
36

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

 Semantic Enabled Framework for SLA Monitoring

Kaouthar FAKHFAKH
1-2-3

, Saïd TAZI
1-2
, Khalil

DRIRA
1,2

1
CNRS- LAAS

2
Université de Toulouse; UT1, UPS, INSA, INP, ISAE;

LAAS;

7 avenue du colonel Roche, F31077 Toulouse, France

{kchaari, tazi, khalil}@laas.fr

Tarak CHAARI3 and Mohamed JMAIEL
3

3
National Engineering School of Sfax

ENIS-ReDCAD

Informatics and applied Mathematics department,

Route de la Soukra, B.P. W, 3038 Sfax, Tunisia

tarak.chaari@redcad.org

mohamed.jmaiel@enis.rnu.tn

Abstract--Defining clear Quality of Service agreements

between service providers and consumers is particularly

important for the successful deployment of service-oriented

architectures. The related challenges include correctly

elaborating and monitoring QoS-aware contracts (called SLA:

Service Level Agreement) to detect and handle their

violations. In this paper, first, we study and compare existing

SLA-related models. To address the insufficiencies of these

models, we propose a complete, generic and semantically

richer ontology-based model of Service Level Agreements. In

this model, we use the SWRL language (Semantic Web Rule

Language) to express SLA obligations. This language

facilitates the SLA monitoring process and the eventual action

triggering in case of violations. In a second step, we use our

SLA model to automatically generate semantic-enabled QoS

obligations monitors. The main algorithms that perform the

monitoring process are presented in this article. We

implement these algorithms in an automatically generated

service-oriented architecture. Finally, we believe that this

work is a step ahead to the complete automation of SLA

management process.

Keywords—Service Level Agreements; ontology-based

model; SOA; SLA monitoring; QoS contracts

I. INTRODUCTION

 Service Level Agreements (SLAs) have become very
important in the information technology area of business
firms. SLAs are used with increasing frequency in general
application integrations, e-commerce, outsourcing and B2B
deployments. As firms increased their outsourcing of IT
services, SLAs become the primary management tool for
governing the relationship among the provider and its
consumers. The emergence of software as a service,
especially Web service, has also spurred the development of
service level agreements. As more business software moves
to a Web delivery platform, SLAs became the primary tool
that regulates the relationship between providers and
consumers when they use software services.

Metrics like processing time, messages per hour,
rejected transaction counts and queries per day are common
examples of defined service qualities which may be
measured either at end-points, or by an intermediary. These
measurements are then typically compared by an
enforcement process or application to the desired level. An

action should be taken according to this comparison. This
action can be simply gathering and reporting results,
identifying and forwarding SLA violations, or changing
service behavior based on current SLA conformance.

Monitoring of SLAs between providers of a service (for
example on-line banking, auctioning, ticket reservation, etc.)
and consumers is a topic that is gaining in importance for
business success over the Internet. SLA monitoring involves
the collection of statistical metrics about the performance of
a service to evaluate whether the provider is delivering the
level of QoS stipulated in a contract signed between the
provider and the consumer. In this context, the monitoring
and the management of SLAs and their related services are
crucially important. Our work focuses on the required
models and software tools to monitor the QoS obligations
specified in these contracts and to react to the violations or
failures in the system. In this paper, we focus on a generic
ontology [1] development to assist the preparation of QoS
contracts and to monitor the agreements and the specified
obligations on these contracts. The choice of ontology is
driven by its potential to facilitate the establishment of
service level agreements between the different knowledge
levels of service providers and consumers. In addition,
ontology implementations, using open standards like OWL
(Web Ontology Language) [2] and SWRL (Semantic Web
Rule Language) [3], provide a common understandable
language for machines and humans. They also facilitate the
contract obligations expression and the necessary inferring
to take the appropriate actions in case of violations.

In Section II of this paper, we start by defining the
principles of the service level agreements, their structure,
their establishment and their existing implementations. In
Section III, we present the main SLA related existing
models. In Section IV, we detail our service level
agreement’s generic model that we called SLAOnt. Then, in
Section V, we explain how this model is used to monitor its
obligation instances. We present also the simplified
architecture and the main algorithms that perform the
monitoring process. In Section VI, we present the SLA
monitoring API (called SLAOntAPI) that we have developed
to implement the monitoring algorithms. Before concluding,
in Section VII, we give a simple instantiation example of
our model and we show how we have monitored its
obligations using our SLA monitoring prototype.

37

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

II. SLA PRINCIPLES

In this section, we present the definition of a Service

Level Agreement (SLA), its structure, life-cycle and its

main implementing languages that we can find in the

literature.

A. Definition: Service Level Agreements (SLA)
Debusmann and al., in [4], define the term SLA as a

contract that exists between consumers and their service
provider, or between service providers. It records the
common understanding about services, priorities,
responsibilities, guarantee, and the quality level of the
service according to all these parameters. For example, it
may specify the levels of availability, serviceability,
performance, operation, or other attributes of the service like
billing and even penalties in the case of violation of the
SLA.

