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Abstract

Self-scheduling algorithms can achieve a good balance
between workload and communication overhead in compu-
tational systems. In particular, Quadratic Self-Scheduling
(QSS) and Exponential Self-Scheduling (ESS) are flexible
enough to adapt to distributed systems. Thus, they are of
interest for application in Internet-based Grids of comput-
ers. We have tackled the problem of scheduling a set of
independent tasks in a computational Grid using a simula-
tor and a heuristic approach based in simulated annealing.
To test this approach, we have considered different work-
load distributions. We find that the optimal Simulated An-
nealing (SA) results permit to reduce the overall computing
time of a set of tasks up to a 16%, with respect to results
obtained with previous values of the parameters experimen-
tally determined. In addition, the time to obtain the SA opti-
mized parameters by simulation is negligible compared with
that needed using experimental measures. Moreover, after
the optimization, the heuristic approach provides equiva-
lent performance for different workloads (random, increas-
ing, decreasing) and different number of tasks. These re-
sults show the high adaptability of the QSS and ESS self-
scheduling algorithms, which can be fully exploited thanks
to the heuristic approach here presented.

Keyword: Self-Scheduling Algorithms, Heuristic Schedul-
ing, Computational Grid.

1. Introduction

A computational Grid [14] is a hardware and software
infrastructure providing dependable, consistent, and perva-
sive access to resources among different administrative do-
mains. The objective is to enable the sharing of these re-
sources in a unified way, maximizing their use. A Grid can
be used effectively to support large-scale runs of distributed

applications. An ideal case to be run in Grid is that with
many large independent tasks. This case arises naturally in
parameter sweep problems. A correct assignment of tasks,
so that computer loads and communication overheads are
well balanced, is the way to minimize the overall comput-
ing time. This problem belongs to the active research topic
of the development and analysis of scheduling algorithms.
Different scheduling strategies have been developed along
the years (for the classical taxonomy see [6]). In particular,
dynamic self-scheduling algorithms are extensively used in
practical applications. These algorithms represent adap-
tive schemes where tasks are allocated in run-time. Self-
scheduling algorithms were initially developed to solve par-
allel loop scheduling problems in homogeneous memory-
shared systems, see for instance [24]. Self-scheduling al-
gorithms divides the set of tasks into subsets (chunks), and
allocates them among the processors. In this way overheads
are reduced. However, the performance of a self-scheduling
algorithm is not independent of the workload distribution.
The workload represents the tasks duration distribution in a
problem. Figure 1 shows the four possible cases: uniform
workload, increasing workload, decreasing workload, and
random workload. They have a direct influence in the per-
formance of scheduling algorithms. In general, the random
case is the most difficult to schedule, since the duration of
the different tasks is not known beforehand. However, the
increasing workload can be optimally scheduled using a de-
creasing chunk distribution function. This is because it as-
signs a large number of small tasks at first, and a few num-
ber of big tasks at the end, trying to guarantee a good load
balance. On the other hand, the decreasing workload can be
scheduled efficiently using an increasing chunk distribution
function.

Self-scheduling algorithms have been tested successfully
in distributed memory multiprocessor systems and hetero-
geneous clusters [3][7][17][22][27][31]. In addition, some
works about their performance on Grid connected clusters
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Figure 1. The four different workloads. a) uni-
form workload, b) increasing workload, c) de-
creasing workload, d) random workload

of computers have been reported [8][9][26][29]. Thus, al-
though self-scheduling algorithms are derived for homo-
geneous systems, in principle, they can be applied to het-
erogeneous ones, such as computational Grids [14]. How-
ever, they could be not enough flexible (they may have not
enough degrees of freedom) to adapt efficiently to a het-
erogeneous environment. In this sense, we have previously
proposed two new flexible self-scheduling algorithms called
Quadratic Self-Scheduling (QSS) [7][8] and Exponential
Self-Scheduling (ESS) [9][10]. The first is based on a
quadratic form for the chunks distribution function. There-
fore, it has three degrees of freedom, which provide high
adaptability to distributed heterogeneous systems. The sec-
ond approach, ESS, is based on the slope of the chunks dis-
tribution function. In this case, we consider that the chunks
distribution function decreases in an exponential way. This
algorithm provides a good adaptability in distributed het-
erogeneous systems through two parameters. Moreover, in
previous works [9][10] we have compared our approaches
with other self-scheduling algorithms in an actual Grid en-
vironment. The new algorithms outperform the previous
ones, since they obtain better load balance and more reduc-
tion of the communication overhead [9].

