
Towards Evolutionary Software Design: Bridging Clean Architecture and Normalized
Systems

Gerco Koks
Antwerpen Management School, Alumini
Centric Netherlands BV, Chief Architect

Zundert, Netherlands
email:gerco.koks@outlook.com

Geert Haerens
Antwerpen Management School, Lector

Engie, Enterprise Architect
Haacht, Belgium

email:geert.haerens@engie.com

Abstract—This paper investigates Clean Architecture through
the lens of Normalized Systems. It highlights the synergetic
potential of Clean Architecture and Normalized Systems to
enhance the evolvability of Software design. The research includes
a theoretical analysis supported by empirical evidence from
the development and evaluation of two research artifacts. It
demonstrates how each paradigm contributes to a modular,
stable, and evolvable software design and how integrating both
approaches can lead an evolvable software design.

Keywords-Software; Architecture; Evolvability; Modularity; Sta-
bility.

I. INTRODUCTION

In the dynamic landscape of software architecture, the
software development paradigms of Clean Architecture (CA)
and Normalized Systems (NS) have emerged as pivotal in
addressing the multifaceted challenges of software design,
particularly in managing stability to achieve evolvability in
software. This paper, which is an extension of “Converging
Clean Architecture with Normalized Systems” Koks [1] delves
into the synergy between these two architecture ’paradigms’,
each contributing significantly to the contemporary discourse
on software architectural complexity.

Tracing the historical underpinnings of these concepts re-
veals the works of pioneers like D. McIlroy [2], who was
one of the first to discuss modular programming, and Lehman
[3], who pointed out the importance of software evolution.
Contributions from Dijkstra [4] on structured programming
and Parnas [5] on software modularity further cemented the
foundation for CA and NS. These historical insights con-
textualize the evolution of software engineering principles
and underscore the relevance of fostering maintainable and
evolvable software systems.

This paper outlines the insights from a design science
research “On the Convergence of Clean Architecture with
the Normalized Systems Theorems,” exploring the significant
benefits and practical implications of integrating the strengths
of CA and NS within the field of software development [6].
Besides the theoretical study of comparing the principles and
building blocks of both paradigms, the research included an
architectural design artifact, and a software artifact where the
principles were applied and tested in practice.

The introduction is intended to set the stage and articulate
the goal of this paper. Section II lays out the theoretical
background, focusing on the specific principles and elements

of each Software Design Paradigm while highlighting their
unified concepts. Section III delves into a detailed comparison
of the principles and elements of CA and NS, examining their
similarities, differences, and their impact on the evolvability
of software constructs. Section IV explores the convergence
of design elements between CA and NS, providing a practi-
cal perspective on their integration. Section V discusses the
development and analysis of research artifacts, including the
Expander Framework and Clean Architecture Expander, to
evaluate the convergence of the two theories in a practical
context. Section VI presents the research artifacts, detailing
their construction and the methodologies used to assess their
effectiveness. Finally, Section VII concludes the paper with
a summary of findings, discussing the implications of the
research and offering recommendations for future work in the
field of software architecture.

II. THEORETICAL BACKGROUND

This section explores the theoretical background of both CA
and NS frameworks in software engineering. It focuses on the
synergetic concepts, underlying principles, and architectural
building blocks of both approaches and paradigms, providing
the foundation for the comparative analysis.

A. Unified concepts

In this section, we will examine concepts related to both CA
and NS. Understanding these concepts is crucial for executing
the research and interpreting its results.

1) Modularity

Martin’s original material describes a module as a piece
of code encapsulated in a source file with a cohesive set of
functions and data structures [7, p. 82]. According to Mannaert
et al. [8, p. 22], modularity is a hierarchical or recursive
concept that should exhibit high cohesion. While both design
approaches agree on the cohesiveness of a module’s internal
parts, there is a slight difference in granularity in their defini-
tions.

2) Cohesion

Mannaert et al. [8, p. 22] consider cohesion as modules that
exist out of connected or interrelated parts of a hierarchical
structure. On the other hand, Martin [7, p. 118] discusses
cohesion in the context of components. He attributes the three
component cohesion principles as crucial to grouping classes

176International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

or functions into cohesive components. Cohesion is a complex
and dynamic process, as the level of cohesiveness might evolve
as requirements change over time.

3) Coupling

Coupling is an essential concept in software engineering that
is related to the degree of interdependence among various soft-
ware constructs. High coupling between components indicates
the strength of their relationship, creating an interdependent
relationship between them. Conversely, low coupling signifies
a weaker relationship, where modifications in one part are less
likely to impact others. Although not always possible, the level
of coupling between the various modules of the system should
be kept to a bare minimum. Both Mannaert et al. [8, p. 23]
and Martin [7, p. 130] agree to achieve as much decoupling
as possible.

B. Fundamentals of NS theory

Software architectures should be able to evolve as business
requirements change over time. In NS theory, evolvability is
measured by the lack of Combinatorial Effects. When the
impact of a change depends not only on the type of the
change but also on the size of the system it affects, we talk
about a Combinatorial Effect. The NS theory assumes that
software undergoes unlimited evolution (i.e., new and changed
requirements over time, so Combinatorial Effects are very
harmful to software evolvability). Indeed, suppose changes to
a system depend on the size of the growing system. In that
case, these changes become more challenging to handle (i.e.,
requiring more work and lowering the system’s evolvability.

NS theory is built on classic system engineering and statis-
tical entropy principles [8] [9]. In classic system engineering,
a system is stable if it has BIBO – Bounded Input leading
to Bounded Output. NS theory applies this idea to software
design as a limited change in functionality should cause a
limited change in the software. In classic system engineering,
stability is measured at infinity. NS theory considers infinitely
large systems that will go through infinitely many changes. A
system is stable for NS, if it does not have CE, meaning that
the effect of change only depends on the kind of change and
not on the system size.

NS theory suggests four theorems and five extendable
elements as the basis for creating evolvable software through
pattern expansion of the elements. The theorems are proved
formally, and they give a set of required conditions that must
be followed strictly to avoid Combinatorial Effects. The NS
theorems have been applied in NS elements. These elements
offer a set of predefined higher-level structures, patterns, or
“building blocks” that provide a clear blueprint for implement-
ing the core functionalities of realistic information systems,
following the four theorems.

1) NS Theorems

NS theory proposes four theorems, which have been proven
[8] [9], to dictate the necessary conditions for software to be
free of Combinatorial Effects.

• Separation of Concerns

• Data Version Transparency
• Action Version Transparency
• Separation of States

Violation of any of these 4 theorems will lead to Combinatorial
Effects and, thus, non-evolvable software under change.

2) NS Elements

Consistently adhering to the four NS theorems is very
challenging for developers. First, following the NS theorems
leads to a fine-grained software structure. Creating such a
structure introduces some development overhead that may
slow the development process. Secondly, the rules must be
followed constantly and robotically, as a violation will in-
troduce Combinatorial Effects. Humans are not well suited
for this kind of work. Thirdly, the accidental introduction of
Combinatorial Effects results in an exponential increase of
rework that needs to be done.

