
63

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

A Underlay System for Enhancing Dynamicity within Web Mashups

Heiko Pfeffer
Technische Universität Berlin

Franklinstr. 28/29, 10587 Berlin, Germany
heiko.pfeffer@tu-berlin.de

Abstract

Rich Internet Applications (RIA) and composed Web ap-
plications, referred to as Mashups, have become the new
generation of Web based applications, aggregating multi-
media data such as audio, video and images from multiple
providers and combining them to more powerful and value-
added applications. In the same time, mobile devices such
as smartphones or PDAs are increasingly used to access
the Web and Web based applications. Therefore, Web de-
velopers nowadays face a huge client heterogeneity, where
devices differ in their computing capabilities, screen size,
available bandwidth, and mobility pattern.

This paper introduces a service composition model that
can underlie modern Web applications and can be executed
within a respective runtime at every browser-enabled client.
This model allows software develops to create applications
by abstracting from concrete services and APIs, which are
incorporated dynamically during runtime. Thus, the result-
ing Underlay System for Web Mashups overcomes device
heterogeneity by providing means to execute the applica-
tion logic in a unified runtime while integrating the concrete
service implementations based on the current context of the
user and the respective client device.

Keywords: Service Composition, Mashups, Composed Web
Applications, Workflows, Timed Automata, Realtime

1 Introduction

In 2003, Macromedia coined the term of Rich Internet
Applications (RIA), describing a new breed of upcoming
Web applications that combines the best of desktop soft-
ware, the Web, and advanced communication technologies
[11]. Here, the aim is to build highly interactive Web ap-
plications that feature a broad spectrum of data such as au-
dio, video, images and text in order to enhance the expe-
rience of the user. Lawton later introduced an update on
the definition of RIA, highlighting the importance of the

usage of Web technologies [18]. At the same time, com-
posed Web applications, i.e. applications that were built
by the incorporation of content from multiple 3rd party ser-
vice providers, referred to as Mashups, gained importance.
On ProgrammableWeb.com [1], 1318 open APIs and 3985
Mashups were registered in May 2009. The most promi-
nent motives for offering data to communities of users and
software developers are the generation of new ideas by inde-
pendent developers, the search for new revenue streams and
the opportunity to draw traffic to the providers’ sites and
remain or become a dominant player in the Web. Through
publicly available APIs the community often develops new
features without assistance from the providers, posing the
possibility of vertical integration for the providers.

However, the development of such Web Mashups as a
composition of 3rd party services is aggravated by differing
interface descriptions of 3rd party services and their varying
return types that considerably reduce the amount of reusable
code and forestall an easy swapping of services with simi-
lar functionality. Thus, today’s composed Web applications
remain tailor-made for specific purposes.

Other domains have already faced similar challenges
and responded with respective mechanisms. For instance,
architecting distributed applications in open systems with
SOA-based software patterns has proven as good practice
to achieve robustness and extensibility. Inter-component
dependencies are loosened to on-demand selection and
purpose-driven interaction at runtime, service consuming
and service providing entities stay autonomic; this central
concept is often referred to as late binding of services.

However, SOA based applications incorporate a huge
protocol stack and are thus a bad fit for modern Web appli-
cations based on the REST architectural style [13]. More-
over, SOAs are tailor-made to support large-scale business
processes where end-users are not the center of attention as
opposed to Web Mashups. Business processes completely
lack a presentation layer to display results of computations
and to interact with the user. Moreover, they do not pro-
vide suitable means to remain responsive to user prefer-
ences or context or to support a broad device heterogeneity,

64

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

i.e. mobile users accessing Web applications through small
portable devices with restricted computing capabilities.

Within the remainder of this work, a Underlay System
for Web Mashups is introduced that considerably reduces
the problems entailed by a high device heterogeneity by
incorporating services based on the current context during
runtime. Here, section 2 first gives a general introduction to
composed applications, highlighting results from the world
of SOA and the Web, respectively. The conceptual part of
section 3 discusses the Underlay System itself and builds
upon results given in [29], while section 4 highlights an ar-
chitecture for realizing the proposed approach.

2 State of the Art and Related Work

This section gives a short introduction to the most im-
portant concepts relevant within the scope of this work and
relates it to similar approaches. While subsection 2.1 fo-
cuses on the concept of service composition and workflow
languages, subsection 2.2 deals with a respective ground-
ing to the Web architecture, discussing Mashups as a poster
child for composed Web applications.

2.1 Service Composition

Service Oriented Architecture (SOA) and Web Services
have successfully addressed the problem of Service Com-
position for business processes by introducing appropriate
composition languages [5], enabling the controlled execu-
tion of multiple accumulated Web Services. However, those
technologies such as UDDI and SOAP strictly rely on fix in-
frastructures for service discovery and provisioning. First
steps towards perpetuating the success of SOA and Web
Services to mobile networks have been achieved by provid-
ing service frameworks for accessing Web Services from
mobile devices such as PDAs and Smartphones [23]. A
static service infrastructure for service discovery and provi-
sioning is nevertheless still indispensable. Successful Ser-
vice Composition methods remain tailor-made for business
processes [17].

Within the world of SOA and Web Services, various
models for service composition are present. The currently
most prominent one is BPEL4WS [3, 8], a combination of
IBM’s graph-based Web Service Flow Language (WSFL)
[19] and Microsoft’s block-oriented XLANG [30]. Beside,
many other composition languages exist, wherefrom none
has made the breakthrough to an holistically accepted stan-
dard for Web Service Composition [33]. In order to pro-
vide more dynamic service composition approaches fea-
turing a functional-based service discovery and binding,
some approaches have replaced the Web Service Descrip-
tion Language (WSDL) [6] by semantic service descrip-
tions such as OWL-S [31]. Especially for mobile devices,

more lightweight descriptions have been proposed in order
to reduce the computation complexity entailed by semantic
reasoning processes [27].

