
26

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

A FRAMEWORK FOR THE MODULAR DESIGN AND IMPLEMENTATION OF
PROCESS-AWARE APPLICATIONS

Davide Rossi and Elisa Turrini

Dept. of Computer Science
University of Bologna

Mura Anteo Zamboni, 7
I-40127, Bologna, Italy
{rossi | turrini}@cs.unibo.it

ABSTRACT

Process-aware software systems are establishing themselves
as prominent examples of distributed software infrastruc-
tures. Workflow Management Systems, web service or-
chestration platforms, Business Process Management sup-
port systems are relevant instances of process-aware soft-
ware systems. These systems, because of their own nature,
are all characterized by presenting a behavioral perspective,
that is a perspective describing the steps that can be exe-
cuted during the enactment of the process.

In this paper we present a framework for the design and
implementation of the behavioral perspective in modular
process-aware architectures. This approach can be applied
across different application domains. The modularity of
the resulting architectures is well-known as a key factor in
achieving software qualities such as reliability, extensibility,
robustness, maintainability and ease of use.

Our framework is based on EPML [21][22], an exe-
cutable process modeling language, and on its enactment
engine. EPML has been designed with the aim of promot-
ing separation of concerns, easing the modular approach to
the design of process-aware software architectures. A no-
table advantages of the presented approach is that of using
the same modeling language and the same modular software
component to support the behavioral perspective across dif-
ferent application domains. As an example we show how it
is possible to use EPML and its engine in the modeling and
the implementation of a wide spectrum of software archi-
tectures, from those supporting business process simulation
to those supporting web service orchestration.

Keywords

Process-aware systems, Process modeling, EPML, Software
engineering.

1. INTRODUCTION

Process-aware software systems are establishing themselves
as prominent examples of coordination-based software in-
frastructures, following a trend that sees computer systems
shifting their focus from data to processes. Workflow Man-
agement Systems (WfMSs), web service orchestration plat-
forms, Business Process Management support systems are
relevant instances of this class of systems. A modular ap-
proach to the design of architectures supporting process-
aware systems is that based on perspectives (a concept intro-
duced in [11] and later refined in [13] and [28]). A process
can be characterized by different perspectives: the func-
tional, describing what has to be executed; the organiza-
tional (or resource), describing who (software component or
human) is in charge of the execution; the informational (or
data), describing what data has to be processed and the be-
havioral (or process, or control-flow) describing when part
of the process has to be executed during its enactment. In
this work we focus on the latter perspective, by presenting a
framework to address it, based on an effective separation of
concerns. This promotes modularity and allows the design
of process-aware architectures able to support a wide spec-
trum of applications. Our approach is based on EPML, a
graphical, executable, process modeling language and on its
enactment engine. As a result the very same notation can be
used to model the process perspective in workflow systems,
business process simulation systems, web service orches-
tration systems, process-aware web applications and other
process-aware software systems. Moreover, the software
architectures supporting these systems can be designed in
a modular fashion, composing together application-domain
specific components and the EPML engine.

This paper is structured as follows: section 2 outlines the
main issues we tried to address in designing our proposal;
section 3 introduces EPML and its enactment engine. The
sections 4, 5, 6 and 7 show sample methods and architec-
tures to design and implement process-aware applications

27

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

using our modular EPML-based framework. Section 8 dis-
cusses our proposal with respect to related work. Section 9
concludes the paper.

2. COORDINATION FOR PROCESS-AWARE
APPLICATIONS

The Babel of business process notations, workflow and web
service orchestration languages keeps growing day by day.
Most of these languages/notations have not been designed
to provide improvements in the description of the dynamic
behavior of process-aware applications but, rather, to ad-
dress some domain-specific issue (like supporting web ser-
vices invocation to coordinate an orchestration or manag-
ing resources in a workflow). This forces the members of
the development team to learn different tools to address the
same aspect: the behavioral perspective. Moreover, it may
well be the case that in a single, large application, coor-
dinating users connected to different software systems and
remote components, the behavioral perspective has to be
addressed with different languages/notations at the design
level and with different enactment engines at the implemen-
tation level.

A partial solution to this problem is provided by BPMN
[16]. BPMN is a graphic notation to model business pro-
cesses that has not an associated formal semantics and that
does not produce executable specifications. A BPMN di-
agram could, however, be transformed into different exe-
cutable notation. BPMN’s specifications, for example, sug-
gest a mapping to transform a diagram into BPEL. From a
conceptual point of view the same approach can be taken
with respect to different “target” notations, providing a uni-
fied high-level modeling tool. This would imply that, at
least at the design level, a single modeling notation can be
used to be later transformed into one or more executable
ones. As discussed in section 4, however, this solution suf-
fers several limitations. It is our opinion then that, while
BPMN is a highly valuable contribution for high level pro-
cess modeling in early phases of the software development
process and for documentation purposes, an executable no-
tation (and possibly a single one used within one process)
has clear advantages in the design-related activities.

These are the reasons that lead us to the development of a
framework to address the behavioral perspective in different
application domains using the same tools. This approach is
based on EPML, an exogenous [7] coordination language
that has been designed in order to obtain an effective separa-
tion of concerns, easing the modular approach to the design
on process-aware software architectures. It should be no-
ticed that EPML defines the interactions that can take place
between the actors in the system, but cannot change them at
run time like, for example, Manifold [8] and other control-
driven [18] coordination languages can do. Process mod-

eling languages, in fact, can be instances of different coor-
dination models (control-driven, data-driven, space-based,
rule-based and so on) and, while EPML’s characteristics are
shared with most existing workflow languages and process
modeling languages (that are flow languages in the broad
sense of languages that describe the process in term of, po-
tentially concurrent, flows of executions, their interactions
and their synchronizations) there are contexts in which dif-
ferent paradigms are more suitable and should be preferred.

EPLM is a graphical, executable language with a formal
semantics and high level of expressiveness. It is our opin-
ion that these characteristics are essential in this kind of
tools. While some of the reasons for this are rather obvi-
ous (a diagram is easier to understand than a sequence of
text lines) some are less immediately apparent. As an ex-
ample of this consider the following issue: WSBPEL [6] is
a textual (XML-based) web service orchestration language
that has no graphical representation but most of the available
tools that support WSBPEL development provide a graphi-
cal modeler based on a proprietary notation. The diagrams
produced with these tools become artifacts of the software
development process introducing non-standard notations in
the process and causing potential vendor lock-in problems.

Details about EPML and its engine can be found in sec-
tion 3; in this section we focus on how a process modeling
language can be designed to maximize separation of con-
cerns. Separation of concerns is a well-known topic in soft-
ware engineering in general and has specific relevance in
the research area related to coordination models and lan-
guages. Separation (orthogonality) between coordination
and computation is a cornerstone for this area [12]. In a
coordinated process the computation is carried out by soft-
ware components or human beings (actors) participating in
the process; the coordination is carried out by a coordination
runtime. The distinction between coordination and compu-
tation however is, in our opinion, too coarse. Coordina-
tion should really be split in interaction model and process
logic. The interaction model defines the execution flows,
i.e. the possible interactions among the involved entities.
The process logic defines which, among all possible execu-
tion flows, have to be activated. To show the relevance of
the process logic and the fact that its importance is often
neglected we use BPEL again as a paradigmatic example
(in this article we use BPEL to refer to either BPEL4WS
[3] or WSBPEL, the two versions of the language). BPEL
uses XPath expressions as predicates to support control flow
decisions; there are cases in which, however, these deci-
sions imply a computational effort for which XPath is not
well suited. In these cases the decisions are delegated to
activities that have to be created ad hoc for this task; as a
consequence two different perspectives get mixed together
(besides the impact on software qualities such a solution
also implies that new web services have to be created and

28

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

hosted somewhere in order to support the behavioral per-
spective). Implicitly acknowledging this limitation all ex-
isting commercial BPEL engine implementations we are
aware of, include custom extensions that allow to activate
software components implementing the process logic. The
latest version of BPEL, WSBPEL, also provides a standard-
ized extension mechanism for this. For the same reason,
BEA and IBM (some of the partners that supported the de-
velopment of BPEL) proposed an extension of BPEL4WS:
BPEL-J [2]. In BPEL-J, Java code snipets can be embedded
in a BPEL specification reducing the need to delegate to ex-
ternal components. The main drawback of this approach is
that the process logic can be expressed using a specific lan-
guage only. This implies that only users proficient in Java
can benefit from BPEL-J; moreover, from a technological
point of view, workflow engines must be able to activate
Java programs.