SLA is also described in [5] as a “Contractual service
commitment”. An SLA is a document that describes the
minimum performance criteria a provider promises to meet
while delivering a service. It typically also sets out the
remedial action and any penalties that will take effect if
performance falls below the promised standard. It is an
essential component of the legal contract between a service
consumer and the provider.”

B. SLA structure

Figure 1. General SLA Structure

SLA is composed of three main sections as presented in
figure 1. The first section contains the involved parties in the
contract: the signatory parties (the service provider and its
consumer) and the third parties that supervise SLA
obligations. The second section presents the involved
services description. This part contains the service
operations, their input and output messages. For each
service operation, one or more bindings may be specified. A
binding is the transport encoding for the messages to be
exchanged. It also contains the SLA parameters representing
the QoS variables that will be used in the specification of the

contract obligations. These parameters are based on metrics
evaluated by measurement directives. Some functions can
be used to aggregate multiple metric values. The last
element (schedule) of this second part in the contract
specifies the duration and the frequency of QoS
measurements. The third section presents the contract
obligations: their validity period indicating the time intervals
for which a given SLA parameter is valid (for examples,
business days, regular working hours or maintenance
periods), the predicate that represents the conditions that
specify these obligations and the actions to be taken when
the contract is not respected.

C. SLA life cycle
Although the contracts are intended to formalize

mutually accepted agreements by services providers and
consumers, their establishment usually remains usually
asymmetric and controlled by the providers. It includes
several steps as shown in figure 2.

Figure 2. SLA Establishment

The service provider creates a contract model that
defines the offered services and their associated constraints.
Then, it publishes them at a given broker service. They also
integrate the service’s financial costs (included in the SLA
obligations) as well as penalties in case of contract violation.
The service consumer discovers this model from the broker
service and selects the desired services and the contract
instance. When the provider receives this instance, he
checks it before its validation and sends it to the consumer.
After a negotiation phase and when the two parties are in
agreement, they sign the contract. After that, the consumer
can invoke her/his the corresponding service. The specified
obligations in the contract are constantly supervised by a
controlling authority which is a third party that notifies the
signatory parties when the contract is violated.

D. SLA implementations
Several languages were proposed to implement the SLA

specifications. We can cite WSOL (Web Service Offerings
Language) [6], GXLA [7], WSML (Web Services
Management Language) [8], SLAang [9], Ws-Agreement

Broker Service

Service

Consumer

Service

Provider

Control authority

Contract

Service

Service

description

Discovery
Publication

(1) Negotiation

(2) Signatory

(3)Invocation

Service

Parties
Signatory parties

Supporting parties

Service Description

Service Operations

Bindings

SLA parameters

Metrics

Measurement Directives

Functions

Schedule

Obligations

Validity Period

Predicate

Actions

38

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

[10], Ws-Negotiation [11] and WSLA (Web Service Level
Agreement) [12]. Among all these languages, the most
successful contribution is the WSLA language created by
IBM

1
. It is a flexible and extensible language based on XML

Schema2. However, contract development remains a
difficult task to achieve when using this language. In fact,
providers and consumers don’t have the same degree of
knowledge and may not share the same language. In
addition, the contract monitoring and its possible violation
are difficult to establish due to some insufficiencies in the
monitored QoS parameters description especially when they
are composed by other elementary parameters.
Consequently, we explore the existing SLA related models
to find more structured and semantically richer descriptions
of SLA obligations to ensure their automatic monitoring and
management.

III. SLA-RELATED EXISTING MODELS

In this section, we present an analysis of some SLA
related existing models. We notice a great interest in
modeling the quality of services which is a principal element
in the contract specification. In the following parts of this
section, we present the main existing models in QoS
specifications.

A. OWL-QoS (Chen Zhou, Likang-Tien Chia, Bu-Sung
Lee)

OWL-QoS [13] is a QoS description model. It reuses
OWL-S [14], the service description ontology standard. This
model is characterized by its formal QoS specification,
distribution and consumption. Unfortunately, it presents
some insufficiencies: QoS metrics are instantiated without
specifying how they will be measured and in what context
they can be used. Moreover, the used approach is flawed in
that it uses cardinality constraints to express bounds upon
QoS properties. As the term cardinality suggests, this is
actually a misuse of this OWL construct. A cardinality
constraint puts constraints on the number of values a
property can take, not on the values themselves. Even if the
approach taken was valid, it also carries the limitation that it
can only express bounds as positive integers (e.g., there is
no simple way to say "availability> 0.999'').

B. QoSOnt (G. Dobson, R. Lock, I. Sommerville)
QoSOnt [15] has much in common with other OWL

ontologies [16] for web services. It contains links to OWL-S
and concentrates on the metrics definition and on QoS
requirements matching with metrics. As well as pointing the
direction to the correct semantics for matchmaking, QoSOnt
also correctly identifies that the value of a metric is only
relevant in the correct scope (e.g.. network latency applies to
a particular network route) and that metric has a “direction”
e.g., the higher, the better. Initial attempts at representing
how metrics combine when services are composed have also
been made. Unfortunately, despite identifying the correct

1 http://www.research.ibm.com/wsla/

2 http://www.w3.org/XML/Schema

semantics for matching QoS with its metrics, QoSOnt uses a
non standardized XML language losing many of the
advantages of OWL [2].