However, dynamic service composition faces the diffi-
culty that new semantic service descriptions have to be gen-
erated that can be used for future service discovery and
binding. The approach introduced in this paper therefore
aims at extending the flexibility of service compositions
achieved trough late binding mechanisms to the structure
of service composition plans. This proceeding entails the
generation of multiple equivalent or similar service compo-
sitions with regard to their functionality, which may how-
ever differ in their non-functional properties.

2.2 Mashups - Composed Web Applica-
tions

Mashups are composed Web applications integrating
data from multiple 3rd party providers to provide a value-
added functionality and experience to the user. Within
this section, we first outline the three basic roles within
Mashup based Web applications and then discuss two dif-
ferent Mashups styles that denote possible ways to realize
them, building upon [21] and [22] mainly.

2.2.1 Mashup Roles

In general, Mashups architectures feature three elementary
roles as illustrated in Figure 1. The Content Provider is a
source of data that can be accessed through open APIs over
various Web protocols such as REST, RSS or SOAP. The
Mashup Site is the new build Web application that requests
content and services from various data sources and com-
bines them in order to provide a value-added application
to the user. The Client is the interface to the user (pre-
sented within a Web-browser). The user can interact with
the Mashup through client-side scripting languages such as
JavaScript.

Within the following section, we will first focus on the
role of content providers, introducing famous and success-
ful services that are exposed through open APIs. Here, spe-
cial emphasis will be put on the way they expose their APIs,
the types of data they return and how their integration can
characterize the resulting Mashup. Thereafter, we will dis-
cuss basic styles of Mashups, highlighting the different re-
sponsibilities of clients and Mashup sites within the respec-
tive approaches.

2.2.2 Mashup Styles

In general, it is distinguished between two basic styles for
creating and executing Mashups, entailing different respon-
sibilities of the client and the Mashup site in order to exe-
cute the actual Mashup. Both styles expose serious advan-

2

65

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Client

Mashup Site

Content
Providers

Figure 1. General Roles of a Mashup Web Ap-
plication.

tages and disadvantages with regard to their performance,
load distribution and security, and thus have to be pondered
against each other carefully with regard to the requirements
of the respective Mashup application.

Server-side Mashups Within server-side Mashups, ser-
vices and content are integrated at a server, which plays the
role of a proxy between the Web application on the client
and other Web sites that are integrated into the Mashup.
Every request or event originating from the client is for-
warded to this proxy server, which then makes the calls on
the respective Web sites. Because of this central server role
acting as a proxy, server-side Mashups are often referred to
as Proxy Mashups. Figure 2 shows the general setting of a
server-side Mashup.

Whenever a user generates an event at the client Web
browser, e.g. pushes a button or clicks on a map, the event
triggers a JavaScript function (#1). This Java Script func-
tion makes a HTTP request to the Mashup site (#2). Com-
monly, this request is an Ajax request; it will later be dis-
cussed in greater detail. The request is received by a Web
component such as a Servlet or Java Server Page (JSP) on
the Mashup site. Based on the received request, the com-
ponent calls one or multiple methods within a class or mul-
tiple classes containing the application logic to make calls
on 3rd party APIs (#3). Because of their role of acting as
a proxy between the client’s request and the request to the
actual Mashup servers, these classes are often referred to as
Proxy Classes. Note that proxy classes are not restricted in
the way they are realized, thus, they can be implemented as
plain Java classes or large-scale J2EE components. Thus,
the Proxy classes connect to the addressed Mashup servers
and request the respective services (#4). In turn, the Mashup
servers process the request and respond with the resulting
data (#5). The proxy classes receive the response and can

process the data before forwarding it to the Web component
(#6). This option of processing data on the server side en-
ables most of the advantages of a server-side Mashups. For
instance, data can be transformed in a format such as JSON
that is easier to process by the client, it can integrate differ-
ent data sources and only send the integrated piece of data
to the client, or data can be buffered or cached in order to in-
crease the performance of succeeding requests. Finally, the
Web component sends the response to the client (#7). Here,
the view of the page at the client side is updated according
to the response. In case the initial request has been an Ajax
request in form of an XMLHttpRequest object, this page up-
date is achieved by the callback function within the XML-
HttpRequest that manipulates the Document Object Model
(DOM) accordingly.

Client-side Mashups Within client-side Mashups, the in-
tegration of the single services and data sources is per-
formed at the client instead of using an additional proxy
server. Thus, clients connect directly to 3rd party APIs in
order to request services; a client-side Mashup is abstractly
depicted in Figure 3.

Application
Logic

(JavaScript)

Client Mashup Site

Content Provider

Web Server

(Web
Component)

Mashup
Application

(Proxy Classes)

DatabaseUser Interface

Web Server

#3
JS Call

#6
Site Update

#1
Request

#2
Response

#3 #6

#4
Request

#5
Response

Figure 3. Client-side Mashup.

Initially, the client’s browser makes a request to the
Mashup site (#1), initiating the server to load the requested
Web page into the client (#2). This Web page provides ac-
cess to JavaScript libraries that enable the client later to di-
rectly call services at 3rd party APIs without addressing the
Mashup site beforehand. There are three common ways
to provide access to JavaScript libraries. First, the Web

3

66

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Application
Logic

(JavaScript &
XMLHttpRequest)

Client Mashup Site Content Provider

Web Server
(Web

Component)

Mashup
Application

(Proxy Classes)

DatabaseUser Interface

Web Server#1
JS Call

#8
Site Update

#2
Request

#7
Response

#3 #6

#4
Request

#5
Response

Figure 2. Server-side Mashup.

page may reference the JavaScript library from the respec-
tive 3rd party service provider such as Google Maps; here,
it is sufficient to reference the library by a valid URL. In
case the 3rd party provider does not expose an appropriate
JavaScript library, the Mashup developer can provide one
on his own and make it available on the Mashup site. Al-
ternatively, other 3rd party libraries may be referenced to
ease the Mashup’s creation. Specific actions on the Web
page trigger the browser to call a function in the JavaScript
library integrated within the Web page. This function dy-
namically creates a <script> tag in the Web site that points
to the according 3rd party server (#3). Afterwards, the client
initiates an HTTP request based on the ¡script¿ tag includ-
ing the desired format of the response (#4). As discussed
above, the format of the response provided by a service can
commonly vary, ranging from XML to YAML or JSON. For
client-side Mashups, JSONP (JSON with Padding) is the
most common response format since it can be easily evalu-
ated (by the JavaScript function eval()) at the client. JSONP
extends JSON by the capability of appending the name of
a local callback function to the JSON object. Thus, in case
the server provides the response in JSONP, a call is made
on the callback function with the JSON object as parameter
(#6). Finally, the DOM of the page is manipulated by the
JavaScript function and the page is updated accordingly.

