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Abstract

In order to support research and development of web
semantization tools, methods and algorithms we have
designed and implemented the Trisolda infrastructure.
It is built around a semantic repository which is sup-
plemented by import, query and data processing inter-
faces. The Trisolda application server can be extended
by plug-ins for advanced semantic analysis and pro-
cessing. We propose the TriQ RDF query language;
its compositionallity and closedness make it useful for
complex semantic querying.
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1 Suffering of the Semantic Web

One of the main goals of the Semantic Web is to
create a universal medium for the exchange of data.
The Web can reach its full potential only if it becomes
a place where data can be shared and processed by
automated tools as well as by people. For the Web
to scale, tomorrow’s programs must be able to share
and process data even when these programs have been
designed totally independently [19].

Unfortunately, it seems, this goal has not yet been
reached, albeit years of research by numerous re-
searchers and large number of published standards by
several standardization organizations.

We believe the Semantic Web is not yet widespread
due to three prohibiting facts: missing standard in-
frastructure for Semantic Web operation, lack of inter-
est from significant number of commercial subjects (al-
though this started to improve recently), and the last
but not least absence of usable interface for common
users.

A nonexistence of a full-blown, working, high-
performance Semantic Web infrastructure inhibits ef-
fective research of web semantization. Whereas the
‘old web’ has clearly defined infrastructure with many

production-ready infrastructure implementations (e.g.,
Apache [20], IIS [21]), the Semantic Web has only
experimental fragments of infrastructure with catas-
trophic scalability (e.g., Sesame [4], Jena [22]).

We have tried, during our experimental research, to
convince commercial subjects to make somehow their
data accessible on the Internet (of course with some
reasonable level of security), and they all refused to
make external access to their data. Commercial sub-
jects do not intend to participate willingly in the ideas
of the Semantic Web, because for them it either means
to share their business data openly or to invest a lot of
time and money for securing access to them.

Current standards in the Semantic Web area do not
allow it to be used by common users. Whereas any
user of WWW can easily navigate using hyperlinks in
an available, production-quality WWW client, a con-
tingent Semantic Web user has only a choice from a
set of complicated query languages (e.g., SPARQL [13],
SeRQL [3]). These query languages are not intended
for casual users, only small number of people are able
to use them.

Although SPARQL is probably the most popular
RDF query language in the semantic web commu-
nity, its overcomplicated definition and low expressive
power make it unsuitable for most web semantization
projects. Therefore we propose the TriQ query lan-
guage that is based on the time proven ideas behind
relational algebra and SQL.

The following chapters are organized as follows: af-
ter an overview of the infrastructure there is a descrip-
tion of the application server in Section 3 and the query
API in Section 4. Sections 5 to 7 propose the TriQ lan-
guage. Two final sections contain performance compar-
ison and conclusions.

1.1 Related Work

Of course, the Trisolda infrastructure is not the only
attempt to create an infrastructure for the Semantic
web. One important example is the WSMX environ-
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ment [15], which also represents a different approach to
building the infrastructure. Unlike Trisolda, which is
centered around the RDF database and Trisolda server,
WSMX is concerned with semantic web services. It’s
purpose is to allow discovery (using Web Service Mod-
eling Ontology [14]), mediation, invocation and inter-
operation of the services.

2 Infrastructure overview

We have recognized and described the problem of a
missing, standard infrastructure for the Semantic Web
in [17], where we have proposed a general ideas of a
Semantic Web infrastructure and later refined the pro-
posal in [7]. During the last year we have made a signif-
icant progress: we have implemented full-blown, work-
ing, fast, scalable infrastructure for the Semantic Web
called Trisolda.

The figure 1 depicts the overall scheme of its infras-
tructure. In this picture rectangles represent processes,
diamonds are protocols and interfaces, and grey bar-
rels represent data-storages. All solid-line shapes de-
picts implemented parts of our infrastructure, whereas
all dashed-line shapes represent possible experimental
processes implemented by researchers playing with our
infrastructure.

2.1 Trisolda repository

The heart of Trisolda infrastructure is a repository.
It is responsible for storing incoming data, retrieving
results for queries, and storing the used ontology. It
consists of the a data-storage, which is responsible for
holding semantic data in any format. Import inter-
face enables fast, parallel data storing and hides details
about background a data-storage import capabilities.
The query interface has two tasks: to be independent
on a query language or environment and to be indepen-
dent on the Trisolda data-storage query capabilities.
The last part of the repository is Trisolda Application
Server. It is a background worker that does the infer-
encing, makes data unifications, and fulfills the task of
a reasoner as well. It utilizes import and query inter-
faces for data manipulation.

2.2 Import paths

We use two distinguishable sources of data. The
simplest one is a data import through importers from
external data-storages. The task of importers is map-
ping external data-storage data-scheme to the SemWeb
repository ontology. The second source of data crawls
the wild Web using a web crawler; we have used

Egothor [9] in the pilot implementation. The crawled
web pages are stored in a Web pages data-store, where
they can be accessed in parallel by deductors, which
can deduce data and their ontologies from web pages
and map them to our ontology.
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Figure 1. Infrastructure overview

2.3 Query environments

Query environments present outputs from Trisolda
repository. They make queries using query API and
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present results to users in any feasible manner. We
have implemented a SPARQL compiler as an example,
which translates SPARQL queries to the internal query
API requests.

2.4 Data-storage access

We have designed and implemented an object ori-
ented library in C++ for a data-storage access inde-
pendent on a background data-storage implementation.
This library is used for a low-level access to the data in
all interfaces to data-storages. It allows us to change an
underlaying data-storage without modifying the code
of our infrastructure.

