R52
Both R8 and R52 are subsets of the dataset provided by

Reuters (total number is 21578). R8 has 8 categories and R52
has 52 categories. The total number of documents in R8 is
7674, and we used 5485 documents as training data and 2189
documents as test data. The total number of documents in R52
is 9100, and we used 6532 documents as training data and
2568 documents as test data.

3) Ohsumed
This is a dataset of medical literature provided by the U.S.

National Library of Medicine, and total number of documents
is 13929. Every document has one or more than two related
disease categories from among the 23 disease categories. In
the experiment, we used documents that had only one relevant
disease category, and the number of documents is 7400. We
used 3357 documents as training data and 4043 documents as
test data.

4) Movie Review (MR)
This is a dataset of movie reviews and is used for

sentiment classification (negative-positive classification). The
total number of documents was 10662. We used 7108
documents as training data and 3554 documents as test data.

B. Preprocessing

The following three preprocessing steps were applied to
all data. These preprocessing steps are the same as those done
in RoBERTaGCN [10].

Step1: Noise Removal.

All characters and symbols except alphanumeric characters

and certain symbols (() , ! ? ' `) were removed as noise.

Step2: Word Normalization.

All alphanumeric characters were normalized to half-width

alphanumeric characters. Then, normalized alphanumeric

characters are unified into lowercase letters.

Step3: Stop Words Removal.

Stop words in text were removed using stop words list of

Natural Language Toolkit (NLTK).

C. Experimental Environment

The experiments were conducted using Google
Colaboratory Pro+, an execution environment for Python and
other programming languages provided by Google. The
details of the specifications of Google Colaboratory Pro+ are
shown in Table Ⅳ.

D. Evaluation Metric

The accuracy was used as the evaluation index for the
experiment. In previous studies, including RoBERTaGCN [9]
and TextGCN [8], accuracy has been used as an evaluation
index, and to make it easier to compare results, accuracy was
also used in this study. The accuracy is calculated by Equation
(14). Positive is the label of the correct answer, and negative
is the label of the incorrect answer. Negatives are all the
remaining labels except the correct answer label. TP(True-
Positive) is the number of items that should be classified as
positive that were correctly classified as positive. TN(True-
Negative) represents the number of items that should be
classified as negative that were correctly classified as negative.
FP (False-Positive) indicates the number of cases where items
that should have been classified as negative were incorrectly
classified as positive. FN (False-Negative) indicates the

149International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VI. NUMBER OF WORDS REMOVED.

Dataset Number of Words Number of Words Removed

20NG 42757 755

R8 7688 225

R52 8892 245

Ohsumed 14157 851

MR 18764 8687

TABLE VII. NUMBER OF PPMI EDGES REMOVED.

Dataset Number of PPMI Edges Number of Edges Removed

20NG 22413246 127662

R8 2841760 32954

R52 3574162 36138

Ohsumed 6867490 129938

MR 1504598 314950

TABLE VIII. NUMBER OF TF-IDF EDGES REMOVED.

Dataset Number of TF-IDF Edges Number of Edges Removed

20NG 2276720 755

R8 323670 225

R52 407084 245

Ohsumed 588958 851

MR 196826 8687

number of cases where items that should have been classified
as positive were incorrectly classified as negative.

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(14)

E. Result of Experiment

Table Ⅴ compares the classification performance of the
proposed method with the conventional methods. The
previous study [6] shows the classification performance when
using the graph structure in (2). The proposed method (base)
is the result of Experiment 1, and the proposed method (large)
is the result of Experiment 2.

Comparing the results of the Proposed method (base) with
the other methods, the accuracy of 20NG, R52, and MR
improved. The accuracy of the other datasets also maintains a
high level. Even with a compact graph in which words that
appear only in one document are removed, the classification
performance remains high. Therefore, it can be said that the
proposed method succeeds in saving memory.

Comparing the results of the Proposed method (large) with
the other methods, the accuracy is significantly improved for
Ohsumed and MR. The classification performance of
Ohsumed was 76.08%, 1.95% higher than that of [5], and that

of MR was 91.50%, 1.85% higher than that of the Proposed
method (base).

V. DISCUSSION

Table Ⅵ shows the number of word types that appear in
each dataset and the number of words that are removed in the
graph structure of (3). Table Ⅶ shows the number of PPMI
edges added in the original graph structure and the number of
PPMI edges removed in the graph structure of (3). Table Ⅷ
shows the number of TF-IDF edges added in the original
graph structure and the number of TF-IDF edges removed in
the graph structure of (3). Since TF-IDF edges are added
between word and document nodes, the number of edges
removed is the same as the number of words removed. From
these three tables, it can be seen that the graph of the proposed
method reduces the number of edges by 1 to 20%.
Experimental results show that the classification performance
of the proposed method maintains performance of the method
using the original graph structure. Therefore, it can be said that
the proposed method succeeds in saving memory because it
reduces the number of edges on the graph while maintaining
accuracy.

