
160

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Crucial Service-Oriented Antipatterns

Jaroslav Král and Michal Žemlička
Charles University, Faculty of Mathematics and Physics

Department of Software Engineering
Malostranské nám. 25, 118 00 Praha 1, Czech Republic

kral@ksi.mff.cuni.cz, zemlicka@ksi.mff.cuni.cz

Abstract

Service-oriented architecture is now the most popular
software engineering concept. Software related antipat-
terns – commonly used seemingly good but in fact wrong
solutions – can have adverse consequences of varying im-
portance. It implies that the use of an antipattern can and
should be viewed as a risky event. It follows that some
principles of risk management can be used. We propose
a method based on slightly simplified procedures of risk
management and assessment. Using the procedures we
give a short list of the most risky antipatterns, i.e., antipat-
terns occurring very often and having crucial consequences
and present principles of antipattern refactoring. We dis-
cuss the following crucial antipatterns: No Legacy (de-
velopment from scratch), Standardization Paralysis, Busi-
ness Process for Ever (Full Automation), Sand Pile (too fine
grained services), On-Line Only (No Batch Systems). The
discussion of antipatterns is based on a long-term experi-
ence with service-oriented and service-oriented like (e.g.,
process control) systems and on the analysis of practice.
Contributions of the paper: evaluation of antipatterns as
risky events, specification the properties of service-oriented
systems in small firms and in e-government, differences be-
tween object-oriented and service-oriented antipatterns, re-
quirements on service interfaces, and the list of the service-
oriented antipatterns being the most important ones accor-
ding to the evaluation.

Keywords: antipattern, risk management, SOA type,
confederations, antipattern evaluation.

1. Introduction

We will discuss the antipatterns (wrong practices) in
service-oriented architecture (SOA). We say that a sys-
tem has service-oriented architecture if it is a virtual peer-
to-peer network of loosely related software components

having properties mirroring the behavior of real-world
services. Technically such systems consist of compo-
nents/services and middleware. The details and effects of
such system vary. We will discuss this point in details.

Typical SOA systems are formed by a ”kernel” network
of services providing main system capabilities. In enter-
prises they are often the services supporting manufactur-
ing like inventory control, machine floor supervision, etc.
The components can be for different SOA types of differ-
ent sizes. They can be large legacy systems, large third-
party products, or they can be almost all quite small soft-
ware components (redeveloped) from scratch. The used in-
terfaces and communication protocols can vary. The basic
communication mode is asynchronous message exchange.
Message formats can be programming oriented (based on
remote procedure call technique and fine grained) or user
domain oriented (e.g., XML-based messages mirroring us-
er domain languages).

Service orientation and service-oriented architecture
(SOA) are the leading edge of contemporary software engi-
neering. Service orientation is a new paradigm for business-
oriented software. In the area of real-time (process con-
trol) systems, the main principles of SOA are used for
decades. Business is, however, different from technology,
so business-oriented SOA systems have specific aims, users,
and development practices. As such they require specific
good practices and turns – patterns – that can be different
from the ones known from object-oriented philosophy.

The paper is organized as follows: Basic facts on an-
tipatterns, antipatterns as risks and risk management pro-
cedures, SOA architecture types called confederations and
unions, list of most risky antipatterns in unions and confe-
derations and their solution, differences between SOA anti-
patterns and object-oriented antipatterns.

2. Backgrounds

The practitioners collected an impressive collection of
”SOA wrong practices” and wrong solutions called antipat-



161

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

terns (compare [5, 4]).
A pattern [8] is a solution of some problem/task known

to work properly.
There can be various types or roles of patterns ([2]), e.g.:

business patterns supporting the interactions of users,
business, and data,

architecture patterns supporting the construction of a
software architecture – for example integration of sev-
eral business patterns;

application patterns used to implement interaction of ap-
plication components and data in business patterns or
architecture pattern.

An antipattern is according to [5] a seemingly good solu-
tion that is commonly (repeatedly) used but often failing to
provide satisfactory results. The specification/description
of an antipattern should specify why the antipattern looks
to be a recommendable solution. To describe an antipattern
it is recommended to specify its symptoms, root causes of
the antipattern and consequences of the use of the antipat-
tern [5]. The crucial part of the antipattern description is its
(refactored) solution – a way of modifying the antipattern
to avoid its wrong consequences; i.e., how to convert it to a
good solution.

According to [5] we have in object-oriented environment
Software Development Antipatterns, Software Architecture
Antipatterns, and Software Project Management Antipat-
terns. We will see that SOA antipatterns can be of sim-
ilar types but with different consequences. Some object-
oriented antipatterns are patterns in SOA and vice versa
(compare the object-oriented antipattern Islands of Automa-
tion; it is a crucial SOA pattern). Some SOA solutions
solve issues of several problem domains at once (e.g., soft-
ware development and software management)1. The rela-
tion between SOA systems and business is tighter than in
the object-oriented systems. It leads to yet SOA-specific
antipattern: Specification Antipattern referring to wrong at-
titudes used during the requirements specification phase.
Under these circumstances the user involvement in require-
ment specification as well as in system development [17] is
crucial. Users as well as IT professionals should therefore
apply some attitudes of agile business and agile software
development.

The SOA-related research and experience with SOA in
practices produced lists of SOA-related antipatterns [4, 12,
24, 6]. The lists do not attempt to depict the importance of
individual antipatterns: how often they occur and how criti-
cal losses they cause. Such an evaluation depends, however,
on the variant of SOA in which the antipattern is applied.

1All these facts indicate that the service-oriented philosophy is substan-
tially different from the object-oriented one. It can be one of the reasons
why SOA is not easy to apply although it seems to be intuitively clear.