C. SL-Ontology (Steffen Bleul, Thomas Weise, Kurt
Geihss)

SL-Ontology [17] is another attempt at QoS modeling. It
differentiates between the provider offers and customer
demands. It presents the necessary elements of quality aware
service discovery and the importance of integrating quality
aspects in service integration. A description language needs
flexibility for service level packages and service providing
parties. It must also handle different terms in specifying
QoS-Dimensions. In this scope, SL-Ontology specifies a
part of measurement units transformations to address
disparities between customers and suppliers languages. This
resolution is specified only at the level of units in this
model.

D. WS-QoS (Tian, M., Gramm, A., Ritter, H., and Schiller,
J.)

WS-QoS [18] is a framework that uses a QoS-based
ontology model for the dynamic Web services selection
depending on the performance requirements and network
bandwidth. This model is characterized by specific metrics
that must be known in advance by all the services. It also
uses a specific non-OWL XML language for metric
description. Consequently, it loses the reasoning and the
semantic inferences offered by the OWL language.

E. FIPA QoS (M.B Alberto, G.V Marisol)
FIPA [19] is another ontology-based model of QoS

representation. It is complete, but unfortunately it remains
too specific to the lower layers of the OSI model. This
ontology also lacks an openly available implementation and
links to OWL-S ontology. It has also been applied only in
FIPA architecture and therefore it is not directly applicable
in a web services environment.

F. MOQ (HM. Kim, A. Sengupta and J. Evermann)
MOQ [20] is another attempt of QoS modeling that

defines QoS composite requirements but fails to suggest a
mean to allow logical requirement combinations, only
stating that if all sub-requirements are met then the
composite is always satisfied. Unfortunately, the major
drawback of MOQ is that it does not in itself seem to
present an ontology, but only talks about the semantics of
QoS ontologies in general. It doesn’t use a vocabulary or
taxonomy of QoS terms in its modeling and therefore it fails
to address all of the issues that complete ontologies.

G. Synthesis on existing QoS models
We have made a comparative study between these

various models. Table 1 presents a comparison of these
models according to three criteria. The first criterion
"Scope" illustrates the degree of completeness of each
model by listing its main concepts. The second criterion
"Implementation" shows if concrete examples were
developed to validate these models. The third criterion

39

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

"Automatic use facilities" illustrates the degree of
information structuring into these models to facilitate their
interpretation and their automatic use to monitor and
manage service level agreements.

TABLE 1. QOS MODELS COMPARISON

On the first criterion, the majority of the existing models

have focused on the specification and the measurement of
QoS. Few models are interested in establishing and
managing the QoS contracts. Consequently, we usually have
incomplete specifications to express the obligations of the
involved actors in the contracts. On the second criterion, we
looked for concrete examples that instantiate the existing
models. We encountered various difficulties with the
majority of them due to the insufficiency at the level of QoS
obligation specifications in the contract. For example, the
MOQ model is very abstract and lacks many concrete
elements to be really implemented in real world instances.
On the third criterion, specific and non standard
implementations of some parts of all the described models
make their automatic interpretation and monitoring difficult
to establish. Ad-hoc solutions have to be developed to use
these models.

 All the models that we cited have advantages and
relative limitations. Indeed, few existing models define the
context concept in the quality of service (QoS); however,
context is important to manage the contract lifecycle for
QoS in an automatic way. In addition, some contributions
(as WS-QoS) use specific XML formats for the full or
partial implementation of their models. This may reduce the
interest of using this ontology. In fact, the ontology offer
inference possibilities and semantic interpretations when
they are implemented using the OWL language. In addition,
some models are either specific to a particular domain such
as FIPA-QoS which is specific to the low layers of OSI
model) or presenting various insufficiencies (like the lack of
specifications of logical constraints in MOQ). Finally, all
these models focus on the quality of service modeling
without detailing the obligations and agreements between
the involved actors. This last observation motivated us to
develop an SLA model based on the advantages of the
existing contributions.

Our contribution in this domain is to establish an

ontology-based service level agreements (SLA) model. We
made this choice to (i) facilitate the establishment of
contracts between entities (suppliers and consumers) having
different knowledge levels (ii) have a model offering rich
semantics to be understood by humans and by machines (iii)
use the semantic richness of SWRL rules in order to express
SLA obligations and to easily infer and directly apply the
necessary actions in case of violations and (iv) use their
semantic richness to diagnose the causes of these violations.

IV. SLAONT: ONTOLOGY-BASED SLA MODEL

PROPOSITION

Our model, that we called SLAont [21], defines an

ontology describing various concepts and properties needed

in a quality of service contract. Figure 3 presents the generic

structure of this model. The root is the SLA concept. It

represents the contracts class that can be instantiated from

SLAOnt. This class is composed of the following concepts:

Parties, Obligation and ServiceDefiniton. The first concept

Parties defines the involved parties in the contract: the

signatory and the supporting party. The signatory parties are

generally the service providers and their consumers. The

third parties provide the necessary entities for the quality of

service measurement evaluation and monitoring. The

second concept Obligation defines the quality of service

obligations that have to be respected by the parties. These

obligations are defined by service level objectives. Each

objective is composed of predicates describing the QoS

clauses that may cause the contract violation. The third

concept ServiceDefinition describes the provided services

that are concerned by these obligations. Our model uses the

OWL-S [14] ontology to describe these services. This

ontology is composed of three main parts: the service profile

for advertising and discovering services; the process model,

that gives a detailed description of the service operation; and

 Scope Implementation
Automatic use

facilities

OWL-

QoS [13]

