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Abstract

We introduce the Evidence Verification Algorithm (EVA)
in this paper, which verifies consistency of life cycles of ev-
idences (evidence documents) in workflow diagrams. We
used the AIST Workflow Language (AWL) as the syntax for
workflow diagrams, which has additional information about
evidences. A workflow diagram of AWL is essentially the
same as a Unified Modeling Language (UML) activity dia-
gram. EVA verifies the existence of consistent sequences of
flows between the occurrences of evidences in a workflow
diagram. It is important to verify consistency of life cycles
of evidences, since some defects in the workflow diagram
itself can be found by checking inconsistent life cycles of
evidences in a workflow diagram.

Keywords: workflow diagram, verification, evidece life cy-
cle

1. Introduction

We define a consistency property of life cycles of evi-
dences described in a workflow diagram in this paper and
introduce an algorithm that verifies the consistency prop-
erty. Here “evidence” is a technical term which means an
annotation on a workflow diagram, which denotes a doc-
ument on which information is written, and/or with which
something is approval, during the process of an operation.
Workflow diagrams play a central role in describing busi-
ness processes in the development of large-scale informa-
tion systems, especially in analyzing the requirements of
these systems. There have been several standard workflow
languages such as BPMN [1] or XPDL [15], and numerous
investigations into methodologies of verifying several con-
sistency properties in workflow diagrams (e.g., see [12]).

∗The authors are grateful to anonymous referees for their fruitful com-
ments. This work was supported by ’Service Research Center Infrastruc-
ture Development Program 2008’ from METI and Grant-in-Aid for Scien-
tific Research (C) 20500045.

However, verifying consistency properties in the life cy-
cles of documents, which are described in workflow dia-
grams, has not been sufficiently investigated. In large or-
ganizations such as large enterprises or governments, doc-
uments such as order forms, estimate sheets, specification
descriptions, invoices, and receipts play significant roles
for purposes of feasibility, accountability, traceability, or
transparency of business. Tasks involve workers with dif-
ferent roles in such organizations, and these are carried out
by circulating documents. Such documents are considered
as kinds of evidences for the purposes above. We describe
such documents with evidences in this paper. For simplic-
ity, we often call such documents themselves “evidences”.

Some evidences require office workers to carry out vari-
ous tasks. Some evidences are manuals that teach workers
how to conduct tasks. Some workers check evidences and
sign them in when they accept their content. Therefore, nu-
merous actual operations are currently based on evidences
even if they are carried out with information systems. Con-
sequently, it is important to consider workflow diagrams
in which one can concretely and precisely describe the life
cycles of evidences to analyze requirements in developing
large-scale information systems.

When someone develops workflow diagrams, they often
make errors in describing evidences, because their states are
subtly affected by other evidences around them. Moreover,
many inconsistencies in evidences come from inconsisten-
cies in constructing the diagrams. The larger a diagram be-
comes, the harder it is to find inconsistencies in evidences
that is in it.

However, verifying the consistency of evidence helps us
to confirm correctness of the diagrams. In fact, we can find
numerous defections and redundancies in flows by finding
inconsistencies in evidences around the flows. Therefore, it
is worth verifying evidences formally and/or automatically.

We define the consistency property of life cycles of ev-
idences in a workflow diagram in this paper, which is de-
scribed with a new language for workflow diagrams called
AIST Workflow Language (AWL), and introduce the Evi-
dence Verification Algorithm (EVA), which verifies the con-
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sistency property of a given workflow diagram.
A workflow diagram of AWL is essentially the same as a

Unified Modeling Language (UML) activity diagram. The
control flows in the workflow diagrams of AWL as well as
major workflow languages are described by arrows. More-
over, one can describe how to control evidences by using
the arrows in the workflow diagrams of AWL. Since most
operations are carried out with some specific evidences, it is
rational for a single arrow to denote both a control flow and
a flow of an evidence. By describing the flows of evidences
with appropriate control flows, one can easily describe and
understand the life cycles of the evidences. This paper tar-
gets AWL instead of UML, because AWL is used in the ac-
tual development of large-scale information systems at the
National Institute of Advanced Industrial Science and Tech-
nology (AIST) [9].

Roughly, the life cycles of evidences mean a series of
states of the evidences, and consistency of evidence life cy-
cles in a workflow means that the workflow has no incon-
sistent life cycles of evidences. A consistent evidence life
cycle is defined in a workflow diagram with correct struc-
ture, where “correct structureff is defined in [4] and [10].

EVA receives a workflow diagram as input data and re-
turns a list of subgraphs as output data, each of which de-
stroys a consistent evidence life cycle. EVA checks the “lo-
cal evidence conditions”, which we will define in this paper,
to verify the consistency of evidence life cycles in a work-
flow diagram.

EVA is designed to verify life cycles of evidences in
acyclic workflow diagrams. We introduce the Removing
Algorithm of Passback Flows (RAPF), where a “passback
flow” in a workflow diagram denotes a kind of flow that ap-
pears at the boundary of a “main stream” and the “replay
of an operation” in the workflow diagram in order to apply
EVA to cyclic workflow diagrams. We will define passback
flows in a workflow by using the graph-theoretical prop-
erties of the workflow diagram, and define RAPF, which
translates a workflow diagram into various workflow dia-
gram(s) with no passback flows, which can be applied to
EVA.

We implemented both EVA and RAPF, and used them to
verify workflow diagrams in actual development at AIST.
Although both EVA and RAPF target workflow diagrams
of AWL, one can easily apply these algorithms to activity
diagrams of UML.