We attempt to evaluate these issues applying the principles
of risk management.

2.1. Service-Oriented Software Systems

SOA in our understanding is a virtual peer-to-peer net-
work of software entities called (software) services having
many properties common with real-world services. Such
systems are formed by the services and a middleware en-
abling asynchronous communication between the services.
The capabilities provided by the middleware vary depend-
ing on different conditions. The middleware can include
Enterprise Service Bus (ESB, [7]) but the use ESB can be
sometimes contraproductive. This issue will be discussed
below.

Technically are the services implemented as permanent-
ly active service processes communicating asynchronously
(batch services are in this case permanently active but ha-
ving a long latency). We do not exclude systems based on
the tools like MessageQueue (MQ) and its descendants. Our
concept of service-oriented systems is broader than the one
proposed by large software vendors. It is, however, appro-
priate for many systems supporting, e.g., small-to-medium
enterprises or e-government. So the extension of SOA con-
cept we propose is appropriate for many (if not the majority
of) systems occurring in practice. For example the integra-
tion of existing software items is of the highest priority. It
is often denounced not to be good solution. We must under-
stand that the broader treatment of service orientation and
service-oriented architecture implies substantially different
properties of the resulting systems.

According [15] we can recognize two basic types of
service-oriented systems: confederations and alliances. Al-
liances are collections of components able to search or
ask for their cooperating partners. Typical alliances are
e-business systems based on web services in the sense of
W3C. Confederations are systems where individual compo-
nents are aware of their cooperating partners. Their commu-
nication need not be based on international standards. Ty-
pical examples are e-government, information systems sup-
porting global enterprises, or health care systems or some
process control (soft real-time) systems.

3. Evaluation of Antipatterns and Risk Man-
agement

The research and study of the antipatterns collected a list
of (possible) antipatterns occurring in practice. There are
risks of loses related to (caused by) each antipattern. From
the management’s point of view an application of an an-
tipattern usually (with some probability) leads to a project
failure. It is therefore a risk. So it is meaningful to apply
(adapt) some techniques of risk management [10].



162

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

P \ L low high
low low high
high low very high

Table 1. Evaluation of E

According to [10] the risk management consists of the
following stages:

1. Risk identification. The construction of the list of an-
tipatterns.

2. Risk assessment. Estimate the expected (i.e., mean)
risk loss E(i.e., risk related to the application of an an-
tipattern). It is recommended to estimate E as a prod-
uct E = p · L where p is the probability that the an-
tipattern will cause the loss L. As we have only rough
estimates of p and L, we can use fuzzy estimates (we
use the experience of a software developer [27]). It
usually suffices to estimate p as low and high and L as
low, high and set E = very high for p = high and L =
high; E = high for L = high and p = low; and E = low
in other cases. So we have three classes of antipatterns
with E = low, high, and very high, see Tab. 1.

3. Risk ordering. We order the antipatterns according the
expected loss E. We will discuss the antipatterns ha-
ving the largest E. It is therefore meaningful to look
for the solution of the antipattern having the assess-
ment very high (we call such antipatterns critical) and
sometimes for the antipatterns with assessment high.
The assessment should be the part of the description
of the antipatterns in a given environment. We shall
discuss mainly the critical antipatterns in confedera-
tions. Many conclusions hold for all service-oriented
systems.

The above assessment can be felt to be rough. In this
case we can use for p the degrees low, rather low, rather
high, high. If necessary, we can extend the scale further.
The experience shows that in situations we are discussing
the rough assessment is better than the fine one [28]. Some-
times it is good enough to estimate only the level of E di-
rectly – without referring to p.

4. What SOA for What Purpose

Simple/small process control systems (real-time sys-
tems) were the first systems applying the crucial principles
of SOA (see, e.g., [13]). Components (services) were soft-
ware components driving/supervising rather intelligent de-
vices of real world. Typical example were operation sys-
tems of minicomputers and systems controlling manufac-
turing like flexible manufacturing systems [13] or computer
integrated manufacturing (CIM).

The middleware (transport tier) were mainly supported
by tools of operating systems like mailbox, the system need
not be distributed. The number of components was small
and the components were known so the communication pro-
tocols and message formats can be agreed. The components
were usually written from scratch and they as a rule used in-
terfaces based on a variant of remote procedure call format.
The format is ”programmer oriented” – i.e., designed main-
ly to cover the needs of developers.

To summarize – real-time systems have the following
features:

• small components developed form scratch,

• mainly known components (we call such SOA confe-
derations),

• simple middleware using communication protocols, e-
specially message formats, that need not be user ori-
ented as they are not used by users,

• interfaces tend to be fine grained, procedural, develo-
per oriented,

• not too opened, limited reuse.

Note that communication partners need not be looked for at
the start of their dialog.

4.1. Alliances

In e-commerce the communication partners can be
looked for all over the world. The implementation of such
systems is usually based on web services. It follows that
world-wide networks and open standards must be used and
the interfaces are difficult to be adapted to specific needs of
a given system – it is especially a difficult problem in the
situation when immature standards only are available.

Such systems have the following features:

• The communication partners must be looked for at
the beginning of communication, possibly all over the
world,

• Internet is usually used as (the kernel of) middleware
and web services are a good solution,

• almost all the aspects of implementation is based on
open standards,

• highly open systems,

• quite frequent use by different users, reuse possible.

We call such systems alliances for short [15]. Alliances are
typically used in e-commerce.