Five expandable elements—data, action, workflow, connec-
tor, and trigger — were proposed to make the realization of NS
applications more feasible. These carefully engineered patterns
comply with the four NS theorems and can be used as essential
building blocks for a wide variety of applications.

• Data Element: the structured composition of software
constructs to encapsulate a data construct into an isolated
module (including get- and set methods, persistency,
exhibiting version transparency, etc.).

• Action Elements: the structured composition of software
constructs to encapsulate an action construct into an
isolated module.

• Workflow Element: the structured composition of soft-
ware constructs describing the sequence in which action
elements should be performed to fulfill a flow into an
isolated module.

• Connector Element: the structured composition of soft-
ware constructs into an isolated module, allowing external
systems to interact with the NS system without statelessly
calling components.

• Trigger Element: the structured composition of software
constructs into an isolated module that controls the sys-
tem states and checks whether any action element should
be triggered accordingly.

The element provides core functionalities (data, actions,
etc.) and addresses the cross-cutting concerns that each core
functionality requires to function properly. As cross-cutting
concerns cut through every element, they require careful
implementation to avoid introducing Combinatorial Effects.

3) Element Expansion

An application is composed of a set of data, action, work-
flow, connector, and trigger elements that define its require-
ments. The NS Expander is a technology that will generate
code instances of high-level patterns for the specific applica-
tion. The expanded code will provide generic functionalities
specified in the application definition and will be a fine-grained
modular structure that follows the NS theorems (see Figure 1).

177International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The business logic of the application is now manually
programmed inside the expanded modules at pre-defined lo-
cations. The result is an application that implements a cer-
tain required business logic and has a fine-grained modular
structure. As the code’s generated structure is NS compliant,
we know that the code is evolvable for all anticipated change
drivers corresponding to the underlying NS elements. The only
location where Combinatorial Effects can be introduced is in
the customized code.

Figure 1. Requirements are expressed in the XML description file and used
on input for element expansion.

4) Harvesting and Software Rejuvenation

The expanded code has some pre-defined places where
changes can be made. To prevent these changes from being
lost when the application is expanded again, the Expander can
gather them and return them when it is re-expanded. Gathering
and returning the changes is called harvesting and injection.

The application can be re-expanded for different reasons.
For example, the code templates of the elements are improved
(e.g., fix bugs, make faster, etc.), include a new cross-cutting
concern (e.g., add a new logging feature), or change the
technology (e.g., use a new persistence framework).

Software rejuvenation aims to routinely carry out the har-
vesting and injection process to ensure that the constant
enhancements to the element code templates are incorporated
into the application.

Code expansion produces more than 80% of the code of the
application [10]. The expanded code can be called boilerplate
code, but it is more complex than what is usually meant
by that term because it deals with Cross-Cutting Concerns.
Manually producing this code takes a lot of time. Using
NS expansion, this time can now be spent on the constant
improvement of the code templates, the development of new
code templates that make the elements compatible with the
latest technologies, and the meticulous coding of the business
logic. The changes in the elements can be applied to all
expanded applications, giving the concept of code reuse a
new meaning. All developers can use a modification on a
code template by one developer on all their applications with
minimal impact, thanks to the rejuvenation process. Figure 2
summarizes the NS development process.

Figure 2. The NS development process.

5) Dimensions of Change

Element expansion, harvesting, rejuvenation, and injection
protect against CE from four change dimensions. The first
dimension is the addition of new instances of data, task,
flow, trigger, and connector elements. These types of changes
originate from new functionalities. The second dimension
is the changes to the element code templates due to the
introduction of new cross-cutting concerns or the overall
improvement of the code of the templates. The third dimension
is technology-induced changes, handled by the cross-cutting
concerns and thus via the element templates. The fourth and
last dimension represents the custom code, the crafting, which
can be harvested and reinjected.

C. Clean Architecture

CA is a software design approach emphasizing code or-
ganization into independent, modular layers with distinct re-
sponsibilities. This approach aims to create a more flexible,
maintainable, and testable software system by enforcing the
separation of concerns and minimizing dependencies between
components. CA aims to provide a solid foundation for soft-
ware development, allowing developers to build applications
that can adapt to changing requirements, scale effectively, and
remain resilient against the introduction of bugs [7].

CA organizes its components into distinct layers. This archi-
tecture promotes the separation of concerns, maintainability,
testability, and adaptability. The following list briefly describes
each layer [7]. By organizing code into these layers and
adhering to the principles of CA, developers can create more
flexible, maintainable, and testable software with well-defined
boundaries and a separation of concerns.

• Domain Layer: This layer contains the application’s
core business objects, rules, and domain logic. Entities
represent the fundamental concepts and relationships in
the problem domain and are independent of any specific
technology or framework. The domain layer focuses on
encapsulating the essential complexity of the system and
should be kept as pure as possible.

• Application Layer: This layer contains the use cases or
application-specific business rules orchestrating the inter-
action between entities and external systems. Use cases
define the application’s behavior regarding the actions
users can perform and the expected outcomes. This layer
coordinates the data flow between the domain layer and

178International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the presentation or infrastructure layers while remaining
agnostic to the specifics of the user interface or external
dependencies.

• Presentation Layer: This layer translates data and in-
teractions between the use cases and external actors,
such as users or external systems. Interface adapters
include controllers, view models, presenters, and data
mappers, which handle user input, format data for display,
and convert data between internal and external repre-
sentations. The presentation layer should be as thin as
possible, focusing on the mechanics of user interaction
and deferring application logic to the use cases.

• Infrastructure Layer: This layer contains the technical
implementations of external systems and dependencies,
such as databases, web services, file systems, or third
party libraries. The infrastructure layer provides concrete
implementations of the interfaces and abstractions defined
in the other layers, allowing the core application to remain
decoupled from specific technologies or frameworks. This
layer is also responsible for configuration or initialization
code to set up the system’s runtime environment.

Domain

Infrastructure

Presentation

Application

Presentation

Figure 3. Flow of control

An essential aspect is described as the dependency rule.
The rule states that source code dependencies must point only
inward toward higher-level policies [7, p. 206]. This ’flow
of control’ is designed following the Dependency Inversion
Principle (DIP) and can be represented schematically as con-
centric circles containing all the described components. The
arrows in Figure 3 clearly show that the dependencies flow
from the outer layers to the inner layers. Most outer layers
are historically subjected to large-scale refactorings due to
technological changes and innovation. Separating the layers
and adhering to the dependency rule ensures that the domain
logic can evolve independently from external dependencies or
certain specific technologies.

Martin [7, p. 78] argues that software can quickly become
a well-intended mess of bricks and building blocks without
rigorous design principles. So, from the early 1980s, he began
to assemble a set of software design principles as guidelines
to create software structures that tolerate change and are easy

to understand. The principles are intended to promote modular
and component-level software structure [7, p. 79]. In 2004, the
principles were established to form the acronym SOLID.

The following list will provide an overview of each of the
SOLID principles.