This paper is based on a previous paper [7] but differs
from it in three respects. First, we discuss the consistency
property of life cycles of evidence and its verification algo-
rithm based on workflow diagrams in AWL instead of UML
activity diagrams. Second, we introduce RAPF to apply the
verification algorithm to cyclic workflow diagrams. Third,
we add proofs of the main lemmas, which we omitted from
[7].

Figure 1. An example of a workflow diagram

The remainder of this paper is organized as follows. We
introduce AWL in Section 2 and explain the consistency of
life cycles of evidence in workflow diagrams in 3. We in-
troduce EVA in Sections 4 and 6. We define local evidence
conditions in Section 5 and introduce RAPF in Section 7.
Section 8 explains the experimental results, by using an
implementation of EVA. The experimental results indicate
EVA could effectively be used to test and verify the consis-
tency of life cycles of evidence to substantiate the construc-
tion of the workflow itself was consistent.

2. AIST workflow language

In this section, we explain a language of workflow di-
agrams [9], which is called “AWL” (AIST Workflow Lan-
guage). AWL is defined to be appropriate to compose work-
flow diagrams for human workflow easily, and to verify
consistency of evidence life cycles in workflow diagrams.

2.1. Overview of AWL

Comparing standard workflow languages such as BPMN
or XPDL, the main feature of AWL is that in a workflow
diagram of AWL one can assign to each activity a list of
evidences (evidence documents) which are used in the ac-
tivity.

The figure 1 is a workflow diagram describing a work
of planning of a research. In the diagram, the rectangles
and the pentacle denote operations needed for planning of a
research. The figures near the polygons above denote evi-
dences (evidence documents) used on the operations.

In this example, first a researcher composes a proposal
of a research, and then a director checks the proposal. If
the proposal passes the checking, then the proposal is re-
turned to the researcher and he/she applies the budget on
an accounting and finance system based on the proposal,
and finally the proposal is stored by the researcher. If the
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Figure 2. Shapes of nodes in workflow dia-
grams

proposal does not pass the checking, then the proposal is
returned to the researcher and he/she remakes the proposal.

In this paper, we discuss only control flow and evidence
life cycles in a workflow diagram. Therefore, we omit no-
tions that are not relevant to control flow of workflows or
evidences. For example, in this paper we do not consider
data flows or actors in workflow diagrams.

2.2. Control flow of AWL

In the perspective of control-flow, workflow diagrams of
AWL are similar to those in BPMN or XPDL, which are the
most standard workflow languages, or workflows in previ-
ous researches such as [3], [5] or [13].

Definition 2.1 A workflow in the perspective of control-
flow denotes a directed graphW := (node,flow) that sat-
isfies the following properties.

1. node is a non-empty finite set, whose element is
called a node inW .

2. flow is a non-empty finite set, whose element is called
a flow inW . Each flowf is assigned to a node called
a source off and another node called a target off .

3. Each node is distinguished, as follows: start, end, ac-
tivity, XOR-split (branch), XOR-join (merge), AND-
split (fork) and AND-join (rendezvous).

4. Whenever a flowf has a nodex as the target (or the
source) off , x hasf as an incoming-flow (resp. an
outgoing-flow) ofx. The numbers of incoming-flows
and outgoing-flows of a node are determined by the
type of the node. We itemize them in the following
table.

incoming-flows outgoing-flows
start 0 1
end 1 0

activity 1 1
XOR-, AND-split 1 = 2
XOR-, AND-join = 2 1

Table 1. Numbers of incoming- and outgoing-
flows of a node

5. W has just one start and at least one end.

6. Activity diagrams are “simple” graphs, that is, for each
activity diagramA, and for each nodesN1, N2 in A
there isone edge (flow) fromN1 andN2 at most.
Moreover, each activity diagram hasno circle edge,
that is, there is no flow from a nodeN to the same
nodeN .

7. For a nodex in W , there exists a path onW from the
start node ofW to x, where a path froms to x denotes
a sequenceπ = (f0, . . . , fn) of flows inW such that
the source off0 is s, the target offn is x and that
the target offi is the source offi+1 for eachi < n.
Moreover, there exists an end nodee and another path
onW from x to e.

2.3. Evidence

By “an evidence” in workflow diagrams one means a pa-
per document or a data (a data file) of a document. In this
paper, we regard an evidence as a paper document, which
is composed, referred, re-written, judged, stored or dumped
in some activities. Unlike data files, an evidence does not
increase. Though one can make a copy of it, the copy is
regarded not to be the same thing as the original evidence.
Moreover, unlike data in a system multiple people can ac-
cess simultaneously, an evidence can not be used by multi-
ple people at the same time.

In formulating workflow diagrams, especially, those for
human workflows, evidences are still very important even
through a lot of paper documents are replaced by data (data
files) in information systems. In a workflow diagram of
AWL, evidences used in an activity is explicitly described
in the activity, in order to describe and verify life cycles of
evidences more correctly.

In the technical perspective, a list of evidences with
length at least 0 is assigned to an activity, and an evidence
E is defined to be a triple(e, created , removed), wheree
is a label, andcreated andremoved are boolean values. In
what follows, we fix a non-empty setE.

Definition 2.2 Evidenceis a triple (e, created , removed),
wheree is an element ofE andcreated andremoved are
boolean values, that is, they are elements of{true, false}.
For each evidenceE := (e, created , removed), we calle
theevidence labelof E.

Remark 2.3 In what follows, we denoteE by the follow-
ing ways.

(i) If created = false and removed = false, then we
abbreviateE to “e”.

(ii) If created = false and removed = true, then we
abbreviateE to “(−)e”.
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Figure 3. A workflow diagram of paper sub-
mission

(iii) If created = true and removed = false, then we
abbreviateE to “(+)e”.