However, a computational Grid is made up of a large
number of independent resource providers and consumers,
which are running concurrently, changing dynamically, and
interacting with each other. Due to these environment char-
acteristics, new approaches such as those based in heuris-

tic algorithms [20][11] have been proposed to address the
challenges of Grid computing. These kinds of algorithms
make realistic assumptions based on a priori knowledge of
the concerning processes and of the system load character-
istics. Braun et al [4] presented three basic heuristics, based
on Nature, for Grid scheduling. These are Genetic Algo-
rithms (GA), Simulated Annealing (SA) and Tabu Search
(TS).

Genetic algorithms (GA) [16] provide a robust searching
technique that allows a high-quality solution to be derived
from a large search space. This solution is obtained in poly-
nomial time by applying the principle of evolution. One of
the different uses of these algorithms is in Grid Schedul-
ing as seen in [2][23][30]. A genetic algorithm combines
exploitation of best solutions from past searches with the
exploration of new regions of the solution space. A genetic
algorithm for scheduling problems can be organized as fol-
lows [19]. First, an initial population is necessary, which
can be generated by other heuristic algorithm. A population
is a set of “chromosomes” where each represents a possi-
ble solution. A solution is a mapping sequence between
tasks and machines. The “chromosomes” are evaluated and
a fitness value is associated with each. The fitness value
indicates how well the individual is compared with others
in the population. Next, the population evolves, that is, a
new generation is obtained by using the genetic operators,
namely selection, crossover and mutation [16]. Finally, the
chromosomes from this modified population are evaluated
again. This completes one iteration of the GA. The GA
stops when a predefined number of iterations are reached or
all chromosomes converge to the same mapping.

Another heuristic algorithm is Simulated Annealing
(SA) [25]. SA derives from the Monte Carlo method for
statistically searching global minima. The method arises
from a thermodynamic analogy. Specifically, it simulates
the way that liquids freeze and crystallize, or metals cool
and anneal. That is, at high temperatures atoms or mole-
cules move freely with respect to one another. If the system
is cooled slowly, thermal mobility is lost and the atoms or
molecules can line themselves up and form a pure crystal
that is completely ordered. This crystal is the state of min-
imum energy for this system. Here, we focus in SA for
scheduling purposes. This approach has been tested in dif-
ferent environments like computational Grids [13][32]. SA
is organized in several steps. First, a simulated annealing
algorithm needs an initial solution, which is constructed by
assigning at random a resource to each task. The annealing
process runs through a number of iterations at each "tem-
perature" to sample the search space. At each iteration, it
generates a new solution by applying a random change on
the current solution. Whether or not the new solution is ac-
cepted as a current solution is determined by the Metropolis
criteria [25]. Once a specified number of iterations have
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been completed, the system is in "equilibrium", i.e., a pop-
ulation has been generated obeying a Boltzmann statistical
distribution. Then, the temperature is decreased at a spec-
ified rate. The process is repeated until the lowest allowed
temperature has been reached. During this process, the al-
gorithm keeps the best solution found, returning the last
value as the final optimal solution.

In Tabu Search (TS) [12][15] some historical informa-
tion related to the evolution of the search is kept. This is ba-
sically the itinerary through the visited solutions. Such in-
formation is used to guide the movement from one solution
to the next, avoiding cycling. This is one of the most impor-
tant features of the algorithm. The algorithm starts from an
initial solution, typically a random one. At any iteration it
has to find a new solution by making local movements over
the current solution. The next solution is the best among all
(or a subset of) possible solutions in the neighborhood. To
carry out the exploration process, recently visited solutions
should be avoided (tabu list). Therefore, once a solution is
visited the movement from which it was obtained is con-
sidered tabu. Note that the neighborhood of the solutions
will be changing along the exploration. So, in a certain
sense we have a dynamic neighborhood. Typically, there
are two kinds of tabu lists. On one hand, a long term mem-
ory maintains the history through all the exploration process
as a whole. On the other, a short term memory keeps the
most recently visited tabu movements. A movement with
a tabu status (tabu movement) is avoided unless it satisfies
certain aspiration conditions. This prevents falling into lo-
cal minima. There are two kinds of stopping conditions in
Tabu Search. The first relates to the Tabu Search as a whole
(when the algorithm finishes). The second is a stopping
condition over the search of the best among all solutions
in the neighborhood.