163

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

4.2. Confederations

The majority of service oriented systems contain a virtu-
al kernel being a subnetwork of software services provid-
ing the basic capabilities of the whole system. The net-
work contains a limited number of well known services.
The communication protocols of the services can be a-
greed. We call such systems confederations. Examples are
e-government, information systems of municipalities, orga-
nizations with professional bureaucracy, ERP systems, etc.

The development of confederations strongly depends on
the fact whether the service requirement process is super-
vised by a quite strong central authority or not. The first
case is typical for the ERP systems of large enterprises, es-
pecially if they have division structure and machine bureau-
cracy [22].

In the second case the services in the kernel are almost
independent, like the states in the European Union. We call
therefore such confederations unions. It follows from the
above list, that software unions occur quite often. They are
even typical for the ERP of small firms being often induced
to integrate various legacies and third party products.

4.3. Unions

It is crucial to decide what SOA type is to be developed.
We can distinguish the following cases:

• Alliances. Highly open systems where communica-
ting services must be looked for. They are typical for
e−commerce.

• Confederations. Systems where communicating ser-
vices in the system kernel knows each other. It is typi-
cal for a wide spectrum of SOA systems. There are the
following main variants of confederations (Figure 1):

– Soft real-time systems. Almost closed systems
with quite small components and typically fine
grained interfaces. The interfaces are not inten-
ded to be used by users. It is typical for some soft
real-time process control systems.

– Enterprise confederations. Semi-open systems
supporting large enterprises having machine bu-
reaucracy [23, 22]. The enterprise has enough
resources to develop or buy the whole system at
once. Architecture is typical for the information
systems known as Enterprise Resource Planning
(ERP) of global enterprises. Typical is the use of
Enterprise Service Bus (ESB, [7]). The core of
the confederation is so large that it is meaningful
or necessary to use ESB.

– Unions. Almost open SOA systems. Their ker-
nels are built of a quite small number of almost

independent services knowing each other. It is
the SOA variant typical for the information sys-
tems of the large organizations with profession-
al bureaucracy (e-government, schools, etc.) or
small or medium-sized enterprises (SME). SME
have organization near to ad-hoc-cracy.

The SOA patterns and antipatterns are different for dif-
ferent SOA types. We mainly will discuss the case of uni-
ons. Unions rarely use ESB as they integrate a quite small
number of applications or systems. Compare the systems
of particular offices of a local administration. Unions are
typical not only for system having professional bureaucra-
cy but also for also for small and medium-sized enterprises
as these enterprises usually do not have enough resources
to rebuild their systems completely. Their organization is
moreover specific.

In e-government, enterprises (compare [21, 18]), health
care systems, etc. the resulting system is built from lega-
cies, third-party products and newly developed systems. It
is preferable to wrap the systems such that they have prop-
erties mirroring the behavior of real-world services, e.g.,
asynchronous communication protocols and user-oriented
(usable) interfaces. The middleware can and often must use
Enterprise Service Bus [7]. It is good when services like da-
ta stores and service adapters are used. We call such com-
ponents architecture services.

Unions are formed by a core network of complex ap-
plication services (mainly legacy systems and third-party
products), architecture services, and a middleware. The
number of application services is small and the services are
known. So their interfaces with the help of architecture ser-
vices can be agreed – such systems are therefore confede-
rations with large application components connected with
help of architecture services and middleware. Some ser-
vices can communicate with the ”peripheral” or ”foreign”
services using the principles used in alliances.

Features of unions in practice:

• large permanently used components that can be inte-
grated into SOA together with their local interfaces
(e.g., client tiers) without putting them out of opera-
tion for a longer time;

• sophisticated middleware enhanced by architecture
services;

• quite large application services – often reused legacy
and third-party systems;

• user-oriented coarse-grained interfaces of application
services;

• based mainly on the use of open standards but some
solutions or their parts (e.g., interfaces) can be propri-



164

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

SOA systems
»»»»»»»»9

XXXXXXXXz
alliances confederations

³³³³³³) ?

PPPPPPq
enterprise confederations unions soft real-time

©©©©¼

HHHHj
professional bureaucracy small-to-medium enterprises

Figure 1. Hierarchy of SOA systems

etary, if appropriate; it is the case when we need the
user-oriented declarative coarse-grained interfaces.

• the application services are almost independent (like
states in the European Union).

Unions can be used in the development and maintenance
of large systems and they can also effectively support the
modernization of information systems for small-to-medium
enterprises (SME). We will discuss mainly the unions. The
reason for it is that we have enough experience with uni-
ons and that unions occur frequently. We believe that be-
low given antipattern list is common for all confederations.
The evaluation can be different for some antipatterns. Possi-
ble candidates for it are ”No Legacy”, and ”Standardization
Paralysis”.

The situation in alliances is different and will be a topic
of further research. In alliances it is more necessary to use
open standards, agile business processes are therefore more
difficult to apply.

5. Architecture Antipattern: Mis-Selection of
SOA Type

SOA is in fact a concept covering multiple technologies.
Improper selection of SOA type is therefore an improper
selection of a technology to be used.

Symptoms and Consequences

The fact that there are several SOA types, is often ig-
nored. In practice semi-SOA systems are frequently used by
wrapping constituent software entities using various mes-
sage queuing tools like MQ or even low-level tools provided
by operating systems.

The different SOA types have different patterns and anti-
patterns. The proper solutions for different SOA types differ
as well. The improper choice or missing choice of proper

SOA type leads as a rule to project failure or to substantial
losses.

The antipattern is ”applied” already in the vision and
requirement specification phases – if the requirements are
hard to be mapped to possible solutions, or if the used tech-
nology restricts the expected features of the system, it is
likely that an improper SOA type has been chosen. It can be
induced by the application of improper standards or by the
marketing of software vendors The typical consequence is
failed or too effort consuming a poorly maintainable project
often also missing some of the project requirements.