(iv) If created = true andremoved = true, then we ab-
breviateE to “(+)(−)e”.

For a workflow diagramW , we consider an allocation
which assigns to each activity inW a string of evidences.
Note that such an allocation may assign to some activities
the empty string, i.e., the string with length 0. By using
workflow diagrams, one can express a lot of workflows. In
order to explain evidences, we give an example of a work-
flow diagram which explains how to submit a paper, as fol-
lows.

For each workflow diagramW , each activityA inW and
for each evidenceE in the string assigned toA, we callE an
evidenceonA and callA an activityhavingE. Moreover,
if the evidence label ofE is denoted bye, we often calle
the evidence labelonA and callA an activityhavinge.

Moreover, for simplicity, we often identify each evi-
dence with its evidence label. So, in what follows,we often
abbreviate “an evidence label” to “an evidence”.

Remark 2.4 In what follows, we assume that, for each
workflow diagramW and each activityA in W , A does
not have multiple evidences sharing the same evidence la-
bel. We call the conditionthe basic evidence condition. 1

Since each workflow diagramW is assume to satisfy the
basic evidence condition, if an activityA in W has an evi-
dence labele, A has just one evidenceE with labele. So,

1We assume that each evidence can be differentiated from others even
if some evidences share the same content. For example, ifE is the set of
documents, and if an evidencee is copied in an activityA, then one should
not consider thatA has twoes, but should consider thatA hase and a copy
of e.

we often say thate is created (or removed) onA if A has an
evidenceE having the(+)-mark (or the(−)-mark, respec-
tively).

3. Consistency properties of workflow dia-
grams

The main subject of this paper is to verify consistency
property of evidence life cycles in a workflow diagram.
However, the consistency property is closely related to an-
other consistency property of control flow of a workflow
diagram. Thus, in this section, we first explain consistency
property of control flow of a workflow diagram, and then
we explain consistency property of evidence life cycles in
the workflow diagram.

In the following subsections of this section and the three
coming sections 4∼6, we will treat onlyacyclic workflow
diagrams. That is, we assume that any workflow do not have
a loop, where a loop denotes a sequence of flows

N0 −→f0 N1 −→f1 · · · −−→fn−1 Nn −→fn N0.

We will treatcyclicworkflow diagrams in Section 7.

3.1. Correctness of Workflows

Consistency verification of workflows on the control
flow perspective is one of the most important issues in re-
search area of workflow verifications. There are a lot of re-
searches of consistency properties of workflows in the view-
point of control flow of them such as [2], [4], [5], [10], [11],
[13] and [14].

An inconsistency of structures of workflows comes from
a wrong combination of XOR-split/join nodes and AND-
split/join nodes. Such inconsistencies are known as “dead-
lock” and “lack of synchronization” [5]. An acyclic work-
flow which is deadlock free and lack of synchronization free
is said to be “correct” [13].

Definition 3.1 For an acyclic workflowW , an instanceof
W denotes a subgraphV of W that satisfies the following
properties.

1. V contains just one start node. Moreover, for each
nodex in V , there exists a path onV from the start
node tox.

2. If V contains an XOR-splitc, thenV contains just one
outgoing-flow ofc.

3. If V contains a nodex other than XOR-split, thenV
contains all outgoing-flows ofx.

Definition 3.2 LetW be an acyclic workflow.
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1. An instanceV of W is said to bedeadlock freeif, for
every AND-joinr in V , V contains all incoming-flows
of r.

2. An instanceV of W is said to be lack ofsynchroniza-
tion free if, for every XOR-joinm in V , V contains
just one incoming-flow ofm.

Definition 3.3 An acyclic workflowW is said to becor-
rect if every instanceV of W is deadlock free and lack of
synchronization free.

Instances of a workflow diagram are not used not only
to define correctness property but also to define consistency
property of evidence life cycles in the workflow, which we
will define in the next section.

3.2. Consistency property of evidence life
cycles

Roughly, the “life cycle” of an evidence means that a se-
ries of states of the evidence. To be more exact, the life cy-
cle of an evidencee (in E) means whene is created, howe is
moved to some activities, and whene is removed (archived
or destroyed).

In order to define consistent life cycles of evidences in
workflow diagram in a rigorous manner, we introduce some
new concepts.

Since workflow diagrams have XOR-split nodes, one can
regard each activity diagramA as an gathering of flow-
sequences, each of which is obtained fromA based on
XOR-split nodes inA. Based on the point, we introduce
the following definition.

Definition 3.4 Let W be a workflow diagram andC the
set of all XOR-splits onW . Then, aphenomenonon W
denotes a functionψ : C → flow(W ) satisfying thatψ(c)
is an outgoing-flow ofc for eachc ∈ C, whereflow(W )
denotes the set of all flows inW .

Lemma 3.5 For a workflow diagramW and a phenomenon
ψ onW , there exists a unique instanceV ofW such that for
every XOR-splitc in V the outgoing-flow ofc in V isψ(c).
We refer to the instanceV asW (ψ).

Conversely, for a instanceV of W , there is a phe-
nomenonψ with V = W (ψ).

The lemma above is easily shown.
One can consider eachW (ψ) as the workflow diagram

obtained fromW by extracting all activities and flows
which take place under the phenomenonψ.

Definition 3.6 For a workflow diagramW , a line in W is a
sequence of flows inW

L = (A1 −−→f1 A2 −−→f2 · · · −−→fn−1 An)

which satisfies the following properties.

(i) A1 is an activity or the start inW .

(ii) An is an activity or an end inW .

(iii) A2, . . . , An−1 are nodes inW , each of that is not any
activity, the start, nor any end.

For a lineL above,A1 is called thesourceof L, An the
target of L andfn−1 thetarget flowof L.