As presented above, the QSS and ESS self-scheduling al-
gorithms depend on three and two parameters respectively.
These parameters determine the behavior of the algorithms.
Therefore, for a given computational environment it is nec-
essary to select the most appropriate (optimal) values of
these parameters to obtain a good load balance and to min-
imize the overall computation time. In previous studies, we
obtained the best parameters from experimental measures
on an actual system [8][9]. However, this is a slow and
hard process that we would repeat each time the execution
environment changes. In these conditions, the systematic
exploration of the parameter space when several (more than
two) parameters do exist is simply unmanageable.

Previously, we presented in [1] a way to obtain optimal
QSS and ESS parameters using a heuristic approach. To
such an end, we simulated the execution environment (a
computational Grid in our case). So, using the simulation,
we could obtain the computational time of each algorithm
for a given value of its parameters. Therefore, it was possi-

ble to apply a heuristic algorithm to explore the behavior of
the scheduling method for different values of the parame-
ters, minimizing the overall computation time. The heuris-
tic algorithm selected was Simulated Annealing (SA).

Until now, we have tested these algorithms using a ran-
dom workload distribution. Although, a priori, this is the
most difficult case to schedule, it is interesting to observe
the behaviour of our algorithms when they have to sched-
ule other workload distributions. We have to consider that
self-scheduling algorithms distribute the tasks into chunks
in a decreasing way and therefore the load balance can be
different depending on the task duration distributions. Con-
sidering as starting point the heuristic approach mentioned
before, we study here its scheduling performance for the
different workload distributions, see Figure 1.

In the next Section, we present an overview of the QSS
and ESS self-scheduling algorithms, as well as the method-
ology used for their optimization in the different workload
distributions considered. Section 3 presents and interprets
the results found in the optimization process for each work-
load distribution. Finally, in Section 4 we present the main
conclusions of this paper, and the perspectives for future
works.

2. Methodology

In this work the Quadratic Self-Scheduling (QSS) and
Exponential Self-Scheduling (QSS) algorithms are used as
basic scheduling strategies. QSS [8][9] is based on a Taylor
expansion of the chunks distribution function, C(t), limited
to the quadratic term. Therefore, QSS is given by

C(t) = a + bt + ct2 (1)

where t represents the t-th chunk assigned to a processor.
To apply QSS we need the a, b and c coefficients of equa-
tion (1). Thus, assuming that the quadratic form is a good
approach to C(t), we can select three reference points (C(t),
t) and solve for the resulting system of equations. Useful
points are (C0, 0), (CN/2, N/2) and (CN , N), where N is
the total number of chunks. Solving for a, b and c, we ob-
tain,

a = C0

b = (4CN/2 − CN − 3C0)/N (2)

c = (2C0 + 2CN − 4CN/2)/N2

where N is defined [8] by,

N = 6I/(4CN/2 + CN + C0) (3)

being I the total number of tasks.
The CN/2 value is given by,
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CN/2 =
CN + C0

δ
(4)

where δ is a parameter. Assuming C0 and CN fixed, the
CN/2 value determines the slope of equation (1) at a given
point. Therefore, depending on δ, the slope of the quadratic
function for a t value is higher or smaller than that of the
linear case, which corresponds to δ=2. These two cases are
defined by

Case a ⇒ CN/2 >
C0 + CN

2
⇒ d2C(t)

dt2
< 0 (5)

Case b ⇒ CN/2 <
C0 + CN

2
⇒ d2C(t)

dt2
> 0

The two cases are compared with the linear model in Fig-
ure 2. As we can see, case a) is a function concave down.
Here Nq < Nl, where the q and l subscripts are used to dis-
tinguish the quadratic from the linear model, respectively.
This smaller number of chunks in the QSS algorithm trans-
lates in a smaller communication overhead to the expense of
higher initial chunk sizes, see Figure 2. On the other hand, it
is possible to invert this behaviour, as shown by the dashed
line in Figure 2 (case b), where the function is concave up.
Here, chunk sizes are smaller than in the linear case (almost
all the way) to the expense of a higher number of chunks,
N ′

q > Nl. In this case, we have a better load balance, but
the communication overhead increases. Therefore, the QSS
algorithm can be tuned to optimize the ratio of load balance
to overhead by selecting an appropriate value of the CN/2

coefficient.
In the present work, the values of the three parameters,

C0, CN and δ are heuristically optimized in the simulated
execution environment.