• Single Responsibility Principle (SRP): This principle
has undergone several iterations of the formal definition.
The final definition of the Single Responsibility Principle
(SRP) is: “a module should be responsible to one, and
only one, actor” [7, p. 82]. The word ‘actor’ in this
statement refers to all the users and stakeholders repre-
sented by the (functional) requirements. The modularity
concept in this definition is described by Martin [7,
p. 82] as a cohesive set of functions and data structures.
In conclusion, this principle allows for modules with
multiple tasks as long as they cohesively belong together.
Martin [7, p. 81] acknowledges the slightly inappropriate
name of the principle, as many interpreted it, that a
module should do just one thing.

• Open/Closed Principle (OCP): Meyer [11] first men-
tioned the OCP and formulated the following defini-
tion: A module should be open for extension but closed
for modification. The software architecture should be
designed such that the behavior of a module can be
extended without modifying existing source code. The
OCP promotes the use of abstraction and polymorphism
to achieve this goal. The OCP is one of the driving forces
behind the software architecture of systems, making it
relatively easy to apply new requirements. [7, p. 94].

• Liskov Substitution Principle (LSP): The LSP is named
after Barbara Liskov, who first introduced the principle in
a paper she co-authored in 1987. Barbara Liskov wrote
the following statement to define subtypes [7, p. 92]. If
for each object o1 of type S, there is an object o2 of
type T such that for all programs P defined in terms of
T, the behavior of P is unchanged when o1 is substituted
for o2 then S is a subtype of T.1. Or in simpler terms:
To build software from interchangeable parts, those parts
must adhere to a contract that allows those parts to be
substituted for another [7, p. 80]

• Interface Segregation Principle (ISP): The ISP suggests
that software components should have narrow, specific
interfaces rather than broad, general-purpose ones. In
addition, the ISP states that consumer code should not
be allowed to depend on methods it does not use. In
other words, interfaces should be designed to be as small
and focused as possible, containing only the methods
relevant to the consumer code using them. This allows the
consumer code to use only the needed methods without
being forced to implement or depend on unnecessary
methods [7, p. 104].

• DIP: The DIP prescribes that high-level modules should
not depend on low-level modules, and both should depend
on abstractions. The principle emphasizes that the archi-
tecture should be designed so that the flow of control

179International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

between the different objects, layers, and components
is always from higher-level implementations to lower-
level details. In other words, high level implementations,
like business rules, should not be concerned about low
level implementations, such as how the data is stored
or presented to the end user. Additionally, high level
and low-level implementations should only depend on
abstractions or interfaces defining a contract for how they
should interact [7, p. 91]. This approach allows for great
flexibility and a modular architecture. Modifications in
the low-level implementations will not affect the high-
level implementations as long as they still adhere to the
contract defined by the abstractions and interfaces. Simi-
larly, changes to the high-level modules will not affect the
low-level modules as long as they still fulfill the contract.
This reduces coupling and ensures the evolvability of the
system over time, as changes can be made to specific
modules without affecting the rest of the system.

Martin [7] proposes the following elements to achieve the
goal of “Clean Architecture.”

• Entities: Entities are the core business objects, represent-
ing the domain’s fundamental data.

• Interactor: Interactors encapsulate business logic and
represent specific actions that the system can perform.

• RequestModels: RequestModels represent the input data
required by a specific interactor.

• ResponseModel: ResponseModel represents the output
data required by a specific interactor.

• ViewModels: ViewModels are responsible for managing
the data and behavior of the user interface.

• Controllers: Controllers are responsible for handling re-
quests from the user interface and routing them to the
appropriate Interactor.

• Presenters: Presenters are responsible for formatting and
the data for the user interface.

• Gateways: A Gateway provides an abstraction layer be-
tween the application and its external dependencies, such
as databases, web services, or other external systems.

• Boundary: Boundaries are used to separate the different
layers of the component.

III. COMPARING THE PRINCIPLES

In this section, we delve into the comparison of the
principles of CA and NS, exploring their convergence and
application in software design. The discussion is anchored in
the results of the research “On the Convergence of Clean
Architecture with the Normalized Systems Theorems” [6],
which examines the principles CA and NS mentioned in pre-
vious chapters. By aligning the theoretical constructs of both
paradigms, the thesis and its artifacts provide a perspective
on achieving modular, evolvable, and stable software architec-
tures. Applying the principles of both paradigms reinforces the
robustness of software systems and enhances their evolvability
and longevity in the face of future requirements.

The main goal of both the SRP and Separation Of Concerns
(SoC) is to promote and encourage modularity, low coupling,

and high cohesion. While their definitions have minor nuances,
the two principles are practically interchangeable. Even though
SRP does not implicitly guarantee Data Version Transparency
(DvT) or Action Version Transparency (AvT), it supports those
theorems by directing design choices in a certain way. One
example lies in separating data models for requests, responses,
and views and respective versions of these models.

The OCP and its relation to NS theory emphasize the
importance of designing software entities that are open for
extension but closed for modification. This principle aligns
with the NS approach to evolvability, advocating for structures
that can adapt to new requirements without altering existing
code, thus minimizing the impact of changes. An example of
this synergy can be seen in the use of expanders within NS,
which allow for introducing new functionality or data elements
without disrupting the core architecture, cohesively supporting
the OCP principle goal of extendibility and maintainability.

The LSP emphasizes that objects of a superclass should
be replaceable with objects of a subclass without altering
the correctness of the program. This principle strongly aligns
with the emphasis on modular and replaceable components
in NS, advocating for flexibility and the seamless integration
of new functionalities. Applying this principle within NS is
evident in designing tailored interfaces specific to a particular
version. This ensures system evolution without compromising
existing functionality, thereby upholding the LSP directive for
substitutability and system integrity.

The ISP advocates for creating specific consumer interfaces
rather than one general-purpose interface, aligning with NS
principles to enhance system evolvability and maintainability.
This alignment is evident in the modular and decoupled design
strategies advocated by both NS and ISP, where the focus is
on minimizing unnecessary dependencies and promoting high
cohesion within systems. By applying ISP, developers can
ensure that system components only depend on the interfaces
they use, which mirrors the approach in NS to create evolvable
systems by reducing the impact of changes across modules.

The DIP and its alignment with NS are centered on inverting
the conventional dependency structure to reduce rigidity and
fragility in software systems. DIP promotes high-level module
independence from low-level modules by introducing abstrac-
tions that both can depend on, thereby facilitating a more mod-
ular and evolvable design. This principle mirrors the emphasis
on minimizing dependencies to enhance system evolvability
in the NS paradigm. Examples from the thesis demonstrate
how leveraging DIP in conjunction with NS principles leads
to systems that are more adaptable to change, showcasing
the practical application of these combined approaches in
achieving resilient software architectures. Designers should
also be aware of the potential pitfalls of using DIP as faulty
implementations can increase combinatorial effects.

180International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I
DENOTATION OF CONVERGENCE LEVELS.

Icon Level Description
++ Strong This indicates that the principles of

CA and NS are highly converged. Both
have a similar impact on the design and
implementation.

+ Supporting The CA principle supports implement-
ing the NS principle through specific
design choices. However, applying the
CA principle does not inherently en-
sure adherence to the corresponding
NS principle.

− Weak or no he principles have no significant simi-
larities in terms of their purpose, goals,
or architectural supports.

TABLE II
THE CONVERGENCE BETWEEN CA AND NS PRINCIPLES.