Metric, Unit,
Measurement

functions,

QoS Profile,
agreements,

Actors,

Service

Partial

implementations

QoS constraints as

strings

QoSOnt

[15]

Service
Profile, QoS

Profile,

Metric, Unit,
Actors,

Measurement

functions,
Service

Partial
implementations

Specific partial

implementation
language

SL-

Ontology

[17]

Metric, Unit,,
QoS, Services

Partial
implementations

for SLA

establishment but

not for monitoring

WS-QoS

[18]

Metric,
Functions,

QoS,

agreements,
Actors

No OWL

implementation

Specific

implementation

language

FIPA

QoS [19]

Quality of

Service
Description,

Rate Value,

Probability
Value,

Transport

Protocol
Description

No OWL

implementation

Specific

implementation
language

MOQ

[20]

Qos

Requirement,

Traceability,
Management

Provides a

theoretical basis

without
implementations

Specific predicate

interpretation

40

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

the grounding that provides details on how to interoperate

with a service, via messages.

Figure 3. SLAOnt: general structure of a QoS contract

The contract is defined in a specific application domain.

Thus, the concept ApplicationDomain is defined to describe

the contract context. This concept is a reference to an

external ontology describing the business domain of the

involved service in the SLA. The necessary variables for

defining the measured quality of service are modeled by the

SLAParameter concept. SLAParameter is associated with

one or more metrics (an aggregation of metrics), that define

the quality of service parameters to be measured in the

contract. These metrics, modeled by the metric concept, can

be aggregated by a mathematical function or an algorithm

defined in the Function concept. For example, the function

can be an average or a computed percentage from a set of

measurements.

The SLAParameter concept represents a variable that

has a measurement unit (Unit) that can be seconds, minutes,

percentages, etc. For each SLA parameter, the SLA

designer has to specify the corresponding aggregation

function to compute its values. These functions are

described in the SLA instance. They can be composite and

they are described as an abstract service providing an SLA

parameter value and consuming metrics values or constants.

Each function is defined by an implementing class and a list

of operands corresponding to measurements of QoS

metrics. These measurements are obtained using

measurement directives MeasurementDirective

corresponding to remote operation calls to retrieve the

metrics values. We have modeled these calls by the

RemoteOperationCall concept. It describes the operation to

be called with its invocation protocol. Each operation is

associated to a handler that represents the remote class that

hosts the operation. In addition, we describe input

parameters of the operation with the Parameter concept.

This encapsulates the values to be passed to the remote

operation for its invocation. The Predicate concept defines

the QoS obligations that must be respected in the contract.

Each predicate is expressed by an SWRL rule. Each rule is

defined by a head part (swrl:head) and a body part

(swrl:body). In the head part, we specify the actions that

have to be taken when a violation is detected. The body part

specifies the conditions that may cause a contract violation.

Listing 1 gives a concrete example of an SLA predicate in

SLAOnt. This rule sends a disseminate violation message

to the signatory parties if the service response time is

greater or equal to 100 milliseconds.

Listing 1. Response time less than100 ms evaluation rule

hasEvaluation (response_time, ?x) ^ swrlb: greater ThanOrEqual(?x, 100.0) →
slaont:disseminateViolation (response_time, ?x)

SLAOnt is a generic and rich model in terms of

semantics. In fact, SLAParameters can be semantically
composed of metrics according to a user defined
aggregation functions. For example, an SLA parameter can
describe the average response time of a service. In this case,
the attached metric is response time and its aggregation
function is the average function. Moreover, measurement
directives are generic enough to evaluate any metric defined
in this model. The model can also express dependencies
between metrics, SLAParameters and QoS obligations.
These dependencies can be statistical (aggregation to
calculate average for example), logical (comparison with
many thresholds) or semantic (parameters deduced by
inference from other parameters). Finally, the semantic
relationships between metrics, SLAParameters and QoS
obligations offer an easy and reliable means to (1) evaluate
them and (2) to produce inferences and reasoning in order to
detect contract violations and even QoS degradations. In the
next section, we present how we used SLAOnt to monitor
QoS contracts.