Definition 3.7 A line L is said to beequivalentto another
lineL′ if L andL′ share the source and the target.

Definition 3.8 A sequenceπ of lines is said to beequiv-
alent to another sequenceπ′ of lines if there exist lines
L1, . . . , Ln andL′

1, . . . , L
′
n such that

π = (A1 −−→L1 A2 −−→L2 · · · −−→Ln−1 An)

π′ = (A1 −−→L′
1 A2 −−→L′

2 · · · −−→L′
n−1 An)

and that, for eachi = 1, . . . , n, Li is equivalent toL′
i.

L ∼ L′ (or π ∼ π′) denotes thatL is equivalent toL′

(π is equivalent toπ′, respectively). Note that every line is
equivalent to itself, and so is every sequence of lines.

Definition 3.9 Let W be an acyclic workflow diagram,ψ
a phenomenon ofW and lete be an evidence inW . Then,
theconsistent life cycleof e onW (ψ) is the sequenceπ of
lines inW (ψ)

π := (A0 −→L0 A1 −→L1 · · · −−→Ln−1 An)

which satisfies the following properties.
(i) Every activityAi hase.
(ii) e is created onA0.
(iii) e is not created onAi for anyi with 0 < i 5 n.
(iv) e is removed onAn.
(v) e is not removed onAi for anyi with i < n.

Definition 3.10 An acyclic workflow diagramW is said to
have consistent evidence life cyclesif, for each phenomenon
ψ of W , each activityA in W (ψ) and for each evidencee
onA, there is an essentially unique consistent life cycleπ
of e which containsA.

The statement “there is an essentially unique consistent
life cycleπ of e containingA” means that there is a consis-
tent life cycleπ of e containingA and thatπ ∼ π′ for each
consistent life cycleπ′ of e containingA.
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4. Verification algorithm of evidence life cycles

The main body of this paper is to introduce an algorithm
verifying consistency of evidence life cycles in a given
acyclic workflow diagram, which is calledEVA (Evidence
Verification Algorithm).

Although details of EVA is described in the section 6, we
here explain input and output data and the main property of
EVA.
Input data of EVA : a correct workflow diagramW and all
instances{W (ψ)} of W .
Output data of EVA : a string consisting of pairs(L, e),
whereL denotes a sequence of flows ande an evidence.

Each(L, e) in output data denotes a defect of an evi-
dence life cycle in input data.

Theorem 4.1 For each correct workflow diagramW , if the
output data ofW by EVA is the empty string, thenW has
consistent evidence life cycles, and vice versa.

This theorem is a corollary of Lemma 6.2 described in
Section 6.

Remark 4.2 Here we omit explanations about how to ex-
tract instances from a workflow diagram and how to verify
correctness of it. For details, see [6]. One can also refer to
[2], [10], [11], [13] and [14],

5. Local evidence conditions

Actually, in order to verify consistency of evidence life
cycles of a given correct workflow diagramW , EVA checks
whether or notW satisfies “local evidence conditions”. In
order to explain there conditions, we first introduce a propo-
sition and some definitions.

Proposition 5.1 For each workflow diagramW , each line
L and for each evidencee contained inL, just one of the
following properties holds.
(1) The sourceS and the targetT of L sharee, ande is not
removed onS ande is not created onT .
(2) The sourceS and the targetT of L sharee, ande is
removed onS, ande is created onT .
(3) The sourceS of L hase, e is removed onS, and the
target ofL does not havee.
(4) The targetT of L hase, e is created onT , and the source
of L does not havee.
(5) The targetT of L hase ande is not created onT . More-
over, if the sourceS of L hase, thene is removed onS.
(6) The sourceS of L hase and e is not removed onS.
Moreover, if the targetT of L hase, thene is created onT .

One can easily show the proposition above.

Remark 5.2 Let L be an line with sourceS and targetT
activities, and lete be an evidence, for example, a document
used inS orT or both ofS andT . Moreover, assume thatL
contains no AND-split and no AND-join. Then, ifS hase
ande is not removed onS, e should exist onT . Therefore,
(6) above can be regard as an wrong state. Similarly, ifT
hase ande is not created onT , e should “come from”S,
and hence, (5) above can be regard as an wrong state as well
as (6).

We next assume thatL has an AND-splitF and another
line L′ hasS as its source. Then, whenS hase, e is not
removed onS, and whenT does not havee, it is possible
thate “pass” fromS to the target ofL′. In such a case, one
can not assure that (6) is wrong. One can consider several
similar cases.

Definition 5.3 A pair (L, e) of a lineL and an evidencee
is called aline-evidence.

Definition 5.4 To each line-evidence(L, e), we assign one
of the following states.
(1) SCS (State of Consistent Succession) if(L, e) satisfies
(1) in Proposition 5.1.
(2) SIR (State of Inconsistent Redundancy) if(L, e) satisfies
(5) in Proposition 5.1.
(3) SID (State of Inconsistent Defection) if(L, e) satisfies
(6) in Proposition 5.1.
(4) SCNS (State of Consistent Non-Succession) if(L, e)
satisfies one of (2)∼(4) in Proposition 5.1.

Definition 5.5 For a correct workflow diagramW , W is
said to satisfieslocal evidence conditionsif, for each phe-
nomenonψ of W , the restricted graphW (ψ) satisfies the
following conditions.
(1) For each lineL in W (ψ) and for each evidencee, if
(L, e) is assigned SIR, then there exists a lineL′ sharing
the target withL such that(L′, e) is assigned SCS.
(2) For each lineL in W (ψ) and for each evidencee, if
(L, e) is assigned SID, then there exists a lineL′ sharing
the source withL such that(L′, e) is assigned SCS.
(3) There are not two line-evidences(L, e) and (L′, e),
which are assigned SCS, and which share the source (or the
target), but which do not share any node as their targets (or
their sources, respectively).