2.5 Portability

Unlike other many research projects implemented
usually in Java, we have decided to implemented nearly
all parts (excluding Egothor implemented in Java in-
dependently on our project) in ISO/IEC 14882 C++.
The main reasons are speed, more controlled comput-
ing environment (e.g., memory management), and, al-
though it seems absurdly comparing to Java, stability.

When properly used, using ISO C++ brings full
portability among different systems and compilers.
Moreover, it allows us to implement bindings to other
broadly used languages, e.g., Java or C#.

3. Trisolda Application Server

The main active part of the Trisolda repository is
Trisolda Application Server. It is a background worker
that does the inferencing, makes data unifications, and
fulfills the task of a reasoner as well. It utilizes the
import and query APIs for data manipulation.

It should be noted, that the server is not a web server
in a conventional meaning. It does not handle any
HTTP requests.

3.1. The server’s role

We believe, we do not need to have all accurate data
and inferences at the moment of data import. Just like
the real world, the world knowledge changes at each
moment and we are not able to catch it in one snap-
shot. Therefore postprocessing data in the background
by Trisolda Application Server and computing some
additional data in the background is acceptable and
feasible.

The server is only a framework offering unified con-
nection, interface and task management for experimen-
tal plug-ins, as described in the next sections.

3.2. Server’s plug-ins

Trisolda Application Server’s plug-ins are indepen-
dent modules, which simultaneously perform differ-
ent operations on SemWeb storage in the background.
Whereas import and query APIs are only libraries en-
abling the access to the Trisolda storage, the server
allows active operations upon the storage.

Each plug-in must conform to an interface requested
by the server, whereas the server offers several classes
of services for plug-ins.

3.3. Implementation

Plug-ins are implemented as dynamically loaded li-
braries. This is an important feature, which allows
selective loading and unloading of any server’s plug-in
without interrupting overall infrastructure operation.

Although we use C++ to implement the whole
project, the interface requested by Trisolda Application
Server is in a C-like style, because there is currently no
possibility to make a portable C++ dynamic library
interface.

3.4. Executors

The results of querying semantic data can be inter-
preted by many methods. From relationally oriented
data-set through set of references well-known by web
search engines or set of mutually semantically related
entities and their attributes up to application-level ser-
vices using service oriented architectures.

Traditional result representation is tightly coupled
to query method. SDE displays interconnected pages
containing result data together with their structure and
relationships, search engine displays web links with ap-
propriate piece of text, and SPARQL returns rows of
attribute tuples.

While many researchers are satisfied with making
queries, the users (based on the ideas presented in [2])
would expect more from the Semantic Web. They ex-
pect it to take care of things, not just answer queries
in a Google-like fashion.

The technique of executors brings process models
into this infrastructure. The task of executor is to re-
alize semantic action, i.e. interaction of result data
with an outstanding (not only semantic) world. These
atomic executors can be assembled to complex com-
posed executors. Orchestration, i.e. mutual executor
interconnection to achieve more complex functionality
is executed by the Conductor module.

The technique of executors may be illustrated by fol-
lowing example. One’s mother has gone ill, she needs a
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medicine. A query module searches nearby pharmacies
with the medicine available. One executor is responsi-
ble for buying the medicine, while the other arranges
delivery to mothers home. The Conductor orchestrates
these two executors to synchronize, mutually cooper-
ate, and pass relevant data between them.

3.5 Retrieving web documents

In the original proposal [17], there was a direct
Egothor plugin for semantic data and metadata ac-
quisition. This runtime structure would have several
disadvantages.

The plugin dedicated to semantic experiments would
run in the same environment as the general-purpose
web robot. This would cause deficiencies in stability
and performance. Moreover, it is harder to debug in
this environment. Many semantic experiments need to
apply several algorithms to a data set. Multiple data
acquisition would cause unacceptable load to both the
extractor and data providers. The web robot couldn’t
be dedicated to semantic data acquisition - it executes
tasks for a lot of clients. Thus the delay between an
initial request and document set completeness could
be too long. We have decided to separate the web
gathering and the semantic processing, both in time
and space.

The retrieving document is converted into a stream
of SAX events which enables us to process its inter-
nal structure more comfortably. This stream is then
sent by a Robot UDP Transmitter Protocol (RUTP) [8]
to a Collocator. The server reads document requests
stored into the database, converts them into RUTP
commands, sends them to the robot, receives streams
of SAX events, completes them, computes tree in-
dexes and in case of successful transmission stores each
parsed document into the database.

The database stores each document in a structure
similar to a XML Region Tree [11] or a NoK pattern
tree [18]. The main feature of this structure is query
effectivity - for a given element, all its ancestors or de-
scendants in an element set can be queried with optimal
cost.

4 Query API

The Query API is based on simple graph matching
and relational algebra. Simple graph matching allows
only one type of query. It consists of a set of RDF
triples that contain variables. The result of the query
is a set of possible variable mappings. This set can
easily be interpreted as a relation with variable names
used as a schema for the relation.

Relational algebra operations (e.g., joins or selec-
tion) are used on the relations created by simple graph
matching. These operations are widely known from
SQL, which was a major argument for this choice.
Database developers are already familiar with these op-
erations and a lot of work has been put into optimizing
these operations.

So far, we decided to support only some of the com-
mon relational operations. Since the schema of elemen-
tary relations (results of basic graph patterns) consists
of variable names, it is defined by the query and not
in the database schema. For this reason, we use only
natural joins. Variable names are used to determine
which columns should the join operation operate on.

4.1 Selection

Selection operation revealed several problems spe-
cific to RDF querying. While in traditional relational
algebra it is easy to maintain type information for each
column, it is not possible in RDF. Even a simple query
can produce a result that contains values with different
data types in one column.