On the other hand, we have Exponential Self-Scheduling
(ESS) [9]. ESS belongs to the family of algorithms based
in the slope of the chunks distribution function, C(t). So,
we consider that the rate of variation of C(t) is a decreasing
function of t, g(t). Therefore, we have the general expres-
sion,

dC(t)
dt

= g(t) (6)

Equation (6) defines a differential equation. After integra-
tion we will have an explicit functional form for C(t) as a
function of t.

ESS considers that the slope (negative) is proportional to
the chunk size,

dC(t)
dt

= −kC(t) (7)

Figure 2. Evolution of the C(t) function for the
linear case (TSS) and QSS algorithms as a
function of the number of chunks, t.

Here, k is a parameter and t represents the t-th chunk as-
signed to a processor. Equation (7) can be integrated by
separation of variables yielding [9],

C(t) = C0e
−kt (8)

Equation (8) defines the Exponential Self-Scheduling (ESS)
algorithm. Here, C0 and k are the parameters to be opti-
mized in the simulated working environment.

With respect to the SA heuristic, as applied here, we con-
sider that the function to minimize, the cost function (f),
is the overall computation time needed to process a set of
tasks, i.e., its makespan. In turn, we consider that the cost
function depends on s, the set of parameters used by each
self-scheduling algorithm. The corresponding pseudocode
is shown in Chart 1.
Here, T is the system’s “temperature” defined as a given
value of the cost function, f(s). This is initialized to a high
value. Symbols s and s’ represent sets of the scheduling al-
gorithm parameters. Three parameters are needed for QSS,
and two for ESS. The f(s) function represents the cost of
the s solution, which is initialized to a high value. As cool-
ing schedule, we use an exponential approach Tn+1 = rTn,
with r = 0.989 [28]. The total number of iterations per-
formed for each temperature (equilibration) is given by L.
In our case, after a previous calibration, we have fixed L to
200 iterations. Finally, FROZEN is the lowest allowed tem-
perature for the system. We select a very small value for
FROZEN, 12x10−11, which has shown to give consistent
results in SA calibration tests.
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Chart 1. Simulated Annealing Pseudocode

Function SimulatedAnnealing()
begin

T := initial "temperature"
s := initial parameters, S0
repeat

for i := 1 to L do begin
generates new parameters s’
if f(s’) < f(s) then
s := s’

else begin
x := f(s’)-f(s);
if e^{-x/T} > random(0,1) then

s:= s’
end

end
T := r T

until FROZEN
return s

end

The cost function f(s) is obtained as the simulated time
(in seconds) necessary to solve all tasks in the specified ex-
ecution environment. The tasks are scheduled according to
QSS or ESS, and the optimal parameters are given by the
final value of s in Chart 1. The simulator is organized as fol-
lows. Each task has associated a value, from 1 to 10, which
represents its duration (in seconds). Task durations are ran-
domly generated except when we want to test a uniform
workload. In this case, the duration of each task is 5. On the
other hand, in the increasing and decreasing cases the task
durations are shorted in the required order. As previously
commented, QSS and ESS allocate sets of tasks (chunks).
So, the duration of a chunk is the sum of all tasks durations
composing it. The computing (CPU) time for a chunk is
calculated dividing its duration by the relative computing
power of the processor where the chunk is executed. This
computing power is referred to the fastest processor. Thus,
lower values correspond to slower processors. To this value
we add the temporal cost of transferring the chunk to the
processor where it is executed. In addition, the scheduling
cost introduced by the local queuing software is included as
well.