To better support separation of concerns, in EPML the
computation, the interaction model and the process logic
are addressed by distinct elements, that is, respectively, ac-
tivities, processors and processors’ logic. The first two are
(graphical) elements of the language; processors’ logic is
a program fragment (expressed with any suitable language)
supporting the decisions associated to processors. This clear
distinction between these three aspects is propaedeutical in
promoting a high level of modularity allowing us to use the
framework based on EPML to support the behavioral per-
spective in several different application domains as we show
in this paper.

Another aspect which is essential for the wide applica-
bility of our framework is related to the expressive power
of EPML. The expressive power of workflow languages has
been subject to several investigations in the last few years,
these studies can be (and have been) applied to process mod-
eling languages as well. The main problem addressed in this
research field is the fact that there is not a formal metric to
evaluate the expressive power. One of the most success-
ful approaches is the one based on the workflow patterns
[5]; this is an analysis strategy that evaluates the languages
with respect to their ability to model a set of predefined
(sub)processes. Expressive power is a critical parameter
to increase the suitability of a process modeling language
(for the quite obvious fact that a language that cannot easily
model the interactions within a process surely poses large
limitations to its own usage). Most existing workflow lan-
guages, for example, cannot easily model a large number of
common real-world interactions. A workflow pattern-based
analysis shows that EPML supports all the 20 patterns de-
scribed in [5] (with the partial support of implicit termina-
tion because of a design decision); an extended pattern set
has been presented in [25], EPML support most of these
42 patterns with minor exceptions (like interleaved parallel
routing and critical section); extending the semantics of the

n

processor activity

Processors decorations

Basic elements

start end par

andjoin (with
threshold)

Processors decorations

Connections

edge exception
edge

main edge
in and

processors

sub-process

 event triggers

bang

Fig. 1. The components of a EPML diagram

language to capture all patterns is possible but that would
make the language itself more complex so, at this time, we
decided to not support them. In the design of EPML, in fact,
we addressed the workflow patterns but we also strive to
achieve a good compromise between simplicity and power.

3. EPML

EPML is a graphical process modeling language that en-
ables the representation of a process interaction model using
a directed graph in which oriented edges are used to define
the execution flow structure.

In this paper we call EPML specification a process mod-
eled with EPML. The specification can be a diagram or an
XML document. It is possible to translate an EPML dia-
gram in its XML representation and vice versa. A process
specification (in form of XML document) can be executed
by an engine; we refer to a specification in execution as a
process instance.

The purpose of this section is not to provide a detailed
description of EPML (interested readers can refers to [21])
but only to briefly introduce its main features.

The components of EPML are shown in Fig 1.
Two types of nodes exist in EPML: activities (repre-

sented with squares) and processors (represented with cir-
cles); subprocesses (represented with rounded rectangles)
really are just folding of subgraph with specific characteris-

29

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

tics. Activities are elements of computation: they can be ei-
ther external applications or work items allocated to a work-
flow participant (possibly a human actor). An activity can
have an entry edge, an exit edge, and, potentially, an ex-
ception edge. Processors are elements of coordination: they
implement the process logic possibly using a standard pro-
gramming language. A processor is like a gateway: it can
perform synchronizations and uses the process logic to per-
form routing decisions; as such it can have multiple entry
edges and multiple exit edges.

Each execution flow is represented by a token. A to-
ken contains the data associated to the flow and produced
and/or used by activities and processors. Moreover tokens
also contain identifiers that allow to implement flows syn-
chronization. Similarly to other formalisms (e.g. place-
transition networks), the set of tokens present in a given mo-
ment, and their location in the diagram, represent the state
of the system.

Each time a flow (i.e. a token) reaches a node, and its
associated entry condition, if present, has been satisfied, the
node activates (a new node instance is created). Concurrent
activations of the same node are possible inside the same
process.

In EPML, two types of edges exist : the standard edges
and the exception edges. The latter are activated only in the
case of anomalies (an exception raised by an activity or by
an unsatisfiable join associated to a processor). Activating
an edge means sending a flow over it, (i.e. putting the token
representing the flow into the edge’s destination node).

A processor can be decorated with the decorations shown
in Fig. 1; the entry decorations (and, join, join-with-
threshold) and the exit decorations (bang, par) can be used
for representing control-flow operations like join, split and
sub-flow creation.

In the following paragraphs we briefly describe the se-
mantics of every decoration that can be associated to the
processor nodes. The decoration(s) a processor supports
characterize(s) the type, and then the behavior, of the pro-
cessor itself.

The start processor and the end processor (obtained dec-
orating a processor with a start and end decoration, respec-
tively) represent the start point and the end point of a pro-
cess.

A processor with no decorations is a simple processor.
It manipulates the data received by the previous node(s) in
order to select the exit edge on which the execution flow
will be routed.

A processor with a bang decoration (bang processor) en-
ables to split a single process execution flow in parallel
flows, and route them on one or more exit edges. The exit
edges of a par processor can be labeled with a cardinality
notation (à la UML) indicating the minimum and/or maxi-
mum number of process flows that can be routed in parallel

A C

(a)

B

(b)

A CB

D

Fig. 2. Examples of how par and join processors can be
composed

on the edge(s). If such a notation is not present, no limita-
tion about the number of flows is imposed.

A processor with a par decoration (par processor) has a
behavior which is similar to that of a bang processor, with
the difference that the flows produced by this processors are
sub-flows of the entry flow, that can be later synchronized.
Technically this is accomplished by extending the token’s
identifier (which is a sequence) with new unique elements
shared among all the related sub-flows.

The goal of a processor decorated with a join decoration
(join processor) is to synchronize process flows (generated
by one or more par processors) that are executing in paral-
lel. The join semantics in EPML is quite sophisticated and
it significantly contributes to make powerful the EPML ex-
pressiveness. For this reason, we present the peculiarities of
the join semantics and discuss some examples. Intuitively,
we can say that a join processor activates when all flows
produced by the same instance of a par processor reach it,
or when at least one flow is arrived and the other flows pro-
duced by the same par processor instance cannot reach it
any more (for example because they have been canceled or
they have been routed elsewhere). The join processor re-
moves from the flow(s) the identifiers that have been used
to implement the synchronization and merges the sub-flows
in a unique flow.

The first example we discuss is shown in Fig. 2a. In
this graph, when the flow reaches the par processor A, an
instance of it is created and the associated process logic is
executed. Let us suppose that this instance generates two
flows marked with the same identifier, e.g. A1. Whenever
one of these flows reaches the activity B, a new activity in-
stance is created. When an activity instance completes, the
flow is routed on the exit edge (notice that the termination

30

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

order of the activities instances can be different from the ac-
tivation order). The processor C activates when it receives
both flows marked with A1 (that is when both executions of
B complete).

It is important to remark that the synchronization oper-
ated by the join processor is related to the sub-flows gener-
ated by the same par processor instance. For example, let us
suppose the par processor A activates twice; the first time it
produces two flows (with identifiers A1), while the second
time it produces three flows (with identifiers A2). In this
case the join processor activates both when it receives the
two flows marked with A1 and when it receives the three
flows marked with A2 (again, notice that these flow can in-
terleave in different ways).

We would like to point out that, according to the join se-
mantics, a join decoration is satisfied even in the case at least
one flow has reached the join processor and the other flows
produced by the same par processor instance cannot reach
the join processor any more. Cases like that can occur, for
example, in a process fragment like the one depicted in Fig.
2b. Let us suppose that the par processor A generates two
flows marked with the same identifier, e.g. A1. Both flows
arrive in the simple processor B, then it activates twice. Let
us suppose that one of the flow is then redirect to the join
processor C. This processor receives the flow but it cannot
activate, since another flow marked with A1 (that at the mo-
ment is in B) can reach it. In this situation B could:

• route the flow on the edge that conduces to the proces-
sor D;

• route the flow on the edge that conduces to the join
processor C;

In the first case, the join processor C can activate as soon as
the flow is sent on the edge; In the second case the join pro-
cessor C can activate as soon as it receives the flow. In both
cases, indeed, the activation of the join processor C is pos-
sible as no other flows generated by the same par processor
instance can reach the processor anymore.