The following lemma indicates that, for a workflow dia-
gramW , if W is correct, local evidence conditions suffice
to verify consistency of evidence life cycles inW .

Lemma 5.6 For each correct workflow diagramW , if W
satisfies local evidence conditions, thenW has consistent
evidence life cycles, and vice versa.

We show this lemma in Appendix A of this paper.
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6. Definition of EVA

By virtue of Lemma 5.6, in order to verify consistency of
evidence life cycles of a given correct workflow diagramW ,
it is sufficient to check thatW satisfies local evidence con-
ditions. So, we establish EVA as an algorithm finding line-
evidences(L, e) which violate local evidence conditions of
a given correct workflow diagram.

Definition of EVA

(I) Input and output data of EVA are described in Section 4.

(II) The content of EVA is defined, as follows.
(EVA.1) Prepare three empty setsSuc, Inq and Res,
which are provided for recording line-evidences.
(EVA.2) Execute EV.2.1 and EV.2.2 below in parallel.
(EVA.2.1) For a givenW , starting the start ofW , search all
flows f in W by an appropriate graph search algorithm,2

and all lines with target flowf .
(EVA.2.2) For each lineL and for each evidencee con-
tained inL, check the state of(L, e), and classify(L, e),
as follows.

Case (i) where(L, e) is assigned SCS.

If L contains an AND-split or an AND-join, put(L, e)
into Suc. Otherwise, dump(L, e).

Case (ii) where(L, e) is assigned SIR.

If L contains an AND-join, put(L, e) into Inq. Oth-
erwise, put(L, e) into Res.

Case (iii) where(L, e) is assigned SID.

If L contains an AND-split, put(L, e) into Inq. Oth-
erwise, put(L, e) into Res.

Case (iv) where(L, e) is assigned SCNS.

Dump(L, e).

(EVA.3) For each phenomenonψ of W , execute
(EVA.3.1)∼(EVA.3.3) below.
(EVA.3.1) SetSuc(ψ) := Suc ∩ W (ψ) andInq(ψ) :=
Inq∩W (ψ), whereW (ψ) is regarded to be the set of line-
evidences onW (ψ).
(EVA.3.2) For each element(L, e) of Inq(ψ), check
whether or not there exists an element(L′, e) of Suc(ψ)
such that(L, e) and(L′, e) satisfy the property (1) or (2) in
the definition of local evidence conditions. If(L, e) does
not have such a(L′, c), put(L, e) into Res.
(EVA.3.3) Check whether or not there exist multiple ele-
ments ofSuc(ψ) violating the property (3) in the definition
of local evidence conditions. If there exist such elements,
put them intoRes.
(EVA.4) OutputRes.

2We use a depth first search algorithm for implementation of EVA.

Remark 6.1 In most cases, it does not need to prepare all
instances, since some instancesW (ψ), . . . ,W (ψ′) share
the same figure even thoughψ, . . . , ψ′ are not the same.

At the last, we show correctness of EVA.

Lemma 6.2 (Correctness of EVA) For each correct work-
flow diagramW , EVA terminates in finite steps. Moreover,
all lines violating local evidence conditions ofW are con-
tained in the output ofW by EVA, and vice versa. In par-
ticular, Theorem 4.1 holds.

We show this lemma in Appendix B.

7. Application of EVA to cyclic workflow dia-
grams

Until now, we have dealt with acyclic workflow dia-
grams. From now, we will discuss verification of correct-
ness and consistency of evidence life cycles over cyclic
workflow diagrams. In order to apply EVA to cyclic work-
flow diagrams, we extend the definitions of consistency
properties in the previous sections to those over cyclic
workflow diagrams. Thus, in order to extend the definitions
of consistency properties, we consider a translation of cyclic
workflow diagrams.

The main body of this section refers to [8].
Before defining the translation, we explain an observa-

tion of “real” workflow diagrams.

7.1. Observation of real workflow diagrams

By virtue of investigation of about 460 workflow dia-
grams, which have been composed in development of real
large-scale information systems, we have the following ob-
servations about real workflow diagrams.

• Observation 1. Most loops in workflow diagrams
contain flows which we call “passback flows”.

A passback flow in a workflow diagram denotes a kind of
a flow which appears at a boundary of a “main stream” and
a “replay of an operation” in the workflow diagram. For ex-
ample, in the figure 1, the main stream in the workflow is de-
scribed by the sequence of flows between activities: “Make
a proposal”, “Check the proposal”, “Apply the proposal”
and “Store the proposal”. On the other hand, if the proposal
does not pass in the activity “Check the proposal”, the pro-
posal will be turned back to the previous activity “Make a
proposal” via the flow labeled “no”. In this case, the re-
searcher have to replay the activity “Make a proposal”. So,
the flow “no” is a passback flow.

Workflow diagrams in the investigation above contain no
loop which is considered in usual programs and assured its
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termination property. That is, most loops in the workflow
diagrams express replays of operations in the workflow di-
agrams. Thus, most loops contain passback flows.

• Observation 2. Every information described in a
workflow diagram is treated as a “static” information.
In particular, no information about operations after an
operation is turned back via a passback flow.

For example, in the figure 1, in the case where a pro-
posal is turned back to the activity “Make a proposal” via
the passback flow ”no“, the researcher should not “make”
a proposal, but “remake” the proposal. However, there is
actually no modification for such a case in a workflow dia-
gram.