Assessment

The fact that there are several significantly different SOA
types is quite unknown. The needed knowledge is blocked
by strict standardization effort and by the marketing of large
software vendors. p is therefore high. The consequences –
completely failed project or project fulfilling the goal only
partially mean very high loss. L is therefore also high to
very high. Hence E is o very high.

Solution

To prevent this antipattern it is good to make the require-
ments specification precisely and without preselecting the
solution type. When the antipattern is already detected, it
is necessary to return to the requirements specification and
analysis and try to map the requirements to potential solu-
tions. Typical tasks and solutions are discussed below.

Note

It is crucial that SOA in our understanding is any system
being a virtual peer-to-peer network of software artifacts
behaving like real-world services. This concept is broader
than the concepts adopted in SOA related standards, com-



165

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

pare the standards by OASIS or W3C or the concept sup-
ported by large software vendors.

Too narrow definitions can limit the use of SOA princi-
ples and benefit from SOA advantages. It may be one reason
of the falling popularity of SOA in the last year, compare the
study of Gartner Group from January 2008.

In practice we must integrate batch system, build SOA in
bottom up manner etc. It is not difficult to implement it we
properly wrap integrated applications and eventually treat
them as services communicating in bulk mode and having a
great latency. We can occasionally integrate batch applica-
tions wrapped by tools like MQ to behave like services.

The techniques developed for service oriented systems
can often be used outside SOA. Missing to use it is itself an
antipattern. The solution of the discussed antipattern facil-
itates or implies the solution of several known antipatterns.
Examples are: ”SOA = Web Services” and ”Big Bang” an-
tipatterns.

6. Methodological Antipattern: Fine-Grained
Interfaces

Fine-grained interfaces cannot mirror the coarse-grained
interfaces of real-world services properly. Fine-grained in-
terfaces have substantial technical drawbacks.

Symptoms and Consequences

People trained to design object-oriented code as a large
structured collection of methods and classes being in fact
a big collection of procedures each doing almost nothing.
It leads in service-oriented framework to the development
of systems consisting of services having fine-grained inter-
faces and being themselves fine-grained. This antipattern
was firstly described in [4]. The corresponding communi-
cation protocols usually use formats based on the remote
procedure call (RPC). Such an attitude is induced also by
the fact that RPC is a straightforward way to ”reuse” the
fine-grained interfaces of software components being in fact
wrapped components based on object-oriented methodolo-
gy.

It all together leads to services being ”talkative” and e-
quipped by interfaces that are not user-oriented. The first
property leads to the overloading of communication links,
the second in fact implies a difficult development of agile
business processes, a lot of user discomfort, and a more
complex implementation of some management operations
like insourcing and outsourcing.

Fine-grained interfaces tend to disclose too much on the
technical details of the services. It implies that the interfaces
are too much influenced by the changes of the interiors of
the services. It is generally known to be an unpleasant pro-
perty.

Assessment

The antipattern is quite common for all SOA types. p
is therefore high for all SOA types. The losses L are quite
large for unions, especially for the unions for SME. In large
enterprises having enough resources to decrease L using ap-
propriate means the problems is not so severe.

For unions p is high, L is low – high. E is therefore high
– very high.

For enterprise confederations is L quite low. E is in this
case low – high.

coarse-grained
messages

fine-grained
messages

Outer
processes

-¾
-¾
-¾ FEG

»»»»:»»»»9
-¾

XXXXzXXXXy

S1

S2

S3

S

Figure 2. Refactored antipattern Fine-Grained
Interfaces

Solution

We can use sophisticated forms of enterprise service bus
connectors in the case of enterprise confederations. The
second, and may be better, solution is the use of specific
architecture services acting as service adaptors. Such ser-
vices in [20] called front-end gates (FEG).

FEG transform n-tuples of fine-grained messages into
declarative complex messages having rich semantics, and
vice versa. The solution with FEG is applicable for unions
as well as for enterprise confederations.

7. Specification and Architecture Antipattern
”No Legacy”

Insufficient reuse of legacy systems and third-party pro-
ducts limits substantially the benefits of SOA – especially
for small and middle-sized enterprises or for e-government.

Symptoms and Consequences

It is often required that the developed system should not
contain any ”obsolete” parts – e.g., legacy systems. Com-
pare the antipattern ”Lava Flow” [5] known from object-
oriented methodology. The reuse of existing software is,
however, the most important opportunity of service orien-
tation. In the service-oriented setting it is a very costly an-
tipattern as the main advantage of service orientation is that



166

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

GLS

GA ©©

HH
Middleware

Portal
¢A

g

system interface

HHHH
log file

GLS1

¢A

g
Old (local)
interface of LS1

if appropriate

Portal

XML

HTML

¢A

g
system interface

Figure 3. Union integrating legacy systems L-
S and LS1.

it enables the integration of autonomous systems, especial-
ly legacy systems. Throwing out of legacy systems causes
superfluous immense additional investments into develop-
ment and implementation of new systems. Very large sys-
tems would not be then implementable at all. In other cases
it can cause unnecessary testing expenses and retraining of
end users.

Assessment

This antipattern occurs very often. The reason is that
in the object-oriented world this antipattern is a strongly
recommended pattern, compare the object-oriented antipat-
terns like Island of Automation. Software vendors are not
happy that they should integrate and guarantee foreign soft-
ware. So for unions p is high and L is very high. The as-
sessment of the antipattern is for unions therefore very high.

