
84

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Addressing Data Model Variability and Data Integration
within Software Product Lines

Joerg Bartholdt
Siemens AG

Corporate Technology
Architecture, CT SE 2

Otto-Hahn-Ring 6
81739 Munich, Germany

joerg.bartholdt@siemens.com

Roy Oberhauser
Aalen University

Computer Science Dept.
Beethovenstr. 1,

73430 Aalen, Germany
roy.oberhauser@htw-aalen.de

Andreas Rytina
itemis

Agnes-Pockels-Bogen 1
80992 Munich, Germany
andreas.rytina@itemis.de

Abstract

Software Product Line (SPL) engineering is one
approach for addressing customization and variability
for software products. However, current state-of-the-
art often focuses on feature modeling and component
variability while insufficiently addressing data model
variability difficulties and their associated complexity.
Various software qualities, such as correctness,
reusability, maintainability, testability, and
evolvability, are negatively impacted.

In this article the Approach for Data Model
Variability (ADMV) is described which provides a
unified and systematic methodology for providing a
consistent view to capture data variability in data
models. Adapter generation hides and decouples
components from superfluous data elements and
supports SPL data integration with the potentially
multifarious external systems and devices that a SPL
may need to consider. An eHealth SPL case study is
presented supporting adapter generation with
differential data conversion and data integration with
medical devices. The results show that with this
approach, data model variability and data integration
can be effectively addressed and desirable software
qualities preserved.

Keywords - Data Modeling; Data Integration;
Variability; Software Product Lines; Unified Modeling
Language; Model-Driven Software Development

1. Introduction

One approach that promotes the systematic reuse of
software components for different but similar software
products (typically products in the same domain) is
SPL Engineering (SPLE). Typically the commonalities

and variability of the products in the product line are
captured and then the development is split into domain
(commonalities) and application (additional individual
features for the final product). Products are then built
by integrating the common artifacts (usually a
platform) and optionally configuring them with
product-specific artifacts [11] [14].

Significant work and various methodologies for
domain analysis and variability modeling for SPLs
with a focus on features are, for instance, Feature-
Oriented Domain Analysis (FODA) methodology [9],
FeatuRSEB [8], PuLSE [2] and “the notion of
variability” [25]. Typical feature models in SPLs allow
for many (~10x) possible permutations. Considering
that an artifact may influence the data model (e.g., adds
new data or relations), all artifacts must be able to
handle multiple data variants, although they themselves
make no use of the available differences. Yet the
aforementioned methodologies do not sufficiently
support and address variability in the data models. The
Orthogonal Variability Model (OVM) [14] does go
beyond features to addressing variability in artifacts,
but is an abstract approach missing a notation that can
be used by automation for data models (also known as
schemata). While the challenging issue of data model
variability has been previously studied under schema
integration [13], data conversion, data and metadata
heterogeneity, schema evolution, enterprise application
integration, etc., a holistic approach for SPLE is
absent.

The Approach for Data Model Variability (ADMV)
described in this paper provides a unified methodology
for SPLE to consistently view and edit the data within
the data model, capture the variability, as well as shield
artifact developers from extraneous differences.
Additionally, constraint checking support for data
integration variability in SPLs via views and adapter

85

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

generation is considered, expanding on our previous
work [1].

To motivate and demonstrate the features of the
ADMV, a case study in the medical domain for an
eHealth SPL derived from a third party served as the
research basis. It is presented in simplified form for
this article. In the following section the scenario and
solution requirements are presented. In Section 3, the
ADMV is presented and then applied in Section 4 to an
eHealth SPL scenario to exemplify the approach.
Section 5 considers alternative approaches and Section
6 evaluates the solution against qualities. Related work
is then discussed in Section 7. A conclusion and future
work discussion follows in Section 8.

2. Scenario and requirements

In eHealth, an increasing market demand for
integrated medical information systems and solutions
exists, with globalization in the market and
customization demands spanning national boundaries.
The difficulties for developing and supporting such
systems become apparent in time-to-market, labor
costs, and error-proneness when aligning and
supporting the various data models and data integration
needed for such systems. To support a variety of
markets, an SPL approach allows the medical
information platform customer to select arbitrary
features as add-ons to the base product, e.g., date-
definition, record repository, security, etc. This entails
various challenges, among them that the overall
product instance-specific data model will change
depending on the features selected, and another
challenge being the integration requirements with
medical devices and other medical systems.

For example, a medical information system shall
work in different hospital environments. Patient data
are stored in folders representing a single hospital stay
(“clinical record”). All documents created during a
later hospital stay are stored in a different folder. In
another environment (e.g., triggered by the electronic
case record (eCR) specification in Germany [19]) a
new folder level “case record” is introduced on the top
level. Beneath, the structure follows the previously
described “clinical record”. All clinical records are
sorted by a disease code into the different “case
record” folders. That way, explicit access can be
granted to medical personnel based on the medical
issue (an orthopedic physician treating a broken leg
would have no or restricted access to the psychological
problems of the same patient). The product line shall
be applicable in both types of domains.

Another requirement is the integration of various
measurement devices for blood pressure, body

temperature, etc., see Figure 2.1. The devices deliver
semantically comparable values, but in different data
formats, different scales (e.g., °C/°F) and different
protocols. Nonetheless, the application must be able to
manage that data in a consistent way, abstracting from
the differences in detail.

Measurement

-measuredBy : MedicalPerson
-calibExp : date
-measureTime : String

BodyTemperature

-location : TempLocation
-celsius : float

Pulse

-bpm : int
-type : PulseType

BloodPressure

-systolic : int
-diastolic : int

Sugar

-mgpdl : int

Figure 2.1. UML class diagram of the

Measurement data model

A feature of the medical application includes, for

instance, the calibration expiration management of the
measurement devices. This requires each measurement
to carry the information if the measurement was made
beyond the calibration expiration and ideally, the
expiration date itself (to leave the interpretation to the
physician).

Optionally - depending on the environment (e.g.,
ambulatory vs. stationary), a history of data changes
(measured values, patient demographics, etc.) must be
recorded, which can be seen as a cross-cutting
concern/requirement on domain objects.

Implementing these features and their variability
has many effects on the data model of the product
instances. E.g., modules for presentation of patient
measurements should be programmed with a stable
view on the relevant data, ignoring various formats of
data delivery (date in long or String format), data
interpretation (°C/°F), and additions like history. This
reduces the dependency of such modules on the data
model and other components that can vary in the
product line instances, thus relieving developers from
dealing with this (from their perspective impertinent)
variability.