It maybe possible to reconstruct such a workflow so that
there is not such an inconsistency above which occurs on
the target of the passback flow. Thus, one can select a pol-
icy which prohibit inconsistencies on the targets of pass-
back flows like the example above. However, in many cases,
this constraint is so strong that workflow diagrams have too
large size or too complex structure. Therefore, in the real
development, they do not select such a policy. Thus, we
do not consider inconsistency between the target and the
source of a passback flow in a workflow. Actually, from the
real workflow diagrams in the investigation, we also have
the following observation.

• Observation 3. The change of evidences during a
passback flow is not described in the workflow dia-
gram. In other words, even if there is some incon-
sistency between the evidences on the source node of
(the first flow of) a path containing a passback flow and
those on the target node of (the last flow of) the path,
one should not regard it as an error.

In principle, evidences on each node in a workflow di-
agram are described only when a job stream arrived at the
point for the first time. For example, the activity “Make
a proposal” in the figure 1 has an evidence “(+)proposal”,
which is information described at the first time when the
job stream arrives at the activity node from the start node.
The evidence “(+)proposal” is not what is described in the
case where a job stream arrives at the activity via the pass-
back flow “no”. Therefore, we should not consider that the
evidence “proposal” in the activity “Check the proposal”
changes to the evidence “(+)proposal” in the activity “Make
a proposal” via the flow “no”.

The observations above indicate that a verification algo-
rithm should not output inconsistency between evidences on
the source node of a path containing a passback flow and the
target node of the path as an error. As a consequence of the
discussion, we take the stance to deal with passback flows
as special ones.

There maybe a workflow diagram in which a passback
flow must not be regarded as a special one. We can not
apply our methodology to such cases. We do not care about
that, because such cases are rare.

7.2. Translation of cyclic workflow diagrams

In order to translate a cyclic workflow diagram into
those to which EVA are applicable, we remove all pass-
back flows in the cyclic. In this section, we first formalize
passback flows in a workflow diagram, by using only graph-
theoretical properties of the workflow diagram. Moreover,
we introduce an algorithm which removes all passback
flows in a given workflow diagram. For more details, see
[8].

A path(f1, . . . , fn) in a workflow diagramW satisfying
the following properties is called alariat path.

1. The source off1 is a start node inW .

2. The target offn is the source of one off2, . . . , fn.

3. For eachi andj with i 6= j, fi andfj do not share the
same source.

The last flowfn of a lariat pathσ := (f1, . . . , fn) is
called thetail of σ.

A path(f1, . . . , fn) in a workflow diagramW satisfying
the following properties is called adirectly ending path.

1. The source off1 is a start node inW .

2. The target offn is an end node inW .

3. For eachi andj with i 6= j, fi andfj do not share the
same source.

In the following two paragraphs, we consider what a
passback flow is.

First, a passback flow heads in the opposite direction to
a primary job stream and reaches such a job stream. There-
fore, a passback flow is the tail of a lariat path.

Next, consider a flow contained in some directly ending
path. Then, the flow is considered a member of a directly
ending path, and the change of evidences during the flow is
described in the workflow diagram, even if it is the tail of a
lariat path. Therefore, the flow is not considered a passback
flow.

By virtue of the discussion above, we can formalize pass-
back flows, as follows.

Definition 7.1 A flow f in a workflow diagramW is called
apassback flowif f is the tail of a lariat path inW and there
is no directly ending path inW which containsf .
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Figure 4. A workflow diagram of proposal
submission

For example, in the figure 4,G is a passback flow, while
F is not, even thoughF is the tail of a lariat path.

Now we define an algorithmRAPF (Removing Algo-
rithm of Passback Flows) [8], which translates a workflow
diagramW into some workflow diagram(s) with no pass-
back flows, as follows.

1. Detect all flows inW and record tailst1, . . . , tn of all
lariat paths inW .

2. Detect all directly ending paths and letp1, . . . , pm be
tails each of which is not contained in any directly end-
ing path. These tails are passback flows inW .

3. Replace targetsT1, . . . , Tm of p1, . . . , pm by new end
nodesE1, . . . , Em, respectively. These end nodes are
calledadditional end nodes. Note that the number of
incoming flows of eachTi decreases.

4. Execute the following operations corresponding to the
number of incoming flows of eachTi. (Note that each
Ti is an XOR-join or AND-join node.)

(a) If Ti has more than or equal to two incoming
flows, then leaveTi as it is.

(b) If Ti has just one incoming flow, then replace the
target of the incoming flow by the target of the
outgoing flow ofTi, and then removeTi as well
as the outgoing flow ofTi.

(c) If Ti has no incoming flow, then replace the
source of the outgoing flow ofTi by a new start
node and removeTi. The new start node is called
aadditional start node.

RAPF makes no new lariat path. Moreover, any flow in
a directly ending path does not become not to be contained

Figure 5. RAPF may divide a workflow dia-
gram into multiple workflow diagrams

in any directly ending path by RAPF. Thus, we have the
following proposition.
Proposition. RAPF translates a workflow diagramW into
RAPF(W ), each element in which is a workflow diagram
with no passback flows.

RAPF may output multiple workflow diagrams. We
show an example in the figure 5. The operation on this ex-
ample is executed mechanically by RAPF.

By RAPF, one can extend the definitions of correctness
and consistency of evidence life cycles of acyclic workflow
diagrams to those over cyclic workflow diagrams. In order
to do so, we only have to redefine instances defined in Def-
inition 3.1.

Definition 7.2 For an cyclic workflowW , an instanceof
W denotes a subgraphV of RAPFW that satisfies the prop-
erties 1)∼3) in Definition 3.1.

By using the instances above, one can extend the defini-
tions of correctness and consistency of evidence life cycles
of acyclic workflow diagrams to those over cyclic workflow
diagrams.