The consequences of the antipattern bearable for soft-
ware confederations. In this case p is high, L is high and E
is therefore only high.

Solution

At first the project management should accept that it is
good to leave some older parts (legacy systems) in a new
system as the old parts have useful capabilities and can be
very stable. Then we should choose the candidates for in-
tegration. The candidates must be then equipped with user-
oriented interfaces (portals) to be used by their communi-
cation partners. Let us repeat that user-oriented interfaces
are based on formalized text straightforwardly mirroring the
languages of the users’ world. We can use front-end gates
[14] to equip the legacy systems with user-oriented inter-
faces. User-oriented interfaces enables a very powerful im-
plementation of the software engineering principle of infor-
mation hiding.

If designed carefully, the integration of the systems does
not imply any change of ”existing” or ”old” interfaces of
the legacy system LS (Figure 3). Moreover, the local users
need not lose their feeling of ownership to ”their” system

and can bear the responsibility for its data and functions.
There can be some political (feeling of power and influence)
and organizational (autonomy of divisions/departments or
offices in e-government) reasons.

Service orientation is the best way of refactorization of
Stovepipe Systems and Stovepipe Factory antipatterns (see
[5]). Well working legacy systems simplify outsourcing and
reduce the necessity to retrain the end users to work with the
new system. Last but not least the use of wrapped legacy
systems enables large investment savings – well behaving
legacy systems need not be redeveloped, users do less errors
and need not be retrained. Note that FEG and portals are
from technical or development point of view similar.

Service orientation is the best known way of supporting
decentralization of enterprises.

A proper solution of the ”No Legacy” antipattern is a
precondition of the solution of ”Big Bang” antipattern and
enables a smooth application of incremental development.

Notes

This antipattern is often a consequence of the antipat-
tern ”All From Scratch” and can be also a consequence of
the SOA-variant ”Vendor Lock-In” antipattern known also
from the object-oriented world. In fact the antipattern ”No
Legacy” is the SOA-variant of the object-oriented antipat-
tern ”Reinvent the Wheel” [5].

We have experienced several projects failing due the ap-
plication of the antipattern ”No Legacy”. The proposed so-
lution of the antipattern is typically blocked by the antipat-
tern ”Standardization Paralysis” attempting to apply cum-
bersome, complex, and often immature standards every-
where.

8. Management and Design Antipattern ”Stan-
dardization Paralysis”

The overuse of many (especially immature) standards is
contraproductive and can cause some known antipatterns
like ”Vendor Lock-In” or ”Technology Bandwagon”.

Symptoms and Consequences

XML enables an easy development of languages trans-
formable very quickly into standards. Many people believe
that the standardization based on (quickly changing and ob-
soleting) standards is a proper solution. The result is that
the developers often strongly depend on software vendors
and that any solution based on legacies is therefore almost
impossible. These effects can be according to [12] known
as Technology Altar Antipattern. It often leads to SOA an-
tipatterns like ”SOA = Web Services” [4].



167

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

The psychological roots of the antipattern has a lot of
common with the object-oriented antipatterns ”Continuous
Obsolence” and ”Lava Flow” [5]. An example of this an-
tipattern is the e-government of one country where all the
newly incorporated systems must be certified for compati-
bility with a very quickly changing set of interface rules. It
blocks the e-government development.

Assessment

The requirement to standardize all system details is very
strong and common. So p is high. An improper standard-
ization can induce the use of the antipattern ”No Legacy”
and limit agile methods of development. It implies the de-
pendency on the product of large software vendors. It im-
plies something like the object-oriented antipattern ”Vendor
Lock-In”. It in fact creates an unnecessary initial barrier
for the application of SOA for unions. This consequence is
more important for unions where L is therefore high to very
high and E is therefore high to very high too.

For other SOA types E is low.

Solution

In the case of unions and probably in other types of
service-oriented systems as well we can at first specify local
(private) interface standards, test them for usefulness and
other quality aspects in practical applications. Then we can
lately transform them into public (ISO) standards after they
are available.

9. Specification Antipattern ”Business Process
for Ever”

It is often believed that the processes are defined so well
that no more changes will be necessary. It is in long-term
not true even for large enterprises. For smaller companies or
institutions in dynamic environment it is not true in almost
always.

Symptoms and Consequences

The antipattern can be also called ”No Businessmen In-
volvement” or ”Full Automation”. It is based on the con-
viction that well-defined business processes should not be
modified easily, if ever. The changes of the process can
be implemented by a highly specialized people or teams.
It, however, assumes that there are business data of a good
quality (i.e., accurate enough, accessible, timely, trustable,
not changing quickly, in volumes that are large enough, etc.
– compare [29]).

Such assumptions are correct for stable business environ-
ments and for large firms having repeatable business pro-
cesses not too influenced by globalization. Such enterpri-
ses have enough resources and enough data to develop pro-
cesses of a very good quality. It definitely does not hold
for small- and medium-sized firms especially in small e-
conomies. The books like [9] on the theory of constraints
indicate that the assumptions need not hold even for large
firms as the business process philosophy must be substan-
tially changed quite often.

If, however, a businessman responsible for the process
cannot change the process structure, then he/she cannot be
responsible for business consequences of the process. The
businessmen cannot even commit business steps if he/she
does not know all relevant business information – e.g.,
trustability of some data that were available to process de-
signer. The situation can be characterized as ”fully com-
puterized business processes – no agile user involvement
allowed”. Such a solution is often unacceptable. Adverse
properties of fixed (non-modifiable or modifiable with dif-
ficulties) business processes are the following:

1. We can require almost no responsibility of process u-
sers (business process owners) for the business pro-
cess consequences. They can act only as observers and
wrong in long term perspectives. It can be fatal in e-
mergency situations.