3 Underlay System for Web Mashups

Within this section, a Underlay System for Web Mashups
is specified by introducing a service composition model that
can describe and execute composed Web applications, i.e.
Mashups, and is -in the same time- responsive to the envi-
ronmental user context. Special emphasis is put on over-

coming the high degree of device heterogeneity we face in
today’s Web.

3.1 Distinguishing Mashups and Business
Processes

Business processes and Web Mashups both constitute
composed applications. However, they are created with dif-
ferent requirements. While business processes are tailor-
made to describe large-scale business transactions among
multiple enterprises, Mashups are rapidly created Web ap-
plications for end-users aiming at a high degree of interac-
tivity and graphical presentation, where content from 3rd
party providers is combined to add value to the created Web
application.

The fact that Mashups are built on top of the Web proto-
col stack while business processes are designed for SOAs is
also reflected in the underlying technologies for remote ser-
vice invocation and service interworking as shown in Table
1.

Moreover, Table 1 outlines the focus of both technolo-
gies. Business processes are defined by service composition
languages such as BPEL and provide late binding mech-
anisms for services that are described by languages such
as WSDL and stored in repositories where they can be ac-
cessed via UDDI. Thereby, enterprises can modify the im-
plementations of their single services (e.g. upgrade them
to a new version) without any need to notify service con-
sumers of their changes since the services are incorporated
by their descriptions only and thereby decoupled from the
actual service implementation. Mashups on the contrary do
not provide any kind of controlled service execution or late
binding of services. Instead, Web developers directly in-
tegrate the concrete APIs of 3rd party providers into their

4

67

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Feature Business Processes (SOA) Web (Mashups)
Remote Invocation WebServices (WSA), XML-RPC XMLHttpRequest (Ajax), JSON RPC,

COMET
Service Interworking .NET, J2EE EcmaScript (Java Script)
Service Composition Yes No
Composition Languages BPEL4WS, WSFL, WSCDL
Composition Execution Engines Bexee, Oracle BPEL Process Manager,

IBM WBISF
Late Binding Yes No
Service Description Languages WSDL, WSDL-S, OWL-S
Service Discovery UDDI
Interaction No Yes
Presentation HTML, CSS, XML, Streamed audio and

video
User Input HTML Forms, XForms, JS Key-

board/Mouse Event Models

Table 1. Business Processes vs. Mashups

Mashups. In return, Mashups provide a connection to the
user by default: Web applications are build by a Web page
that consists of HTML, CSS and Java Script and therefore
possess a presentation and means to interact with the user
by nature. Application logic is only invoked when an event
is created by the user that triggers a certain functionality.

The following can be concluded: While business pro-
cesses enable software developers to create the application
logic of a process without dealing with its graphical presen-
tation and possible user interaction, Mashups are created as
interactive graphic presentations that react on user input and
thereby invoke small parts of application logic that modifies
the presentation of the application.

3.2 Requirements for a Mashup Underlay
System

The objective of this work is to incorporate the ability
of SOA business processes to structure the underlying ap-
plication logic as a service composition and to dynamically
incorporate services or APIs through late binding mecha-
nisms in order to overcome the device heterogeneity of to-
day’ Web Mashups. Moreover, this techniques allow for a
more dynamic adaptation of Mashups to the users’ needs
and their environmental context by providing means to in-
clude services based on the users’ preferences, on the client
device and its respective capabilities, and the current per-
formance of the single services.

Given these requirements, the following components
are identified as central for the Underlay System for Web
Mashups:

• Workflow - A workflow graph enables software de-
velopers to specify the execution order of the single

services and APIs.

• Dataflow - A dataflow graph allows developers to con-
nect data retrieved as output of one service to the inputs
of other services.

• Abstract Service Access - An abstraction layer for
services and APIs defines a unified way to access ser-
vices providing the same resource, i.e. the same object
on the presentation and interaction layer. Thus, this
layer allows developers to conceptually include a map
within their Mashups without specifying the concrete
service that is creating this presentation. This proce-
dure does not only free the software developer from
programming against multiple APIs, but also allows
for a dynamic exchange of the bound services or APIs
in case the context of the user changes.

• Context Awareness - The Underlay System provides
an interface to develop selection mechanisms in case
multiple services are available for the same presenta-
tion. For instance, in case both Google Maps and Ya-
hoo Maps are identified to be capable of presenting a
map to the user, the selection can be made dependent
on user preferences or context.

• Time Awareness - To overcome device heterogeneity,
time is identified as critical context information that
can trigger the evaluation of the appropriateness of in-
tegrated services. For instance, in case the processing
of a service exceeds a predefined time limit, it can be
concluded that the processing power of the device is
too low and that the service should be replaced. The
same technique can be applied to identify services that

5

68

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

are causing too much traffic given the available band-
width. For instance, one could define that in case the
response time of a service exceeds a certain time span,
the traffic has to be too high for the currently available
bandwidth such that the service has to be replaced with
a less demanding one.