V. MONITORING SLAONT INSTANCES

We used SLAOnt model to monitor the obligations
defined in the SLAs. In this section, we present the
simplified architecture and the main algorithms that perform
the monitoring process. Figure 4 shows an overview of this

references

hasInvolvedParties

hasServiceDefintion hasObligation

SLA

Obligation ApplicationDomain ServiceDefinition Parties

P1 :Service
SupportingParty

P1 :ServiceModel

P1 :ServiceProfile

SignatoryParty

Notify*

Notify*

P1 :describes*

P1 :presentedBy

OWL-S

P1 :presents*

ServiceObject

SLAParameter

Measurement

Directive
Metric

Unit

RemoteOperation

Call

Parameter

r

ServiceLevelObjective

hasServiceObject*

hasSLAParameter*

definedByMetric

hasUnit*

hasValueFrom

Is a

Predicate

hasPredicate*

Operation

hasOperation

hasParameter*

isConcernedBy

Function

hasFunction

hasOperand*

isComposedOfSLO*

isComposedOf

SupportingParty*

(4) Termination

isComposedOf

SignatoryParty

P1 :ServiceGrounding

P1 :supports

41

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

monitoring process in our approach. It illustrates the main
entities of our monitoring API. This API contains a
monitoring main module that can deploy SLAOnt instances.
For each metric, SLA parameter and obligation defined in
an SLAOnt instance, the main module respectively generates
a metric measurement service, an SLA parameter
measurement service and obligation measurement service.
In the remaining parts of this section, we detail the main
functions and algorithms of these services.

Figure 4. Simplified architecture of SLAOnt obligations monitoring

A. Metric measurement services
Metric measurement services provide metric values

according to a frequency specified in the SLA. A metric
measurement service is automatically instantiated by the
SLAOnt monitoring main module for each metric defined in
the SLA. This service invokes the measurement directive of
the associated metric. Listing 2 presents the main functions
of this service. First, it collects the metric name, the
measurement directive and the measurement frequency of
the associated metric. Then, it loops according to this
frequency to invoke the measurement directive of the metric
and to store the obtained value in a log file. These values
will be used by the SLA parameter measurement services.

Listing 2. Metric measurement algorithm

MetricMeasurement(Metric metric)
{
 getMetricDetailsRule:="hasName("+ metric + ", ?metricName) ^

hasValueFrom("+metric+",?measurementDirective)^
hasMeasurementFrequency("+ metric +",?frequency) →
query:select(?metricName, ? measurementDirective, ? frequency)";

(metricName, measurementDirective, frequency):= runRule(getMetricDetailsRule);
 Loop on frequency
 {
 measurement := invokeMeasurementDirective(measurementDirective);
 Log.store(metricName,measurement);
 }
}

B. SLA parameter measurement services
The SLA parameter measurement services apply

aggregation functions on the metrics values to compute the
QoS variables defined by the SLA parameter. An SLA
parameter measurement service is automatically instantiated
by the SLAOnt monitoring main module for each SLA
parameter defined in the contract. For each SLA parameter,
we have to specify the corresponding aggregation function
to compute its values. The implementing class of each
function will be called by the SLA parameter measurement
algorithm after getting the necessary metric values to
compute the function. This algorithm collects the different
metrics associated with the SLA parameter. It also gets the
computation frequency and the aggregation function of the
SLA parameter. Then, it loops according to this frequency in
order (i) to collect the last measured values of the metrics
associated to the SLA parameter, (ii) to compute its
aggregation functions and (iii) to add its value in the Log
storage. This value will be used by the obligation
monitoring services. Listing 3 presents the main functions of
this service.

Listing 3. SLA parameter measurement algorithm

SLAParameterMeasurement(SLAParameter parameter)
{
 getMetricsRule := "hasFunction("+parameter+",?function) ^

hasOperand(?function, ?metric) →query:select(?metric);
 metrics := runRule(getMetricsRule);
 getSLAParameterDetailsRule:= "hasFunction("+parameter+",?function) ^

hasAggregationFrequency("+ parameter + ", ? aggregationFrequency)
→query:select(?function, ?aggregationFrequency)";

 (function, aggregationFrequency):=runRule(getSLAParameterDetailsRule);
 Every aggregationFrequency do
 {

 Measurements:= ∅;
 For each metric in metrics do
 {
 Measurements.put(metric, Log.getLastValues(metric));
 }
 functionClass := loadFunctionClass(function) ;
 slaParameterValue := functionClass.call(Measurements);
 SLAOnt.setLastParameterValue(parameter, slaParameterValue);
 Log.store(parameter, slaParameterValue);
 }
}

C. Obligation monitoring services
The obligation monitoring services check the validity of

each obligation defined in the contract. They are
automatically instantiated by the SLAOnt monitoring main
module for each Obligation defined in the SLA. It uses the
computed values in the SLA parameter to check if they
satisfy the specified conditions defined in the obligation.
These conditions are defined as SWRL rules.

Listing 4. Predicate evaluation rule

hasEvaluation(average_response_time, ?x) ^ swrlb: greaterThanOrEqual(?x,
100.0) → slaont:disseminate Violation(average_ response_time, ?x)

The evaluation of these conditions is simply an inference

of these SWRL rules. The actions to be taken in case of

Measurements

SLAOnt

LOG

Metric

Measurement

Service

SLAParameter

Measurement

Service

Obligation

Monitoring

Service

Measurements

Measurements

SLAOnt Monitoring Main Module

Uses

Uses to infer

Uses to infer Uses to infer

Generates Generates
Generates

42

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

violations can be directly applied in these rules like
disseminateViolation in Listing 4.