The role of RAPF is to extract a designer’s intention of
a workflow diagram. Here, the “designer’s intention” is the
intention which flows to be exceptional ones around which
evidence life cycles should not be checked, and which flows
to be usual ones around which evidence life cycles should
be checked. Such a designer’s intention is not completely
formalizable, and hence, RAPF may not extract the de-
signer’s intention completely. However, from the observa-
tion of actual workflow diagrams, we claim that RAPF has
enough ability to extract designers’ intentions about pass-
back flows correctly.

RAPF is not an algorithm which translates cyclic work-
flow diagrams to acyclic ones. Cyclic workflow diagrams
are not contained in the range of EVA. Moreover, some
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cyclic workflow diagrams are not translated into acyclic
ones by RAPF. One can not apply EVA to such diagrams.
However, such diagrams are rare, and we do not care about
them.

8. Experimental results

The algorithm EVA is implemented as a java program
called “evidenceVerifier”, the input data of which is an xml-
file expressing a workflow diagram, and the output data of
which is an xml-file expressing a string of line-evidences
which violate life cycles of evidences.3 More properly
speaking, evidenceVerifier has functions which execute the
following for each input dataW .
(1) verification of syntax and graph-theoretical properties
(for example, connectivity) ofW .
(2) translation ofW to (an) acyclic workflow diagram(s)
W ∗ by RAPF in Section 7.
(3) extraction of instances{S1, . . . , Sn} of W ∗.
(4) verification of basic and local evidence conditions of
W ∗ based on{S1, . . . , Sn}.

In this paper, we omit explanations of algorithms which
(1) and (3) are based on (one can refer to [6] for the algo-
rithm of (3)).

By using the program, we verify a set of real workflows,
which is a subset of the set of workflows used to design a
real large enterprise application system of AIST. The subset
consists of 60 workflows. Each of them has 5∼34 nodes
and 5∼31 flows. All workflows are reviewed in a manual
way in advance.

The output data of the workflows above by evidenceVer-
ifier are classified into the following types.

(i) defects coming from complications of
structures of workflows

6

(ii) defects coming from inconsistencies of
structures of workflows

8

(iii) defects by trivial mistakes 26
(iv) superfluous error messages 10

Every execution time is within 0.5 second.
Important defects are those in (i) and (ii).
Defects in (i) come from unexpected flows of activities

in workflows. For example, 2 defects in (i) come from a
gap coming from changing flows of activities in a workflow
in the later phases. It is difficult to find such defects by
manual.

Defects in (ii) come from designers’ essential misun-
derstanding on some activities or inconsistent structure of

3Properly speaking, input data express workflows corresponding to
workflow diagrams. Moreover, output data have several additional infor-
mations.

workflow diagrams. In particular, we could find 3 inconsis-
tent flows of activities by the defections in (ii) above. This
indicates that, in order to verify construction of a workflow,
it is worth to verify consistency of evidence life cycles in it.

Defects in (iii) are defects which come from forgetting
adding (+)-marks, forgetting removing (+)-marks, typos of
evidence labels or forgetting describing evidences.

The error messages in (iv) consist of 3 messages by de-
signers’ informal omission and 7 messages by the relations
to other workflow diagrams. As for designers’ omission,
designers sometimes omit some evidences on purpose. Our
program does not corresponds to such omissions. As for
the relations to other workflow diagrams, the program has
not yet been implemented any function analyzing relation-
ships between multiple workflow diagrams. For example,
there is a workflowA which is a successive part of another
workflowB, and an evidenceE which is created inB and
still occurs inA. Then the designer does not add (+)-mark
to the first occurrence ofE onA. However, our program
outputs an error message to that. This is a superfluous error
message.

9. Conclusion and future work

In this paper, we have defined a consistency property
of evidence life cycles of a workflow diagram in AWL
(AIST Workflow Language), and an algorithm EVA (Ev-
idence Verification Algorithm), which verifies the consis-
tency property of each workflow diagram. We also have de-
fined local evidence conditions which are necessary and suf-
ficient conditions for each workflow diagram to have con-
sistent evidence life cycles (Definition 5.5 and Lemma 5.6).
Moreover, we have shown that, for each correct workflow
diagramW , EVA can determine whether or notW has con-
sistent evidence life cycles (Theorem 4.1).

In Section 7, in order to apply EVA to cyclic workflow
diagrams, we introduce an algorithm to translate them into
acyclic ones. We first formalize a passback flow, which ex-
presses (a boundary of a main stream and) a reply of an
operation in a workflow. We formalize this flow with only
graph-theoretical properties of the workflow diagram. We
then give an algorithm RAPF, which detects and removes
all passback flows in a given workflow diagram, and which
translates cyclic workflow diagrams to acyclic ones, which
EVA is applicable to.

In Section 8, we experimented with an implementation
“evidenceVerifier” of EVA and 60 workflow diagrams of
a real large enterprise application system, and have shown
that evidenceVerifier could find 38 defects of evidence life
cycles of the workflow diagrams and that we could find sev-
eral defects of structure of the workflow diagrams from the
defects of evidence life cycles of them.

As a future work, we are developing the way to verify
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other kinds of life cycles of workflow diagrams, for exam-
ple, life cycles of operations and data in databases which
are described on activities.
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A. Proof of Lemma 5.6

In this subsection, we first show that, for a correct work-
flow diagramW , if W satisfies local evidence conditions,
thenW has consistent evidence life cycles, and then we
show the converse proposition.

Here we consider only an acyclic workflow diagrams.

Definition A.1 For an acyclic workflow diagramW and a
noden in W , thedegreeof n in W denotes the maximum
of the lengths of the paths from the start node ofW to n.
Moreover, theheightof n in W denotes the maximum of
the lengths of the paths fromn to some end node ofW .