Clean Architecture N
or

m
al

iz
ed

Sy
st

em
s

Se
pa

ra
tio

n
O

f
C

on
ce

rn
s

D
at

a
V

er
si

on
Tr

an
sp

ar
en

cy

A
ct

io
n

V
er

si
on

Tr
an

sp
ar

en
cy

Se
pa

ra
tio

n
of

St
at

e

Single Responsibility Principle ++ + + −

Open/Closed Principle ++ − ++ −

Liskov Substitution Principle ++ − + −

Interface Segregation Principle ++ − + −

Dependency Inversion Principle ++ − + −

IV. COMPARING THE ELEMENTS ELEMENTS

In this section, we compare the design elements of CA and
NS, exploring their convergence and application in software
design. The discussion is anchored in the results of the
research “On the Convergence of Clean Architecture with
the Normalized Systems Theorems” [6], which examines the
elements CA and NS mentioned in previous chapters from
both a theoretical and practical perspective.

The Data Element from NS and the Entity Element from CA
represent data objects of the ontology or data schema, typically
including attributes and relationship information. While both
can contain a complete set of attributes and relationships, the
Data Element of NS may also be tailored to serve a specific
set of information required for a single task or use case. In
CA, these types of Data Elements are explicitly specified as
ViewModels, RequestModels, or Response Models.

The Interactor element of CA and the Task and WorkFlow
elements of NS are all responsible for encapsulating business
rules. NS has a more strict approach to encapsulating the exe-
cution of business rules in Task Elements, as it is only allowed
to have a single execution of a business rule. Additionally, the

WorkFlow element is responsible for executing multiple tasks
statefully and is highly convergable with the Interactor element
of CA.

The convergence of the Controller element from CA with
NS is highlighted by its partial interchangeability with the
Connector and Trigger elements in NS. The Controller Ele-
ment is primarily responsible for interaction using protocols
and technologies involving the user interface, while the Con-
nector and Trigger elements are also intended to interact with
other types of external systems.

The Gateway element of CA and the Connector element
of NS communicate between components by providing Data
Version Transparent interfaces to provide Action Version
Transparency between these components.

The Presenter is responsible for preparing the ViewModel
on the Controller’s behalf and can be considered a Task or
Workflow Element in the theories of NS.

The Boundary element of CA strongly converges with the
Connector element of NS, as both are involved in communi-
cation between components and help ensure loose coupling
between these components. However, the Boundary element’s
scope seems more specific, as this element usually separates
architectural boundaries within the application or component.

In the following table, we summarize the analysis in a
tabular overview using the same denotation used in Section
III.

TABLE III
THE CONVERGENCE BETWEEN CA AND NS ELEMENTS.

Clean Architecture N
or

m
al

iz
ed

Sy
st

em
s

D
at

a
E

le
m

en
ts

Ta
sk

E
le

m
en

t

Fl
ow

E
le

m
en

t

C
on

ne
ct

or
E

le
m

en
t

Tr
ig

ge
r

E
le

m
en

t

Entity Element ++ − − − −

Interactor Element − ++ ++ − −

RequestModel Element ++ − − − −

ResponseModel Element ++ − − − −

ViewModel Element ++ − − − −

Controller Element − − − + +

Gateway Element − − − ++ −

Presenter Element − + + − −

Boundary Element − − − ++ −

V. EXPANSION WITH CLEAN ARCHITECTURE

The primary objective was to determine the degree of con-
vergence between CA and NS Theory. The research consited
out of several key objectives.

Besides the a comprehensive literature analysis, an archi-
tectural design was created, which was fully and solely based
on CA principles. The findings from the literature review were

181International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

incorporated into this design, which served as the basis for the
subsequent development of the research artifacts.

In the artifact development phase, two artifacts were con-
structed to facilitate the study of the convergence between
CA and NS Theories. The first artifact was the Expander
Framework and Clean Architecture Expander. These com-
ponents were designed and implemented based on the CA
design principles. The Clean Architecture Expander enabled
the parameterized instantiation of software systems that adhere
to the principles and design of CA, while the Expander
Framework served as a supporting system. It was responsible
for loading and orchestrating dependencies, managing models,
and executing the Expander.

The second artifact was the Expanded Clean Architecture
artifact. This artifact allowed for the analysis of a RESTful
API implementation and its alignment with CA principles
and design, thereby providing a platform to evaluate the
convergence of the two theories in a practical context.

Finally, the analysis of combinatorics examined the artifacts
for actual or potential combinatorial effects. This analysis
aimed to determine whether CA and NS exhibit convergence.
The fundamental principles and architectural design of CA
were considered throughout the analysis to ensure a compre-
hensive evaluation of the convergence potential.

By pursuing these objectives, the research provides valuable
insights into the interaction between CA and NS, particularly
in terms of their potential convergence within the field of
software architecture.

This chapter outlines the construction of two artifacts. Both
of these artifacts are meticulously designed and developed in
accordance with the design philosophy and principles of CA
with strict adherence to the following requirements.

A. Naming Conventions

The following section introduces the naming conventions
applied throughout the project. While these conventions do
not directly contribute to the stability aspects of the software
architecture, they serve an important role. By adhering to
consistent and descriptive naming patterns, it becomes easier
to follow the structure of the code and identify key components
of the artifacts. These naming conventions help readers rec-
ognize and map various elements to their corresponding roles
within the CA framework, enhancing clarity and improving
code comprehension without affecting the system’s inherent
stability.

[PROD] is defined as The name of the product of the
software.
[COMP] is defined as The name of the Company that is
considered the owner of the software. If there is no company
involved, this can be left blank.
[TECH] is defined as The primary technology that is used by
the component layer.

TABLE IV
NAMING CONVENTION COMPONENT LAYERS

Layer Convention

Domain Project: [PROD].Domain

Package: [COMP].[PROD].Domain

Application Project: [PROD].Application

Package: [COMP].[PROD].Application

Presentation Project: [PROD].Presentation.[TECH]

Package: [COMP].[PROD].Presentation.[TECH]

Infrastructure Project: [PROD].Infrastructure.[TECH]

Package: [COMP].[PROD].Infrastructure.[TECH]

[Verb] is defined as The primary action that that class or
interface is associated with.
[Noun] is defined as The primary subject or object that that
class or interface is associated with.

TABLE V
NAMING CONVENTION OF RECURRING ELEMENTS

Layer Element Type Convention

Presentation Controller class [Noun]Controller

ViewModel-
Mapper

class [Noun]ViewModel-
Mapper

Presenter class [Verb][Noun]Presenter

ViewModel class [Noun]ViewModel

Application Boundary class [VerbNoun]Boundary

Boundary interface IBoundary

Gateway interface I[Verb]Gateway

Interactor interface I[Verb]Interactor

Interactor class [Verb][Noun]Interactor

Mapper interface IMapper

Request-
ModelMapper

class [Verb][Noun]Request-
ModelMapper

Presenter interface IPresenter

Validator interface IValidator

Validator class [Verb][Noun]Validator

Infrastructure Gateway class [Noun]Repository

Domain Data Entity class [Noun]

B. Component Requirements

The following requirements apply to the component ar-
chitecture of both the Generator artifact and the Generated
artifact.