Listing 5. Obligation monitoring algorithm

checkObligation(Obligation obligation)
{
getPredicatesRule:="isComposedOfSLO("+obligation+",?slo) ^ hasPredicate(?slo,

?predicate) → query:select(?predicate)";
Predicates: = runRule(getPredicatesRule) ;
For each p in Predicates
 { getPredicateRule := "hasRule("+p+", ?rule) ^

hasVerificationPeriodicity("+p+",?periodicity) →
query:select(?rule,?periodicity)";

 (rule,periodicity) := runRule(getPredicateRule)
 Loop on periodicity
 {
 runRule(rule);
 }
 }
}

Listing 5 presents the main functions of this service. It

starts by collecting the different predicates defined in the
associated obligation. Then, every predicate evaluation
periodicity (every sixty minutes for example), the inference
engine computes the attached SWRL rule and executes the
specified action to be taken in case of violation. For
example, the SWRL of Listing 1, if the response time is
greater than 100 ms, the action disseminateViolation is
triggered. This action continuously reports all the detected
violations and their causes to the involved parties in the
SLA.

When the designer creates an SLAOnt instance, she/he
can specify an execution order for the SWRL rules
representing the SLA predicates. This order is ensured by a
numbering sequence in the name of the rules that should be
conflict free in order to produce relevant results. This
conflict verification should be performed before the
monitoring phase. The verification process is out of the
scope of this work. Actually, we are working on a
negotiation approach that generates SLAOnt instances with
conflict free obligations.

In the next section, we present how we implemented
these algorithms to develop a complete and a reusable
monitoring API for SLAOnt instances.

VI. SLAONT MONITORING API

In this section, we present the SLAOnt monitoring API
(named SLAOntAPI) that we have developed to implement
the algorithms presented in the previous section. Figure 5
shows the technical architecture of the monitoring process.
In the lowest layer, ontologies used in the API are
represented by their OWL files. Above this layer, the Xerces
XML API

3
 is used to read data from the owl file. Protégé

OWL API
4
 is used to handle owl data in the ontologies.

Then, the SWRL Jess API5 is used to make inferences and

3 http://xerces.apache.org/xerces-j/apiDocs/index.html

4 http://protege.stanford.edu/plugins/owl/api/

5 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLJessTab

reasoning on the ontologies instances. In the upper layer, we
have developed a JAVA Monitoring API (SLAOntAPI).

Figure 5. Technical architecture of the monitoring process

Figure 6. The SLAOntAPI class diagram

Java Program (monitoring

code)

SWRL Jess API

Protégé OWL API

Ontologies OWL

(SLAOnt.owl,

SLAOntActions.owl)

Xerces XML API

SLAMonitoringMain

SWRLBuildingLibraryIMPL

SWRLEngineBridge

SWRLFactory

OWL model

XML Parser

SLAMonitoringMain

+ main ()

- CreateObligation

 MonitoringServices()

-CreateMetric

MeasurementService()

-CreateSLAParameter

MeasurementService()

SWRLfactory

CreateImp()

MetricMeasurementService

Start()

SLAParameterMeasurement

Service

Start()

SWRLEngineBridge (Jess)

infer()

PredicateEvalutionService

Start()

SWRLBuiltinLibraryImpl

getMetric()

aggregateMetrics()

setSLAParameterValue()

dissiminateViolation()

Create Rule

Create /start

Create /start

Execute Rule
Execute Rule

Create / start

ExecuteRule

uses

43

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 7. The SLAOntAPI Sequence Diagram

Figure 8. OWL file containing the actions to be triggered in SLA

predicates

Figure 6 shows the class diagram of the SLAOnt API.
The most important class in this API is the
SWRLBuiltInLibraryImpl class. It contains the functions that
will be directly invoked by the SWRL rules. This class
offers the getMetric function which invokes the
measurement directive of the specified metric and sends its
value to the Log store. It also has an aggregateMetrics
method that calls the aggregation function to compute SLA

parameter values. Finally, it offers a disseminateViolation
method that sends SLA violation messages to the signatory
parties. These methods are defined as SWRL Built-ins
which are predicates that can take on or more arguments.

Built-ins are analogous to functions in production rule
systems. A number of core built-ins are defined in the
SWRL specification. This core set includes basic
mathematical operators and built-ins for string and date
manipulations. These built-ins can be used directly in
SWRL rules. User defined built-ins has to be declared in an
external ontology. We have declared getMetric,
aggregateMetrics and disseminateViolation built-ins in the
ontology represented by an Owl file (slaOntActions.owl) as
shown in figure 8.

Figure 7 shows the sequence diagram of our approach.
For each metric in SLAOnt, the main program creates a
measurement rule and a measurement service. For each
SLAParameter, The main program creates a metric
aggregation rule and a service to perform the aggregation.
For each obligation in SLAOnt, the main program generates
an obligation evaluation service.