Having this in mind, we have to consider behavior
of relational operators when it comes to different data
types. For instance, in SPARQL [13] the operators
should consider data types for each value separately,
so one operator in one query compares some values
lexicographically by their string value and some other
values numerically by their value.

This is a serious performance problem that for in-
stance makes it impossible to use indexes to evaluate
expressions like x < 5 and especially x < y. On the
other hand, such behavior is often not necessary be-
cause the user has certain idea about data type of x
in x < 5. So we decided to make the type information
part of the query. Then x <integer 5 yields true for in-
tegers smaller than 5, false for integer greater or equal
to 5 and error if x is not integer. This error always
removes the whole row from the result.

This definition makes translation of queries to SQL
more simple and efficient since it can be easily evalu-
ated by a functional index that stores integral values.
Conditions like 8 < x and x < 10 can be evaluated by
simply traversing a small part of this index.

4.2 Query language

We decided not to create yet another SQL-like query
language. Since the query interface is intended to be
used not by people but rather software, the query in-
terface is actually a set of classes (an API). An example
of a simple query tree:
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• Natural join

– Left natural join

∗ Basic graph pattern P1
∗ Basic graph pattern P2

– Basic graph pattern P3

Had we created a query language, our form of query
would basically be a derivation tree of a query in that
language.

4.3 Query example

Following C++ code shows a simple query that out-
puts first and last name of all people that have both of
them and whose last name is either “Tykal” or starts
with “Dokulil”.

Triples triples;

triples.push_back(Triple(

Variable("x"), URI("http://example.org/lastn"),

Variable("y")

));

triples.push_back(Triple(

Variable("x"), URI("http://exmpl.org/firstn"),

Variable("z")

));

Table *query_tab= new Filter(

BasicGraph(triples),

OrExpression( TestSubstringExpression(

NodeExpression(Variable("y")),

NodeExpression(Literal("Dokulil")), T, F

),

EQExpression(

NodeExpression(Variable("y")),

NodeExpression(Literal("Tykal"))

) ) );

std::vector<Variable*> vars;

vars.push_back(new Variable("y"));

vars.push_back(new Variable("z"));

Query query(vars,query_tab,false);

The query consists of a basic graph query with two
triples and three variables. Then a selection is applied
to the result and finally a projection is used to return
only columns with first and last name.

4.4 Query evaluation

We did not want to limit ourselves to just one system
for data storage. Since the beginning of development
we have been using four different data storages with
several other in mind. Each of the systems offered dif-
ferent query capabilities from just evaluating all stored
RDF triples to sophisticated query languages.

The contrast between a complex query API we
wanted to give to the user and only basic query ca-
pabilities provided by the data storage system made
it obvious that Trisolda must be capable of evaluat-
ing the queries itself. By implementing all operations
within our system, we have reduced the requirements
for the data storage engine to just one; the engine has
to be able to list all stored triples. Thus the system
is capable to use extremely simple storage engine that
does nothing but read RDF triples from a Turtle file [1].

One of the other storage engines is an Oracle
database. It would be highly inefficient to use the
database only to list all triples, we want to utilize much
of the Oracle optimized operations.

As a result, Trisolda is capable of evaluating any
query itself, but tries to use any help the storage engine
can provide. The same goes for adding new features to
the query interface. Once the feature is implemented in
our system, it is immediately available with all storage
engines. Of course, performance of query evaluation
will probably be suboptimal.

4.5 Evaluation algorithm

Since every storage engine can have specific capa-
bilities, we could not establish a set of rules to decide
what can be evaluated by the engine. Thus each engine
contains an algorithm to determine whether it is able
to evaluate a query. For query Q the evaluation plan
is found like this:

• If the storage engine can evaluate Q then this eval-
uation plan is used.

• If Q is basic graph pattern then it is decomposed
into individual triples, the evaluation plan for each
triple is found and the results are joined together.

• If Q is an algebraic operation, evaluation plan for
each operand is determined and the operation is
applied to the results by Trisolda.

The limitation of this algorithm is, that it does not
try to rearrange the query in order to achieve better
performance either by choosing a more efficient evalu-
ation plan or by allowing the storage engine to evaluate
greater part of the query itself, which will probably be
more efficient. This problem is a more complex version
of optimization of relational algebra expressions and
will be a subject of our further research.

4.6 Remote queries

Creating a data interface between different program-
ming languages is not an easy task. To allow queries
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from languages other than C++ we created a HTTP-
based API that is language independent. The client
issues a HTTP GET command that contains the query
to be executed and receives a HTTP response that con-
tains the results.

To make this possible, we had to create a way to send
a query over HTTP. Since we do not use any textual
query language, this required some work to be done.
But due to a simple tree structure of the queries, serial-
izing a query to a character string was a relatively easy
task. The name of the class is stored in the string fol-
lowed by the data. The data are either strings (stored
directly) or other classes (the same serialization algo-
rithm is recursively called to store them to the string).

An example of such encoded query could be this:

Query{0;BasicGraph{Triple{Variable{x};
URI{http://www.is.cuni.cz/stoh/schema/
ot_osoba#prijmeni};Literal{Dokulil;;}}
};x}

Furthermore, the format of the results has to be de-
cided. To make the server as fast as possible the in-
memory data format used internally by the server is
used. The format is suitable for transfer over network
to different platforms - it has no little/big endian or
32/64 bit compatibility issues and it only uses small
amount of information other then the actual data.
Only 5 bytes plus size of a URI (encoded as UTF-8)

is required to transfer the URI, 5 bytes plus length for
untyped literal, 9 bytes plus length of value and type
for typed literal, . . .

We have implemented and successfully tested a C#
client library.