The component architecture is organized into separate Vi-
sual Studio projects for the Domain, Application, Infras-
tructure, and Presentation layers. A detailed description of
these layers can be found in Section II-C. Each of these
projects adheres to the naming conventions described in Sec-
tion V-A. Importantly, the dependencies between component
layers must follow an inward direction, aligning with higher
level components as schematically illustrated in Figure 3. The

182International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

dependencies cannot skip layers, ensuring a clear hierarchical
structure.

In terms of technology, the Domain and Application layers
are designed to be independent of any infrastructure technolo-
gies, such as web or database technologies. In contrast, the
Presentation Layer relies on various infrastructure technologies
to facilitate interaction with end-users. These technologies
include Command Line Interfaces (CLIs), RESTful APIs, and
web-based solutions. Each dependency within the Presentation
Layer is isolated and managed in separate Visual Studio
projects to ensure the system’s stability and evolvability.

The Infrastructure Layer may rely on additional compo-
nents, such as databases or filesystems, but similar to the
Presentation Layer, each infrastructure dependency is isolated
and managed in its own Visual Studio project to maintain sys-
tem stability and evolvability. All layers within the component
architecture utilize the C# programming language, explicitly
targeting the .NET 7.0 framework.

Furthermore, the reuse of existing functionality or technol-
ogy, such as packages, is permitted only when it complies
with the Liskov Substitution Principle (LSP) and makes use
of the NuGet open-source package manager. This ensures that
any reused components align with the overall design principles
and maintain the flexibility and integrity of the system.

By adhering to these requirements, the component archi-
tecture remains well-structured, maintainable, and capable of
evolving over time.

C. Software Architecture Requirements

Figure 5 illustrates the generic software architecture of the
artifacts. Each instantiated element adheres to the Element
Naming Convention outlined in Section V-A.

In order to visualize the designs of the artifact, the standard
UML notation is used. The designs containing relationships
adhere to the definitions depicted in Figure 4.

Component 1 Component 2
Association

Component 1 Component 2

Inherits
From

Inherits
by

Component 1 Component 2

Realised
by

Realized

Component 1 Component 2

Depended
on

Dependency
of

Component 1 Component 2

Composed
by

Composed
of

Component 1 Component 2

Aggregated
by

Aggregation
of

Figure 4. UML notation

The following sections detail the requirements specific to
each element.

The ViewModel consists of data attributes representing
fields from the corresponding Entity and may also contain
information specific to the user interface. It is important to
note that the ViewModel has no external dependencies on other
objects within the architecture.

The Presenter is derived from the IPresenter interface and
adheres to the specified implementation, which is located
in the Application layer. Its main responsibility is to create
the Controller’s Response by instantiating the ViewModel,
constructing the HTTP Response message, or combining both
as necessary. When needed, the Presenter utilizes the IMapper
interface without depending on specific implementations of
IMapper. The Presenter has an internal scope and cannot be
instantiated outside the Presentation layer.

The ViewModelMapper, derived from the IMapper inter-
face, follows the specified implementation found in the Ap-
plication layer. Its primary role is to map the necessary data
attributes from the ResponseModel to the ViewModel. The
ViewModelMapper also has an internal scope, ensuring it
cannot be instantiated outside the Presentation layer.

The Controller is responsible for receiving external requests
and forwarding them to the appropriate Boundary within the
Application layer. It relies on the IBoundary interface without
depending on specific implementations of this interface.

The IBoundary interface establishes the contract for its
derived Boundary implementations, and it has public scope
within the system. Boundary implementations, derived from
the IBoundary interface, ensure separation between the internal
aspects of the Application Layer and the other layers. Each
Boundary implementation handles a single task, executed
using the IInteractor interface. These implementations also
have an internal scope and cannot be instantiated outside the
Application layer.

The IInteractor interface defines the contract for its derived
Interactor implementations. Like Boundary implementations,
Interactors have an internal scope and are limited to the
Application layer. Interactor implementations execute single
tasks or orchestrate a series of tasks. Tasks dependent on
infrastructure components, such as databases, are handled
through a Gateway. Additionally, Interactor implementations
utilize the IMapper interface to handle mapping between
RequestModels, Entities, and ResponseModels.

The IMapper interface establishes the contract for Mapper
implementations and has public scope within the system. De-
rived from IMapper, the RequestModelMapper is responsible
for mapping the necessary data attributes from the Request-
Model to an Entity. The RequestModelMapper has internal
scope and cannot be instantiated outside the Application layer.

Similarly, the ResponseModelMapper is responsible for
mapping data attributes from the ResponseModel and follows
the same implementation and scope restrictions as the Request-
ModelMapper.

The IPresenter interface establishes the contract for Presen-
ter implementations, typically within the Presentation layer. It
has public scope and ensures consistency in Presenter behavior
throughout the system.

183International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

DomainInfrastructure

A
p

p
lic

at
io

n
 \

D
o

m
ai

n
P

re
se

n
ta

ti
o

n

<interface>
+IBoundary<TRequestModel>

NounController

<interface>
+IMapper<TSource, TTarget>

NounViewModelMapper

<interface>
+IPresenter

NounVerbPresenter

VerNounBoundary
NounRequestModelMapper

<interface>
IInteractor<TModel>

VerNounInteractor

VerbEntity

<interface>
ICreateGateway<TEntity>

<interface>
IGetGateway<TEntity>

<interface>
IGetByIdGateway<TEntity>

<interface>
IUpdateGateway<TEntity>

<interface>
IDeleteGateway<TEntity>

GenericRepository # DbContext

<dto>
NounViewModel

<dto>
NounVerbResponseModel

<dto>
NounVerbRequestModel

NounResponseModelMapper

Figure 5. The Generic architecture of the artifacts

The Gateway establishes the contract for interaction with
infrastructure technologies such as databases or filesystems.
Each Gateway follows a specific naming convention, with in-
terfaces like ICreateGateway, IGetGateway, IGetByIdGateway,

IUpdateGateway and IDeleteGateway, representing different
CRUD operations. Gateway implementations are derived from
these interfaces and are responsible for task-specific interac-
tions with infrastructure components. These implementations

184International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

have internal scope and cannot be instantiated outside their
respective layers.

The ResponseModel consists of data attributes representing
fields from the corresponding Entity and may include output-
specific data for the Interactor. The ResponseModel does not
depend on external objects within the architecture.

The RequestModel is similarly structured, consisting of data
attributes from the corresponding Entity and input-specific data
for the Interactor. It, too, does not depend on external objects
within the architecture.

Data Entities represent corresponding data fields and do
not rely on external objects. They are only utilized by the
Application layer.

The Gateway Implementation derives from the correspond-
ing Gateway interface and adheres to the specified imple-
mentation. It is responsible for handling tasks associated with
its infrastructure technology, such as interaction with a SQL
database or filesystem. Gateway Implementations have internal
scope and cannot be instantiated outside their respective layers.

Lastly, each architectural pattern adheres to at least one
of the SOLID principles, ensuring compliance and avoiding
violations of these design principles.

D. Expander Requirements

In addition to the more generic requirements outlined in
previous sections, the following requirements are specific to
the Clean Architecture Expander and Expander Framework
artifact.