Within the next subsections, a service composition
model is developed on a theoretical level that builds the
core of the Underlay System for Web Mashups and can be
executed within a respective runtime both on servers and
browser-enabled clients. More insights on the related real-
ization of the Underlay System is given later in section 4.

3.3 Modeling Service Compositions

This section deals with the representation and execu-
tion control of service compositions. Therefore, subsection
3.3.1 defines a service model assumed for the software com-
ponents serving as basis for service compositions provides a
general overview of the two main representation paradigms
chosen for service compositions. The graph-based repre-
sentation of the workflow and the dataflow within those
compositions is then discussed in subsections 3.3.2 and
3.3.3, respectively. Finally, the interworking of both graphs
is exemplarily outlined in subsection 3.3.4.

3.3.1 Service Model and Basic Concepts

Services themselves are considered as atomically exe-
cutable parts of application logic, whereby the execution
of the service is independent from outer computations and
data structures. This assumption is in-line with the REST
architectural style of the Web, where services are defined
as stateless. We rely on IOPE descriptions characterizing
a service functionality by its inputs, outputs, preconditions
and effects as discussed by Jaeger et al. [16]. Inputs and
outputs of a service are distinguishable by a unique identi-
fier referred to as a port. Since it is aim at introducing a
representation of service composition plans that is indepen-
dent from the service descriptions they rely on, possible se-
mantically enhanced description of preconditions or effects
are not specified. Instead, we assume effect to be present
or not, thus, we identify every effect with a boolean indi-
cating whether the effect has already been generated or not.
Preconditions can then be pondered against those boolean
representations of service effects.

To represent service compositions properly as well as to
control their execution, a bipartite graph concept based on
a workflow graph controlling the execution of the single
components within a service composition and a dataflow
graph defining the passage of data between services’ out-
put and input ports is introduced. Each transition of the

workflow graph corresponds to a service containing I/O pa-
rameters and a set of effects it generates during execution as
described above.

In case a services precondition is met, the service can be
executed, thus, an action representing the service function-
ality is performed, which consumes the service’s input and
generates a finite set of effects and a finite set of outputs.
Transitions between locations are optionally annotated with
guards, which restrict the passage of the transition by re-
quiring the satisfaction of specific preconditions or previ-
ously generated outputs. Notably, the output of a service is
not necessarily required as input for a service reached by the
next transition within the workflow graph; instead, an out-
put may also become relevant after multiple other services
have been executed. Therefore, a second graph is defined,
specifying the dataflow within a service composition. This
dataflow graph shares the set of locations with the workflow
graph, but represents the flow of outputs from one service
component to the input of another with its transitions. A
guard for passing a transition within a workflow graph that
would lead to the execution of the next service can thus de-
pend on the presence of a set of effects (expressed through
preconditions) and on the availability of all inputs that have
to be created as outputs of other services before. Notably,
the dataflow graph is not necessarily completely connected,
thus may be a set of graphs.

In the following section, the workflow graph of a service
composition is formally defined, specifying its guard based
transition behavior and its time awareness.

3.3.2 Workflow Graph

The workflow graph is supposed to control the execution or-
der of single services within a service composition. Based
on the requirements identified in subsection 3.2, automata
theory is proposed as the mathematical basis for service
composition representation. In [24], a transformation from
UML state machines [10] to timed automata has already
proven that automaton theory can be easily accessed by
user-friendly modeling languages such as UML, enabling
the feasibility of the presented approach. Coevally, automa-
ton theory already provides rapid modifications of the au-
tomaton structure by simple operations, because automata
are represented as basic digraphs. In order to provide re-
altime consideration within service compositions, the def-
inition of workflow graphs borrows from timed automata.
Timed automata [2, 9] are finite automata [4, 12] extended
by a set of real-time valued clocks. In the following, we
will refer to the definition provided by Clarke et al. in [7].
Let X be a finite set of real-valued variables standing for
clocks. Clock constraints are then defined as follows.

Definition 3.1 (Clock Constraints) A clock constraint is a
conjunctive formula of atomic constraints of the form x ∗ n

6

69

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

or x− y ∗n for x, y ∈ X , ∗ ∈ {≤, <,=, >,≥} and n ∈ N.
C(X) denotes the set of clock constraints. If ϕ1 is in C(X),
then ϕ1 ∧ ϕ2 is also in C(X).

A Timed Automaton is then defined as follows.

Definition 3.2 (Timed Automaton) A timed automaton A
is a 6-tuple {Σ, S, s0, X, I, T}, where

1. Σ is a finite alphabet (standing for actions),

2. S is a finite set of locations,

3. s0 ∈ S are the initial locations (also called starting
locations),

4. X is a set of clocks,

5. I : S →C(X) assigns invariants to locations, i.e., pro-
vides a mapping from locations to clock constraints,
and

6. T ⊆ S× C(X)×Σ× 2X × S is the set of transitions.

Abbreviatory, we will write s
g,a,λ→ s′ for 〈s, g, α, λ, s′〉, i.e.

the transition leading from location s to s′. The transition is
restricted by the constraint g (often called guard); λ ⊆ X
denotes the set of clocks that is reset during the transition
passage.

Notably, many model checker such as UPPAAL [32], op-
erating on timed automata restrict the location invariants to
downwards closed ones, i.e. do only allow invariants of the
form x ≤ n or x < n for n ∈ N.

Infinite state transition systems (sometimes called infi-
nite state transition graphs) are used as model for a timed
automaton A. Deep introductions into the notion of tran-
sition systems can be found in [15, 20]. Here, the defi-
nition of Clarke et al. [7] will be followed again, speci-
fying an infinite state transition system T (A) for a given
timed automaton A as a 4-tuple T (A) = {Σ, Q,Q0, R}.
A state q ∈ Q of this transition system is defined as a
pair (s, v), where s ∈ S is a location and v : x → R+

is a clock assignment. The initial states are identified by
all initial locations, where all clocks are set to zero, i.e.
Q0 = {(s, v)|s ∈ S0 ∧ ∀x ∈ X [v(x) = 0]}.