4.7 Complex query languages

One of the ways in which the query API can be
used, is to build more sophisticated query languages.
An example is a limited SPARQL [13] evaluator or the
Tequila query language [10]. The languages represent
very different approach to RDF querying but they both
use the same API and thus access the same data.

The Tequila language is based on named patterns
and supports recursive queries. An interesting exam-
ple is a selecting employees from a list. The lists in
RDF are recursive, which makes the following query
impossible in SPARQL.

prefix rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix ex: <http://www.example.org/term#>

ex:list(?N)
{
{
?N rdf:first ?F.
?N rdf:rest ?R.
use ex:list(?R)

}
union
{
filter ?N = rdf:nil.

}
}
get
{
ex:department ex:employees ?list.
use ex:list(?list)

}

The ex:list named pattern has one parameter and is
used recursively to traverse the whole list.

Although this is only a very basic example, it clearly
demonstrates the possible diversity of query languages
that can be build over Trisolda.

5 TriQ

Querying is one of the important issues for any data
format. In the case of RDF, many query languages
have been developed, including the SPARQL language
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[13], which is a W3C recommendation, or SeRQL [3],
which is supported by the popular Sesame RDF frame-
work [4].

Many are inspired by SQL (although not all of them,
e.g., Lisp-like Versa [12]). But the inspiration is usu-
ally manifested (besides the fact that the queries syn-
tax may look a bit like SQL) in the fact that the RDF
graph is transformed by some graph pattern matching
operation into some table-like form and these tables
are then further processed. We believe that the inspi-
ration should have been a little different. An important
feature of SQL (and its theoretical background – the
relational algebra [5]) is the fact, that it is a closed
system. Relations are transformed into relations. This
way, a result of a query can be used as an input for
another, more complex query, which is impossible in
SPARQL and SeRQL.

The following parts of this paper present our pro-
posal for TriQ – a SQL-inspired, closed RDF query
system. To make the system closed, we couldn’t have
used relations as our data model. We use RDF. But the
operations are inspired by relational algebra – we use
selection, projection, (inner and outer) joins, etc. The
semantics of these operations is not exactly the same
(after all, we have a very different data model) but the
ideas behind them are the same. We believe that this
(and the fact that it is closed) makes the whole query
system more accessible for wider audience of develop-
ers, especially those with long SQL experience.

5.1 Data model

Since we want a closed query system, we require ev-
ery operation to take some RDF graphs (zero or more)
as its input and produce an RDF graph as its output.
But to make the operations simple to use, we need to
add some further information. We use the very RDF
that contains the data for the task and add additional
triples to the data – decorate it.

Namespaces To make decoration simple we define
several namespaces. URIs starting with theses names-
paces are prohibited in the queried data. The names-
paces are
dec is http://ulita.ms.mff.cuni.cz/Trisolda/
GQL/decoration
ptr is http://ulita.ms.mff.cuni.cz/Trisolda/
GQL/pointer
graph is http://ulita.ms.mff.cuni.cz/Trisolda/
GQL/graph

5.2 Decoration of nodes and edges

We can decorate either nodes of the RDF graph, in
which case we add a new triple where the decorated
node is the object of the triple, or edges, in which case
we have to reify the edge (unless the triple is already
reified) and then decorate the reification. To be more
specific, to decorate the edge S P O with decoration
triple DS DP ? (the question mark is the decorated
object) we add the following triples:

• X dec:subject S, X dec:predicate P, X
dec:object O

• DS DP X

The X denotes an anonymous node. Note that we do
not use the standard reification defined by RDF, but
rather use the dec namespace to avoid potential “col-
lisions”. This way we can always distinguish state-
ments added during decoration and statements that
were present in the original data.

Decoration options There are two types of deco-
ration edges. Let X be the decorated object (either
a node or reification of an edge), G an URI from the
namespace graph (each graph has a globally unique
URI) and P an URI from the namespace ptr. The
possible decoration triples are:

1. G dec:contains X

2. P G X

There are no restrictions for the second type of
triples. The only restriction for the first type is that ev-
ery node and edge of the decorated graph is decorated
by at least one such edge.

5.3 Meaning of decoration

The purpose of decoration is to help user define a
structure in the queried graph and exploit it to de-
fine further operations. Furthermore, we would like
the whole query system to resemble relational algebra,
that works with relations – sets of tuples with a well
defined schema.

The first type of decoration triples is used to make
the (one) RDF graph appear as if it was a (multi)set
of smaller graphs so that each of the smaller graphs
resembles one tuple of a relation (row of a table). The
triple G dec:contains X tells us that the graph G con-
tains X. So if we take all such X for one G, we get one
small RDF graph.
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(a) Multiple graphs in one graph (b) Table analogy

Figure 3. Meaning of decoration

The second type of decoration triples were intro-
duced as a parallel to schema of a relation (for an ex-
ample see the Figure 3). The set of all values from the
namespace ptr used in the graph are schema of the
graph. All values of X from all triples P G X for a graph
G correspond to a value of column P in a row G of
a table. But unlike SQL that allows zero (NULL) or
one value, we allow zero or more values. Although we
could restrict it to just one value, we believe it would
unnecessarily limit the graph-handling capabilities of
the query system. For instance, we would like to be
able to create such set of graphs, where each graph
contains information about one person (e.g., first and
last name) and all of his or her e-mails. And to make
handling of the data convenient, we would like to have
a pointer ptr:first-name point to the first name of the
person, ptr:last-name to the last name and ptr:mail to
all of the emails. That way, we could for example eas-
ily find people with more than one email or get the
number of emails for each person.