In a EPML graph, nodes can be connected in a free struc-
ture; this implies that, in general, there is not a 1-to-1 rela-
tion between a par processor and a join processor. A join
processor can then synchronize flows coming from differ-
ent par processors. To this end, a join processor maintains a
list of par processors it refers to (we named this list par set)
and activates only when all process flows generated by the
par processor present in the par set reach the join processor.
The par sets are calculated by means of an algorithm based
on a network coloring mechanism (for sake of conciseness
the algorithm is not described in this paper). This algorithm
runs before the process specification starts to execute; the
par set of a node is the same for every process instance and
does not vary during the process execution. The rationale of
this algorithm is that the par set of each join processor must

a b c d

parset={a}parset={b}
a

b

c

parset={a,b}

(a)

(b)

Fig. 3. Examples of structured and unstructured par-join
composition

contain all par processors that are directly connected to it
(in the sense that there is a path between the two with no
other join processor in the between) or indirectly connected
(in the sense that there is a path between the two in which
each par processor has a complementary join processor later
in the path).

In Fig. 3 are shown two examples of structured and un-
structured par-join composition. In Fig. 3a the parset of
the join processor C contains the par processor B, and the
parset of the join processor D contains the par processor A.
This means that C synchronizes the flows produced by B
while D synchronizes the flows produced by A. In Fig. 3b
the par set of the join processor C contains both the par pro-
cessors A and B. This means that C synchronizes the flows
produced by both A and B.

A process decorated with a join-with-threshold decora-
tion (join-with-threshold processor) is a special type of join
processor. The threshold (i.e. the number n written inside
the decoration) indicates the number of process flows the
join processor has to wait before activating. The threshold
can be positive, negative or zero. If it is positive, the pro-
cessor waits for n flows; otherwise it waits for the number
of generated flows minus |n|. Note that, if the threshold is
zero, the joinWT processor waits for all the flows produced
by the par processor instance. When the joinWT decora-
tion can not be satisfied (i.e. no other flow can reach the
joinWT processor), the joinWT does not activate and the
flow is routed on the exception edge (if present).

A processor decorated with an and decoration (and pro-
cessor) implements a different kind of synchronization. The
and processor must have a main entry edge and can activate
only when the following conditions are satisfied: (1) flows
must arrive in all its entry edges; (2) incoming flows must

31

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

be sub-flows of the flow coming from the main edge. Only
the flow coming from the main edge is driven forward, the
other flows are simply discarded.

A processor decorated with an event decoration (event
processor) activates only if the entry decoration (if present)
has been satisfied and an event is arrived. Events can be
permanent or transient. Permanent event can be stored and
used subsequently; on the contrary transient events are lost
if the processor can not be activated at the moment the event
arrived.

EPML supports subprocesses. A subprocess is just fold-
ing of subgraph with specific characteristics. When an ex-
ecution flow enters in a subprocess, a new subprocess in-
stance is created; the entering flow is considered as a new
flow, that is all identifiers associated to that flow are ignored
(they will return valid only when the flow exits from the sub-
process). Processors inside a subprocess can add identifiers
to the flow, however those identifiers are valid only inside
the subprocess instance that created them, and are canceled
when the flow exits from the subprocess.

EPML has a cancellation construct that enables to define
a cancellation area. A cancellation area is a set of nodes and
can be graphically depicted with a dashed perimeter con-
nected to a node. When the node is activated, the flows and
the node instances inside the cancellation area are removed
or forced to terminate, respectively (in general, the flow that
activates the cancellation and the canceled flows have to be
generated by a common par processor instance).

EPML also makes available language elements that are
just syntactic sugar, this is the case for the messaging (or
asynchronous) activities and for timed activities and sub-
processes. Messaging activities are depicted like activities
decorated with the same glyph used to represent events in
event triggers. Despite their graphical appearance, these
really are processors whose process logic generates events
(by interfacing with the enactment engine run-time system).
When these events are used to communicate with compo-
nents that have to be coordinated the usage of an activity-
like element remarks the interaction with the functional per-
spective. A timed activity is an activity for which a deadline
is set as soon as its execution starts. If the execution does not
end before the deadline the activity is canceled. An excep-
tion edge can exit from a timed activities; when a time-out
occurs the entry flow is routed on this edge. Being syntac-
tic sugar a timed activity is internally expanded into regular
EPML elements that support the aforementioned semantics.
Timed sub-processes behave in a similar fashion.

As hinted above, EPML also includes elements related to
the informational perspective. In this perspective we find
two classes of data: production data and control data. Pro-
duction data comprise all data that are essential for an appli-
cation area. Control data can be either information related
to the internal state of a process or pointers to production

data (allowing process elements to access the information
that has to be processed). In EPML a data bag (an asso-
ciative map) associated to each token is used to manage the
control data. By using special shared and transient entries,
EPML provides a simple way to manage global data (that is
data that has to be shared among all the processes hosted by
an engine); process data (data that has to be shared by all
the instances of a specific process); instance data (data that
has to be shared within a single process or subprocess); and
transient data (data that is automatically removed after the
execution of an activity). For example process data has to be
set (and retrieved) using the $process entry automatically
added to the data bag of all generated tokens. This entry is
a new associative map shared among all the instances of a
specific process.

A formal semantics for EPML, based on a transition sys-
tem, is described in [21] (although it is not updated to the
latest version of the language). A formal semantics can be
the starting point for the formal verification of specific prop-
erties (reachability, liveness, etc.). It is our opinion, how-
ever, that this argument is of less importance with respect
to the ability to define the behavior of the language with no
ambiguities. Anyone that had the chance of working with
these languages to model complex processes went through
the “try and see what happens” approach: when interactions
get complex, the only way to be sure about the actual behav-
ior of the system is to enact the process in a testing environ-
ment (and, quite frequently, the observed behavior is not the
one expected by reading the manuals).

3.1. The EPML engine

A process modeled with EPML can be enacted by means of
a software component called EPML engine; it takes as in-
put an XML representation of the EPML specification and
it executes it. The EPML engine is a software component
written in Java 1.5 (and thus portable to most platforms).
It has been designed as an event-based architecture: it con-
sumes events and produces both events and state transitions.
An event can represent an external event, the termination or
the activation of a node instance. A state transition can en-
tail modifying tokens or moving them in the network.

In many situations, the engine is expected to interact with
human actors and/or software components. This implies the
integration with a software architecture designed for a spe-
cific application domain. This integration has been imple-
mented managing the events that the engine produces (out-
put events) and generating the events that the engine con-
sumes (input events). The input events can be start events,
external events, and end-activity events. The start event trig-
gers the execution of a new process instance; the external
events are those caught by an event processor and typically
are generated by the environment in which the process is en-
acted, and the end-activity events notify to the engine that an

32

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

activity has terminated its execution. The output events can
be termination-process events or start-activity event. They
notify the external component that the process is terminated
or that a new activity instance has been created and can start
its execution.

In our system, the event notification is achieved exploit-
ing the implicit invocation principle. To notify an input
event to the engine the software architecture invokes an en-
gine method that adds the event to its input-event queue; it
will be then examined and proper actions (e.g. processor ac-
tivation) will be taken. To notify an exit event to an external
component the engine invokes a method on it.

The activities are not part of the engine, but they are ex-
ternal components that interact with the engine by means
of a Java class that extends an ActivityWrapper. This
class has a method (named run) that is invoked by the en-
gine to start the activity execution. The run method contains
the code that enacts the activity execution. Such execution
can imply, for example, either the invocation of an external
software component or the addition of a task into an actor
task list. When the activity has terminated its execution, the
ActivityWrapper produces a termination-activity event
and passes it to the engine.

The architecture just described is very flexible as it en-
ables the interaction among most kinds of external com-
ponents. The engine integration in an existing architecture
does not require any modification in the engine itself, but
can be achieved by extending the ActivityWrapper class
and putting into it the code that enables the interaction with
the external component.