2.1. Requirements

The deficiencies in the examples above illustrate the
following requirements that are imposed on the
solution to cope with variability in data models:

1) Modeling of the data objects in the solution space
must be consistent and provided in a central view
(analogous to the feature tree in the problem space that

86

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

shows a central view of the variants of the product
line). This allows developers and engineers to keep the
overview and consistency of the possible product
instances and the corresponding data models. The
individual products must be derived from this model.

2) Developers of artifacts shall be shielded from the
effects of the many possible variants on their code
(API and structure of the domain objects) while
retaining the compile-time safety that getter/setter
navigation in the domain object model guarantees. This
includes the demand for loose coupling not only for the
functionality of components, but also for the data
exchanged between those services.

3) Interoperability of artifacts shall be supported
automatically over the SPL lifetime even if the
development takes place at different times and
disparate locations, thus implying support of multiple
versions of the artifacts.

4) In support of correctness, data integrity, data
security, and other data-related requirements across the
multitude of possible SPL variations, constraints on
model consistency and runtime checks shall be
supported. Examples are dependency checks of the
resulting instance data model (consistency) and
authorization constraints for accessing data elements
(runtime).

5) Desirable qualities, motivated by SPLE in
general, should be supported including consistency,
correctness, comprehension, maintainability, usability,
efficiency, portability, integration, interoperability,
reusability, testability, and traceability.

Although this case study comes from the eHealth
domain, the issues are representative and applicable to
data variability in SPLs in general.

3. Solution

This section provides a general description of the
ADMV process and details on the utilization of
fundamental concepts. The approach will then be
illustrated by applying the ADVM to an eHealth SPL
in Section 4.

3.1 ADMV-Process

The ADMV Process is an UML standards-based
approach for SPL data modeling and data integration
usable with common Model-Driven Software
Development (MDSD) tooling, integrated with feature
modeling, and supporting desirable software qualities
during SPL development. Unified Modeling Language
2.x (UML2) class diagrams were selected for modeling
due to the extensibility via stereotypes (in contrast,
e.g., to the entity-relationship diagram) and the

plethora of tools available to process the UML model
further.

Figure 3.1. ADMV Process

The ADMV process (Figure 3.1) defines several

steps in domain engineering and application
engineering. These steps are:

1. Requirements Analysis. The ADMV starts in the

Domain Engineering phase with requirements
analysis. Through the analysis of the problem
domain, common and variable requirements are
collected.

2. Feature Modeling. Each variable requirement
results in a String which is used as feature name.
Dependencies of the features are analyzed and
structured in a Feature Model (e.g., using FMP
[23]).

3. Data Modeling. A Data Model is created in
UML2 XMI (XML Metadata Interchange) [30]
that includes variations. The first step before
integrating variability is the definition of all the
common parts. Then, for each feature, the
variation points and variants are identified.
Eventually the variants are associated with the
variation points in connection with an adequate
variability type. The ADMV addresses three types
of variability: positive - adding new fields, data or
relations to the core model; negative - eliminating
fields, data, or relations from the core model; and
structural - varying the type, cardinality, or
naming of elements.

4. Configuration. At the start of the Application
Engineering phase, a product configuration is
created, e.g., in FMP.

5. Artifact Generation. Product artifacts are
generated such as adapters, converters, views and
runtime checks. To accomplish this, the current
ADMV Generator implementation uses the

87

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

configuration in FMP as well as the Data Model as
inputs (e.g., using openArchitectureWare (oAW)
[12]) to create a Data Model Instance based on the
ADMV metamodel (e.g., an Ecore metamodel
[26]), from which the required code artifacts are
generated (e.g., using Xpand, oAW’s template
language for code generation).

6. Generated Artifact Customization. Complex
Conversions which the ADMV Generator cannot
automatically resolve are implemented manually.
In addition, the exceptions for the generated
runtime checks are implemented manually to
fulfill certain tasks when a runtime check fails.

7. Artifact Integration. Artifacts are integrated into
the build of the data layer and other components.

3.2 Variability types

Negative variability. Negative variability starts
from a maximal description (e.g., a UML (Unified
Modeling Language) model containing all possible
elements of the product line) and deletes the elements
that are not connected to selected features. By this
reduction, the final model of the selected product
instance will be the result. Thus the complete model
can be viewed, which may be advantageous if a
product instance usually consists of mostly selected
features such that the resulting model is close to the
complete model (the delta to the complete model is
small). On the other hand, it might result in
information overload - especially if the product
instances consist of only a few selected features such
that the resulting models are small (the delta to the
complete model is large).

Depending on the selected features, model elements
can be removed to derive different product instances.
This is reflected in the data model by tagging the
different types with the stereotype <<Variation>>. The
condition for which it is generated for the product
instance is defined by the tagged value {feature = “any
feature condition”}. This indicates to the generation
process that the elements associated with the feature
condition are only generated if the condition evaluates
to true, otherwise they are removed.

This is called negative variability since the starting
point is a superset of the data model definition and the
unnecessary elements are stripped away according to
the features selected.

Positive variability. In contrast to negative
variability, positive variability starts from a minimal
description (a core model, containing only the common
parts) and, depending on selected features, additional
elements (classes/members/associations) are added to
the core model. The parts to merge are described in
different places, which may make comprehension of

the overall model difficult. This is especially true if
there are many additional parts, which is often the case
in non-trivial product lines.

Positive variability is useful if cross-cutting
concerns should be modeled that cannot be effectively
modeled by common base classes and negative
variability. As this approach separates the data
definition (class plus cross-cutting concerns described
outside the class), it contradicts Requirement 1 in
Section 2.1. The necessity and benefits in certain
circumstances may be reasonable, but we recommend
the technique be applied rarely, e.g., due to its potential
negative effect on understandability. One technique for
applying positive variability in an efficient way is
described in [18].

Structural variability. Structural variability
describes a change in the model dependent on some
feature selection. The element is already contained in
the model, but its structure (type, cardinality,
association) may vary. Structurally changing the data
model is achieved by adding the stereotype
<<modify>> to the elements that should be structurally
changed and by setting predefined tagged values.
Possible tagged values are, e.g., feature, type,
cardinality, name and initialValue.

In the resulting data model, the corresponding
property is changed. This can also be used to redirect
associations by changing the type of the association.
An example is given in Section 4 regarding the
introduction of additional folder structures due to the
electronic case record (eCR) feature.

3.3 Check-Constraints

Constraints are a common concept in modeling and

many approaches exist, for instance the Object
Constraint Language (OCL). Constraints are used in
many different ways: for consistency checks, such as
the model itself (e.g., cardinality); for runtime checks
(valid references, consistent instantiations); or for
optimization [28].