6 Graph pattern operation

The graph pattern operation is in a certain sense the
very basic operation of the query system. It is used to
find patterns in the whole queried data. The very basic
principle is that the operation specifies an RDF graph
where some nodes or edges are replaced by variables.
The evaluation is done by finding possible substitutions
for these variables so that the we get a graph that is a
subgraph of the queried data. This graph is then one
member of the result set.

The operation gives the data a structure that helps
us reference certain concepts in further query oper-

ations. For example, if the pattern looks like ?x
ex:has-name ?y (where ?x and ?y are variables), we
know that the actual nodes bound to ?x are people
and ?y their respective names (provided we have rea-
sonable data).

Each node and edge can of the pattern can have a
pointer assigned to it. In that case, the corresponding
node or edge of the result is then pointed to by that
pointer.

Why? Many RDF query languages (e.g., SPARQL
[13], Trisolda query API [7],. . . ) use some kind of graph
patterns to transform the RDF graph to a table (or
something analogous like set of variable mappings in
the case of SPARQL). In other words, they use it to
transform the queried data into some other form suit-
able for further processing.

At the moment, we believe this is the only operation
that should work with “raw” data and that all other
operations can assume to be working with decorated
data. This is not as important from the technical or for-
mal point of view, but rather from the “average user’s”
point of view. It would allow him or her to construct
the query in two steps. First, well structured pieces
of data are defined by the pattern operation. Second,
the structure is exploited to combine the pieces of data
into the final result. The second phase should be as
close as possible to writing a query in SQL.

6.1 Definition

The previous sections briefly and informally ex-
plained what capabilities the proposed pattern match-
ing possesses. This section gives a more formal view of
the operation.
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Let Uri be a set of all URIs, Lit set of all RDF lit-
erals, Blank set of all blank nodes, and V ar an infinite
set of variables.

Let V ⊆ Uri ∪ Lit ∪ V ar. The pattern P is then
defined as a non-empty set of triples P ⊆ V × (Uri ∪
V ar) × V . V is the set of all nodes in the pattern P ,
V ar(P ) denotes set of all variables used in the pattern
P . The pattern can be viewed as a directed, labeled
multigraph. We require that each two nodes in V are
connected by an undirected path.

Each edge or node of the patter can be assigned a
pointer (i.e. URI from the namespace ptr). The same
pointer may be assigned to more objects (edges and
nodes).

Let Pb be a pattern and Vb nodes of Pb. Let G be
the queried data.

A variable mapping is a function µ : V ar → Uri ∪
Lit ∪ Blank. We extend the variable to triples t ∈ Pb

and the whole pattern Pb in the natural way (each vari-
able v used in t or the whole Pb are replaced by µ(v)).
We always use the variable mapping µ in conjunction
with a pattern P , in which case we consider only min-
imal mapping, i.e. dom(µ) = V ar(P ).

We say, that an RDF graph Mb is a match for Pb

iff there are mappings µ and η such that the following
statement holds: Mb = µ(Pr) b G where b is a rela-
tion between RDF graphs. The basic version of TriQ
assumes that (A b B) ≡ (A ⊆ B).

Then we say that the tuple 〈µ,Mb〉 is a result for
the pattern Pb. Note that we only consider minimal
µ mappings, i.e. mappings that only map variables
used in Pb. The Mb graph still has to be properly
decorated according to the pointers that were assigned
to the pattern Pb. We add decorating triples to the
set Mb in the way described in the Chapter 5.1 – if a
pointer was assigned to a node or edge of the pattern,
we add the appropriate decoration to its image under
µ(Pb).

7 Algebraic operations

This section describes algebraic operations, that run
on the decorated data and further filter and transform
it. Although, strictly speaking, these operations could
be run on undecorated data, but there is usually no
reason to do so. In such case, each node and edge of
the undecorated data would be decorated by the first
type of decoration triples, which would assign the whole
data to one graph.

We do not give formal definitions for these operation
as they are quite straightforward and usually obvious.
They would only add a few pages of not very interesting
technicalities to the paper.

7.1 Selection

The selection operation has one argument and tests
a condition for each graph g in the argument multi-
set. If the condition is true, the graph is added to the
result. The basic idea is the same as in relational al-
gebra, but there is some added complexity due to the
fact that one pointer can have more than one value
(within one graph) or no value at all. We use a lan-
guage derived from the first-order predicate calculus
to construct the expressions. The main difference from
SQL is the addition of quantifiers. The quantifiers are
always in the form Qx∈X where x is a variable, X a
pointer from the schema of the operand and Q either
∀ or ∃. The rest of the expression is formed from the
variables, functions, predicates and logical operators.
There are some limitations. One variable cannot be
used in more than one quantifier and whole expression
must be closed (meaning that there is no unquantified
variable and no variable is used outside of the range
of the quantifier for that variable). ∀x∈X denotes that
the quantified condition must be true for each x from
PtrV al(X, g) and ∃x∈X denotes that there mast be at
least one x in PtrV al(X, g) such that the quantified
condition is true. PtrV al(X, g) denotes values of all
nodes pointed to by X in the graph g and predicates
of all edges pointed to by X in the graph g.

Example: (∃p∈ptr:Payment(p > 1000)) ∧
(∀r∈ptr:Person∃c∈ptr:Customer(r = c)). This means
that the graph must have a value p for variable
Payment that is more than 1000 and that for each
value of Person there is the same value for Customer.

The formal definition is very strict, but the actual
query language can be more relaxed, allowing the user
to write less verbose queries as long as there is a clearly
defined transformation to the form defined here.

We do not attempt to list all functions and pred-
icates. In general, we assume that there is always a
(hidden) parameter that carries the currently processed
graph as its value – in the strict definition of the model
it is a pair containing the whole graph and subset iden-
tifier from the namespace graph.