2. In small and medium firms the data and information
are not good enough to enable the definition of stable
business processes. This issue is often important for
large firms too.

3. The business environment changes, and, e.g., due
globalization, the art of business is changing.

4. The detailed specification of business processes is very
expensive and time consuming. It cannot be imple-
mented on-line.

5. It is good to train people to cope with unexpected
events or changing conditions. We can therefore con-
clude that it can be often good to allow the users:

(a) to supervise business processes,

(b) to commit the business steps if necessary,

(c) to redefine/change on the fly (in agile style) some
parts of the business processes,

(d) to save/remember the changes of the processes as
a part of business intelligence,

(e) to develop the process from scratch via logging
process owner commands.

Note that a) provides the tools allowing customers and
other processes to observe the progress of the process.
Similar requirement can be found in [25].



168

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Assessment

There is a widespread conviction that business processes
are too important and too difficult to develop to allow busi-
ness people to change them. The probability of the ”use” of
the antipattern is therefore high. The business consequences
tend to be very high for unions as agility is there highly de-
sirable. So the assessment of the antipattern is for unions
very high, i.e., extreme. The antipattern Business Process
for Ever is therefore in business environment critical.

The consequences for enterprise confederations are usu-
ally bearable (L is low to high) and as the processes are well
designed, p is low. We have therefore for this case E = low .

Risk evaluation of this antipattern for other SOA types
requires further research.

Solution

Any refactoring of the antipattern should enable the on-
line user involvement of the user into process execution (it is
the responsible user must be able to supervision and on-line
modify its processes). The service is defined (e.g., in BPEL
[3] or in Aris [11] or UML Action Diagram notation [26])
as a network of actions (operations) provided by software
services (we shall call them application services). In order
to enable the user involvement in business processes it is
practically necessary to make application service interfaces
user oriented. It is to make the interfaces to mirror user
domain professional language, and to mirror (if possible)
requests of real-world services (e.g., generate an invoice,
bill, consignment/remittance). From the point of view of
developer such interfaces are rather declarative (i.e., saying
what to do rather than how to do it) and coarse grained.

Using pattern called in [18] Front-End Gate (FEG) the
interfaces not being user oriented can be usually trans-
formed into user-oriented ones and vice versa.

FEG of an application service S is technically a peer in
a peer-to-peer network. Logically it accepts sequences of
possibly fine-grained messages from S and transforms them
into coarse-grained messages for communication partners
of S and vice versa.

The use of FEG can solve the antipattern Chatty Service
[4] the assessment of which is high to very high as L for it is
not fatal. FEG can avoid the necessity to use the messages
being too developer oriented. It can be called Cyberspace
Antipattern. This antipattern usually implies that the service
interfaces are not user oriented and it implies the antipattern
Business Process for Ever.

The Cyberspace Antipattern occurs quite often, so it
should be assessed as critical. FEG can be used to solve an-
tipattern Grey Services when interfaces disclose some im-
plementation details (i.e., services are not used as absolutely
black boxes).

Note that user-oriented interfaces simplify the develop-
ment as they enable the development of powerful screen ser-
vice prototypes with almost no additional effort [16, 19].

The business services should be implemented such that
the implementation fulfills all the conditions a) through
e) and additionally enabling the use of business con-
trol/modeling data of different types can be based on the
pattern Process Manager.

Process Manager

Business processes must admit on-line involvement and su-
pervision of process owners into their execution. According
[18] the reasons are:

1. The process model/definition is based on data that need
not be timely, accurate, or complete.

2. The business conditions changed or some conditions
are not valid any more.

3. The process owner can be obliged to agree with some
risky process steps.

4. The information on the process should be understand-
able for experts (not necessarily IT ones), e.g., at trial.

5. The process model M should be stored as a part of
business intelligence.

6. It is desirable to be allowed to have process models
in different languages, e.g., in BPEL [3], Aris, [11],
workflow [30], or in a semistructured text. The rea-
son is that business process models can be as a part
of business intelligence collected during a long time.
It is, they must be able to take into account the whole
collected experience, e.g., various business documents
like manufacturing logs, old business process descrip-
tion documents based on different methodologies. The
requirement is especially important for SME where it
must be even possible to enable process owners to con-
trol business processes having no definition at all or a
very informal one. It in fact enables the use of other-
wise blocked knowledge of process owners.

As it is not desirable to have much centralized services in
peer-to-peer systems (compare experience with UDDI [4])
we can use the following hints:

1. When a process is enacted (typically on the request of
its owner O), generate a new service P called Process
Manager. During the generation a process model M
(if any) is transformed into a process control data C
parametrizing M using parameters provided by O. O
can generate C directly without M , if appropriate. M
can be copied from a data store.



169

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

2. The process P during its execution generates using C
service calls. The calls can be synchronous (call and
wait for answer) or asynchronous (just send a mes-
sage). C can be on-line modified.

3. It is important that if the process owner can supervise
the process run and the process run is understandable
by non IT experts then the services should have in-
terface based on the languages of user knowledge do-
mains – we say that such interfaces are user oriented.
User orientation implies some limitations in the use
of classical web services in service-oriented systems.
User-oriented interfaces have many software engineer-
ing advantages – stability, conciseness, ability to hide
implementation details. They enhance reusability of
the services. The user-oriented messages are seman-
tically rich, so the communication channels are less
loaded.

Using Process Managers to handle business processes is
not only refactoring of the antipattern ”Business Process for
Ever”, it is even itself a pattern [20].

10. Design Antipattern ”Sand Pile”

The orchestration of lots of small services is sometimes
a hopeless issue.