The Expander Framework facilitates interaction with the
Clean Architecture Expander via a command-line interface
(CLI), which is implemented in the Presentation layer of the
framework. Additionally, the Expander Framework retrieves
models from a Microsoft SQL Server (MSSQL) database
using EntityFramework ORM technology, integrated within
the Infrastructure layer. The framework also supports loading
and executing configured Expanders, though in this particular
research, only the Clean Architecture Expander is applied.

Moreover, the Expander Framework supports generic har-
vesting and injection functionalities, which can be extended
or used by the Expanders in accordance with the Open-
Closed Principle (OCP). This extensibility is further enhanced
by the framework’s support for generic template handling,
also designed to be extended by the Expanders following the
OCP. The framework adheres to the component and software
requirements outlined in Sections V-B and V-C of this chapter.

The Clean Architecture Expander specifically generates a
C# .NET 7.0 RESTful service, which provides an HTTP in-
terface atop the Expander Framework’s meta-model, enabling
basic Create, Read, Update, Delete (CRUD) operations. This
Expander consists solely of an Application layer and reuses
the Domain layer provided by the Expander Framework.
Additionally, the Clean Architecture Expander adheres to the
component and software requirements set forth in Sections
V-B and V-C of this chapter.

By adhering to these requirements, both the Expander
Framework and the Clean Architecture Expander align with

the overall architecture goals while maintaining flexibility and
extensibility.

E. Generated Artifact Requirements

The generated artifact adheres to this chapter’s component
and software requirements specified in Sections V-B and V-C.

VI. THE RESEARCH ARTIFACTS

The first artifact consists of two main components: the Clean
Architecture Expander and the Expander framework. The
name of the Expander Framework, Pantha Rhei, was inspired
by the Greek philosopher Heraclitus, who famously stated that
“life is flux.” The name reflects the artifact’s perceived ability
to cope with constant change in a stable and evolvable manner.
Users can interact with the Expander Framework using the CLI
command ‘flux’ in combination with several parameters.

As illustrated in Figure 6, the main task of the first artifact or
‘expand’ the second artifact. By entering the correct command,
the Expander Framework loads the model being instantiated
during the expansion process. Then, the required expanders are
prepared based on information available through the model.
In the case of this study, the Clean Architecture Expander.
The Clean Architecture Expander consists of a set of tasks
and templates. When the Expander Framework executes the
Clean Architecture Expander, the model is instantiated into
the generated artifact with the aid of the templates.

The model is an instance of the meta-model. Consequently,
the model can represent any application as long as the meta-
model is respected. In the case of this study, the model
represents the entities, attributes, relationships, and other char-
acteristics of the meta-model.

As a result, the second artifact (artifact II) allows a user
to modify or maintain the model used by the Expander
Framework by exposing a Restful interface. This method
approaches the meta-circularity process, where an expansion
process is used to update the meta-model. Although not fully
compliant with the theory of NS, the Expander Framework
consists of the required tasks to update its own meta-model.
This is illustrated in Figure 6 by the ‘updates’ arrow.

A. The Meta-Model and Model

The meta-model is a blueprint that describes a software
system’s structure, entities, relationships, and expanders. The
model is an instantiation of the meta-model, representing a
specific software system with unique characteristics.

Figure 7 illustrates the version of the meta-model used for
this research. A detailed description of each of the elements
can be found in the thesis of Koks [6, p. 73].

B. Plugin Architecture

The Expander Framework artifact is responsible for loading
and bootstrapping Expanders and initiating the generation
process. Expanders are dynamically loaded at runtime through
a dotnet capability called assembly binding, allowing the
architecture illustrated in the following image [13].

185International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Artifact I Artifact II

Expander
Framework

Expanded
Artifact

Clean
Architecture
Expander

Templates

has

uses

expands

meta-model model
instance

of

loads

model
management

interacts

create
read

update
delete

meta
circularity

Figure 6. Schematic overview of the artifacts

Apps

PK Id uniqueidentifier

Name nvarchar(128)

FullName nvarchar(2048)

AppExpander

PK,FK AppsId uniqueidentifier

PK,FK ExpandersId uniqueidentifier

Components

PK Id uniqueidentifier

Name nvarchar(32)

Description nvarchar(2056)

FK ExpanderId uniqueidentifier

ConnectionStrings

PK Id uniqueidentifier

Name nvarchar(128)

Definition nvarchar(2048)

FK AppId uniqueidentifier

Entities

PK Id uniqueidentifier

Name nvarchar(128)

FK AppId uniqueidentifier

Behaviour nvarchar(16)

Modifier nvarchar(128)

Type nvarchar(16)

Callsite nvarchar(2048)

Expanders

PK Id uniqueidentifier

Name nvarchar

Order int

TemplateFolder nvarchar

Fields

PK Id uniqueidentifier

Name nvarchar(128)

FK EntityId uniqueidentifier

ReturnType nvarchar

Behaviour nvarchar(16)

GetModifier nvarchar

IsCollection bit

Modifier nvarchar(128)

FK ReferenceId uniqueidentifier

SetModifier nvarchar

Order int

IsIndex bit

IsKey bit

Required bit

Size int

Packages

PK Id uniqueidentifier

Name nvarchar(256)

Version nvarchar

FK ComponentId uniqueidentifier

Relationships

PK Id uniqueidentifier

FK KeyId uniqueidentifier

FK EntityId uniqueidentifier

Cardinality nvarchar(8)

FK WithForeignEntityKeyId uniqueidentifier

FK WithForeignEntityId uniqueidentifier

WithCardinality nvarchar(8)

Required bit

Figure 7. The meta-model represented as an Entity Relationship Diagram

This plugin design adheres to several principles of SOLID.
The SRP principle is implemented by ensuring that an Ex-
pander generates one and only one construct. The OCP prin-

ciple is applied by allowing the creation of new expanders
in addition to the already existing ones. The LSP principle is
respected by enabling the addition or replacement of expanders

186International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Expander A

Pantha
Rhei

Assembly-binding through file
location

Developer

Expander B

Figure 8. Expanders are considered plugins

without modifying the internal workings of the Expander
Framework.

C. Expanders

The Exander Framework allows for the miscellaneous exe-
cution of expanders of any type. The Expander Framework is
independent of any of the details of Expanders, fully adhering
to the principle of DIP. Conversely, an Expander is required
to implement several interfaces to ensure execution and de-
pendency management are available during runtime. The Ex-
pander Framework also consists of a set of default tasks, such
as the execution of the expansion tasks known as Expander-
HandlerInteractors IExpanderHandlerInteractor [14], logging,
bootstrapping dependencies, and tasks to execute harvestings
and injections. Except for the use of the IExpanderInteractor,
non of which are required.

Figure 9 illustrates the dependencies between the domain
layer of the Expander Framework. The Clean Architecture
Expander is considered an application layer containing specific
tasks bounded to a particular application or process. In this
case, the Expansion process.

D. Executing Commands

An implementation that facilitates a high degree of cohe-
sion while maintaining low coupling is the utilization of the
IExecutionInteractor interface [15]. This interface allows for
the execution of various derived types responsible for various
tasks, such as executing Handlers, Harvesters, and Rejuvena-
tors1 [16]–[18]. The implementation promotes decoupling by
adhering to both OCP and LSP.