Constraint checking and their languages are a
known and powerful capability in assuring modeling
correctness, which is especially important when
supporting data model variability in a SPL. The
ADMV encourages the application of constraint
capabilities at the most appropriate points across the
tools used in the process. For instance, feature
modeling constraints can be utilized to determine the
validity of a certain combination of features; data
modeling constraints can be applied using active
validation (e.g., via OCL or binaries as available in
some UML 2 modeling tools) before transformation;
transformation constraints can be applied to check
conditions (e.g., ensuring that the domain and feature

88

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

model are not inconsistent with each other) before or
during the generation process; and runtime checks can
be automatically included by generators. Thus
preconditions, invariants, and postconditions can be
specified and carried through the process and applied
at the appropriate points.

Consistency checks. The ADMV applies a variety
of checks at different phases of the process to ensure
the consistency of the models. At modeling time a
UML2 tool applies constraints to check the validity of
the data model. The uniqueness of members within a
class is an example.

To ensure the consistency between the feature
model and the data model, additional modeling time
checks can be defined. When associating model
elements to features, the checks can ensure that the
feature model also contains these features.

Aside from ensuring model consistency, the model
transformation for deriving product line instances must
also be checked. This is done during the generation
phase by applying, e.g., oAW-Checks. To ensure that
the transformation was correct, oAW-Checks can test
if the respective variation points are bound to variants
and if the resulting data model is still valid after
transformation.

Accessor constraints. To support the verification
of certain conditions at run time, the ADMV
additionally extends the support of the definition of
constraint checks for accessor methods (also known as
getters and setters). These constraints can be expressed
with a constraint language such as oAW Check. The
ADMV Generator transforms these constraints into
methods which implement the oAW Check constraints.
Every time a getter or setter is called, the associated
constraints are successively executed. If one check
fails, a runtime exception will be thrown. If all
constraints are evaluated to true, the accessor method
will be executed.

The analysis of the constraint-string is currently
done in the ADMV implementation by the Xtend
Parser which is part of the oAW framework. The
Xtend Parser returns an abstract syntax tree (AST)
which is the input for the ADMV Generator.

3.4 Views

View concepts are known from database systems,
model-driven approaches, etc. The way views are
considered in the ADMV is from the perspective of the
view that a product-line component has on the data
model. Certain components may be interested in
viewing only parts of entities and shall be shielded
from their further development because those
components are considered stable and should not have

to be adjusted just because the product-line data model
changes.

A view is defined as a variant of an entity, which
might be shared among several product line instances,
or is specific to only one of these instances. An entity
can have many views, each of them defining a set of
child elements. All child elements have several
attributes such as name, type, cardinality, etc. The
definition of the view is done in the data model. For
each entity there is exactly one complete view (which
is the only one potentially persisted in a database) and
an unlimited number of projected views. The complete
view can be converted to any other projected view and
vice versa. The child elements of the projected view
can be arbitrarily filled with the source data. In this
way it is possible to distribute the content of the source
element over multiple elements of the projected view.
Vice versa, it is possible to join the source element’s
data and assign it to a single element of the projected
view. In addition, the datatype or properties of the
target element can be different from the source
element. Thus the structure and content of a projected
view and the complete view can be disparate.

Functional components should be shielded from any
differences in the data models, which can be achieved
with adapters. However, manually written adapters
place an additional burden on the developer: besides
the initial development, they must be kept consistent
with the changes in the data model over time. The
ADMV models those adapters together with the data
model and generates the code normally automatically –
at least for members with the same name. For more
difficult conversions, only the getter and setter are
generated – the implementation must be added
manually. To preserve manual code upon a later update
of the data model with subsequent re-generation of the
source-code, the Generation Gap pattern [27] may be
applied. This is a step towards a consistent view on the
data model over the whole SPL over time and it allows
the exchange of data between components with
different views on those artifacts.

Introducing “Views” gives those types of
components a stable, reduced view on the data model.
The actual designers and programmers need not be
concerned about a variation; they are shielded by their
view of an entity.

Note that if modules execute write access to the
data, a reverse mapping from the projected view to the
complete view must be defined.

Adapters. Adapters are based on the original data

object of the product instance and provide a more
stable view on the data for components that only
require a subset. The adapters provide multiple data
views to components and utilize a common data model,

89

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

thus conversions are required at runtime. In Figure 3.2a
the conversion relationships between views to support
the differing projected views desired by components
are illustrated, with a maximum number of
unidirectional converters required being n(n -1) where
n is the number of views required. The maximum
number of converters required can be reduced to a
linear 2(n-1) if the direct conversions between
projected views are avoided and only conversions to
and from a complete view are utilized (a star topology)
(see Fig 3.2b). This incurs a higher runtime cost of two
conversions (once to the common view and then to the
desired view) vs. only one, but benefits maintenance
and evolution due to the reduced number of conversion
methods. The runtime impact is dependent on the
number of elements and complexity of conversion.

Figure 3.2. Projected view conversions

Data integration via adapters. The view concept
supports integration in that it makes different formats
and semantics explicit and generates the different
adapters.

Advantages of this approach versus manual adapter
implementation include the management of data
structures from a single unified model, the retention
and utilization of the core data model and its variability
information by generators when conversion code is
generated (the generators use the variability), and the
automatic generation of conversion skeleton code and
trivial body code (for simple conversions).

3.5 Artifact generation

The process of artifact generation is shown in the

Figure 3.3. The data model and the configuration
model are the input of the ADMV Generator. While
any realization could be used, the current
implementation is now described.

The two models are transformed by the template
“models2Ecore” to a new data model which is based
on an Ecore metamodel. The Ecore-based metamodel
is less complex than the UML2 metamodel, making it
is easier to define templates for transformation and
generation. Initially the variability is not bound in the
Ecore data model. It will be bound by the template
“toProductModel”. This is a model-to-model

transformation where all variation points are bound to
the configured variants, creating the data model for the
configuration. The derived data model is the input for
code generation. The views, adapters, and runtime
checks are generated by Xpand.

Figure 3.3. ADMV generation process

4. eHealth SPL example

Based on the scenario described in Section 2, the
ADMV will now be illustrated.

After requirements analysis (Step 1), a feature
model will be defined from the collected features (Step
2). This is the foundation for the product
Configuration, defining how features can be combined
during the configuration. Figure 4.1 shows the
(reduced) Feature Model (FM) for the example domain
using the Czarnecki-Eisenecker notation [4]. Hollow
circles describe optional features, hollow arcs describe
alternative features and filled arcs describe an “or”-
relation (select one or more of associated features). A
simplified form is used here, e.g., containing functional
and non-functional features without explicit
constraints, to show the possibilities of the ADMV.

Figure 4.1. Feature model

90

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Four topics were chosen to illustrate the approach:
the change in the folder structure due to support of the
eCR capability; support for various medical sensors
and their different reporting formats (e.g. temperature
in °C or °F); security in the sense of authorization of
access to data; and a history of data changes. Different
variability types can now be chosen to translate the
related features into the solution space.