The activities execution is coordinated by the processors
and specifically by the process logic. Technically speaking,
the process logic can manipulate both production and con-
trol data. In some context, the process logic could also be
required to decide which actor(s) the activity(-ies) has(have)
to be assigned to. Such feature is typically related to the
resource perspective in a workflow system. It can be inte-
grated in EPML in a way transparent to the engine, that is
specifying, in the token’s data bag, which actor is in charge
of executing the activity.

The process logic has to be specified by means of a suit-
able formalism. This could be a generic programming lan-
guage, a scripting language or a language based on XML
(e.g. XQuery or XSLT), provided that specific adapters im-
plementing proper bindings are provided to interface to the
engine. It is also possible to specify the name of a Java
class implementing the process logic. The engine makes
available to the process logic mechanisms for manipulating
the tokens’ data bags; the process logic has to inform the
engine about which exit edge(s) has(have) to be activated.

loan
approver

loan
assessor

 yes

no

 low
 high

risk

less than 10K? set up reply data

Fig. 4. A loan process

4. EPML.WS

EPML.WS is a software architecture for web services or-
chestration based on EPML. In order to support this specific
applications class EPML.WS complements EPML with
components that address the interaction with synchronous
and asynchronous web services and allow a EPML-enacted
process to be accessed as a web service.

EPML.WS is designed to be hosted inside a JEE archi-
tecture supporting JSR 109 (Implementing Enterprise Web
services) and JSR 181 (Web Services Metadata for the Java
Platform).

A very thin layer of software adapters have been provided
in order to create the EPML.WS architecture. This includes:

• an adapter to transform incoming web services invo-
cations (SOAP messages) into external events that are
feed to the EPML engine;

• an activity wrapper (ActivityWSWrapper) to imple-
ment activities execution as web services invocation;

• a process logic wrapper (WSXQueryLogic) to use
XQuery for routing decisions and for process data
management.

Web services that have to be orchestrated are mapped into
activities and the data perspective is managed using the sim-
ple integrated data perspective of EPML (that is using the
data bags associated to the tokens). As usual, with EPML,
the logic of the processor can be implemented with several
languages. Given the fact that the data model used by web
services is based on XML we provided a specific process
logic adapter that allows to use XQuery (WSXQueryLogic).
This adapter first creates the XML document against which
the provided XQuery expression has to be run, it executes
the XQuery expression and then parses the generated output
to activate one or more exit edges and to modify the token’s
data bag (used to store process-related data and parameters
for subsequent web service invocations).

We now use an example to give a basic idea of how to set
up a web services orchestration with EPML.WS.

33

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

Consider the process depicted in Fig. 4. The activities
loan approver and loan assessor are external web
services that participate in a basic loan approval process.
The process is initiated with the event associated to the start
processor; in our case this event has been mapped to an in-
coming web service invocation by using the aforementioned
adapter. The less than 10k processor has two duties:
implement a routing decision (activating the outgoing yes

or no edges) and prepare the parameters needed in the in-
vocation of the two subsequent web services (associated to
the loan assessor and the loan approver activities).
Specific entries of the tokens’ data bag are used to store in-
coming SOAP request messages and to set up invocation pa-
rameters. less than 10k has then to access the data asso-
ciated to the SOAP request received at the beginning of the
process to implement the routing decision and has to pre-
pare the parameters for the forthcoming invocations. less
than 10k has been set up to use WSXQueryLogic and it
uses the same XML document associated to the original in-
coming SOAP request for the XQuery (element properties
in the XML process description are used to specify how the
XML document has to be produced from specific entries in
the token’s data bag; in this case a special $wsin elements
containing the SOAP message of the incoming call). The
XQuery expression, in this case, is as follows:

<xq_result>
<edges>
{
if(data(//amount) > 10000)
then <edge>yes</edge>
else

<edge>no</edge>
<wsout>

<param name="name">
{data(//name)}</param>

<param name="first name">
{data(//firstName)}</param>

<param name="amount">
{data(//amount)}</param>

</wsout>
}
</edges>
<data>
<entry name="name">

{data(//name)}</entry>
<entry name="first name">

{data(//firstName)}</entry>
<entry name="amount">

{data(//amount)}</entry>
</data>

</xq_result>

Once the query has been executed WSXQueryLogic

parses the result in order to extract the information about
the outgoing edge that has to be activated (this information

is in an edge element), stores in the token’s data bag all
the name-value pair contained in data and sets up a special
entry, $wsout in the aforementioned data bag (that is used
to set up the parameters of the invocation of either load
approver or loan assessor), by analyzing the wsout

element.
If we assume that the body of the original SOAP request

is as follows (namespace references have been omitted for
clarity):

<body>
<firstName>John</firstName>
<name>Doe</name>
<amount>1000</amount>

</body>

the previous XQuery expression produces:

<xqresult>
<edges>
<edge>no</edge>

</edges>
<data>
<entry name="name">Doe</entry>
<entry name="first name">John<entry>
<entry name="amount">1000</entry>

<data>
<wsout>
<param name="name">Doe</param>
<param name="first name">John<param>
<param name="amount">1000</param>

</wsout>
</xqresult>

The information in this XML fragment is then processed
as described before, activating the no outgoing edge and
putting the name, first name and amount data both in the
data bag (these are used later by the reply activity) and
in the special entry used to set up the invocation parame-
ters for loan approver. Before the process completes,
the set up reply data processor, linked to the end pro-
cessor, sets up (in the data bag) a special entry that is used
by the web service adapter to create a reply message to the
original process invocation.

EPML.WS poses itself as an alternative to systems based
on WSBPEL. With respect to these systems EPML.WS has
the following advantages:

• graphical notation;

• higher expressive power;

• ability to implement complex process logics without
relying on external components.

It should be noticed that WSBPEL has not a “native”
graphical notation but there are specific guidelines about the

34

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

usage of BPMN to model BPEL processes. From a practi-
cal point of view, however, the mapping of a process mod-
eling language into another is a very complex issue. The
details for the mapping of BPMN into BPEL, for exam-
ple, are largely incomplete and it is well possible to create a
BPMN diagram for which the translation into BPEL is un-
determined. Even when using techniques which are more
advanced with respect to those presented in BPMN’s spec-
ifications, the resulting BPEL code (when it possible to ob-
tain it) is often a bad example of “spaghetti BPEL”, which
does not only pose a readability problem, it also creates
monitoring problems (at which conceptual point of the pro-
cess is the program executing this piece of spaghetti BPEL?)
and modification tracking problem (modifications in the re-
sulting BPEL code can hardly be reported into the BPMN
diagram). For an in-depth analysis of this problem the inter-
ested reader can refer to [17]. These kind of problems are
not only limited to the BPMN to BPEL mapping, but are
usually found whenever a transformation between two pro-
cess modeling languages have to be performed. It is easy to
realize this is the case considering that most languages have
different expressiveness (as defined in [5]), so most of the
times a transformation has to map interaction patterns that
are easily supported in the original notation and not easily
(if at all) available in the target one.

To test EPML.WS against BPEL we set up a simple ex-
periment. We used the very same process described above
(which is a sample from the ActiveBPEL [1] distribution)
we “unplugged” the BPEL engine and we replaced it with
EPML.WS obtaining a working orchestrated process pre-
senting the very same behavior and the very same (web
service-based) interface. Another interesting part of this
experiment was the analysis the effort needed to setup a
BPEL-based solution and the EPML.WS one. While we did
not run formal tests to access a vague parameter like “effort”
our experience with computer science students shows that
the same task (modeling a process of average complexity)
can be accomplished using EPML.WS in about one tenth of
the time with respect to BPEL, factoring out the time needed
to address the link relationship problems (that are addressed
in a very complex, yet powerful, way by BPEL and are not
addressed at this time by EPML.WS).

EPML.WS has been mainly designed as a proof-of-
concept. A working prototype has been implemented but
it still has a few limitations (for example bindings have to
be programmed by hand). Nevertheless EPML.WS is the
proof that it is possible (and relatively easy) to design, and
implement, a software architecture for a specific application
domain in which advanced coordination mechanisms are re-
quired to govern interactions among distributed actors.