Figure 10 illustrates that the required interfaces are placed in
the Domain layer of the Expander Framework. In contrast, the
concrete classes also can be implemented as part of the internal
scope of the Clean Architecture Expander [19]. The artifact
illustrates the aggregation of the execution, which allows for
a graceful cohesion of the execution Tasks [20].

1It is important to note that the Rejuvenation objects in this version of the
artifact are capable of performing injections and not the entire Rejuvenation
process.

E. Dependency Management

Dependency management is an extremely valuable aspect
of achieving stability and evolvability. Dependency manage-
ment can be achieved by using Dependency Injection. This
research acknowledges Mannaert et al. [8, p. 215] statement
that Dependency Injection does not solve coupling between
classes. Working on the artifact has shown that combinatorial
effects can occur when not careful. Nevertheless, Dependency
Injection is a widely used pattern in building the artifact. In
order to achieve stability and evolvability, the Dependency In-
jection pattern must be combined with various other principles
of both CA and NS.

The goal is to centralize the management of dependencies
and remove unwanted manual object instantiations in the
code; al this while respecting the DIP principle so that each
component layer is responsible for managing its dependencies.
The artifact achieves this by using extension methods [21].
Additionally, and quite significantly, implementations primar-
ily rely on abstractions or contracts (interfaces) instead of the
details of concrete implementations.

Traditionally, Dependency Injection injects instantiations
through constructor parameters or class properties. Although
there are benefits in this approach, doing so will eventually
lead to combinatorial effects, breaking the stability of a soft-
ware artifact. In order to solve this problem, the artifact used
the Service Locator pattern, a central registry responsible for
resolving dependencies [12]. Many frameworks are available
from Nuget.org, but the artifact uses the Service Registry,
which is part of the .NET framework. This service registry
is considered a cross-cutting concern. The dependency on this
technology is reduced by applying the principles of the LSP
and ISP. The artifact creates and uses separate interfaces to
register [22] and resolve [23] dependencies. The framework
technology dependencies are abstracted behind implementing
those interfaces [24].

The approach described here has many advantages in man-
aging the stability and evolvability of the software artifact.
However, as for most things, there are also some drawbacks.
For example, experience is required for developers to un-
derstand code that incorporates abstractions, contracts, and
Dependency Injection. Another drawback is that dependency
errors are detected in runtime rather than compile time. The
benefits of the artifacts, however, outweigh the drawbacks.

VII. CONCLUSION

The primary objective was to study the convergence be-
tween CA and NS by analyzing their principles and design
elements through theory and practice. This section will sum-
marize the findings into a research conclusion.

A noteworthy distinction between NS and CA lies in their
foundational roots. NS is a product of computer science
research built upon formal theories and principles derived from
rigorous scientific investigation. Throughout this paper, NS
is referred to as a development approach or paradigm, it is
actually a part of Computer Science.

187International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Expander (Application Layer)

Expander Framework (Domain Layer)

<<interface>>
IExpanderIteractor

AbstractExpander

Clean
Architecture
Expander

<<interface>>
IExpanderHandler

Interactor

Handler
Interactors

<<interface>>
IExecutionInteractor

Figure 9. The design of an Expander

Expander Framework

<<interface>>
IExecutionInteractor

+ Execute() : void

<<interface>>
IHarvestInteractor

<<interface>>
IRejuvenationInteractor

<<interface>>
IExpanderHandlerInteractor

<<interface>>
ISeederInteractor

CodeGenerator
Interactor

ConcreteHarverster
Concrete

Rejuvenator

Concrete
Expander
Handler

Concrete
Seeder

Figure 10. Low coupling with IExecutionInteractor

Stability and evolvability are concepts not directly ref-
erenced in the literature on CA, but this design approach
aligns with the goal of NS. The attentive reader can observe
the shared emphasis on modularity and the separation of
concerns, as all SOLID principles strongly converge with SoC.
Both approaches attempt to achieve low coupling and high
cohesion. In addition, CA adds the dimensions of dependency
management as useful measures to improve maintainability by
rigorously managing dependencies in the Software Architec-
ture.

The DvT appears to be underrepresented in the SOLID prin-

ciples of CA. DvT is primarily supported by the SRP of CA, as
evidenced by ViewModels, RequestModels, ResponseModels,
and Entities as software elements. It is worth noting that this
application of Data Version Transparency is an integral part
of the design elements of CA. While CA does address DvT
through the SRP, a more comprehensive representation of the
underlying idea of DvT within the principles of CA will likely
improve the convergence of CA with NS.

The underrepresentation of DvT has led to significant com-
binatorial effects in some parts of the researcher’s artifacts.
These combinatorial effects might be attributed to the author’s

188International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

inexperience in creating systems that enable code generation
through expansion while maintaining stability on templates
and craftings. If DvT were better represented in the principles
of CA, the severity of the combinatorial effects would have
most likely been less.

CA lacks a strong foundation for receiving external triggers
in its design philosophy. This is partially represented by the
Controller element. However, this element is described as
being used for web-enabled environments and might result in
a less comprehensive approach to receiving external triggers
across various technologies or systems.

The most notable difference between CA and NS is their
approach to handling state. CA does not explicitly address
state management in its principles or design elements. NS
Provides the principle of Separation of State (SoS), ensuring
that state changes within a software system are stable and
evolvable. This principle can be crucial in developing scalable
and high-performance systems, as it isolates state changes
from the rest of the system, reducing the impact of state-related
dependencies and side effects.

The findings can only lead to the conclusion that the
convergence between CA and NS is incomplete. Consequently,
CA cannot fully ensure stable and evolvable software artifacts
as NS has defined them.

While it has been demonstrated that the convergence be-
tween these two approaches is incomplete, combining both
methodologies is highly beneficial for NS and CA for various
reasons. The primary advantage of synergizing them lies in
the complementary nature of both paradigms, where each
approach provides strengths that can be leveraged to address
a robust architectural design.

CA offers a well defined, practical, and modular structure
for software development. Its principles, such as SOLID, guide
developers in creating maintainable, testable, and scalable
systems. This architectural design approach is highly suitable
for various applications and can be easily integrated with the
theoretical foundations provided by NS. Conversely, the NS
approach offers a more comprehensive theoretical understand-
ing of achieving stable and evolvable systems.

To conclude, the popularity and widespread adoption of CA
in the software development community can benefit NS. As
more developers adopt CA, they become more familiar with
NS and recognize their value to software design. Synergizing
both approaches will likely lead to increased adoption of NS.

BIBLIOGRAPHY

[1] G. Koks, “Converging clean architecture with normal-
ized systems,” presented at the PATTERNS 2024, The
Sixteenth International Conference on Pervasive Pat-
terns and Applications, 2024-04-14, pp. 19–24, ISBN:
978-1-68558-161-9. Accessed: 2024-11-23. [Online].
Available: https : / / www . thinkmind . org / library /
PATTERNS / PATTERNS 2024 / patterns 2024 1 40
78004.html.

[2] D. McIlroy, “NATO Software Engineering Conference,”
en, 1968.