Figure 4.2 shows the FMP representation of the
feature model from Figure 4.1 with an example product
configuration (Step 4).

Figure 4.2. Feature model instance

Negative variability (Step 3). Variation points that

will be bound through negative variability are marked
with the stereotype <<Variation>> on class,
association, or member level. An appended condition
(using bracket: {}) describes which features in the
feature model must be selected in order for this part to
appear in the data model of the product instance. Note
that Boolean expressions are allowed, e.g., Feature1
AND NOT Feature2.

Negative variability is shown here to adapt the
maximized data model to the resulting instance data
model. Figure 4.3 shows the reduced data model.

The presented variation points are the four
subclasses and the member calibExp (calibration
expiration) of the superclass Measurement. Because
Pulse and Sugar were not selected, the resulting data
model shown in Figure 4.4 only contains the
measurement types BloodPressure and
BodyTemperature. Because the feature Calibration

is selected, the resulting data model contains the
member calibExp.

<<Variation>>
Measurement

-measuredBy : MedicalPerson
<<Variation>>-calibExp : date{feature = "calibration"}

...

<<Variation>>
BloodPressure

{feature = "Blood Pressure"}

-systolic : int
-diastolic : int

<<Variation>>
BodyTemperature
{feature = "Body Temp"}

-location : TempLocation
-celsius : float

<<Variation>>
Sugar

{feature = "Sugar" }

-mgpdl : int

<<Variation>>
Pulse

{feature = "Pulse" }

-bpm : int
-type : PulseType

Patient

-patientID : int
-name : String
-firstName : String
-socialSecurityNo : String

-measurements
*1

Figure 4.3. Data model with negative

variability

Patient

-patientID : int
-name : String
-firstName : String
-socialSecurityNo : String

Measurement

-measuredBy : MedicalPerson
-calibExp : date

BloodPressure

-systolic : int
-diastolic : int

BodyTemperature

-location : TempLocation
-celsius : float

*1

Figure 4.4. UML diagram of the example

data model instance

Positive variability (Step 3). Positive variable is

demonstrated by the history feature, where the changes
to each domain object over time should be tracked.
Each domain object receives an additional member
variable “history” containing previous entries and
several operations. In ADMV, positive variability is
realized by the stereotype <<add>> and the feature
condition in brackets. Figure 4.5 shows an example.

The elements which will be added to the variation
points by positive variability are composed in the class
HistoryElements. To implement these elements
via positive variability, the owner class is assigned
with the stereotype <<add>> and the feature condition
“History”. The example reveals a scenario when
positive variability is appropriate. Using negative
variability to achieve the same behavior is more
complex, especially the more members depend on the

91

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

cross-cutting feature: it would have to be repeated in
each class that could potentially have that feature
enabled and would have to be tagged with
<<Variation>>. By choosing positive variability, the
elements have to be modeled only once.

<<add>>
HistoryElements

{feature = "History" }

+addHistory(userID : String, history : History<T>)
+getLastHistory() : History<T>
+getHistories(userID : String) : History<T>"[]"
+getHistories(from : Timestamp, until Timestamp) : History<T>"[]"

-history : History<T>"[]"

History<T>

-changeTimestamp : Timestamp
-previousElement : T

Document

ClinicalRecord

-diagnosis : Diagnosis

-documents*

1

Figure 4.5. Positive variability

Structural variability (Step 3). Structural

variability is tagged using the sterotype <<modify>>,
introducing the condition and type modification (again,
in brackets: {}). For instance, see the association
records from class Patient to
ClinicalRecord in Figure 4.6.

<<Variation>>
Measurement

-measuredBy : MedicalPerson
<<modify>>-measureTime : String{type = "long", feature = "Epoch"}

...

Patient

-patientID : int
-name : String
-firstName : String
-socialSecurityNo : String

ClinicalRecord

Document

<<Variation>>
CaseRecord

{feature = "eCR" }

<<modify>>
{type = "CaseRecord" ,
feature = "eCR" }

-records

*

1

-clinicalRecords*

1

-measurements*

1

-documents*

1

Figure 4.6. Data model with structural

variability

In this example the eCR feature introduces an
additional level for structuring the medical records,
which is reflected by tagging the association from
patient to clinical record as <<modify>> and
redirecting the association to CaseRecord if feature
“eCR” is selected. A second structural variation point
is tagged to the member measureTime of the class
Measurement. The date format is usually a
String, but if “Epoch” is selected in the feature
model, the date format will be a long (seconds since
epoch).

Generated views (Step 5). The example of
hierarchically differently structured patient information
is defined by the structural variation point assigned to
the reference records between Patient and the
ClinicalRecord (see Figure 4.6). By default
(“eCR” is not selected) records directly reference
clinical records. Once the feature “eCR” is selected,
the patient member records references
CaseRecord which in turn references the
ClinicalRecord. The two instances of the data
model are shown for comparison in Figure 4.7.

Patient

CaseRecord

ClinicalRecord

DocumentDocument

ClinicalRecord

Patient

-records*

1

-documents*

1

-documents*

1

-records*

1

-clinicalRecords*

1

Figure 4.7. Data model results of structural

variability

Generated data views for the structural variability
example are shown in Listing 4.1 and different usage
examples of generated data types are shown in Listing
4.2. The actual differences are written in bold font.

92

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Listing 4.1
public interface Patient {
 List<ClinicalRecord> getRecords();
 void addRecords(ClinicalRecord value);
 void addRecords(List<ClinicalRecord>
 valueList);
 ...
}

public interface Patient {
 List<CaseRecord> getRecords();
 void addRecords(CaseRecord value);
 void addRecords(List<CaseRecord> valueList);
 ...
}

Listing 4.2
//default hierarchy
public void test1(Patient p) {
 p.getRecords().get(0).getDocuments();
}

//eCR 3-level hierarchy
public void test2(Patient p) {
 p.getRecords().get(0).getClinicalRecords()
 .get(0).getDocuments();
}

Consistency checks. To avoid inconsistencies in
the generated artifacts, multiple checks which are
defined in OCL and in the oAW Check language are
executed. Listing 4.3 shows a simple oAW Check to
verify the uniqueness of members. The check is
applied to all attributes in the data model. If there are
more than one equally named attributes within the
same class, an error message informs the developer.

Listing 4.3

context Attribute ERROR "name not unique" :
((Class)eContainer).attributes
 .select(a|a.name == name).size == 1;

To verify the consistency between the feature model
and the data model the following oAW check in
Listing 4.4 is applied to all variation points.