LetW be a correct workflow diagram,ψ a phenomenon
of W ,A an activity inW (ψ) and lete be an evidence inA.

Now we construct a consistent evidence life cyclesF of
e onW (ψ)

F := (A0 −−→L0 · · · −−→Ln−1 An = A

= B0 −−→R0 · · · −−→Rm−1 Bm),

whereLn, . . . , L0, R0, . . . , Rm−1 andRm are lines.
Claim 1. There is an essentially unique sequence of lines
A0 −−→L0 · · · −−→Ln−1 An = A which satisfies the following
properties

(i) Every activityAi hase.

(ii) e is created onA0.

(iii) e is not created onAi for anyi with i > 0.

(iv) e is not removed onAi for anyi with i < n.

Proof of Claim 1. We constructA0 −−→L0 · · · −−→Ln−1 An, by
using induction on the degree ofA in W .
(1) If e is created onA, then we setA0 to beA.
(2) Assume thate is not created onA. Then, by local evi-
dence conditions, there exists an essentially unique lineL
with targetA. Moreover, the sourceS of L containse,
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which is not removed onS, and the degree ofS is less than
that ofA. Therefore, by induction hypothesis, there is an
essentially unique sequence of linesS0 → · · · → Sk = S.
Thus, we obtain the desired sequenceS0 → · · · → Sk −→L
A. Moreover, by the definition of equivalence relation
on sequences of lines, the desired sequence is essentially
unique.2
Claim 2. There is an essentially unique sequence of lines
A = B0 −−→R0 · · · −−→Rm−1 Bm which satisfies the following
properties

(i) Every activityBi hase.

(ii) e is removed onBm.

(iii) e is not created onBi for anyi with i > 0.

(iv) e is not removed onBi for anyi with i < m.

Proof of Claim 2. One can show the claim in the similar
way to the proof of Claim 1, by using induction on the
height ofA in W . 2

By Claims 1 and 2, we obtain an essentially unique con-
sistent life cycle ofe in W (ψ). Therefore, we have shown
that if W satisfies local evidence conditions, thenW has
consistent evidence life cycles.

Now we assume thatW has consistent evidence life cy-
cles and show thatW satisfies local evidence conditions.
That is, we show thatW (ψ) satisfies the properties (1)∼(3)
in Definition 5.5.
(1) LetL be a line inW (ψ) and(L, e) a SIR line-evidence.
Then, the targetT containse bute is not created onT . Thus,
by consistency of evidence life cycles inW , there exists an
essentially unique consistent evidence life cycle

A0 → · · · → Ak−1 −−→Lk−1 Ak = T → · · · → An

with k > 0. SinceAk−1 containse but e is not removed on
Ak−1, (Lk−1, e) is a SCS line-evidence. We have the result.

One can show the properties (2) and (3) in the similar
way to the proof of (1) above.2

B. Proof of Lemma 6.2

Since it is clear that EVA terminates in finite steps, we
show that, for a given correct workflow diagramW , the
output ofW by EVA is the set of all line-evidences which
violate local evidence conditions ofW .

We first remark that the division of line-evidences in the
step EVA.2.2 in the definition of EVA does not depend on
instances, since the state of a line-evidence(L, e) is deter-
mined only by the state ofE on the source and the target of
L.

We now show that every line-evidence which violates the
property (1), (2) or (3) in Definition 5.5 is contained in the

setRes at the step (EVA.4) in the definition of EVA. Let
W (ψ) be an instance ofW and (L, e) a line-evidence in
W (ψ).

(1) If (L, e) violates the property (1) in Definition 5.5,
(L, e) is assigned SIR, but there exists no SCS line-
evidence(L′, e) such thatL′ is contained inW (ψ) and
shares the target withL. Thus, ifL contains no AND-
join, (L, e) is put intoRes in the step (EVA.2.2).(ii). If
L contains an AND-join, then(L, e) is put intoInq in
the step (EVA.2.2).(ii), and moved toRes in the step
(EVA.3.2). So,(L, e) is contained inRes in the step
(EVA.4).

(2) If (L, e) violates the property (2) in Definition 5.5, one
can obtain the same result in the similar way to (1)
above.

(3) If (L, e) violates the property (3) in Definition 5.5,
(L, e) is assigned SCS, and there exists another SCS
line-evidence(L′, e) such thatL′ is also contained
in W (ψ) and shares the target or source withL.
Thus, (L, e) and (L′, e) are put intoSuc in the step
(EVA.2.2).(i), and moved toRes in the step (EVA.3.3).
So,(L, e) is contained inRes in the step (EVA.4).

We finally show that every line-evidence inRes violates
the property (1), (2) or (3) in Definition 5.5. Let(L, e) be
a line-evidence inRes. Then, it is put inRes in the step
(EVA.2.2.(ii)), (EVA.2.2.(iii)), (EVA.3.2) or (EVA.3.3).

(1) If (L, e) is put inRes in the step (EVA.2.2.(ii)),(L, e)
is assigned SIR butL contains no AND-join. Thus, for
any instanceW (ψ) which containsL, there is no line
which shares the same target withL, sinceL contains
no AND-join. So, (L, e) violates the property (1) in
Definition 5.5.

(2) If (L, e) is put in Res in in the step (EVA.2.2.(iii)),
one can show that(L, e) violates the property (2) in
Definition 5.5 in the similar way to (1) above.

(3) It is clear that every line-evidence which is put into
(EVA.3.2) or (EVA.3.3) violates one of the properties
in Definition 5.5.

Thus, we have completed the proof of Lemma 6.2.2