Symptoms and Consequences

This antipattern is also known as ”Fine-Grained Ser-
vices”. A frequent implementation of SOA is the technique
”one elementary service (e.g., pay-a-bill) per one software
component”. The result is a large number of small compo-
nents sharing common data stores. It causes inefficiencies
and big maintenance problems. Similar properties are by
the antipattern Atomic Services [24] but we think that the
crucial problem is a wrong grouping of ”atomic” capabili-
ties. It is like to have many highly specialized car service
workshops working separately – it is no enterprise provid-
ing all repairs at one spot.

Assessment

The antipattern occurs rarely for enterprise confedera-
tions as well as for unions (p is low) but its consequences
are fatal (L = very high). So the assessment is in both cases
high.

Solution

Group related ”elementary” services into a composite
service with common interface provided by an architecture

Outer
processes

-¾
-¾
-¾ H

S1

6
?

S2

S3

HHjHHY

©©*©©¼ HHjHHY

©©*©©¼

Figure 4. Refactored antipattern Sand Pile

service H called head of composite service. For example
the composite service can be a collection of services sup-
porting activities of a department. To be more specific: let
S = {S1, ..., Sn} be the collection of the services suppor-
ting the department. It is required that all the messages ad-
dress S or from S must pass through H (see Figure 4 and
[20]).

11. Antipattern ”On-Line Only”

Symptoms and Consequences

Practice indicates that there are frequent situations when
some parts of the system must or should be run in batch
mode. The main reasons are:

• Some legacy systems are batch systems.

• Some activities have a long latency (as they are com-
putationally complex) or need real-world (e.g., user)
responses.

• There can be software engineering reasons to use batch
systems (reduction of development effort, security,
etc.).

So the integration of batch systems is necessary. The in-
tegration can be via data stores implemented as services.
There is a prejudice that it is an obsolete technique. The
antipattern results into expensive and unstable solutions.

The importance of the combination of batch and on-line
applications is discussed in a case study of a flexible manu-
facturing system [18].

Assessment

The antipattern occurs not too frequently as the integra-
tion of batch systems are not frequently used but conse-
quences of it can be very high. So p is low, L is very high.
The assessment E is therefore high to very high for all con-
federation types. Note, however, that with growing size of
information systems the frequency of the cases when batch
systems must be used will grow. Although the pattern may
occur also in alliances, risk evaluation of this case has not
been done yet.



170

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Solution

It is sometimes good to implement a classical data store
but wrap it as a service communicating in bulk mode with
batch services being wrapped batch systems. The data store
is the filled by batch subsystems in batches and used inter-
actively by other services of the system [18] or vice versa.

The data store can be also used to support the enhance-
ment of communication protocol. In this case the data store
contains messages. We call such a data store message data
store service (MDS). Sometimes a file transfer communica-
tion can be used instead data store services.

Note

MDS can be used as a service implementing sophisticat-
ed variants of inter-service communication [18]. It can be
used for the resolving of, e.g., the antipattern Point-to-Point
Service [4] or to implement a very sophisticated commu-
nication schemas being more complex than, e.g., publish-
subscribe protocol. Data stores and MDS substantially in-
crease the flexibility of SOA using them.

12. Conclusion

The main goal of the research of SOA antipatterns is
often aimed on the extension of the list of known antipat-
terns. The importance of individual antipatterns is seldom
discussed.

We have shown that the evaluation the antipatterns has
many common features with the stage of risk identification
in standard processes of risk management. In fact, there is a
risk related to every antipattern. So we should apply conse-
quent stages of risk management for the assessment of an-
tipatterns in order to select and manage the most important
risks (antipatterns).

The techniques we have used are very useful as they help
to find and properly evaluate the antipatterns being the most
important ones from the point of view of risk management.
The most critical (meta)antipattern is Mis-Selection of SOA
Type.

The further most critical antipatterns are ”Software Pro-
cesses for Ever” not allowing agile business processes, ”No
Legacy”, and ”Standardization Paralysis”. These antipat-
terns have many links to other SOA antipatterns and even
to the antipatterns known from the object-oriented world.
In the future we will assess risks of the antipatterns known
from the lists mentioned in the references.

Note that the most critical SOA antipatterns are the an-
tipatterns not occurring among the object-oriented antipat-
terns ([5]). The examples are: ”Mis-Selection of SOA
Type” and ”Standardization Paralysis”. Some SOA antipat-
terns are patterns in object-oriented philosophy (”No Lega-

cy”), and vice versa (”Fine-Grained Interfaces”). The as-
sessment of service-oriented antipatterns has different re-
sults for different SOA types. We have discussed some cas-
es of it.

The overall structure of SOA is mainly implied by com-
munication disciplines. They are almost not controlled by
any explicit tools, so their use is only the matter of attitude.
It substantially increases the flexibility of the SOA systems.
If, however, not used properly, it makes the system mainte-
nance a hopeless issue.

Note that the marketing of service-oriented standards
have resulted into the situation when there is, according to
our meaning, a wrong conviction that SOA requires sub-
stantial initial effort and investments. A less dogmatic atti-
tude can allow building systems having no SOA in the strict
sense of OASIS and W3C but offering substantial amount
of benefits typical for SOA.

It is open whether the differences of unions in small-to-
medium enterprises and in large organizations with profes-
sional bureaucracy like e-government are not more funda-
mental than we assumed up to now. It is a very interesting
topic for further research.

We applied our evaluation process of antipatterns on the
atnipatterns listed in [4, 12]. The results were the following:
The evaluation were low except the cases when the antipat-
terns were special instances of the antipatterns from our list.
It is important that the majority of the evaluated antipatterns
cannot take place or can be solved easily provided that all
the antipatterns from our list are solved properly.