5. EGO

EGO (E-Game Orchestration) [20] is a software platform
to deliver e-learning games based on EPML. EGO allows
multiple users to be engaged in collaborative or competitive
games by using a web-based interface. With EGO, games
with various interaction patterns among the actors can be
modeled, such as the ones occurring in turn-based and
concurrent games (with or without synchronization steps).
Given the large amount of possible interactions that can take
place among actors, games are good candidates as case stud-
ies to test coordination models. One of the basic concepts
in EGO’s game modeling is the interface (in the sense of
user interface). In EGO an interface is an activity assigned
to an actor. The idea is that a game can be assimilated to
a workflow system in which the interaction of players with
their gaming interface corresponds to the execution of work
items assigned to actors. By making their moves (using the
interface) the players accomplish the work items. One of
the main differences of this system with respect to classical
workflow systems is that a single interface is usually as-
signed to the actors (otherwise a player might have to inter-
act with multiple user interfaces to participate in the game).
This problem can be solved with two different approaches.
The first one is to explicitly cancel the activities that have
been assigned (and not accomplished) to an actor right be-
fore assigning a new one. This solution entails no modifi-
cation to the semantics of standard workflow languages but
the specification becomes soon cluttered with cancellations.
A second solution, the one we adopted, is letting the upper
layer in the software architecture to take care of notifying
the engine that the an actor finishes a previously assigned
work item whenever a new work item is assigned to him by
the engine. Please notice that while this solution can be per-
ceived as a violation of the semantics of EPML this is not
actually the case. The semantics that is violated is that of a
workflow system, something that EPML is not. In EPML, in
fact, the resource perspective is out of scope, since the focus
is in the process perspective. Tokens’ data bags can be used
to transfer information related to the resource perspective,
but this concept is not intrinsic to EPML.

As stated above EGO is a web-based platform and it has
been designed within the JEE framework. Its structure is
quite simple: the engine interacts with a web application
hosted in a JEE servlet container. The interaction takes
place by means of input and output events. The web ap-
plication is composed by two servlets (Dispatcher and
Process) and a software component that captures the start-
activity events produced by the engine and maintains the as-
sociation between actors and activities. The Dispatcher

servlet queries this software component in order to obtain
the activity that has to be assigned to an actor and then dis-
patches the associated interface to the player. When a player

35

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

wait

play

wait

wait

Fig. 5. The beginning of a simple turn-based game

submits its move, the move is processed by the Process

servlet that produces an end-activity event embedding into
it the data coming from the request sent by the player’s
browser. The event produced is then notified to the engine.

In Fig. 5 the first steps of a turn-based games are mod-
eled. One player have a master role and is in charge of set-
ting up the game environment for the other players. This
player starts the game sending a message that triggers the
creation of a new process instance. Other players join by
sending a message that triggers the new player proces-
sor. The wait asynchronous activities are used to notify
the players they have to wait for the other players to join
before the game can proceed. Asynchronous activities are
used to dispatch web pages for which no user input has to
be reported back to the process. Once all the players have
joined the game the turns can begin. During the turns one
player is associated to the play activity (which is not an
asynchronous activity, since the result of the play has to be
reported to the process) while all the others players receive
the wait interface. Once the play has been performed a new
turn can start or the game can proceed with other phases.

EGO has been used to model several games and it is being
currently used for e-learning purposes (with business simu-
lation games). We also developed a version that is able to
interact with AJAX-based presentation technologies.

6. PROCESS-AWARE WEB APPLICATIONS WITH
EPML.WEB

EPML.WEB [23][24] is a platform (a model and a reference
architecture) for the design and development of process-
aware web applications based on EPML. The use of EPML
in the context of process-aware web applications is moti-
vated by the consideration that such applications should be
able to support not just simple navigation and data access
activities but (potentially complex) business processes. In
this respect, we propose to model the business process with
EPML and extend the engine architecture with software
components that interact with the web navigational struc-
ture of the web application.

submit
proposal

assign
reviewers

make
review

cancel
review

decide

applicant coordinator reviewer

Fig. 6. A review process in EPML

While navigating in the web application, users can access
pages that are not related to any process or can visit process-
related pages. We refer to the former as standard navigation
mode and to the latter as process flow mode. To enter pro-
cess flow mode the users follow specific process-aware hy-
perlinks. Process-aware hyperlinks can be used to create
a (sub)process, to resume a previously started process that
has been left (probably by using navigation links that drove
the user outside the process flow), or to join an existing pro-
cess created by another actor. In process flow mode, the
sequence of the pages that are dispatched to the users may
depend on the control flow of the process rather than on the
navigation structure of the web application. Specifically, in
our approach, the pages in process flow mode correspond to
the tasks assigned to the users by the process.

Consider the process depicted in Fig. 6: it is a high level
model of a simple project grant review process. In this di-
agram, standard EPML elements have been enriched with
stick figures in order to model an elementary resource per-
spective. Applicants submit their projects for review, the
coordinator assigns the actual reviews to a given number
of reviewers, the reviewers make the reviews. A review is
actually composed by two steps: a first evaluation is given
considering an anonymous subset of the documents in the
proposal, a second evaluation is given considering all the
information related to the project, including the applicants’
identity. While waiting for the reviewers to complete their
work, the coordinator can decide to cancel a review (be-
cause it is delaying the process or for other reasons). When
all the reviews have either been completed or canceled, the
coordinator decides to reject or to fund the project. Please
notice that the modeled process is a highly simplified ver-
sion of what actually takes place in the real word. EPML
has been designed with an high expressive power right be-
cause the authors acknowledge that real world (business)
processes are far more complex than what academic papers
seem to suggest. Nevertheless, given the focus of this work,
an oversimplified example is reasonable.

To decide if a proposal should be funded or rejected, co-
ordinators have to join the flow of the process generated by

36

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

First
review
step

Second
review
step

Fig. 7. The make review sub-process

the applicants when they submitted a proposal. In order to
do that from within the web application, coordinators have
to follow a process-aware hyperlink that drives them to a
page related to the decide activity. This page should be
available only when the decide activity has been assigned
to the coordinator and it is a reasonable design strategy to
prevent the generation of process-aware hyperlinks related
to processes for which no activity is assigned to the current
user. In the specific case of the aforementioned example,
the decide hyperlink should be available from the proposal
details page only when all the reviews have either been re-
ceived or canceled. In general only process-aware hyper-
links used to start a new process can be always available.
Even hyperlinks used to start sub-processes are not gener-
ally available (in the example, the make review sub-process
can be started by reviewers only when they have been as-
signed the review of a proposal).

Consider now Fig. 7: it depicts the make review sub-
process. As discussed above this sub-process is composed
by two steps and it is very well possible that reviewers leave
the sub process when finished the first step, before com-
pleting the second. As a consequence the make review

hyperlink that is available from the pending reviews page
can lead reviewers to the forms associated to the first or to
the second review step depending on the state of the make
review sub-process for that specific proposal.

Note that the web application framework must be able to
interface to the process enactment engine in order to query
the activities assigned to specific users and to signal the
completion of activities. From the modeling point of view,
the following issues have to be addressed:

• the modeling of process-aware hyperlinks;
• the modeling of non-navigational sequences of views

in process-flow mode and
• the modeling of associations between the pages in the

navigation model and the related activities in the pro-
cess model.

In Fig. 8 is depicted a model for the make review (sub) pro-
cess that uses a simple extension of a WAE [10] navigation
diagram (a stereotyped UML class diagram that is part of
the user experience model) and a EPML diagram. We de-
cided to use WAE for mainly two reasons: first, to remain
agnostics with respect to other web applications develop-
ment methods like [9, 15, 26, 27] that have been extended

<<p.screen>>
First review

step

<<p.screen>>
Second review

step

<<input form>>
First review

form

<<input form>>
Second review

form

<<screen>>
Confirm first
step grades

<<screen>>
Confirm second

step grades

<<process>>
Make Review Process

First
review
step

Second
review
step

<<screen>>
Proposals

<<process link>>

<<process link>>

<<input form>>
Confirm first

step

<<input form>>
Confirm

second step

yes yes

nono

Fig. 8. Modeling the review sub-process

in order to model process-aware applications and, second,
because it is a quite “lightweight” method that easily al-
lows simple extensions. This is mostly because WAE is not
targeted at model driven development and, thus, the design
models are not overloaded with details.