The execution environment represented in the simulation
is an Internet-Based Grid of computers [14]. Therefore, it
is composed by two main components: network links and
computer elements. Network links have associated a value
that represents the temporal cost, in seconds, of transferring
a file between two machines through Internet. This value is
obtained as an approximate estimate of the transport latency
[18]. To such an end, we consider actual measures of the
bandwidth (bw) and of the smoothed round trip time (srtt)
[21]. This last estimates future round trip times by sampling
the behavior of packets sent over a connection and averag-

ing those samples. Half the srtt is used as a rough estimate
of an effective time of flight. So, the temporal cost of a net-
work link (Tt) is given by Tt = (file_size/bw) + srtt/2,
where “file_size” represents the physical size of the chunk
being sent. We consider that all chunks have the same phys-
ical size. On the other hand, a computer element is typically
a computer cluster [5]. This is composed by a number of
processors connected through an internal network. So, each
simulated computer element has an associated array, which
collects the relative computing power (a real number) for its
processors (CPUs). The computer power of each processor
is determined experimentally. The temporal cost of the in-
ternal network is considered negligible with respect to the
temporal cost of the Internet network links.

The simulated execution environment used is a replica
of the computational Grid considered in [9]. In Figure 3,
we can see the execution environment. The Grid is made
up by a client (qcycar) and three computer elements (C.E.):
Hermes, Tales and Popocatepetl (Popo). Hermes and Tales
are placed in Ciudad Real (Spain), and they are composed
by 8 processors each. On the other hand, Popo is placed in
Puebla (Mexico), and it is composed by 4 processors. We
have subdivided the environment characteristics into three
parts: network, processors and scheduling cost. The net-
work characteristics, for each computer element, are col-
lected in Table 1. The processors characteristics are shown
in Table 2. The scheduling cost could be attributed to the
software. After several tests, we have observed that the
queue managers introduce the most important software de-
lay. In our case, this delay is determined to be about 0.5
seconds.

Table 1. Network Characteristics. bw repre-
sents the bandwidth and srtt the smoothed
round trip time

C.E. Network

Hermes bw = 94.8 Mb/s srtt = 241 µs

Tales bw = 94.8 Mb/s srtt = 241 µs

Popo bw = 243 Kb/s srtt = 665.535 ms

In this work, we perform several tests to verify the effect
of SA optimized parameters in the efficiency of QSS and
ESS. Tests with 1000, 2000, 5000 and 10000 tasks are con-
sidered. To determine the influence of the physical chunk
size, these tests have been performed twice using a random
workload. In the first case, we consider a physical chunk
size of 1 Mb. In the second, we increase the chunk size to
10 Mb. The optimal values for the QSS and ESS parame-
ters obtained by SA are used to compare the behavior of
QSS and ESS. Moreover, we compare these results against
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Figure 3. Execution Environment Simulated
for the different tests: Internet based Grid of
Computers.

the results obtained using the parameters experimentally de-
termined for QSS and ESS in [9]. Finally, we compare the
behaviour of the algorithms in the four workload distribu-
tions collected in Figure 1. In each case, new optimal QSS
and ESS parameters are obtained. On the other hand, the
increasing and decreasing workloads are obtained generat-
ing random tasks, and sorting them in the correct way. Each
test is performed 100 times to obtain average results and
determine standard deviations.

3. Results

First, we have performed different tests, using a random
workload, to obtain the SA optimal parameters for QSS and
ESS. Table 3 collects the results of the different tests, in-
cluding the standard deviation (σ). In all cases, we observe
a small σ. This implies that all the simulated values of the
cost function are close to the average. Therefore, they can
be considered very reliable. The main source for σ is the
random generation of task durations in each simulation. Ta-
ble 3 shows that the cost function increases linearly with
the number of tasks. Comparing QSS and ESS, we see that
both exhibit a similar performance. This result agrees with
the data obtained in the experimental tests performed in [9].