Acknowledgement This research was partially support-
ed by the Program ”Information Society” under project
1ET100300517 and by the Grant Agency of Czech Repub-
lic under project 201/09/0983.

References

[1] J. Král and M. Žemlička. The most important service-
oriented antipatterns. In International Conference on Soft-
ware Engineering Advances (ICSEA’07), page 29, Los
Alamitos, CA, USA, 2007. IEEE Computer Society.

[2] J. Adams, S. Koushik, G. Vasudeva, and G. Galambos. Pat-
terns for e-Business: A Strategy for Reuse. MC Press, 2001.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. K-
lein, F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte,
I. Trickovic, and S. Weerawarana. Specification: Business
process execution language for web services version 1.1,
2003. http://www-106.ibm.com/developerworks/library/ws-
bpel/ 2009-05-14.

[4] J. Ang, L. Cherbakov, and M. Ibrahim. SOA an-
tipatterns, Nov. 2005. http://www-128.ibm.com
/developerworks/webservices/library/ws-antipatterns/
2009-05-14.



171

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

[5] W. J. Brown, R. C. Malveau, H. W. S. McCormick, III, and
T. J. Mowbray. AntiPatterns: Refactoring Software, Archi-
tectures, and Projects in Crisis. John Wiley & Sons, New
York, 1998.

[6] S. Carter. The top five SOA don’ts, Mar. 2007.
http://www.ebizq.net/topics/soa/features/7780.html?related
2009-05-14.

[7] D. A. Chappell. Enterprise Service Bus. O’Reilly, 2004.
[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

Patterns. Elements of Reusable Object-Oriented Software.
Addison-Wesley, Boston, MA, 1993.

[9] E. M. Goldratt. Critical Chain. North River Press, Great
Barrington, MA, 1997.

[10] E. M. Hall. Managing Risks, Methods for Software Systems
Development. Addison Wesley Longman, Reading, MA,
USA, 1998.

[11] IDS Scheer. Aris process platform.
[12] S. Jones. SOA anti-patterns, 2006. http://www.infoq.com

/articles/SOA-anti-patterns 2009-05-14.
[13] J. Král and J. Demner. Towards reliable real time software.

In Proceedings of IFIP Conference Construction of Quality
Software, pages 1–12, North Holland, 1979.

[14] J. Král and M. Žemlička. Component types in software con-
federations. In M. H. Hamza, editor, Applied Informatics,
pages 125–130, Anaheim, 2002. ACTA Press.

[15] J. Král and M. Žemlička. Software confederations and al-
liances. In CAiSE’03 Forum: Information Systems for a
Connected Society, Maribor, Slovenia, 2003. University of
Maribor Press.

[16] J. Král and M. Žemlička. Service orientation and the quality
indicators for software services. In R. Trappl, editor, Cy-
bernetics and Systems, volume 2, pages 434–439, Vienna,
Austria, 2004. Austrian Society for Cybernetic Studies.

[17] J. Král and M. Žemlička. Systemic of human involvement
in information systems. Technical Report 2, Charles Uni-
versity, Faculty of Mathematics and Physics, Department of
Software Engineering, Prague, Czech Republic, Feb. 2004.

[18] J. Král and M. Žemlička. Implementation of business pro-
cesses in service-oriented systems. In Proceedings of 2005
IEEE International Conference on Services Computing, vol-
ume II, pages 115–122, Los Alamitos, CA, USA, 2005.
IEEE Computer Society.

[19] J. Král and M. Žemlička. Software architecture for evolving
environment. In K. Kontogiannis, Y. Zou, and M. D. Pen-
ta, editors, Software Technology and Engineering Practice,
pages 49–58, Los Alamitos, CA, USA, 2006. IEEE Com-
puter Society.

[20] J. Král and M. Žemlička. Crucial patterns in service-oriented
architecture. In Proceedings of ICDT 2007 Conference,
page 24, Los Alamitos, CA, USA, 2007. IEEE CS Press.

[21] J. Král and M. Žemlička. Software for small-to-medium en-
terprises. In M. M. Cruz-Cunha, editor, Enterprise Infor-
mation Systems for Business Integration in SMEs: Techno-
logical, Organizational and Social Dimensions. IGI Global,
2009. To appear.

[22] H. Mintzberg. Mintzberg on Management. Free Press, 1989.
[23] H. Mintzberg. Structure in Fives: Designing Effective Or-

ganizations. Prentice Hall, 1992.

[24] T. Modi. SOA antipatterns, Aug. 2006. http://www.ebizq.net
/hot topics/soa/features/7238.html 2009-05-14.

[25] OASIS. Asynchronous service access protocol (AS-
AP). http://www.oasis-open.org/committees/download.php
/14210/wd-asap-spec-02e.doc 2009-05-14.

[26] OMG. Unified modeling language, 2001. Available at
http://www.omg.org/technology/documents/formal/uml.htm.

[27] Z. Stanı́ček. Private communication, 2007.
[28] Z. Stanı́ček and J. Hajkr. Project management for im-

plementing is into organizations. In T. Hruška, editor,
DATAKON 2005, pages 173–197, Brno, Czech Republic,
2005. Masaryk University.

[29] Y. Wand and R. Y. Wang. Anchoring data quality dimensions
in ontological foundations. Commun. ACM, 39(11):86–95,
1996.

[30] Workflow Management Coalition. Workflow specification,
2004. available at http://www.wfmc.org/standards/docs/Wf-
XML-11.pdf.