Listing 4.4
context VariationPoint ERROR
"feature does not exist in feature model":
 getAllFeatures(featureModelUri())
 .contains(feature);

The function getAllFeatures() expects the
path to the feature model as an input parameter which
is resolved by featureModelUri(). It then returns
the list of features of the feature model. Eventually the
function contains(..) checks if the feature of the
variation point in the data model is also contained in
the feature model. If this evaluates to false it results in
an error message.

Accessor constraints. The capability of defining
runtime checks for accessors is illustrated with a

security feature. The two security alternatives in the
feature tree are bound to different access policies to
measurements. Level 1 allows all the medical team
personnel (usually, the staff in the same ward who
cares for a patient) to access the measurements, Level
2 is stricter in the sense that each user may see only
measurements made by themselves). Figure 4.8 shows
the two examples of accessor constraints. Furthermore,
accessor constraints can be associated with features as
shown in Figure 4.8, again defined in brackets: {}.

Patient

...

+getMeasurements() : List<Measurement>

MedicalPerson

-userID : int
-name : String

LoginSession

-sessionId : String

//checks, if the measurements in the returning list
//are all done by the user
{feature = "Security Level 2"}
context Patient
this.measurements.forAll(m| m.measuredBy == LoginSession.user);

//checks, if the user is a member of the patient's
//medical team
{feature = "Security Level 1"}
context Patient:
this.medicalTeam.contains(LoginSession.user);

-medicalTeam
*

-user1

Figure 4.8. Accessor constraints

Run-time checks. Listing 4.5 shows the result of

the generation process if “Security Level 1” is selected.

Listing 4.5
public void check1_getMeasurements()
 throws ConditionExceptionCheck1{
 if (! this.getMedicalTeam()
 .contains(LoginSession.getUser()))
 throw new ConditionExceptionCheck1();
}

public List<Measurement> getMeasurements() {
 try {
 check1_getMeasurements();
 } catch (ConditionExceptionCheck1 e) {
 // resolve in an error message
 }
 return this.measurements;
}

The getter method calls

check1_getMeasurements(), which checks if
the logged-in user is a member of the patient’s medical
team. If this is not the case, then an exception will be
thrown. The content of the catch block must be
manually coded (Step 6) to perform further actions

93

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

such as logging, informing the user that he is not
allowed to access the measurements, and returning
null.

The authorization requirements may even be
stricter. This is presented by the constraint which is
associated to the feature “Security Level 2”. It checks
if the measurements in the returning list are all done by
the logged-in user. The generated and manually added
code for this check is depicted in Listing 4.6. Again the
content of the catch block must be manually coded to
the specific needs (Step 6), e.g., by filtering the
returning list to fulfill the security rule. The manually
added filtering is formatted in bold.

Listing 4.6

public void check1_getMeasurements()
 throws ConditionExceptionCheck1 {
 boolean cond = true;
 for (Measurement m : this.getMeasurements())
 {
 cond &= m.getMeasuredBy()
 == LoginSession.getUser();
 }
 if (! cond)
 throw new ConditionExceptionCheck1 ();
}

public List<Measurement> getMeasurements() {
 try {
 check1_getMeasurements();
 } catch (ConditionExceptionCheck1 e) {
 List<Measurement> filteredList
 = new ArrayList<Measurement>();
 for (Measurement m : this.getMeasurements())
 {
 if (m.getMeasuredBy()
 == LoginSession.getUser())
 filteredList.add(m);
 }
 return filteredList;
 }
 return this.measurements;
}

Adapters and views. The eHealth SPL contains

components that operate on the clinical records
independent of the context being an electronic case
record infrastructure or a standard hospital.
Instantiating the eCR data model would invalidate all
code that uses the (simple) patient API. This illustrates
the need for adapters.

The ADMV approach uses adapters to shield the
actual designers and programmers from the differences
in the instantiated data model. They need not be
concerned about the “eCR” variation; the view – in this
case – flattens the hierarchy of case records and resorts
the clinical records together. Figure 4.9 shows the
complete view to the left and the projected view to the
right. The common elements are omitted for clarity.

Patient

<<reference>>-records : ClinicalRecord [*]
...

<<View>>
Patient_eCR

<<reference>>-records : CaseRecord [*]
...

Figure 4.9. View of Patient

The ADMV Generator creates an adapter for the

patient and two convert methods for each view to
support bidirectional conversion (Step 5). Listing 4.7
shows a generated adapter and manually added code
(Step 6) in bold.

Listing 4.7

public class Patient_eCR_Adapter
implements IPatient_eCR
{
 private IPatientView srcView;
 private IPatient_eCR adaptedView
 = (IPatient_eCR) new Patient_eCR();

 public Patient_eCR_Adapter
 (IPatientView srcView)
 {
 this.srcView = srcView;
 PatientViewConverter.convert(srcView,
 adaptedView);
 }

 public List<CaseRecord> getRecords()
 {
 return adaptedView.getRecords();
 }
}

// there can be many convert methods
// depending on the no. of views
// the right method will be called via
// multi-method dispatching

public static void convert(Patient srcView,
 Patient_eCR targetView)
{
 // Bold code must be manually added
 CaseRecord cr = new CaseRecord();
 cr.setClinicalRecords(srcView.getRecords());
 targetView.setCaseRecords(cr);
 ...
}

public static void convert(...)
 ...
}

Using adapters for data integration. In case

multiple devices deliver measurement data slightly
differently, these must be converted to a specified core
data structure. E.g., body temperature may be delivered
as value: int; scale: enum, celsius:
float, or fahrenheit: int from the different
devices. The systems normative data structure assumes
celsius: float, so all others need to be
converted. New formats may arise at run-time too, e.g.,

94

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

when the hospital buys new devices or hospitals with
different devices are merged.

The example in Figure 4.10 models a view
containing a measurement type with a float
representing the temperature in degrees Fahrenheit
(Step 3). The resulting conversion types are generated
(Step 5) and the bodies of the methods have to be
added (Step 6).

<<Variation>>
Measurement

-measuredBy : MedicalPerson
<<modify>> <<Variation>>-measureTime : String{type = "long", feature = "Format 2"}
<<Variation>>-calibExp : date{feature = "calibration"}

<<View>>
BodyTemp_Fahrenheit

-location : TempLocation
-fahrenheit : float

<<Variation>>
BodyTemperature
{feature = "Body Temp"}

-location : TempLocation
-celsius : float

Figure 4.10. View of BodyTemperature

Listing 4.8 shows the conversion adapter for

integrating measurement devices.

Listing 4.8
public static void convert(BodyTemp_Fahrenheit
 srcView, BodyTemperature targetView)
{
 targetView.setCelcius((
 srcView.getFahrenheit()-32)/1.8);
 …
}

Adapter generation. Listing 4.9 shows a simplified
illustration of the Xpand-Template for the adapter
generation. The input parameter for the adapter
template can be any view. The French quotation marks
« and » serve to distinguish between the static output
and escaped control code that is interpreted. The
instructions which fill the adapter template with model
data are formatted here in bold.