To analyse the effect of the chunk sizes in the perfor-

Table 2. Processors Characteristics For each
computer element (C.E.) The number of
processors of each type is specified. The rel-
ative computing power (R.P.) is also included

C.E. Processors

Hermes 5 x P4 3.0 GHz 3 x P4 2.4 GHz

R.P. 1 0.515

Tales 1 x P4 3.0 GHz 4 x P4 2.8 GHz 3 x P4 2.4 GHz

R.P. 1 0.585 0.515

Popo 4 x AMD64 1.6 GHz

R.P. 0.448

mance, we have repeated the simulations using a chunk size
of 10Mb. Table 4 collects the results. We observe that the
new values of the cost function, although higher as they
must be, are very similar to those of Table 3. These re-
sults show that the present scheduling heuristic approach
can compensate efficiently for changes of the network per-
formance in a Grid system.

Table 3. Average cost function (cost) and
standard deviation (σ) for QSS and ESS as
a function of different number of tasks, in
columns. The cost represents the simu-
lated time, in seconds, necessary to solve all
tasks. A physical chunk size of 1Mb is used.

QSS 1000 2000 5000 10000

Cost 428.830 846.191 2098.992 4179.476

σ 6.576 8.194 12.672 19.489

ESS 1000 2000 5000 10000

Cost 428.924 846.571 2098.921 4183.082

σ 6.213 8.817 15.341 17.586

Using SA, we obtained the minimum cost, total comput-
ing time, of QSS and ESS for the different test cases when
the workload distribution is random. It would be interest-
ing to compare these results against those obtained by using
the QSS and ESS parameters experimentally determined in
an actual Grid, see [9]. For QSS, these parameters were
C0 = I/2P , δ = 3 and CN = 2, where I is the total
number of tasks and P is the number of processors. With
these values, we have simulated the behavior of QSS ob-
taining the cost function, total computing time, of each test
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Table 4. Average cost function (cost) and
standard deviation (σ) for QSS and ESS as
a function of different number of tasks, in
columns. The cost represents the simu-
lated time, in seconds, necessary to solve all
tasks. A physical chunk size of 10Mb is used.

QSS 1000 2000 5000 10000

Cost 441.256 862.855 2120.979 4211.108

σ 7.183 8.399 15.672 19.253

ESS 1000 2000 5000 10000

Cost 445.563 870.002 2129.203 4211.697

σ 6.143 9.569 16.597 22.767

case. Since we have shown previously that the chunk size
is not very significant, we only use a physical chunk size of
1Mb. Figure 4 collects the QSS results. We observe that
the cost associated to the SA optimized parameters, “QSS
SA”, is always lower than that associated to the experimen-
tally optimized QSS, “QSS E”. In particular, we find that
SA allows for an improvement between 3% and 6%. This is
an interesting result, since SA obtains the most appropriate
parameter values in 12 to 60 seconds, whereas the experi-
mental values need a lengthy time consuming procedure on
the actual Grid system [9].

Figure 4. Comparison between the cost of
QSS optimized using SA (QSS SA) and the
cost of QSS optimized experimentally (QSS
E). The cost is given in seconds.

With respect to ESS, the experimental parameters found
in [9] are Co = I/2P and k = 0.017. As in the QSS
case, we have simulated the ESS behavior in our test cases
using these values. Figure 5 shows graphically a compari-

son of the ESS results. We can appreciate that the cost of
ESS with SA, “ESS SA”, is always lower than that for the
experimental parameters, “ESS E”. In this case, simulated
annealing gives us an improvement between 9% and 12%.
Now, only 15 to 45 seconds are needed by SA to obtain the
optimal results.

Figure 5. Comparison between the cost of
ESS optimized using SA (ESS SA) and the
cost of ESS optimized experimentally (ESS
E). The cost is given in seconds.

The previous experiments were done using a random
workload distribution. Usually, this kind of workload is the
most difficult to handle, since the behaviour is unpredictable
and therefore, it is more difficult to guarantee a good load
balance. However, it is important to assess the behaviour
of our algorithms when they have to schedule the remain-
ing workloads: uniform, increasing, and decreasing (see
Figure1). We have seen that the scheduling results of these
workloads follows the results of the random one, with the
QSS and ESS algorithms outperforming the rest of them.
Therefore, here it is only exposed the results of the tests
performed for QSS and ESS.