The definition of the state transition relation is implied
by the following two needs. First, a notion is required to re-
set a clock to zero, i.e., for λ ∈ X , we define v[λ := 0] for
mapping all clocks in λ to zero. For d ∈ R, we define v+ d
as a clock assignment that maps the current value of v to
v(x) + d for all clocks x ∈ X . Based on this, two different
types of transitions are defined, covering the passage of time
and the triggering of actions. Time can pass while the sys-
tem is in a specific location as long as the according state in-
variant is not violated. This elapsing of time is referred to as

delayed transition, specified as (s, v) d→ (s, v+d), d ∈ R+,
subjected to the condition that the invariant I(s) is not vi-
olated for every v + e, 0 ≤ e ≤ d. The second type of
transitions describes the actual execution of an action and is
thus referred to as action transition. If there is a transition
〈s, α, g, λ, s′〉 where v satisfies g and v′ = v[λ := 0], we
note (s, v) α→ (s′, v′) for a transition with α ∈ Σ. To-
gether, we receive the transition relation R for T (A) as
(s, v)R(s′, v′) (also written as (s, v) α⇒ (s′, v′)), if there
are s′′ and v′′ so that (s, v) d→ (s′′, v′′) α→ (s′, v′) for some
d ∈ R. Thus, an action α can also be performed without
elapsing time, i.e. in case d = 0. Moreover α may also
stand for the empty action τ ∈ Σ, i.e. a transition can also
be passed without entailing the execution of an specific ac-
tion.

Since actions are supposed to model the behaviour of a
service, the execution of an action α is mapped to the con-
sumption of inputs, the creation of outputs and the gener-
ations of effects. Inputs and outputs are regarded as typed
variables bounded to specific ports, enabling the definition
of I/O passage by means of a dataflow graph. The domains
of variables thus constitute their primitive data type.

The Workflow Graphs Θ are now modeled as timed au-
tomata as defined in Definition 3.2, extended by the ability
of actions α ∈ Σ to operate on typed variables and effects.
Typed variables are defined as 2-tuples (x,Γ (x)), where x
is a variable and Γ (x) its respective domain. For now, only
variables x with x ∈ R ⊂ R are considered. Let V be a
finite set of typed variables. Regarding the handling of ef-
fects, we define E as a final set of variables γ∗ ∈ {0, 1}
indicating whether an effect γ has been created (γ∗ set to 1)
or not (γ∗ set to 0). We assume that V contains at least all
variables of E , thus, E⊆V .

Definition 3.3 (Guard Constraints) A real-value con-
straint is a propositional logic formula x ∗ n, where x ∈ V
is a typed variable, n ∈ R and ∗ ∈ {<,≤,≥, >,==}.
C(R\V) denotes the set of real-value constraints containing
only variables of V .

If ϕ1 and ϕ2 are in C(R\V), ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2 and ¬ϕ1

are also in C(R\V).
Let ϕc ∈ C(X) be a clock constraint as defined in Defi-

nition 3.1, ϕr a real-value constraint.
A guard constraint is a formula ϕ = ϕc|ϕr|ϕc∧ϕr eval-

uating to a Boolean. C(X ◦ R\V) denotes the set of all
guard constraints.

The workflow graph is now defined as a timed automaton
whose actions and guards can also operate on typed vari-
ables.

Definition 3.4 (Workflow Graph) A workflow graph Θ is
a timed automaton as defined in Definition 3.2, where

7

70

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

1. Σ is a finite alphabet. The alphabet represents the ac-
tions which are identified by the single services within
the service composition.

2. S is a finite set of locations defining the service com-
positions’s current state,

3. s0 ∈ S are the initial locations defining the initial state
of the service composition,

4. X is a set of clocks,

5. I : S →C(X) assigns invariants to locations, restrict-
ing the system in the amount of time it is allowed to
remain in the current state, and

6. T ⊆ S× C(X ◦R\V)×Σ×2X×S is the set of transi-
tions, denoting the execution of a service (represented
by an action α). The passage of a transition (and thus
the execution of a service) thereby depends on whether
the according guard is met.

In order to decide whether an output of a service com-
ponent is required as an input for another one, a dataflow
graph is introduced in the following section.

3.3.3 Dataflow Graph

Dataflow graphs represent the connections of output and in-
put ports. They keep the same locations as the workflow
graph introduced in Definition 3.4 and use labeled transi-
tions to express inter-component data passing.

Definition 3.5 (Dataflow Graph Ω) A dataflow graph Ω is
a labeled directed digraph Ω = {N,P,E}, where,

1. N is a final set of labeled nodes, which is equivalent to
the set of locations S held in the according workflow
graph Θ,

2. P is a set of port mappings represented by 2-tuples
p = (p1, p2) indicating the passage of the output from
port p1 to the input port p2, and

3. E ⊆ N × P × N is a final set of labeled directed
transitions.

Each location represents the data generated by the execu-
tion of action αi; we therefore label a node with d(αi) in-
dicating the output data from action αi. If a transition is
passed within a workflow graph Θ entailing the execution
of action αi, all outgoing transitions from location d(αi)
within the according dataflow graph Ω are passed. A tran-

sition passage d(αi)
(pm,pn)→ d(αj) within Ω effectuates that

the output at port pm from action αi is redirected to input
port pn of action αj in case action αi is executed within Θ.

A service composition is specified by its workflow and
dataflow graph, i.e., is defined as a 2-tuple 〈Θ,Ω〉.

The following section discusses a small example for ser-
vice composition representation and control.

3.3.4 Workflow and Dataflow Graph Interworking

The service composition to be represented is abstractly de-
picted in Figure 4.

Figure 4. A Possible Service Composition.

The involved service components are represented by
rectangles labeled with an action αi describing their func-
tionality. The order of execution, i.e., the workflow, is de-
picted by bold arrows while the passage of inputs and out-
puts is indicated by dashed arrows. They connect the output
ports of service components with input port of other com-
ponents that are drawn as numbered squares.