Some of the functions and predicates we would like
to include are:

• PathLength(x, y) that return length of a path
between nodes x and y.

• Sum(A), Max(A), Min(A), Count(A) that re-
turn the sum, maximum, minimum or number of
nodes that the pointer A points to.

• IsURI(x), IsLiteral(x) that check, whether the
value of x is of the specified type.
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• TypeOf(x) that returns the data type of the lit-
eral x.

A detailed proposal of the language would include
several basic functions and data type conversion rules
as well as extension mechanism that would allow im-
plementations to add further functions.

7.2 Projection

The purpose of the projection operation is to re-
move unneeded parts from the data. It has one ar-
gument and the operation is specified by a set S of
URIs from the namespace ptr. Any reasonable set S
should be a subset of the schema of the argument, but
it is not required. The operation removes triples from
its argument. There are two versions – induced and
non-induced.

The non-induced version removes all non-decoration
triples that are not pointed to by a member of S and
all decoration triples that represent pointers not in S.
Then all decoration triples g dec:contains o (graph
membership) are removed if there is no triple p g o
where p ∈ S. Note that if we remove a decoration triple
that decorated an edge, we remove the three reification
triples as well.

The induced works the same as non-induced except
that it does not remove edges, where both endpoints
are being pointed to by members of S.

The Figure 4 gives an example where S =
{Person,Mail}.

7.3 Distinct

So far, each operation generated a multiset of
graphs. The distinct operation takes one argument and
eliminates all duplicates. The equivalence of the graphs
does consider decoration as well, i.e. for two graphs to
be equal, even the pointers in both graph must point
to equal nodes and edges.

7.4 Joins

Joins are an important part of relational algebra and
SQL. As we are trying to get close to these languages,
we also introduce join operations. Join is a binary op-
eration that produces results by making a Cartesian
product of the arguments and then filters the results
according to a condition. There are special variants of
the operation – outer joins (left, right and full). The
basic (inner) join could be defined as a combination of
cross join (i.e. Cartesian product) and selection, but
the outer joins are more complex so we have decided
to include “whole” join operation.

(a) Input

(b) Induced projection

(c) Non-induced projection

Figure 4. Projection

The join can be seen as an operation that generates
one small RDF graph for each pair of graphs where
one is from the first argument and the other from the
second argument. The graphs are union-ed together
and if the produced graphs fulfills the join condition,
it is added to the result.

The outer joins work just like in SQL. Consider for
example left join. If there is a graph l in the left argu-
ment such that there is no graph r in the right argu-
ment that l∪r fulfill the join condition, then l is added
to the result.

An example of a left join is in the Figure 5. The
left and right operands are joined by a left join on a
condition Person1 = Person2 (of course, the actual
condition should contain the appropriate quantifiers).
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(a) Left operand (b) Right operand (c) Result

Figure 5. Left join of names and e-mails

7.5 Group by

In SQL, the “group by” construct is almost exclu-
sively used with aggregation. But as our data model
allows more values per “row”, we can use “group by”
as a standalone operation that groups related data to-
gether. To be more specific, it joins (makes a union)
graph, that have the exactly the same values for a spec-
ified set of pointers.

The Figure 6 shows an example where two graphs
are grouped by the value of the “Person” pointer into
one graph.

7.6 Aggregation

A very important feature in SQL are aggregation
functions. An important difference between our data
model and SQL is that a pointer can point to more than
one value within each graph. So there are two possibil-
ities, where aggregation functions can be used. They
can either aggregate values within one graph or make
aggregations over whole data. We decided to allow
both. A local aggregation has the form fnc(ptr)→ res
where fnc is an aggregation function (min, max, sum,
count, avg and “distinct” variants of sum, count and
avg), ptr is a pointer and res is a pointer. The aggre-
gation function is evaluated for each graph g and for a
result v, the triples g gql:contains v and res g v are
added to the data.

The global aggregation has the form
fncg(fncl((ptr)) → res where fncg and fncl are
from the same set of functions as in the local variant.
The function fncl is used to compute aggregation over
each graph and then fncg combines these results into
one final value v. The result contains only one graph
g with triples g gql:contains v and res g v. Because
the data are “destroyed” more global aggregations can
be specified in one aggregation operation.

An example that demonstrates why we decided
to define global aggregation like this is the follow-
ing. Consider the already familiar data about peo-
ple and e-mails. We can use a global aggregation
max(count(Mail)) → MaxMail to get the maxi-
mal number of e-mails the people have. Then, on
the same source data, we run a local aggregation
count(Mail) → MailCount. Then we join the data
on MaxMail = MailCount to get information about
everyone with maximal number of e-mails. Note, that
since we included the aggregation functions among the
function that can be used in the selection operations,
we could omit the local aggregation step in the exam-
ple and use MaxMail = Count(Mail) as the join
condition.

7.7 Set operations

Some set operations are also present in SQL – union,
union all, intersect, and minus. The equivalent of union
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(a) Input (b) Grouped data

Figure 6. Group by

all is obvious, it simply returns union of the two graphs
(since we require that graphs are identified by globally
unique identifiers, there can be no “collision”). The is
no such natural equivalent for the other three opera-
tions. The problem is that in our data model, “schema”
is much more relaxed concept than in SQL – multiple
values of a pointer, nodes and edges without pointers
or with several different pointers, etc. Should the set
operations be performed only with the data in graphs
without regard to pointers (and what would be the
pointers of the result) or with pointers? Perhaps it
would be best to let the user specify a set of pointers
and the operations only consider nodes and edges with
these pointers.