First, we have performed the tests using the parameters
obtained experimentally. Thus, Figure 6 and Figure 7 show
graphically the behaviour of QSS and ESS algorithms with
the different workloads and the different test cases (num-
ber of tasks represented in x axis). The y axis represents
the computational cost in seconds. We can observe that
both QSS and ESS have a similar behaviour when schedul-
ing different kinds of workloads. In both algorithms, the
worst case corresponds to the increasing workload distrib-
ution. This is because self-scheduling algorithms distribute
the tasks into chunks in a decreasing way. Therefore, too
large tasks at the end tend to cause load imbalance. On
the other hand, the decreasing workload have a good per-
formance, even better than the random case. Here, there is
too much workload at the start, but the algorithms can ob-
tain a good load balance because they have enough time to
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guarantee it. Nevertheless, the maximum difference in the
execution time of the workloads is around a 12%. Finally,
the uniform case is the less time consuming (between a 9%
and a 18 % less). This is because all tasks have the same
computational cost and because an uniforme workload is
easier to schedule.

Figure 6. Behaviour of “QSS E” for different
workload distributions. The QSS parameters
were optimized experimentally (QSS E). The
cost is given in seconds.

Figure 7. Behaviour of “ESS E” for different
workload distributions. The ESS parameters
were optimized experimentally (ESS E). The
cost is given in seconds.

Now, for each case, we consider the behaviour of QSS
and ESS after optimizing their parameters with the heuris-
tic approach. Figure 8 and Figure 9 show the behaviour of
both algorithms. We can observe that the uniform work-
load is again the less time consuming (around a 9%). On
the other hand, the other workloads are executed more or
less in the same time. So much so that the maximum dif-
ference in the execution time, among these workloads, is

1.3%. Therefore, even for different workloads and different
number of tasks the heuristic approach provides equivalent
performance.

Figure 8. Behaviour of “QSS SA” for different
workload distributions. The QSS parameters
were optimized with SA (QSS SA). The cost
is given in seconds.

Figure 9. Behaviour of “ESS SA” for different
workload distributions. The ESS parameters
were optimized with SA (ESS SA). The cost is
given in seconds.

4. Conclusion and Future Work

We have tackled the problem of scheduling a set of in-
dependent tasks in a computational Grid using a simulator
and a heuristic approach based in SA. Using the simulator
we can model the behavior of scheduling algorithms in an
actual environment, but in a much shorter time than in an
experimental study. We consider several test cases formed
by several thousand tasks. These test cases can be subdi-
vided in four groups depending on their workload distri-



9

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

butions. Thus, random, uniform, increasing and decreas-
ing workload distributions are considered. A comparison
like this is important, because there are situations in which
the duration of the tasks is not known. Therefore, the tasks
can not be sorted to optimize the scheduling. Working with
the previously proposed QSS and ESS self-scheduling al-
gorithms, we observe that optimizing their parameters us-
ing SA permits to reduce the overall computing time up to
a 16%. This maximum difference is found in the increasing
workload case. Moreover, after this optimization, we ob-
serve that the increasing, decreasing and random workloads
have, more or less, the same overall execution time. These
results show the high adaptability of our self-scheduling al-
gorithms, which can be fully exploited thanks to the heuris-
tic approach here presented.

The heuristic approach allows a reduction of the over-
all computing time. In addition, the time needed to obtain
the optimal SA parameters for QSS and ESS, in the sim-
ulated environment, is negligible compared with the time
needed for an experimental calibration in an actual Grid
system. Furthermore, SA can optimize all the parameters in
the scheduling algorithms, despite its number. In the gen-
eral case, this is not possible using experimental measures.
The test cases also show that the present heuristic approach
is very efficient. In fact, we observe a simple linear increase
of the execution time with the problem size.

Several enhancements can be devised for this prelimi-
nary study of a SA Grid scheduler. First, in the present
study the characteristics of the Grid environment are con-
sidered static. A logical extension would be the scheduler
to check, as a function of time, the state of the different net-
work links and the performance of the available processors
in the execution environment. Then, the simulated anneal-
ing procedure would obtain the most appropriate parameters
for this specific behavior of the environment. Second, in the
present work the chunk size is considered constant. This is
an acceptable approach for testing and comparing the effi-
ciency of scheduling algorithms in similar conditions. How-
ever, the situation is different in actual computations, where
there are different physical chunk sizes. These sizes depend
on the number of tasks making up the chunk. Considering
this effect will permit to describe the different transfer costs
of different chunks.
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