We believe that the reason why the accuracy was
maintained even with a compact graph is because the words
to be removed were limited to words that appear only in a
single document. Words that appear in only one document do

150International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

not propagate document topic information through the word
node, and thus text classification performance is maintained
even if those words are removed.

This study also confirmed the document classification
performance when the trained model was changed to a larger
one, taking advantage of the memory savings. When the
learned model was changed from roberta-base to roberta-large,
the accuracy improved significantly. It is thought that the
change to roberta-large improved the accuracy because it was
able to acquire embedded representations that better reflect the
characteristics of the documents.

VI. CONCLUSION AND FUTURE WORK

To solve the memory-consuming problem of

conventional text classification methods based on graph

structures, this paper proposes the text classification method

using compact graphs in which words that appear only in one

document are removed. Experimental results confirmed that

the proposed method can maintain the accuracy of the

conventional method while saving a lot of memory. The

results also showed that the accuracy of text classification

improves when the learned model is changed to a larger one,

taking advantage of the memory saved. By utilizing the saved

memory, the proposed method succeeded in using larger

trained models, and the classification accuracy of the

proposed method was dramatically improved compared to

the conventional method.

Future work includes comparing accuracy with the

proposed method when other features are used instead of

cosine similarity and optimizing the parameter λ for each data.

REFERENCES

[1] H. Nakajima and M. Sasaki, “Text Classification Using a Word-
Reduced Graph”, Proceedings of The Twelfth International
Conference on Data Analytics (DATA ANALYTICS 2023), pp. 25-30,
2023.

[2] A. Karim, S. Azam, B. Shanmugam, K. Kannoorpatti, and M. Alazab,
"A Comprehensive Survey for Intelligent Spam Email Detection," in
IEEE Access, vol. 7, pp. 168261-168295, 2019, doi:
10.1109/ACCESS.2019.2954791.

[3] J. H. Lau, K. Grieser, D. Newman, and T. Baldwin, ‘‘Automatic
labelling of topic models,’’ in Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language
Technologies, pp. 1536–1545, 2011.

[4] P. K. Jain, R. Pamula, and G. Srivastava, “A systematic literature
review on machine learning applications for consumer sentiment
analysis using online reviews”, Computer Science Review, Vol. 41,
2021.

[5] K. Kowsari, K. J. Meimandi, M. Heidarysafa, S. Mendu, L. E. Barnes,
and D. E. Brown, "Text Classification Algorithms: A Survey",
Information Vol. 10, No. 4, 2019.

[6] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
"The graph neural network model." IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61-80, 2008.

[7] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks.” In ICLR, 2017.

[8] L. Yao, C. Mao, and Y. Luo, “Graph convolutional networks for text
classification.” In Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, pp. 7370-7377, 2019.

[9] Z. Lu, P. Du, and J. Y. Nie, “Vgcn-bert: augmenting bert with graph
embedding for text classification.” In European Conference on
Information Retrieval, pp. 369-382, 2020.

[10] Y. Lin, Y. Meng, X. Sun, Q. Han, K. Kuang, J. Li, and F. Wu,
“BertGCN: Transductive Text Classification by Combining GCN and
BERT” In Findings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pp. 1456–1462, 2021.

[11] H. Nakajima and M. Sasaki, “Text Classification Using a Graph Based
on Relationships Between Documents.” In Proceedings of the 36th
Pacific Asia Conference on Language, Information and Computation,
pp. 119–125, Manila, Philippines. De La Salle University. 2022.

[12] Y. Zhang, R. Jin, and Z. Zhou, "Understanding bag-of-words model: A
statistical framework." International Journal of Machine Learning and
Cybernetics 1, 1–4, pp. 43–52, 2010.

[13] W. B. Cavnar and J. M. Trenkle, "N-gram-based text categorization."
In Proceedings of SDAIR-94, 3rd Annual Symposium on Document
Analysis and Information Retrieval, Vol. 161175, 1994.

[14] R. Baeza-Yates and B. Ribeiro-Neto, "Modern information retrieval. "
ACM press, Vol. 463, 1999.

[15] F. Figueiredo, L. Rocha, T. Couto, T. Salles, M. A. Goncalves, and W.
Meira Jr., "Word co-occurrence features for text classification. "
Information Systems, 36(5), pp. 843-858, 2011.