VII. CASE STUDY: THE FLIGHT SLA EXAMPLE

To validate the service level agreements model and the
developed monitoring API, we created an instance of
SLAOnt model using the “protégé” tool. This instance
consists in a simple agreement example between a provider
of a flight booking service and its consumers. This service
must provide an average response time less than 100
milliseconds for a certain class of clients. Figure 9 illustrates
the FlightSLA instance in this example.

slaont :aggregateMetric()

slaont :getMetric()

infer(obligationRule)

infer(aggregationRule)

infer(measurementRule)

Start()

Start()

Start()

Metric Measurement

service
SLAParameter

MonitoringService

service

Obligation

Monitoring service

SWRLEngine

Bridge

(Jess)

SWRLBuildinLibrary

Impl

slaont :disseminateViolation()

Every Measurement Frequency

Every Aggregation Frequency

For each metric in SLAont : createImp (measurementRule)

For each SLAparameter in SLAont : CreateImp (AggregationRule)

For each SLAparameter in SLAont : createSLAParameterMonitoringService (SLAParameter, AgregationRule)

For each obligation in SLAont : createObligationMonitoringService(obligation)

SLAMonitoring

Main Module
SWRL factory

Every evaluation frequency

For each metric in SLAont : createMeasurementService (Metric,measurementRule)

Jess SWRL API SLAOnt Monitoring API

slaont :setSLAParameterValue()

44

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 9. FlightSLA: An SLAOnt instance example

The service provider of this contract is named

FlightProvider and his consumer is FlightConsumer. In this
example, the third parties involved in this contract are:
FlightProviderMeasurement and FlightAuditor. The
FlightProviderMeasurement service must provide the
response time measurements of the consumer requests. The
FlightAuditor service must notify any violations of the
contract to the signatory parties. The service provider must
respect the objective defined by the FilghtSLO instance in
the contract. This instance specifies the predicates that have
to be satisfied in the contract. These predicates are defined
in SWRL rules to facilitate the monitoring processes of the
contract. The defined obligation in the FlightSLA example is
shown in Listing 6.

Listing 6. Predicate evaluation rule

hasEvaluation(average_response_time, ?x) ^ swrlb: greaterThanOrEqual(?x,
100.0) → slaont:disseminate Violation(AverageLessThan100ms, "false", average_

response_time, ?x)

This rule verifies that the average response time of the

monitored service is greater or equal to 100 milliseconds
(body part of the rule). In this case, a violation message is
disseminated to the signatory parties in the contract. These
messages contain the parameter values that caused the
violation. To perform the automatic monitoring process on
this example, we loaded its owl file6 in the monitoring API
main module (figure 10).

Figure 11 shows the monitoring process of this example.
To use the SLAOntAPI7 with other SLA instances, the SLA

6 http://www.laas.fr/~kchaari/slaOnt/FlightSLA.owl

7 http://www.laas.fr/~kchaari/slaOnt/SLAmonitoring.zip

designer should import the SLAOnt ontology8 and creates
the necessary instances of its main concepts. The actions to
be taken in case of violations should be declared in an
external ontology named SLAOntActions.owl. These actions
should be implemented as SWRL Built-ins to work with our
code. These built-ins are standard java code that can be
easily personalized to manage the actions that should be
taken in case of violations. Finally, the designer should save
the created instance in an owl file and load it in our
monitoring main module as shown in figure 10.

Figure 10. SLAOnt instances loading interface

8 http://www.laas.fr/~kchaari/slaOnt/SLAont.owl

flightSLA

involvedParties

flightServiceDefinition
bookingFlight

flightObligation

notification

flightSLO

flight

flightProviderMeasure

flightAuditor

flightConsumer

flightProvider

AverageLessThan100ms

hasObligations

isConcernedBy
hasServiceDefinition

hasInvolvedParties

hasPredicate

hasObligedParty

notify

notify

isComposedOfSignatoryParty

isComposedOf

SignatoryParty notify isComposedOf

SupportingParty

hasServiceObject

isComposedOf

ActionGuarantee isComposedOf

serviceLevelObjective

Average_response_time

responseTime

hasSLAParameter

definedByMetric

45

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 11. FlightSLA monitoring process

VIII. CONCLUSION AND FUTURE WORK

The service oriented software engineering market
requires QoS specifications by the services suppliers. Much
effort has been invested in modeling QoS parameters to
allow an automatic (or semi-automatic) selection of the
services offering the best quality. We have explored several
existing models in this domain. We have noticed the lack of
a comprehensive and a generic model for the service level
agreements specification and for their monitoring to detect
possible violations. Therefore, we created an ontology that
models these agreements (SLA) to facilitate the QoS
contracts establishment between consumers and suppliers on
one hand and to automate their management and monitoring
on the other hand. In this paper, we presented the structure
of our ontology-based model offering rich semantics to be
understood by humans and by machines. In this model, we
used the semantic richness of SWRL rules in order to
express SLA obligations and to easily infer and apply the
necessary actions in case of violations. Our second
contribution in this work is the development of an API that
guarantees the automatic monitoring of our SLA model
instances. This API is based on an automatic generation of a
service oriented architecture that gathers the measurements
of the QoS defined in the SLAs. For clarity reasons, we
presented a simple SLA example to illustrate the main
principles of our SLA model and our monitoring API. We
have tested this API on more complex examples concerning
video streaming provider who offers two services: the first

one to visualize film online and the second one for
downloading films. In this example, a download time SLA
parameter is monitored according to the video size and the
client’s throughput. Our API is scalable enough to handle a
large number of metrics SLA parameter and obligations. In
fact, their associated measurement services are instantiated
dynamically in separate threads and can be distributed on
many machines. We plan to use the monitored
measurements to analyze and detect system degradations
and to prevent SLA violations. Actually, we are working on
a semantic-enabled negotiation framework to help the
providers and their customers in establishing SLAOnt
contracts. In a long term future work, we intend to propose
corrective actions in case of QoS degradation. This issue
will be very useful to evolve from the existing simple
message notifications to corrective actions assistance.