[3] M. Lehman, “Programs, life cycles, and laws of soft-
ware evolution,” Proceedings of the IEEE, vol. 68, no. 9,
pp. 1060–1076, 1980, ISSN: 0018-9219. DOI: 10.1109/
PROC.1980.11805.

[4] E. Dijkstra, “Letters to the editor: Go to statement
considered harmful,” en, Communications of the ACM,
vol. 11, no. 3, pp. 147–148, 1968-03, ISSN: 0001-0782,
1557-7317. DOI: 10.1145/362929.362947.

[5] D. Parnas, “On the criteria to be used in decomposing
systems into modules,” en, Communications of the
ACM, vol. 15, no. 12, pp. 1053–1058, 1972-12, ISSN:
0001-0782, 1557-7317. DOI: 10.1145/361598.361623.
Accessed: 2023-03-19.

[6] G. Koks, “On the Convergence of Clean Architecture
with the Normalized Systems Theorems,” en, Ph.D.
dissertation, 2023-06. Accessed: 2024-03-24. [Online].
Available: https://zenodo.org/record/8029971.

[7] R. C. Martin, Clean architecture: a craftsman’s guide
to software structure and design (Robert C. Martin
series). London, England: Prentice Hall, 2018, OCLC:
on1004983973, ISBN: 978-0-13-449416-6.

[8] H. Mannaert, J. Verelst, and P. De Bruyn, Normalized
systems theory: from foundations for evolvable software
toward a general theory for evolvable design, eng.
Kermt: nsi-Press powered bei Koppa, 2016, ISBN: 978-
90-77160-09-1.

[9] H. Mannaert, J. Verelst, and K. Ven, “Towards evolvable
software architectures based on systems theoretic sta-
bility,” en, Software: Practice and Experience, vol. 42,
no. 1, pp. 89–116, 2012-01, ISSN: 00380644. DOI: 10.
1002/spe.1051.

[10] C. Kandaswamy and J. Verelst, “Systematic rejuvena-
tion of a budgeting application over 10 years: A case
study,” presented at the PATTERNS 2024, The Six-
teenth International Conference on Pervasive Patterns
and Applications, 2024-04-14, pp. 1–5, ISBN: 978-1-
68558-161-9. Accessed: 2024-11-23. [Online]. Avail-
able: https://www.thinkmind.org/library/PATTERNS/
PATTERNS 2024/patterns 2024 1 10 78001.html.

[11] B. Meyer, Object-oriented software construction, 1st
ed. Upper Saddle River, N.J: Prentice Hall PTR, 1988,
ISBN: 978-0-13-629155-8.

[12] Wikipedia, Service locator pattern, en, 2023. [Online].
Available: https://en.wikipedia.org/w/index.php?title=
Service locator pattern&oldid=1152702717.

CODE SAMPLES

[13] G. Koks, ExpanderPluginLoaderInteractor, 2023. Ac-
cessed: 2023-05-01. [Online]. Available: https://github.
com / LiquidVisions / LiquidVisions . PanthaRhei / blob /
master - thesis - artifact / Generator / src / PanthaRhei .
Generator . Application / Interactors / Initializers /
ExpanderPluginLoaderInteractor.cs.

189International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[14] G. Koks, IExpanderHandlerInteractor, 2023. [Online].
Available: https://github.com/LiquidVisions/LiquidVi
sions.PanthaRhei/blob/9687c96eb368d96201d4baa66b
1b0536cb90c12c/Generator/src/PanthaRhei.Generator.
Domain/Interactors/Generators/IExpanderHandlerIntera
ctor.cs.

[15] G. Koks, IExecutionInteractor, 2023. [Online]. Avail-
able: https://github.com/LiquidVisions/LiquidVisions.
PanthaRhei / blob / 9687c96eb368d96201d4baa66b1b
0536cb90c12c / Generator / src / PanthaRhei . Generator .
Domain/Interactors/Generators/IExecutionInteractor.cs.

[16] G. Koks, ExpandEntitiesHandlerInteractor, 2023. [On-
line]. Available: https : / / github . com / LiquidVisions /
LiquidVisions.PanthaRhei/blob/9687c96eb368d96201d
4baa66b1b0536cb90c12c / Expanders / src / PanthaRhei .
Expanders . CleanArchitecture / Handlers / Domain /
ExpandEntitiesHandlerInteractor.cs.

[17] G. Koks, RegionHarvesterInteractor, 2023. [Online].
Available: https : / / github . com / LiquidVisions /
LiquidVisions.PanthaRhei/blob/9687c96eb368d96201d
4baa66b1b0536cb90c12c / Generator / src / PanthaRhei .
Generator .Domain / Interactors /Generators /Harvesters /
RegionHarvesterInteractor.cs.

[18] G. Koks, RegionRejuvenatorInteractor, 2023. [Online].
Available: https://github.com/LiquidVisions/LiquidVi
sions.PanthaRhei/blob/9687c96eb368d96201d4baa66b
1b0536cb90c12c/Generator/src/PanthaRhei.Generator.
Domain/Interactors/Generators/Rejuvenator/RegionRej
uvenatorInteractor.cs.

[19] G. Koks, MigrationHarvesterInteractor, 2023. [Online].
Available: https://github.com/LiquidVisions/LiquidVisi
ons.PanthaRhei/blob/master- thesis-artifact/Expanders/
src/PanthaRhei.Expanders.CleanArchitecture/Harvester
s/MigrationHarvesterInteractor.cs.

[20] G. Koks, CodeGeneratorInteractor, 2023. [Online].
Available: https : / / github . com / LiquidVisions /
LiquidVisions.PanthaRhei/blob/9687c96eb368d96201d
4baa66b1b0536cb90c12c / Generator / src / PanthaRhei .
Generator . Application / Interactors / Generators /
CodeGeneratorInteractor.cs.

[21] G. Koks, DependencyInjectionExtension, 2023. [On-
line]. Available: https : / / github . com / LiquidVisions /
LiquidVisions.PanthaRhei/blob/master- thesis- artifact/
Generator / src / PanthaRhei . Generator . Application /
DependencyInjectionExtension.cs.

[22] G. Koks, IDependencyManagerInteractor, 2023. [On-
line]. Available: https : / / github . com / LiquidVisions /
LiquidVisions.PanthaRhei/blob/master- thesis- artifact/
Generator/src/PanthaRhei.Generator.Domain/Interactor
s/Dependencies/IDependencyManagerInteractor.cs.

[23] G. Koks, IDependencyFactoryInteractor, 2023. [On-
line]. Available: https : / / github . com / LiquidVisions /
LiquidVisions.PanthaRhei/blob/master- thesis- artifact/
Generator/src/PanthaRhei.Generator.Domain/Interactor
s/Dependencies/IDependencyFactoryInteractor.cs.

[24] G. Koks, DependencyManagerInteractor, 2023. [On-
line]. Available: https : / / github . com / LiquidVisions /
LiquidVisions.PanthaRhei/blob/master- thesis- artifact/
Generator/src/PanthaRhei.Generator.Domain/Interactor
s/Dependencies/DependencyManagerInteractor.cs.

190International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