The example service composition contains five service
components (labeled with α1, ..., α5).

After α1 has been started, either α2 or α3 and α4 are
executed. In case both execution paths are enabled, i.e. all
premises in terms of I/O and effect availability are met, a
path is chosen nondeterministically according to the notion
of transition systems.

While service executions in common service composi-
tion representations such as in Figure 4 are represented as
nodes within graphs, the one introduced in this paper mod-
els service executions as actions performed during transi-
tions between locations. The workflow graph deduced from
the example service composition is illustrated in Figure 5
(a).

Guards restricting the transition from a location s to a
location s′ operate on the generated effects (through pre-

8

71

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

conditions) and a final set of inputs and outputs. Outputs
are not stored but redirected to input ports by means of the
according dataflow graph. The dataflow graph depicted in
Figure 5 (b) is supposed to belong to the workflow graph
illustrated in Figure 5 (a). For instance, the execution of

Figure 5. (a) An according workflow graph.
(b) A dataflow graph representing the I/O
Passing.

α1 implies the redirection of the output from the first output
port of α1 to the second input port of α2 and the first input
port of α3. Moreover, the output from the second output
port of α1 is forwarded to the second input port of α3 and
to the second input port of α5.

3.3.5 Enabling Parallel Execution

Because of their relation to automata and their given tran-
sition relation introduced in section 3.3.2, workflow graphs

already support a wide set of control structures required to
guide the execution order of services; the three most im-
portant ones are abstractly depicted in Figure 6. First,

Figure 6. Basic control structures of au-
tomata semantics. (a) Nondeterministic Se-
lection. (b) Choice. (c) Looping.

nondeterministic decisions between multiple possible ser-
vice invocations are modeled with a finite set of outgo-
ing transitions labeled with the same guard g. In case the
guard is met, all transitions are enabled and the transition
relation discussed in section 3.3.2 selects a transition non-
deterministically. Decisions such as if-else or switch state-
ments are represented by multiple outgoing transitions la-
beled with different guards g1, ..., gk. Here, deadlocks can
occur in case all guards are evaluated as false under a given
set of constraints. Moreover, multiple guards may be true,
entailing a non-deterministic decision making between the
enabled transitions. Last, looping can be modeled with tran-
sitions pointing back to the origin state as depicted in Figure
6 (c).

However, workflow graphs do not provide all means to
model parallel execution of services. By passing a transi-
tion, the according service is executed. Note that the in-
troduced model does not assume that the workflow graph
remains in the location reached by the transition passage
until the service’s execution is finished. Instead, the next
transition is directly passed (in case at least one transi-
tion’s guards are met), entailing the execution of the next
service. Thereby, service execution becomes parallel. If
both services have been started on the same device, the lo-
cal scheduling algorithm ensures their pseudo-parallel ex-
ecution. In case they are executed on different nodes and
therefore multiple processors, they are running in parallel.
However, this approach fails in case the biggest subset of a
given set of services should be executed in parallel.

Assume two services α1 and α2 are selected for paral-
lel execution. In case the services are initiated in the order

9

72

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

α1 → α2, it may be possible that α1 cannot be started since
an input is missing. The blocking of the transition would
entail that also service α2 is not started, although its guard
may be met. Therefore, a control structure for parallel exe-
cution of services is required. The left-hand side of Figure
7 depicts an abstract workflow reflecting the previously de-
scribed situation of two services α1 and α2 that should be
executed in parallel.

l0

l3

l1

g0 : α0

l2

g1 : α1

g2 : α2

l4

g4 : α4

g3 : α3

α0

α1 α3

α2

α4

Figure 7. Timed automaton structure ensur-
ing parallel execution.

The right-hand side of the same Figure depicts the timed
automaton that corresponds to the abstract service composi-
tion. Here, the execution of α2 would be forestalled in case
guard g1 is not met although g2 may be fulfilled. In order
to unblock this behavior, an additional idle state is automat-
ically inserted during the generation of the workflow graph
that is entered after every execution of a service that may
be executed in parallel to other services. The accordingly
modified workflow graph is illustrated in Figure 8.

Because of this modification, the timed automaton
moves into the idle state as soon as the guard of the next ser-
vice is not met, such that the invocation of another service
can be initiated whose guards is fulfilled. The utilization
of semaphores ensures that every service is only executed
once.

Thus, by inserting a special control structure that can
be generated for a given finite set of services, workflow
graphs possess the same expressiveness as other workflow
languages such as BPEL, while relying on sound formal

Idle
g2

g2

g3

g3

g1

g1

l0

l3

l1

g0 : α0

l2

g1 : α1

g2 : α2

l4

g4 : α4

g3 : α3

Figure 8. Timed automaton structure ensur-
ing parallel execution.

model featuring realtime consideration and flexibility.

4 An Architecture featuring a Underlay Sys-
tem for Web Mashups

Within this section, the previously introduced formal
method for the representation of workflow-based service
compositions within a Underlay System for Web Mashups
is realized as an architecture enabling the utilization of
workflows for the representation of Web applications and
features the late binding of 3rd party APIs. This architec-
ture is implemented according to the REST architectural
style, the architectural style of the Web, that was proposed
by Fielding within his PhD thesis and is known for its re-
lated realization within the Web, HTTP [13].

Figure 9 gives an high-level overview of the proposed
architecture.