[16] E. Maron, “Automatic indexing: An experimental inquiry,” Journal of
the ACM, vol. 8, no. 3, pp. 404–417, 1961.

[17] A. Y. Ng and M. I. Jordan, "On discriminative vs. generative
classifiers: a comparison of logistic regression and naive Bayes." In
Proceedings of the 14th International Conference on Neural
Information Processing Systems: Natural and Synthetic, pp. 841-848,
2001.

[18] T. Cover and P. Hart, "Nearest neighbor pattern classification," in
IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21-27,
1967.

[19] T. Joachims, “Text categorization with support vector machines:
Learning with many relevant features,” In Proceedings of the 10th
European Conference on Machine Learning, pp. 137-142, 1998.

[20] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2,
pp. 123-140, 1996.

[21] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu,
and J. Gao, “Deep Learning Based Text Classification: A
Comprehensive Review.” ACM Computing Surveys, vol. 54, Issue 3,
no. 62, pp. 1-40, 2021.

[22] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space.” In Proceedings of ICLR, 2013.

[23] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vectors
for word representation.” In Proceedings of the EMNLP, pp. 1532–
1543, 2014.

[24] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, "Bag of tricks for
efficient text classification." arXiv preprint arXiv:1607.01759 2016.

[25] S. Hochreiter and J. Schmidhuber, “Long short-term memory.” Neural
Computation, 9(8), pp. 1735–1780, 1997.

[26] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep Contextualized Word Representations.” In
Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, pp. 2227–2237, 2018.

[27] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding.” In
Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, pp. 4171–4186, 2019.

[28] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A Robustly Optimized
BERT Pretraining Approach.” ArXiv abs/1907.11692, 2019.

[29] X. Liu, X. You, X. Zhang, J. Wu and P. Lv, “Tensor graph
convolutional networks for text classification” arXiv:2001.05313v1.
pp. 8409-8416, 2020.

151International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[30] G. Wang, C. Li, W. Wang, Y. Zhang, D. Shen, X. Zhang, R. Henao,
and L. Carin, "Joint Embedding of Words and Labels for Text
Classification." In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, pp. 2321–2331, 2018.

[31] D. Shen, G. Wang, W. Wang, M. R. Min, Q. Su, Y. Zhang, C. Li, R.
Henao, and L. Carin, "Baseline Needs More Love: On Simple Word-
Embedding-Based Models and Associated Pooling Mechanisms." In
Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics, pp. 440–450, 2018.

[32] M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. Daumé III, "Deep
Unordered Composition Rivals Syntactic Methods for Text
Classification." In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing, pp. 1681-1691,
2015.

[33] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, "A Convolutional
Neural Network for Modelling Sentences." In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics, pp.
655-665, 2014.

[34] K. S. Tai, R. Socher, and C. D. Manning, "Improved Semantic
Representations From Tree-Structured Long Short-Term Memory
Networks." In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing, pp. 1556-1566,
2015.

[35] F. Wu, T. Zhang, A. H. Souza Jr, C. Fifty, T. Yu, and K. Q. Weinberger,
“Simplifying Graph Convolutional Networks.” International
Conference on Machine Learning, pp. 6861-6871, 2019.

[36] T. N Kipf and M. Welling, “Variational graph auto-encoders.” arXiv
preprint arXiv:1611.07308. 2016b.

[37] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y.
Bengio, “Graph attention networks.” arXiv preprint arXiv:1710.10903.
2017.

[38] D. Jurafsky and J. H. Martin, “Speech and language processing: an
introduction to natural language processing, computational linguistics,
and speech recognition”, Upper Saddle River, N. J.: Pearson Prentice
Hall, 2009.

[39] K. W. Church and P. Hanks, “Word Association Norms, Mutual
Information, and Lexicography”, Computational Linguistics, 16(1): pp.
22–29, 1990.

[40] I. H. Witten, A. Moffat, and T. C. Bell, "Managing Gigabytes:
Compressing and Indexing Documents and Images." Morgan
Kaufmann, 1999.

[41] J. Bastings, I. Titov, W. Aziz, D. Marcheggiani, and K. S. An, “Graph
Convolutional Encoders for Syntax-aware Neural Machine
Translation.” In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 1957-1967, Copenhagen,
Denmark. Association for Computational Linguistics. 2017.

[42] L. Huang, D. Ma, S. Li, X. Zhang, and H. Wang, “Text level graph
neural network for text classification.” In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 3444–3450, 2019.

[43] P. Liu, X. Qiu, and X. Huang, “Recurrent neural network for text
classification with multi-task learning.” In IJCAI, pp. 2873–2879,
AAAI Press. 2016.

152International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