From this example it is easy to see how the aforemen-
tioned issues can be addressed. Process-aware hyperlinks
are modeled with navigational associations that connects to
a process-stereotyped class. In order to remark the specific
behavior of these associations we also used the process link
stereotype, but it is not really essential. The p.screen stereo-
type is used (for inner classes inside a process-stereotyped
class) to mark the entry points of sub-sequences related to
an action in the EPML model. The active sub-sequence can
be easily inferred since the name of the p.screen-stereotypes
classes correspond to the names of the action in the pro-
cess model. When a navigational subsequence in process-
flow mode returns the control to the process-flow, a navi-
gation connection is made between the last screen (or its
aggregated forms) and the outer process class that contains
it (as in the two input confirmation forms of the example).
Process-stereotyped classes admit only one exit association
that leads to the subsequent page (or process) that is visited
when the (sub)process ends. In our example this association
too is process link-stereotyped.

As far as implementation strategies are concerned, sev-
eral options are available, depending on the used web appli-
cation framework. The solution we present here is based on
Java EE (which is a natural choice, since the EPML engine
is written in Java) and the Struts MVC framework; similar
solutions, however, can be implemented with different tech-
nologies. Basically, the functions that have to be supported
by the framework in order to address the issues related to
process-aware web applications that we mentioned above
are:

• implement process-aware links to create, resume or
join a process;

37

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

• dispatch the correct sequence of pages in process-flow
mode;
• hide process-aware links that would lead to processes

in which there are no actions (or there is not a specific
action) assigned to the current user.

When using a MVC framework like Struts these issues
can be easily addressed by writing specific process-aware
controllers that, interfacing with the engine, dispatch the
correct view given the current user (in our implementations
we assume this information can be extracted from the user’s
session data) and the process the link points to. In the case
of processes in which more than one action can be associ-
ated to the same user (this is an event that does not show
up in our example) an additional parameter specifies which,
among the available actions, has to be used as a starting
point for the current flow. Process-aware hyperlinks can
then be created simply pointing to a process-aware con-
troller. The same controller can be used to dispatch the cor-
rect sequence of pages in the process flow. Finally, generic
parts of a web page can be hidden by using a conditional
custom tag that queries the engine about the availability of
an action for the current user in the target process.

The management of the data perspective introduces some
subtle issues and, while it is slightly out of the main topic
of this article, we are going to discuss possible solutions.
The main problem, in this context, is that almost every soft-
ware system has some kind of data perspective; this is the
case for EPML too, since some kind of data management
is needed at least to allow the processors to take decisions
when needed. It turns then out that we are trying to mix two
sub-systems that have two distinct data perspectives. Dupli-
cating the application data in both perspectives is unfeasi-
ble and error prone, so reasonable solutions are: using one
of the two data perspectives and adapting the other system
(if possible) to interface to the selected data management
solution or using an external sub-system that addresses the
data perspective and adapting the remaining sub-systems to
interface to it. The correct solution depends on the specific
overall architecture. In our case, for example, if we are deal-
ing with a large business process that interfaces with sev-
eral systems and is just partially participated using a web
application, then using the existing data perspective and de-
sign the web application in order to interface to it is the
better solution. On the other side, if we are dealing with a
fully web-based business process, using the data perspec-
tive that is managed by the web application framework (in
the case of Java Enterprise Edition, session data for the web
tier - persistent data via EJBs or Hibernate for the business
tier) is a feasible solution. Assuming the second scenario in
our example application, Java Enterprise Edition-based so-
lutions are used to address the data perspective: then, in this
case the process logic of the EPML processors has to be de-
signed so that it can access the web framework data (in other

words the processors in EPML have to be able to interface to
HTTPServletRequest-accessible data - query strings, form
submitted-data, session data, etc. - and to the model com-
ponents). Designing this solution is trivial using Java En-
terprise Edition and the EPML engine in which we simply
have to add the relevant references into the data bag of the
token associated to the current flow each time a terminate
activity event is dispatched to the engine (typically when a
process-aware controller is activated as a consequence of a
process-related interaction returning the control to the pro-
cess flow). In the project proposal review application this
happens, for example, when the reviewers confirm the first
review step. A processor positioned between the First re-
view step and the Second review step activities (which is
actually present in our example but is not shown in the dia-
gram for conciseness) takes decisions about outgoing flows
by accessing the form data filled by the reviewer. In our pro-
totype, to better separate the two sub-systems, the relevant
web framework data are used to create an XML document
that is put in the flow data. The processor uses XQuery as
seen before for EPML.WS.

7. EPML.SIM

Business Process Simulation (BPS) is widely acknowledged
as an effective technique to increase the chance for success
of Business Process (re-)Engineering projects and, in gen-
eral, to drive strategic business decisions.

In this context, we have designed and implemented
EPML.SIM, a tool for modeling and simulating processes
based on EPML. In particular, we propose to use EPML for
modeling the control-flow perspective of a process, while
ancillary (potentially pluggable) software systems can be
used to support the remaining perspectives and to drive the
discrete event simulation. This approach allowed us to de-
sign an effective simulation tool with a minimal footprint.

7.1. Architecture of the simulator

The simulation tool is built around three main components:
the EPML engine, a driver with the responsibility of man-
aging the (simulated) events (events generated by the en-
vironment, end task events, timeouts, ...) and a pluggable
resources model. The driver also initializes the engine by
specifying the process model to be enacted, its initial state
and how the process logic and the code of the activities have
to be overridden for simulation purposes. The tool, in fact,
assumes that the EPML model is a generic model, possi-
bly designed to support the enactment of the process in a
real software system (and, in fact, a snapshot of the state
of a running process can be used as the simulation’s initial
state).

The original process logic (that is the code associated to

38

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

the processors) could reference data and components that
are not available during the simulation. As an elementary
example, consider a processor that implements a routing
decision by analyzing the data produced by a previously
run activity. In this case the processor’s code can be over-
ridden for simulation purposes with a pre-defined compo-
nent that performs the decision on a random basis given
a probability for each of the outgoing branches, thus ob-
taining the behavior of most of the aforementioned simu-
lation tools. If a more detailed modeling is required, the
processor’s code can also be overridden by a code snip-
pet (EPML directly supports all the languages compliant
with JSR 223 which includes Java, BeanShell, Groovy,
JavaScript, Python, Ruby, TCL, XPath and others), even
a code accessing the cell of a spreadsheet in order to take
its decision (we actually used this solution in a simulation
where a detailed financial model of the organization was
available).

As stated above, also the code associated to the activities
can be overridden. Pre-defined activities returning only du-
ration informations on the basis of a probability distribution
(chosen among constant, uniform, normal, gamma and ex-
ponential) or by historical data stored in a text file or in a
column of a spreadsheet, are available. If a more detailed
model is required, any kind of code can be used (as seen be-
fore for the processors), allowing the interaction with other
business models (or with other software systems). Using
this technique we can address the functional perspective.

The data perspective is addressed by using the basic data
handling capabilities provided by the EPML engine. In
EPML tokens are used to keep track of the status of a pro-
cess. The EPML engine allows tasks to access a data bag
(implemented as an associative map) associated to the to-
ken(s) that activate the task. The data bag is also used to
carry information about the items processed during the sim-
ulation. This is implemented by specifying which events
are used to generate new items (for example the event rep-
resenting the arrival of a new request to be processed can
be tagged as a request generator). Tokens enabled by these
special events are tagged (by adding the relevant informa-
tion to their data bag) and are subject to statistical recording
by the driver component.

The organizational perspective is implemented by a plug-
gable component (a Java class implementing a specific in-
terface). The driver queries this component when a new
activity has to be executed in order to obtain the needed re-
sources (and to know their costs). The component is also
notified when a resource is (or more resources are) released
(because of the end of an activity). A basic component is
provided which implements a simple role-resources matrix
combined with an availability matrix. Yet again, if a more
detailed organizational model is required a new Java class
implementing the details of this specific model has to be

Check for
complete-

ness

Request
additional

info

Perform
checks

Make
decision

Notify
acceptance

Notify
rejection

Deliver
Credit Card

Receive
review
request

Fig. 9. The credit card application process

created. Notice, however, that this solution does not sup-
port a resource model with preemption (that is a resource
model in which a resource can be reclaimed by a high pri-
ority task while performing a lower priority one, which is
canceled). This is because in EPML.SIM the canceling of a
task is possible only from the control-flow perspective, that
means that when such a behavior is required it has to be im-
plemented in the process model (by using the cancellation
support of EPML).