Listing 4.9

«DEFINE adapterTmpl FOR View»
«FILE name + "_Adapter.java"»
public class «name»_Adapter
implements I«name»
{
 private I«entityName»View srcView;
 private I«name» adaptedView
 = (I«name») new «name»();

 public «name»_Adapter
 (I«entityName»View srcView)
 {
 this.srcView = srcView;
 «entityName»ViewConverter.convert(srcView,

 adaptedView);
 }
 «FOREACH attributes AS a»
 public «a.type» get«a.name»()
 {
 return adaptedView.get«a.name»();
 }
 «ENDFOREACH»
 ...
«ENDDEFINE»

In order to convert the source view to the adapted
view, the converter methods are generated (Step 5).
This is done by the template in Listing 4.10. The
converter template expects a complete view as an input
parameter. The converter methods are generated in two
steps: first all conversions from the complete view to
the projected views are generated followed by all
conversions in the reverse direction. When generating
a convert method, it checks if the target attribute is also
contained in the source view. If so, the conversion is a
simple pass-through of data and can be generated
automatically. Otherwise, it has to be implemented
manually (Step 6).

Listing 4.10

«DEFINE converterTmpl FOR CompleteView»
«FILE name + "ViewConverter.java"»

public class «name + "ViewConverter"»{
«FOREACH views AS target»
 private void convert(«name
+ " src, " + target.name + " target" »){

 «FOREACH target.attributes AS attrib»
 target.set«attrib.name»(
 «IF attributes
 .select(e|e.name == attrib.name
 && e.type == attrib.type).size > 0 -»
 src.get«attrib.name»());
 «ELSE-»
 null);
 «ENDIF-»
 «ENDFOREACH»
 }
«ENDFOREACH»
«FOREACH views AS src»
 private void convert(«src.name
 + " src, " + name + " target" »){
 ...
 }
«ENDFOREACH»
...
«ENDDEFINE»

5. Alternatives

This section considers various alternatives for
dealing with data variability within the constraints set
forth in Section 2.

UML2 package merge. The most viable alternative
for data model variability is the "package merge"
feature [29] introduced in UML2, and its usage for

95

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

SPLs has been evaluated [17][10]. Class extensions
(e.g., additional members) can be modeled in a
separate package that must have a merge association
with the base package. The mapping is done on class
name equality. Package merge is not suitable for the
requirements described in Section 2 because it scatters
the variation point over multiple packages. Thus the
number of packages explodes and does not scale well
with the number of features. Package merge cannot
model negative or structural variability that is needed
for requirement 2.

To compare the ability of both approaches, the
number of classes to model was counted. The
Measurement class and its subtypes result in five
classes, four of which are tagged to be variable, two
members are also tagged.

Using package merge, a core model containing only
the base class Measurement without the members
calibExp and measuredTime was used. For each
subtype, a package was created since each of the
subtypes is selectable separately. Within the package,
the base class is repeated to add the child class and the
association between them. For the optional calibration
management, a package is added, repeating the base
class with the member calibExp. For the structural
variability of the measuredTime, two packages are
needed, one repeating the base class with the long
type and one with the String type. This requires up
to seven additional packages and 12 classes.
Additionally, data model comprehension becomes
difficult since the information is spread across many
packages (see Figure 5.1).

A general comparison of the effort involved in the
two approaches is shown in Table 5.1, where:

F = number of features influencing the data model
V(f) = number of variation elements for a single

feature f
C(f) = Number of classes created or modified by

feature f (might be less then V(f) in case a feature
controls more than one member of a class)

Table 5.1. UML Package Merge vs. ADMV
for packages, attributes, and classes

Approach Packages Attributes
created or
modified

Repeated
Classes

UML
package
merge

F
∑
=

F

f
fV

1
)(∑

=

F

f
fC

1
)(

ADMV 0
∑
=

F

f
fV

1
)(

0

Body Temp

BodyTemperature

-location : TempLocation
-celsius : float

Measurement

Sugar

Sugar

-mgpdl : int

Measurement

Pulse

Measurement

Pulse

-bpm : int
-type : PulseType

Blood Pressure

Measurement

BloodPressure

-systolic : int
-diastolic : int

CorePackage

Measurement

-measuredBy : MedicalPerson

DeviceFormat1

-measureTime : String

Measurement

Calibration

-calibExp : date

Measurement

DeviceFormat2

Measurement

-measureTime : long

Figure 5.1. UML Package Merge

Optional members. Negative variability could be

modeled by using a full-blown data model for each
instance and returning “null” in case a non-selected
member or association is requested. Alternatively,
hashmaps could be used to carry (single-valued)
optional members. Shortcomings of this approach
include:

• Members cannot be declared to be not null, in
case the feature is selected and null is an
inappropriate value (especially if the data
model is persisted in databases).

• The development of all components could
accidentally use members that are not
necessarily selected. Auto-completion and
compile-time checks are not possible.

• Using hashmaps gives developers no indication
about available members.

• Structural variability is not possible.

Explicit dependencies. Each extension to the data
model could be presented by a separate data
component and explicitly used by a functional
component (see Figure 5.2). The data components
retrieve the necessary elements to form their view on a
domain data. Communicating with other components
introduces the obligation for the receiving component
to retrieve their view of the data again.

Drawbacks include the numerous calls for database
retrievals per component due to a lack of sharing, as

96

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

well as interpretation difficulties when components
transmit or receive data via references or value objects.
If transactions are considered or the services are
remote, this solution is infeasible.

Core Data Objects

Calibration
Component

Record
Extension

Patient
Record

Management

Calibration
 Extension

Database

Figure 5.2. Data model with explicit

dependencies

Layering. Similar to the Decorator design pattern

[6], components are grouped in layers that correspond
to the level of enrichment of the data (see Figure 5.3).
Per layer, one definition of each data element exists.
On the lowest level this will be a core element, on the
next level a slightly enriched element (some more
attributes or associations) that can even be extended on
higher levels. If a component of a higher layer needs
data, it asks the persistence component of that layer to
retrieve it. The persistence component routes this
request down the layers and extends (“enriches”) the
data, converting the data into its own layer data model.

Layer2 Component
(e.g. Patient Observation

Component)

Layer3 Component
(e.g. Calibration

Management)

Layer3 Persistence
(e.g. Calibration)

Layer2 Persistence
(e.g. Measurements)

Layer1 Persistence
(e.g. BasicPatient)

Layer1 Component

Database

Figure 5.3. Data model with layered

extensions

Multiple calls have to be executed to provide the

Layer 3 component with the data and there is
insufficient support for transaction handling.