ACKNOWLEDGEMENTS

This work has been partially funded by the ITEA2's
UseNet (Ubiquitous M2M Service Networks) European
project

9
.

REFERENCES

[1] R.Studer, R.Benjamins, D.Fensel. Knowledge engineering:
principles and methods. IEEE Transactions on Data and Knowledge
Engineering, 25 (1-2) pp.161-197, March 1998.

9 https://usenet.erve.vtt.fi/

46

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

[2] Mc Guiness D. & ZSPLITZvan Harmelen F. (2004). OWL Web
Ontology Language Overview, W3C Recommendation
http://www.w3.org/TR/owl-features/

[3] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof,
and M. Dean. SWRL: A semantic web rule language combining
OWL and RuleML. W3C Member Submission, 21 May 2004.

[4] M. Debusmann, R. Kroger, and K. Geihs. “Unifying Service Level
Management Using an MDA-based Approach”. IEEE Network
Operations and Management Symposium, pp.801-814, 2004.

[5] Procullux Media Ltd. http://looselycoupled.com/glossary/SLA.

 Last visited 15/01/09

[6] Tosic, V., Pagurek, B., Patel, K., Esfandiari, B., and Ma, W. 2005.
Management applications of the web service offerings language . Inf.
Syst. 30, 7 (Nov. 2005), 564-586.

[7] Badis Tebbani, Issam Aib. “GXLA a Language for the Specification
of Service Level Agreements”. Autonomic Networking, 201-214,
2006.

[8] A. Sahai, V. Machiraju, M. Sayal, A. van Moorsel, and F.Casati.
“Automated SLA Monitoring for Web Services”. IFIP/IEEE
International Workshop on Distributed Systems: Operations and
Management, pp.28-41, 2002.

[9] J. Skene, D. Lamanna, and W. Emmerich. “SLAng: A Language for
Service Level Agreements”. Workshop on Future Trends in
Distributed Computing Systems. IEEE Computer Society, 2002.

[10] A. Andrieux, A. Dan K. Czajkowski, K. Keahey, H. Ludwig, T.
Nakata, J. Pruyne,J. Rofrano, S. Tuecke, and M. Xu. “Web Services
Agreement Specification (WSAgreement)”. Specification draft,
Global Grid Forum (GGF), September Version 09/2005.

[11] P. C. K. Hung, H. Li, and J-J Jeng. “WS-Negotiation: An Overview
of Research Issues”. Hawaii International Conference on System
Sciences (HICSS), 2004.

[12] A. Keller and H. Ludwig. “The WSLA Framework: Specifying and
Monitoring Service Level Agreements for Web Services”. Journal of
Network and Systems Management, 11(1), 2003.

[13] Chia, Bu-Sung Lee. “QoS Measurement Issues with DAML-QoS”.
IEEE InterChen Zhou, Likang-Tien national Conference on e-
Business Engineering (ICEBE'05) pp. 395 403.

[14] OWL-S. An OWL-based Web service ontology.
<http://www.w3.org/Submission/2004/07/> November 2004.

[15] G. Dobson, R. Lock, I. Sommerville. “QoSOnt: a QoS Ontology for
Service-Centric System”, EUROMICRO Conference on Software
Engineering and Advanced Applications, Porto, Portugal, Aug. 2005.

[16] C. Zhou, L. Chia, and B. Lee, “DAML-QoS Ontology for Web
Services”, Proceeding of the International Conference on Web
Services 2004 (ICWS04), San Diego, California, USA, July 2004.

[17] Steffen Bleul, Thomas Weise, Kurt Geihss. “An Ontology for
Quality-Aware Service Discovery”. Special Edition Editorial:
Engineering Design and Composition of Service-Oriented
Applications, Computer Systems Science & Engineering, Volume 5,
Number 21 – 2006.

[18] Tian, M., Gramm, A., Ritter,H., and Schiller,J. “Efficient Selection
and Monitoring of QoSaware Web services with the WSQoS
Framework”. IEEE/WIC/ACM International Conference on Web
Intelligence (WI'04), Beijing, China, 2004.

[19] Foundation for Intelligent Physical Agents “FIPA Quality of Service
Ontology Specification”, Geneva, Switzerland, Nov. 2002.

[20] HM. Kim, A. Sengupta and J. Evermann. “MOQ: Web Services
Ontologies for QOS and General Quality Evaluations”, European
Conference on Information Systems, Regensburg, Germany. May
2005.

[21] K. Fakhfakh, T. Chaari, S. Tazi, K. Drira, and M. Jmaiel. 2008. A
Comprehensive Ontology-Based Approach for SLA Obligations
Monitoring. In Proceedings of the 2008 the Second international
Conference on Advanced Engineering Computing and Applications
in Sciences - Volume 00 (September 29 - October 04, 2008).
ADVCOMP 2008. IARIA. Published by the IEEE Computer Society
Press, pp. 217-222.