7.2. Simulating a Business Process with
EPML.SIM

In this section we show how a Business Process can be ef-
fectively simulated by using EPML.SIM. To this end we
use, as an example, the credit card application process de-
picted in Fig. 9 (inspired to the example from [29]).

The behavior of the modeled process is quite straightfor-
ward; the event associated to the start processor represent
a new incoming application and is used to generate a new
instance of the process; the clock icon associated to the
Receive review request represents a time-out: if the
activity is not performed within a specified amount of time
the path exiting from the clock icon (an exception path) is
activated.

This diagram corresponds to an XML file (that can
be produced with EPML modeler, a graphical editor cre-
ated with Adobe Flex). In this example we call this file
process.xml. This XML file, along with another XML
file (simulation.xml) specifying which (and how) proces-
sors/activities have to be overridden and, optionally, with
an initial state description, are used by EPML.SIM. In
our example we suppose that the activity Check for

completeness is characterized by a duration depending
on a normal probability distribution. We then override the
behavior of this activity in simulation.xml with the follow-
ing XML fragment:

<activity activityId="CheckForCompleteness"

39

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

classname="epml.simulator.executors.
ProbabilityActivityDuration">

<param name="distribution">normal</param>
<param name="unit">minute</param>
<param name="mean">5</param>
<param name="stdDev">2</param>

</activity>

where ProbabilityActivityDuration is the name of a
pre-defined Java class that returns the duration of the activ-
ity by using a probability distribution (normal, in this case,
with mean 5 and standard deviation 2).

For the subsequent processor (implementing a choice be-
tween two possible paths in the process structure) we can
use a similar approach by redefining it in simulation.xml as
follows:

<processor processorId="choice1"
classname="epml.simulator.executors.

ProbabilityProcessSwitch">
<param name="e6">.1</param>
<param name="e7">.9</param>

</processor>

where ProbabilityProcessSwitch is the name of a pre-
defined Java class that implements a random choice between
the outgoing edges, listed as parameters, associated to dif-
ferent probabilities (e6 and e7 are the ids of the outgoing
edges as defined in process.xml).

By using a similar approach for other activities and pro-
cessors, and by setting up the details of the built-in re-
sources model, it is possible to create a simple simulation.
Please notice that, at the time of this writing, the file sim-
ulation.xml has to be edited by hand. An extension to the
EPML modeler tool to set up the details of a simulation is
in the works.

As stated above, however, EPML.SIM allows to produce
more accurate simulations where more detailed models are
available. As an example consider the Make decision ac-
tivity and its subsequent processor. We could override the
activity using the ProbabilityActivityDuration and
the processor using the ProbabilityProcessSwitch as
seen above. In this case, however, we suppose we want the
decision being implemented by the action dependent on a
parameter representing the request rate (calculated in an-
other point of the process and added to the token’s data bag).
We can use two approaches: override the code associated to
the processor with an ad hoc script fragment or override the
code associated to the activity. In this second case, assum-
ing that the processor implements the decision by analyzing
the information returned by the Make decision action, we
have to override the action so that it returns the same values
assumed by the processor. This latter approach is best suited
for when we use a process model created for the actual en-
actment of the process. An example is as follows:

<activity activityId="MakeDecision"
classname="epml.simulator.executors.
ActivityInstanceExecutor">

<param name="language">BeanShell</param>
<param name="code">
<![CDATA[
Double requestRate = ((Double)

(((Map)tokenData.
get("simulation")).
get("requestRate"))).doubleValue();

boolean accept = requestRate > 10;
((Map)tokenData.get("transient")).

set("return", new Boolean(accept));
((Map)tokenData.get("simulation")).

set("duration", new Double(10));
]]>

</param>
</activity>

where transient is a special entry in the token’s data bag that
is used for information that can be discarded when a new
activity is executed and is typically used to store the return
values of an activity. The simulation entry is also a special
entry that is used to carry information related to the simula-
tion (in this case for accessing the previously calculated re-
quest rate and for setting the simulated duration, in seconds,
of the activity). Please notice that the code in the example
may look complex at first sight because of the way Java (and
thus BeanShell) accesses maps; language verbosity aside it
just sets and retrieves values from (nested) associative data
structures.

Once the models have been set up, the simulation can
be launched. To this end an horizon has to be decided.
In EPML.SIM the analyst can decide to stop a simulation
after a specified amount of (simulated) time, at a specific
date/time, after having processed a certain amount of items
or by using a generic script that is called after the process-
ing of each event (when the script returns a false boolean
value, the simulation ends). Support for ending a simula-
tion when a service level agreement (related to the duration
of the activities, to the utilization of the resources or to the
costs) is not met is on the works. At the time of this writ-
ing EPML.SIM does not support animations to give visual
feedback on the simulation’s progress. At the end of the
simulation a report is produced. The report can be either in
plain text format or in Open Office Calc format (which in-
cludes charts and is formatted in such a way that it can be
used to easily generate a PDF report). A fragment of a sam-
ple report is depicted in Fig. 10. In a report are shown the
simulation parameters and results, such as the total simula-
tion time, the total cost, the throughput, how many activities
(or items) have been simulated and, for each activity, its cost
and the maximum and the average queue length.

40

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

36,000

Total cost: 11,617,540

Total items processed: 325

Throughput (number of items processed per hour): 32.50

Activity Name Cost Avg queue length Max queue length
40.800 3,38 7

1.625.000 19,46 45
14.900 0 0

3.113.240 34,38 56
1.148.000 13,36 25

344.400 18,32 34
4.875.000 12,19 34

456.200 5,64 13

Total simualtion time (in secs):

NotifyRejection
PerformCheck
RequestReceiveInfo
CheckForCompleteness
DeliverCreditCard
NotifyAcceptance
MakeDecision
ReceiveReviewRequest

Activities Costs

NotifyRejection
PerformCheck
RequestReceiveInfo
CheckForComple-
teness
DeliverCreditCard
NotifyAcceptance
MakeDecision
ReceiveReview-
Request

N
ot

ify
R

ej
ec

tio
n

P
er

fo
rm

C
he

ck

R
eq

ue
st

R
ec

ei
ve

In
fo

C

he
ck

Fo
rC

om
pl

et
en

es
s

D
el

iv
er

C
re

di
tC

ar
d

N
ot

ify
A

cc
ep

ta
nc

e

M
ak

eD
ec

is
io

n

R
ec

ei
ve

R
ev

ie
w

R
eq

ue
st

0

10

20

30

40

50

60

Avg queue length

Max and Avg Queues Length

Q
ue

ue
 le

ng
th

Fig. 10. A report produced by EPML.SIM

8. RELATED WORK

In the last few years, a large spectrum of workflow lan-
guages and process modeling tools ([14, 6, 4, 19, 16], to
name a few) have been proposed from the industry and the
academia. Most of these solutions use different strategies
to model a process and each of them shows specific strong
and weak points, making hard to compare the different so-
lutions. We propose to use expressive power and suitabil-
ity as reasonable metrics to this end. As far as expressive
power is concerned most of the proposals show strong lim-
itations. For example, on the basis of our hands-on experi-
ence, common real-world processes turn out to be very hard
(if at all possible) to model with most existing languages
without modifying its semantics or producing an overmuch
complex specification. Suitability too is related to expres-
sive power but it is also related to the ability to adapt to
different application domains. This is often related to the
ability to be integrated in different software architectures.
Some of the most recent proposals (like YAWL and Orc [14]
- all coming from the academia) try to address the problem
of expressive power by implementing all (or most of) the
classic workflow control-flow patterns (the first language
to claim to support all the patterns is YAWL, not surpris-
ingly designed by the same research group that originally
defined the patterns, what is surprising is that this claim is
still not supported by a proof). YAWL is a powerful lan-
guage and comes with a formal semantics (that is actually
used to check specifications properties) and a reference im-
plementation. Its main limits are related to its suitability
outside the workflow domain, both because of its Petri nets-
inspired model, and because of its engine architecture.