But this creates a completely new problem. If we
make an intersection of two sets and each of them con-
tains a graph that is different, but the values pointed
to by the specified set of pointers are the same. What
should get into the result? The first or the sec-
ond? That would make the intersection operation non-
commutative.

We decided to use the following definition for the
operations (A and B are operands, S is a set of point-
ers, g[S] denotes a projection of graph g to the set of
pointers S):

• A unionS B is a shortcut for grouping operation
with columns S applied to A unionall B

• A minus B are all graphs g of A such that there
is no graph g′ in B for which g[S] = g′[S] holds.
Projection g[S] is either induced or non-induced –
the exact version is specified by the user.

• A intersect B is not included as an operation. Al-
though we came up with several possible seman-

tics, none of them seemed more natural than the
others. This and the fact that they could all be
transformed into some combination of other oper-
ations led us to the decision not to include any of
them as a build-in operation.

7.8 Constructors

Transformation from one RDF graph to a different
one is a big problem for all RDF query languages.
Many of them contain some kind of CONSTRUCT
concept – a graph pattern is specified and new RDF
graphs are generating by substituting each row of the
query result into the pattern. Since we have no rows
in the result (only an analogy that cannot help us in
this case), we cannot use this approach.

Such operation would be extremely useful addition
to our query system, since we could use it anywhere in
the query and immediately perform other operations
on the transformed data. Unfortunately, we have yet
to find a simple and convincing definition for the op-
eration. It is one of our immediate goals, perhaps the
most important one.

7.9 Implementation concerns

We have defined operations of a RDF query system.
We have not defined a query language, nor are we go-
ing to do so in this section. However important it may
seem, it is in fact only a technical problem of defin-
ing a suitable textual representation for the presented
operations. It has to be done and it has to be done
carefully, since a bad language with complex grammar
that makes it unclear and unreadable would certainly
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discourage developers from using the whole query sys-
tem, no matter what the underlying operations and
data model are.

From the database point of view, the implemen-
tation of the query system would probably be more
complex than in the case of the table-oriented RDF
query languages, that can often be easily transformed
into SQL queries over some representation of the RDF
triples in a relational database. Although there are
some significant performance issues involved, they can
be greatly reduced. And the huge amount of work and
money that have been spent on improving reliability
and performance of RDBMS products are a great ad-
vantage of such solutions.

Although storage and transaction handling for an
implementation could most likely be built on top of
some existing solution, query processing and optimiza-
tion will have to be written from scratch.

8 Performance tests

We have made three sets of tests. The first one was a
comparison between load time into one of existing RDF
repositories based on a relational database and Trisolda
data store that is also based on relational database.
The second one was designed to predict the load time
curve for large semantic data and the last one compared
query times between Trisolda RDBMS-based and non-
RDBMS-based data stores. Tests used different data
described in Table 1.

8.1 Test environment

The test environment consist of two machines. The
first one hosts a Oracle db server (2xCPU Xeon 3.06
GHz, DB instance was assigned 1.0 GB RAM) and the
second one is an application server (2xCPU Quad-Core
Xeon 1.6 GHz, 8GB RAM).

All tests used relatively large data containing
2.365.479 triples (303 MB Turtle [1] file).

Name Description
DATASET 1 2.365.479 triples,

184.461 URIs,
53.997 literals,
303 MB Turtle [1] file

DATASET 2 26.813.044 triples,
2.020.212 URIs,
1.043.337 literals,
3396 MB Turtle file

Table 1. The data used in tests.

8.2 Data import

The main goal of this test was to compare Trisolda
data store with an existing solution based on a rela-
tional database. As an example of an existing Semantic
Web data store was chose the Sesame v1.2 due to its
popularity in the Semantic web community. New ver-
sion of Sesame (Sesame v2.0) doesn’t support relational
databases. Both Sesame-db and Trisolda data store
were connected to a local instance of Oracle database.

We tried to load 150 000 triples DATASET 1 into
both of them. The Trisolda data store loads this data in
780 seconds. The Sesame-db finished loading near 118
000 loaded triples and failed with a database error. The
error reported was low space in the TEMP tablespace.
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Figure 7. Data import comparison

Load times for the Sesame-db and the Trisolda data
store are shown on Figure 7. The load time of Trisolda
data store has almost linear dependency on the size of
the processed data, but the Sesame-db exhibits rather
exponential growth. The behavior of Sesame-db is ex-
pected and it is the same as described in [16].

One of the major design goals of Trisolda was stor-
ing huge semantic data. On the other hand, the Sesame
database schema and SQL statements are not very suit-
able for loading huge data.

According to the test, smaller data (up to 110 000
triples in the machine configuration we used) may be
loaded in Sesame-db, but it is not suitable to use the
Sesame-db for larger data.

8.3 Huge data load

The main goal of this test was to determine whether
the Trisolda data store is capable of loading huge RDF
data (DATASET 2). During the implementation, we
tried to identify possible bottlenecks and were able to
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eliminate some of them. There are still some perfor-
mance issues; it is one of the subjects of our further
work.

The data was loaded in 100k triples batches. Whole
load took 22 hours and 54 minutes, out of which 13
hours and 44 minutes were spent transferring data from
source data file to temporary tables in the database and
another 30 minutes were spent on cleanup actions.

8.4 Query performance

Although we have tried to implement the algorithms
used in query evaluation in an efficient manner the al-
gorithms themselves are only basic versions so the per-
formance of the query evaluation leaves a lot of space
for improvement.

We have tested three storage engines: BerkeleyDB
based storage that stores triples in a B-tree, fully in-
memory engine, Oracle-based RDF storage.

First, we measured the performance of evaluation of
the query presented in section 4.3.