In summary, the aforementioned alternatives have
the disadvantage that the data model is not presented
consistently and that knowledge is spread over at least
some layers or even individual components. This
assumes that a strict layering is even possible. The
ADMV does not create separate information in
separate packages nor does it need to repeat classes as

UML package merge does. Feature-dependent classes
are defined once in both approaches (see the
Measurement children).

6. Evaluation

For an evaluation of the ADMV, an appraisal of its
support for desirable qualities is considered.
Additionally, any practical limitations of the approach
with regard to performance and scalability with current
implementations are also assessed.

6.1 Quality properties

Consistency and correctness. Correctness is
supported via constraint checks and the generation of
adapters and projected data views appropriate for a
component in its current version. Via the validation of
the data model at usage time via OCL constraints (e.g.,
MagicDraw Active validation), various modeling
errors can be detected sooner and thus avoided in later
phases. Consistency checks can assure the consistency
of the models, e.g., between the feature model and data
model. Support for the correctness of the generated
artifacts is thus enhanced.

Comprehension. ADMV reduces the number of
classes and locations where (redundant) information is
stored, which furthers comprehension. Code generation
is based on a metamodel specialized for modeling data
variability. Code generation templates can thus be
more simply created compared to UML metamodel
generative approaches such as OMG’s Model-Driven
Architecture (MDA).

Maintainability. Maintenance and evolvability are
supported by both shielding component developers
from changes via adapters as well as the application of
constraints throughout development. By programming
templates against a common ADMV metamodel, an
unlimited number of future templates and template
changes support any necessary extensibility.

Usability. Usability is fostered by the integration of
ADMV in standard modeling (FM and UML) and with
tool frameworks that support customization (e.g.,
oAW). The usage of constraint languages at the
appropriate levels also furthers usability.

Efficiency. The enhanced support for code
generation techniques has the potential to improve
efficiency for larger SPLs. Runtime efficiencies are
also achievable since variation decisions are typically
made at generation time. The reduction in the number
of classes required to deal with variability also
promotes efficiency.

Portability. Modeling variability with UML-based
stereotypes, coupled with the ADMV metamodel as a

97

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

basis for generation, supports the portability and
exchangeability of MDSD implementations for
modeling, model-to-model transformations, and
artifact generation.

Data integration and interoperability. These
qualities are supported via the adapters and projected
component views that support independent
conversions. The complete view also supports
interoperability across the SPL and product instance
life cycle.

Reusability. Component reuse is supported since no
direct tight coupling to other components via data
elements occurs. Enhanced comprehension enhances
reusability opportunities. Templates reuse common
code.

Testability. Constraints can be readily defined via
very capable languages such as OCL and oAW Check,
which supports the testability of the models. The
reduced number of classes also simplifies component
testing, since knowledge of other existing components
in the individual product instances is not required.

Traceability. The modeling of variability and data
in a central model makes the effects of the variability
more traceable. By using UML tools with stereotypes
and tagged-value-based search capabilities (as in
MagicDraw), the traceability of variation points and
features is improved. Certain variation points can be
localized by simple string searches.

6.2 Performance and scalability

Due to the use of code generation techniques, the

impact of the variations and the use of the adapters at
runtime is relatively inconsequential. View conversion
of data where necessary, e.g., from one format to
another, is currently a manual programming task and
thus the runtime impact is dependent on the conversion
complexity. However, due to the large set of possible
permutations and the reliance on MDD, variation
scalability measurements were made to determine the
impacts of the variations for development time usage
of the ADMV.

The measurements were performed on an AMD
Athlon XP 2400+ (2GHz) PC with 3GB RAM running
Microsoft Windows XP Pro SP2, Java JDK 1.6,
Eclipse 3.3, openArchitectureWare 4.2, and the Eclipse
Modeling Framework 2.3. All measurements were
performed 3 times and the averages presented.

For the first set of measurements, the transformation
time using oAW from an XMI Data Model file
containing variations to a Data Model Instance XMI
(all variation points applied based on features) was
measured as shown in Table 6.1 and Figure 6.1. A
nearly linear correlation between a change in the
number of variation points and the generation time was

measured as the number of features was held constant,
and an increase in the number of features also showed
a nearly linear increase in the generation time. This
result is explained by the iterations in the generator
code implementation for each variation point and for
each feature. Varying the number of Boolean
conjunctions up to 20 for a variation point made no
perceptible difference due to other inherent overheads.

Table 6.1. Data model instance

transformation time (ms) for features and
variation points

Number of
variation

points

Total number of features
300 600 900

50 2771 5281 9141
100 4429 9696 17781
150 6416 14219 26078

Figure 6.1. Data model instance

transformation time vs. variation points and
features

A second set of measurements concerned the

generation of adapters. Each of the different variability
types was tested and, as expected, no noticeable
difference in generation time occurred based on the
negative, positive, or structural variability types. In the
ADMV, each adapter for an entity can support multiple
projected views. The Lines of Code (LOC) generated
in support of the conversion betweens views increased
in the same percentage to the number of views, as
expected due to the 2n relation resulting from the
complete view basis for all conversions. The
maintainability of the conversions is thereby
supported. The generation time required for adapters
with multiple views is shown in Figure 6.2, showing a
nearly linear increase as the number of adapters or
views increase. The generation time for this scale

98

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

appears reasonable for development usage in current
SPLs.

2500

3000

3500

4000

4500

5000

5500

6000

6500

10 20 30 40 50 60 70 80 90 100

G
en

er
at

io
n

Ti
m

e
(m

s)

Adapters

30 Views

60 Views

90 Views

Figure 6.2. Generation time vs. number of

adapters

In summary, the development-time variation

scalability and performance of the ADMV with current
tooling for industrial use is shown to be practicable.

7. Related work

Other approaches for SPL variability in data models
include the conceptual framework SPLIT [3], where
additional UML stereotypes, e.g.,
<<variabilityMechanism>> and <<variationPoint>>,
are used for specifying variable elements. SPLIT does
not, however, integrate an abstract feature view as does
the ADMV, and each variation point and the
corresponding variants requires a separate class which
can cause issues in lucidity for large SPLs.

Clauß presents in [24] a generic modeling approach
which uses additional stereotypes to express
variability. The Stereotype <<optional>> is used for
optional variants which do not stand in a relationship
with other variants (variation point with one variant).
Variation points which group multiple variants
together are tagged with the stereotype
<<variationPoint>> and the associated variants with
<<variant>>. Furthermore, the variation points and
variants can be assigned with tagged values to define
certain properties. Some of these properties are the
binding time of variants, the multiplicity of associable
variants, and the condition of binding. However, this
approach doesn’t offer a concept to handle data
independently from the corresponding product
instance, nor does it address the derivation of product
line instances.