Here, the Mashup site, i.e. the Mashup proxy, is ex-
tended by 4 key components. First, a workflow engine for
the previously introduced model based on timed automata
enables the structured execution of service compositions. In
addition to version for servers written in Java, the runtime is
also implemented in pure Java Script that can be transferred
to any browser enabled client during initialization such that
the workflows can be executed on the client side and in-

10

73

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

corporate local services residing on the client. A detailed
description of the implementation was presented in [25].
The single services of the service composition are given
as abstract triples <res, act, attr[]>. Here, res describes
the resource that should result from the respective service
execution, act defined an action that should be performed
on the resource res, and attr[] denotes a set of attributes
that are required for the execution of the specified action.
Thus, the triple <map, center, lat=23432, long=92834>

Mashup Site

RERE

Workflow
Engine

Service
Discovery

Engine

Service
Call

Generator

Service
Repository

Client

3rd Party Service Providers

Service
Repository

Presentation

Mashup
Request

Extended Mashup Site

Figure 9. Server-side Service Composition
Engine for Composed Web Applications: Ar-
chitecture.

denotes that a map is requested that is centered on the loca-
tion given by the longitude long and latitude lat. In general,
a location is not known by its longitude and latitude, but
by its name. Therefore, another service may be requested
by the triple <location, getCoordinates, location=Berlin>
that generates the longitude and latitude values for the city
“Berlin”. The output of this service can thus be used as in-
put for the next service. Of course, the attribute “Berlin”
can also be given during runtime by a user input.

This proceeding interprets the workflow model in a
REST conform way: The developer requests a resource and
is returned a representation of the resource that depends on
the given action and set of attributes. For instance, while
the triple <location, getCoordinates, location=Berlin> re-
turns the location of a given city by its longitude and lat-
itude coordinates, the triple <location, getStreetName, lo-
cation=Peter’s Pub> may return a String contain the street
name of a bar called “Peter’s Pub”.

To enable such an abstraction from actual service imple-
mentations, the proposed architecture features a late bind-
ing engine. Here, 3rd party provides can describe their ex-
posed APIs featuring REST interfaces with the Web Ap-
plication Description Language (WADL) [14]. (The inte-
gration of other services such as classic SOAP Web Ser-
vices described by WSDL [6] are also supported but are not
described in greater detail here.) The late binding engine
is capable of matching the previously introduced triples
denoting abstract descriptions of a requested resource to
these WADL descriptions and return a set of WADL files
that describe services which can generate the requested re-
source. For instance, a triple <location, getCoordinates,
location=Berlin> may be matched by Google Maps, Ya-
hoo Maps, and suchen.de. One of these WADL based de-
scriptions can now be passed to the Service Call Generator
where a REST call for the chosen service is automatically
created and handed back to the workflow engine where the
service can be invoked.

This proceeding enables more responsiveness and dy-
namicity of Web Mashups on multiple levels. First, ser-
vice interfaces are encapsulated behind abstract descrip-
tions which reduce the amount of coding for the software
developer. Thus, instead of dealing with the concrete API
of Google Maps, software developers can interface with the
abstract notion of triples, which is conform to the REST
architectural style of the Web. Thereby, the integration
of multiple APIs providing a similar functionality can be
avoided. For example, a developer that has always used
Google Maps to integrate a map into his or her Web appli-
cation may decide to use Yahoo Maps instead. In this case,
the developer would have to incorporate a complete new
API into his or her Mashup, although both services provide
the same functionality.

However, the dynamic binding of services does not only
reduce the development time for Mashups, but also enables
the consideration of device capabilities, user profiles, con-
text information, and Quality of Service (QoS) parameters
of services. Thus, in case the late binding engine returns
multiple WADL files, i.e., has discovered multiple services
or APIs that can provide the requested resource, the service
may be explicitly selected that matches the current circum-
stances best. For instance, in case a user has defined in his
profile that he prefers services from Google because of the

11

74

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

familiar user interface, Google Maps may be bound instead
of Yahoo Maps. On the other hand, a monitoring entity may
have noticed that the response time of Yahoo has been con-
siderably shorter than from Google, leading to the incorpo-
ration of Yahoo Maps instead of Google Maps; this incor-
poration of non-functional properties if services has been
introduced in [26]. It also enables the recovery of services
that expose a weak performance during runtime, i.e. in case
a service is not responding or responding too slow, it may
be dynamically replaced during runtime by another service.

In addition to the flexibility provided by the dynamic in-
tegration of single service implementations within the ser-
vice composition, the workflow graph itself may be adapted
in its structure to as a response to environmental changes;
this adaption has already been introduced in [28].

Thus, the architecture proposed in this work provides
means to overcome the problem of heterogeneous clients by
providing means to bind and replace services dynamically
before and during runtime based on non-functional proper-
ties of services, context information, device capabilities or
user profiles.

5 Conclusion and future Prospect

Within this paper, a Underlay System for Web Mashups
was introduced that combined the advantages of SOA
business processes and the rich presentation and interaction
capabilities of today’s Mashups to overcome the challenge
of device heterogeneity and context dependence in modern
Web applications. Therefore, a formal model for service
compositions based on a bipartite graph concept has been
introduced that consists of a workflow graph defined as
a timed automaton over an extended finite set of typed
variables and a dataflow graph specifying the passage of
data between the single services. By introducing a special
structure of a timed automaton, the semantics of classic
automata were extended to support parallel execution of
services beside their given ability to express interleaving,
decisions and looping. The model has then been used to
build the basis for a new type of rich Web Mashups that are
responsive the the users’ preferences and device context
by supporting late binding of 3rd party services during
runtime.
Within future work, algorithms for the automatic creation
of service compositions are developed. Here, the descrip-
tions for 3rd party services are extended by lightweight
semantics to support the automatic creation of workflows
and binding of services based on a request given by either a
user or another service. Moreover, a GUI is developed that
enables the manual creation of service compositions in an
intuitive way; this representation is then transformed into
corresponding workflow and dataflow graphs automatically.

References

[1] www.programmableweb.com.
[2] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for

real-time systems. In Proceedings of of the 5th Annual Sym-
posium on Logic in Computer Science, pages 414–425. IEEE
Computer Society Press, 1990.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland,
J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,
S. Thatte, I. Trickovic, and S. Weerawarana. Busi-
ness Process Execution Language for Web Ser-
vices, Version 1.1, May 2003. [Online]. Available:
http://www.ibm.com/developerworks/library/specification/ws-
bpel/. [Accessed: November, 2007].