The BerkeleyDB-based storage engine required 1.8
seconds to complete the query, while in-memory en-
gine took only 0.7 seconds. The performance of Oracle-
based engine was the worst, requiring 6.4 seconds.

We have expected these results. The current in-
memory engine is read-only and is optimized for best
performance in queries similar to the one we tested. On
the other hand, we used the Oracle database only to
provide us with plain RDF triples and performed the
join operations in our system. But this is not the main
reason for the bad performance. The problem is, that
the Oracle database is placed on another server and
network delays for each returned triple add together.
Had we used the Oracle database to join and filter the
results the performance would have been much better
due to smaller network trafic and better optimization
of joins in Oracle. Our measurements showed that time
required to evaluate this query is around 0.2 seconds.

8.5 Oracle query performance

We have performed several performance tests over
our Oracle-based RDF store. The queries were com-
pletely translated to SQL and then evaluated by the
Oracle server. An example of a very basic query (basic
graph pattern with one triple) looks like this:

SELECT x_l.lit_rec_type AS x_kind,
x_l.lit_value AS x_value,
(SELECT lng_value

FROM adt_lang
WHERE lng_id = x_l.lit_lang_id)

AS x_lang,
(SELECT dtp_value

FROM adt_data_type
WHERE dtp_id = x_l.lit_type_id)

AS x_type
FROM (SELECT x
FROM (SELECT tri_subject_lit_id AS x
FROM dat_triple t, dat_literal s,

dat_uri p, dat_literal o
WHERE t.tri_subject_lit_id=s.lit_id
AND t.tri_object_lit_id=o.lit_id
AND t.tri_predicate_uri_id

= p.uri_id
AND tri_predicate_uri_id =

(SELECT uri_id
FROM dat_uri
WHERE uri_value

= :p1_predicate)
AND tri_object_lit_id =

(SELECT lit_id
FROM dat_literal

WHERE lit_value
= :p1_object))) q

LEFT JOIN dat_literal x_l
ON q.x = x_l.lit_id

In the following text, some queries are said to com-
plete instantaneously. This means, that their evalua-
tion time was comparable to the network latency (the
database resides on a different server).

The queries in the following text are written as
triples, where ?x denotes variable x, <uri1> denotes a
URI with a value ’uri’ and ”value” denotes literal with
value ’value’. The actual values are not given, as they
are rather long and would be meaningless to the reader
without deeper knowledge about the data used in the
experiment.

The first query consists of basic graph pattern with
one triple in the form ?x, <uri>, ”literal”. This query
returned 10 rows and evaluated instantaneously.

The second query contained two triples: ?x <uri1>
”literal1”, ?x <uri2> ”literal2”. The query evaluated
instantaneously and returned one row.

The next query was ?x ?y ”literal”. This query re-
quired 8 seconds to evaluate and returned 4 rows. On
the other hand, the query <uri> ?x ?y evaluated in-
stantaneously returning 28 rows.

A more complex query ?x <uri1> ”literal1”, ?y
<uri2> ?x, ?y <uri3> ?z, ?y <uri4> ”literal2”, ?y
<uri5> ?w, ?w <uri6> ”literal3” that returned only
one row took as much as 200 seconds to evaluate. With
the knowledge about the structure of the data, one
could easily come up with an evaluation plan that
would evaluate (nearly) instantaneously. But due to



57

International Journal On Advances in Software, vol 1 no 1, year 2008, http://www.iariajournals.org/software/

the way that data are stored in the database, the statis-
tics that the Oracle server utilizes are unable to provide
this. Dealing with this problem will be one of the sub-
jects of our future research.

All queries presented so far only returned small re-
sult sets. We also measured one query ?x <uri1> ?y1,
?x <uri2> ?y2, ?x <uri3> ?y3 that returned 88964
rows. This took 70 seconds.

Another ’big’ query was ?x <uri1> ?y, ?z <uri2>
?x, z<uri3> ?w and produced 184179 rows in 66 sec-
onds.

The main reason for relatively long evaluation times
is not caused by transferring the results from the Ora-
cle database over the network. This transfer is just a
matter of seconds even for the largest result set. Most
of the time was spent on the actual evaluation of the
query by the Oracle database.

The experiments have shown, that queries like “give
me first and last names of all people in the database”
are much slower than what they would be if the data
was stored in a traditional relational database. The
fact that each triple is stored separately and table join
has to be performed is one obvious factor. Less obvi-
ous but just as important is the fact that the statistics
used by the Oracle optimizer to create query evalua-
tion plans do not work well if the data is stored like
this (all triples are stored in one table) and the op-
timizer makes wrong assumptions. This means, that
the optimizer works with inaccurate estimations of the
size of data at most places of the evaluation tree. This
makes the optimizer select wrong order of the joins and
also inefficient methods (like using nested loops to join
large relations). The problems are very similar to those
identified in [6].

9 Conclusion

We have implemented and thoroughly tested the in-
frastructure for gathering, storing and querying seman-
tic data. We have focused our efforts on efficiency,
extensibility, scalability and platform independence.
Both our experiences and benchmarks show that this
goal is feasible.

Trisolda is currently used as a platform for further
web semantization research. We expect to enhance
both interfaces and functionality to support these se-
mantic experiments.

Our immediate goal is to implement the TriQ eval-
uator within the Trisolda environment.

We have two long-term goals. The first one is
an implementation of a Semantic Web-specialized dis-
tributed parallel data-storage, which can significantly

improve the behavior and performance of the Semantic
Web repository.

As the second long-term goal, we plan to intercon-
nect diverse semantic repositories, possibly with differ-
ent implementation. Such interface-based loosely cou-
pled network could become a nucleus of really usable
semantic web, both for academic and practical pur-
poses.
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