Another proposal that deserves to be referenced is
BPMN. BPMN is a OMG-endorsed specification that is re-
ceiving a great deal of attention by the industry. This is
mostly due to the fact that a large number of process based
applications, and a large number of software products to de-
velop them, already exists. Most of these applications are

related to business process management (ERP, workflow,
supply chain management) and they are urged to support
a high degree on interoperability. In this context a process
modeling-related standard is badly needed. The problem
with BPMN is that it tries to address too many issues. It
presents itself as a tool for high level - conceptual process
modeling that can be used to outline a process without defin-
ing its detailed semantics but it also claims to support MDA-
like translations into executable specifications (in this case
using BPEL). But in the article we already pointed out the
limits of this approach. It is our opinion that BPMN is a
good modeling notation (the ”UML for processes”) but it
falls short when it comes at programming in the small.

9. CONCLUSION AND FUTURE WORK

The wide array of applications, belonging to different do-
mains, that we designed and implemented by using our
EPML-based framework witness that a modular approach
to process-aware application is possible from both a design
and an implementation point of view. This implies that the
large number of existing process modeling languages and
systems cannot be justified only by the large spectrum of
application domains. In our opinion this is mostly due to
the lateness of the academia with respect to the needs of
the industry: the latter, lacking strong indications from the
former, went its own way proposing a large number of in-
herently limited tools. The separation of concerns, in the
form of a clear distinction between computation, interaction
model and process logic, that is at the roots of EPML, pro-
vided a solid framework for achieving a high level of mod-
ularity. We hope that these concepts can help in defining
the priorities around which next generation process model-
ing languages should be designed (or around which current
languages should evolve, as in the case of a possible forth-
coming executable BPMN specification).

Our work on EPML continues. While the language has
reached a good level of maturity and no major changes are
foreseeable the runtime-system and the support tools are
subject to a continuous evolutions. For example: while a
graphical modeling tool based on Adobe Flex is already
available, another tool based on Eclipse is on the works.
As for the runtime-system: the engine supports state sav-
ing/restoration by using a relational database as a backend;
checkpointing and recovery is still not fully implemented.
These are just examples of a long todo list that never shrinks
as new possible applications of our framework continue to
emerge.

10. REFERENCES

[1] Activebpel open source engine project. http://
www.activebpel.org/. Accessed January 2009.

41

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

[2] BPELJ: BPEL for Java technology. White
paper. Available at http://www.ibm.
com/developerworks/library/
specification/ws-bpelj/. Accessed
January 2009.

[3] Business Process Execution Language for
Web Services version 1.1. http://www.
ibm.com/developerworks/library/
specification/ws-bpel/. Accessed January
2009.

[4] W. M. P. V. D. Aalst and A. H. M. T. Hofstede. YAWL:
Yet Another Workflow Language. Information Sys-
tems, 30(4):245–275, 2005.

[5] W. M. P. V. D. Aalst, A. H. M. T. Hofstede, B. Kie-
puszewski, and A. P. Barros. Workflow Patterns. Dis-
tributed and Parallel Databases, 14(14):5–51, 2003.

[6] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch,
F. Curbera, M. Ford, Y. Goland, A. Guizar, N. Kartha,
C. K. Liu, R. Khalaf, D. Konig, M. Marin, V. Mehta,
S. Thatte, D. van der Rijn, P. Yendluri, and A. Yiu.
Web Services Business Process Execution Language
Version 2.0. http://docs.oasis-open.org/
wsbpel/2.0/wsbpel-v2.0.html. Accessed
January 2009.

[7] F. Arbab. What do you mean, coordination? Technical
report, Bulletin of the Dutch Association for Theoret-
ical Computer Science, NVTI, 1998.

[8] F. Arbab, I. Herman, and P. Spilling. An overview of
manifold and its implementation. Concurrency: Prac-
tice and Experience, 5(1):23–70, 1993.

[9] M. Brambilla, S. Ceri, P. Fraternali, and I. Manolescu.
Process modeling in web applications. ACM Trans.
Softw. Eng. Methodol., 15(4):360–409, 2006.

[10] J. Conallen. Building Web Applications with
UML. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[11] B. Curtis, M. I. Kellner, and J. Over. Process model-
ing. Commun. ACM, 35(9):75–90, 1992.

[12] D. Gelernter and N. Carriero. Coordination languages
and their significance. Communications of the ACM,
35(2):97–107, 1992.

[13] S. Jablonski. Mobile: A modular workflow model and
architecture. In Proceedings of the 4th International
Working Conference on Dynamic Modelling and In-
formation Systems, 1994.

[14] D. Kitchin, W. Cook, and J. Misra. A Language
for Task Orchestration and its Semantic Properties.
In Proceedings of the International Conference on
Concurrency Theory (CONCUR), pages 477–491.
Springer Berlin / Heidelberg, 2006.

[15] N. Koch, A. Kraus, C. Cachero, and S. Meliá. Integra-
tion of business processes in web application models.
Journal of Web Engineering, 3(1):22–29, 2004.

[16] OMG. Business Process Modeling Notation (BPMN)
version 1.0. http://www.bpmn.org/.

[17] C. Ouyang, M. Dumas, A. H. M. ter Hofstede, and
W. M. P. van der Aalst. From BPMN process
models to BPEL Web Services. In Proceedings of
the IEEE International Conference on Web Services
(ICWS 2006), pages 285–292, Washington, DC, USA,
2006. IEEE Computer Society.

[18] G. A. Papadopoulos and F. Arbab. Coordination mod-
els and languages. Advances in Computers, 46:330–
401, 1998.

[19] D. Rossi. X-Folders: documents on the move. Con-
curr. Comput.: Pract. Exper., 18(4):409–425, 2006.

[20] D. Rossi and E. Turrini. EGO: an E-Games Orches-
tration Platform. In Proceedings of the 8th annual Eu-
ropean GAMEON R©Conference on Simulation and AI
in Computer Games. EUROSIS-ETI, 2007.

[21] D. Rossi and E. Turrini. EPML: Executable Process
Modeling Language. Technical Report UBLCS-2007-
22, Department of Computer Science, University of
Bologna, 2007.

[22] D. Rossi and E. Turrini. Using a process modeling lan-
guage for the design and implementation of process-
driven applications. In Proceedings of the Interna-
tional Conference on Software Engineering Advances
(ICSEA 2007). IEEE Computer Society, 2007.

[23] D. Rossi and E. Turrini. Designing and architecting
process-aware web applications with EPML. In Pro-
ceedings of the ACM symposium on Applied comput-
ing (SAC 2008), pages 2409–2414, New York, NY,
USA, 2008. ACM.

[24] D. Rossi and E. Turrini. An executable lan-
guage/enactment engine approach for designing and
architecting process-aware web applications. Inter-
national Journal of E-Business Research (IJEBR),
5(3):1–13, 2009.

[25] N. Russell, A. H. ter Hofstede, W. M. van der Aalst,
and N. Mulyar. Workflow control-flow patterns: A
revised view. Technical report, BPMcenter.org, 2006.

42

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

[26] H. A. Schmid and G. Rossi. Modeling and designing
processes in e-commerce applications. IEEE Internet
Computing, 8(1):19–27, 2004.

[27] O. D. Troyer and S. Casteleyn. Modeling complex
processes for web applications using WSDM. In Pro-
ceedings of the Third International Workshop on Web-
Oriented Software Technologies, 2003.

[28] W. M. P. van der Aalst. Workflow verification: Finding
control-flow errors using Petri-net-based techniques.
In Business Process Management, volume 1806 of
Lecture Notes in Computer Science, pages 19–128.
Springer, Berlin / Heidelberg, 2000.

[29] M. T. Wynn, M. Dumas, C. J. Fidge, A. H. M. ter Hof-
stede, and W. M. P. van der Aalst. Business process
simulation for operational decision support. In Pro-
ceedings of the Third International Workshop on Busi-
ness Process Intelligence (BPI 2007), volume 4928
of Lecture Notes in Computer Science, pages 66–77,
Berlin / Heidelberg, 2007. Springer-Verlag.