[4] J. Berstel. Transductions and Context-free Languages. B.G.
Teubner, Stuttgart, 1979.

[5] A. Bucchiarone and S. Gnesi. A Survey on Services Compo-
sition Languages and Models. In A. Bertolino and A. Polini,
editors, in Proceedings of International Workshop on Web
Services Modeling and Testing (WS-MaTe2006), pages 51–
63, Palermo, Sicily, ITALY, June 9th 2006.

[6] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana.
Web Services Description Language (WSDL) Version 2.0
Part 1: Core Language. In World Wide Web Consortium
(W3C) recommendation, January 2006. [Online]. Avail-
able: http://www.w3c.org/TR/wsdl20/. [Accessed: Mar. 24,
2006].

[7] E. M. J. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, Cambridge, Massachusetts and
London, England, 1999.

[8] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller,
S. Thatte, and S. Weerawarana. Business Process Execution
Language for Web Services (Version 1.0), July 2002.

[9] D. Dill. Timing assumptions and verification of finite-state
concurrent systems. In J. Sifakis, editor, Proceedings of the
International Workshop on Automatic Verification Methods
for Finite State Systems, number 407 in LNCS, pages 197–
212. Springer, 1989.

[10] L. Doldi. UML2 illstrated, Developing Real-Time & Com-
munication Systems. TMSO, 2003.

[11] J. Duhl. Rich Internet Applications. Whitepa-
per (sponsored by Macromedia and Intel), page
Online: http://www.adobe.com/resources/ busi-
ness/rich internet apps/whitepapers.html, 2003.

[12] S. Eilenberg. Automata, Languages, and Machines, volume
Volume A. Academic Press, New York, 1974.

[13] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis, Univer-
sity of California, Irvine, 2000.

[14] M. J. Hadley. Web application description language (wadl).
Technical report, Sun Microsystems Inc., November 2006.

[15] M. Huth and M. Ryan. Logic in Computer Science - Mod-
eling and reasoning about systems. Cambridge University
Press, 2004.

[16] M. Jaeger, L. Engel, and K. Geihs. A Methodology for De-
veloping OWL-S Descriptions. In First International Con-
ference on Interoperability of Enterprise Software and Ap-
plications Workshop on Web Services and Interoperability
(INTEROP-ESA ’05). Springer, 2005.

[17] F. Lautenbacher and B. Bauer. A Survey on Workflow An-
notation & Composition Approaches. In Proceedings of the

12

75

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Workshop on Semantic Business Process and Product Life-
cycle Management (SemBPM) in the context of the European
Semantic Web Conference (ESWC), pages 12–23, Insbruck,
Austria, 7th June 2007.

[18] G. Lawton. New ways to build rich internet applications.
Computer, 41(8):10–12, Aug. 2008.

[19] F. Leymann. Web Service Flow Language (WSFL 1.0). In
IBM, May 2001.

[20] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer-Verlag, 1992.

[21] E. Ort, S. Brydon, and M. Basler. Mashup styles, part 1:
Server-side mashups. Technical report, Sun Developer Net-
work (SDN), May 2007.

[22] E. Ort, S. Brydon, and M. Basler. Mashup styles, part 2:
Client-side mashups. Technical report, Sun Developer Net-
work (SDN), August 2007.

[23] C. E. Ortitz. Introduction to J2ME Web
Services, April 2005. [Online]. Available:
http://developers.sun.com/mobility/apis/articles/wsa. [Ac-
cessed: October, 2007].

[24] H. Pfeffer. UPPAAL Model Checking as Performance Eval-
uation Technique. Master’s thesis, Rheinische Friedrich-
Whilhelms-Universität Bonn, 2005.

[25] H. Pfeffer, L. Bassbouss, and S. Steglich. Structured ser-
vice composition execution for mobile web applications. In
Proceedings of the 12th IEEE International Workshop on
Future Trends of Distributed Computing Systems (FTDCS
2008), volume ISBN: 978-0-7695-3377-3, pages 112–118,
Kunming, China, 2008. IEEE Computer Society Press.

[26] H. Pfeffer, S. Kr”ussel, and S. Steglich. Fuzzy Service Com-
position Evaluation In Distributed Environments. In In Pro-
ceedings of I-CENTRIC 2008, 2008.

[27] H. Pfeffer, D. Linner, C. Jacob, and S. Steglich. To-
wards Light-weight Semantic Descriptions for Decentralized
Service-oriented Systems. In Proceedings of the 1st IEEE
International Conference on Semantic Computing (ICSC
2007), volume CD-ROM, Irvine, California, USA, 17-19
September 2007. PLJ+07.

[28] H. Pfeffer, D. Linner, and S. Steglich. Dynamic adaptation
of workflow based service compositions. In ICIC ’08: Pro-
ceedings of the 4th international conference on Intelligent
Computing, number ISBN: 978-3-540-87440-9, pages 763–
774, Berlin, Heidelberg, 2008. Springer-Verlag.

[29] H. Pfeffer, D. Linner, and S. Steglich. Modeling and con-
trolling dynamic service compositions. Computing in the
Global Information Technology, 2008. ICCGI ’08. The Third
International Multi-Conference on, pages 210–216, 27 2008-
Aug. 1 2008.

[30] S. Thatte. XLANG - Web Services for Business Process De-
sign, 2001.

[31] The OWL Services Coalition. OWL-S: Semantic Markup
for Web Services, November 2004. [Online]. Available:
http://www.daml.org/services/owls/1.1/. [Accessed: Febru-
ary 26, 2007].

[32] U. University and A. University. UPPAAL 4.0.6.
http://www.uppaal.com, December 2007.

[33] W. van der Aalst. Don’t go with the flow: Web services
composition standards exposed. IEEE Intelligent Systems,
2003.

13