In [7], PLUS (Product Line UML-Based Software
Engineering) extends UML to model variability and
commonality using stereotypes and primarily
subclassing. While entities are mentioned, the
wrappers described are intended for database access

and do not support all variation types and multiple
view and data versions for components as addressed in
the ADMV. The extension of PLUS with the ADMV
would provide a more comprehensive solution for SPL
UML techniques.

In MDD-AO-PLE [15][16][18] and similar related
aspect-oriented SPLE work, the application of
techniques to SPLs are investigated for addressing
cross-cutting variability. While this work has not
specifically addressed the difficulties described in this
paper for data models, the combination of these
techniques with ADMV could be synergistic, e.g., to
address positive variability or for common data view
format conversions in adapters.

The following comparison matrix shows a
assessment of related SPLE approaches in regard to a
selection of requirements.

Table 7.1. Comparison matrix

 S
PL

IT

 P
LU

S

 M
D

D
-A

O
-P

LE

 U
M

L
ex

t.
[2

4]

 A
D

M
V

requirement analysis +++ +++ ++ + ++
FM1 integration D D D D

positive variability D D D D D
negative variability D D
structural variability D D D D
UML2 D D D D
data conversion2 D
checks (modeling) D D D D D
checks (config.)3 D D D
checks (generator) D D D
checks (runtime) D
product instantiation4 +++ + +++ + +
code generation D D
trace variability5 D D D D D

(1) FM = feature model.
(2) Ability to convert data to different formats.
(3) Checks at configuration time.
(4) The process of creating a specific software product
using a software product line is referred to as product
instantiation [25].
(5) Ability to trace variability between solution space
and problem space.

99

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Work with regard to SPL component evolution

support includes [5], where a multi-team decentralized
SPL variability modeling approach is described,
supporting the merging of model fragments. However,
it does not address versioning of entities and
component usage and lacks UML support. [22]
addresses multi-context component reusability using
UML extensions views (functional, static, and
dynamic), but does not consider data modeling,
constraints, or code generation issues.

Work on model-based data integration, mapping,
and transformation in the eHealth domain includes [21]
and the AutoMed project [20]. To our knowledge the
usage of such an approach for an eHealth SPL for
modeling data variability has not been explored.

8. Conclusion and future work

Given the inadequate integration and specific
support for MDSD data modeling and variability in
current SPL approaches and research, the ADMV
contributes a UML standards-based method for data
modeling that can be utilized by common MDSD
tooling, is integrated with feature modeling, and
supports desirable software qualities during SPL
development. UML diagrams are augmented with
variability information including constraints, from
which artifacts for particular configurations can be
generated automatically. The approach for adapter
generation supports SPL data integration with the
potentially multifarious external systems and devices,
which may represent the same kind of information in
different formats

An eHealth case study that motivated the work was
used to illustrate the application of the ADMV to a
SPL. Scalability of the ADMV with regard to features
and variation points is linear and likely to be sufficient
for typical current SPL development. The unification
of concepts and mechanisms in ADMV promote
support for desirable SPLE qualities, including
consistency, correctness, comprehension,
maintainability, usability, efficiency, portability,
integration, interoperability, reusability, testability, and
traceability. These and other benefits can be realized
for SPLs in conjunction with the ADMV.

Future work includes the addition of a conversion
language for somewhat complex conversions in
adapters (e.g., concatenation and regex-split). Support
of dynamic runtime variation including adaptation and
binding of component views with database migration is
another area to be investigated. Additionally,
optimization for object tree transfers and greater

automatic adapter data conversion code generation are
promising.

9. References

[1] Bartholdt, J., Oberhauser, R., and Andreas Rytina, "An
Approach to Addressing Entity Model Variability within
Software Product Lines". In Proceedings of the Third
International Conference on Software Engineering Advances
(ICSEA 2008), IEEE Computer Society Press, 2008.

 [2] Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D.,
Schmid, K., Widen, T., and DeBaud, J., “PuLSE: a
methodology to develop software product lines,” In
Proceedings of the 1999 Symposium on Software Reusability
(SSR '99). ACM, pp. 122-131.

[3] Coriat, M., Jourdan, J., and Boisbourdin, F., “The SPLIT
method: building product lines for software-intensive
systems,” In Proceedings of the First Conference on
Software Product Lines: Experience and Research
Directions (Denver, Colorado, United States). P. Donohoe,
Ed. Kluwer Academic Publishers, Norwell, MA, 2000, pp.
147-166.

[4] Czarnecki, K. and Eisenecker, U.W., Generative
Programming: Methods, Techniques, and Applications.
Addison–Wesley, May 2000, ISBN 0201309777.

[5] Dhungana, D., Neumayer, T., Gruenbacher, P., and
Rabiser, R., “Supporting the Evolution of Product Line
Architectures with Variability Model Fragments,” In
Proceedings of the Seventh Working IEEE/IFIP Conference
on Software Architecture (WICSA 2008) (February 18 - 21,
2008). WICSA. IEEE Computer Society, Washington, DC,
2008, pp. 327-330.

[6] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design
patterns: elements of reusable object-oriented software,
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, 1995, ISBN 0-201-63361-2.

[7] Gomaa, H., Designing Software Product Lines with
UML: From Use Cases to Pattern-Based Software
Architectures, Addison-Wesley, 2005, ISBN 0201775956.

[8] Griss, M. L., Favaro, J., and Alessandro, M. d.
“Integrating Feature Modeling with the RSEB,” In
Proceedings of the 5th international Conference on Software
Reuse (June 02 - 05, 1998). ICSR. IEEE Computer Society,
Washington, DC, 1998, p. 76-85.

[9] Kang, K. C.; Cohen, S. G.; Hess, J. A.; Novak, W. E. &
Peterson, A. S. “Feature-Oriented Domain Analysis (FODA)
Feasibility Study,” Carnegie-Mellon University Software
Engineering Institute, 1990.

[10] Laguna, M. A., González-Baixauli, B., and Marqués, J.
M., “Seamless development of software product lines,” In
Proceedings of the 6th international Conference on

100

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Generative Programming and Component Engineering
(GPCE 2007). ACM, New York, NY, pp. 85-94.

[11] Linden, F.J. v.d., Schmid, K., and Rommes, E., Software
Product Lines in Action: The Best Industrial Practice in
Product Line Engineering, Springer, Berlin, ISBN
3540714367, 2007.

[12] Voelter, M., Haase, A., Kolb, B., and Efftinge, S.,
“Introduction to openArchitectureWare 4.1.2,” In
Proceedings of the Model-Driven Development Tool
Implementers Forum (MDD-TIF07), TOOLS EUROPE
2007.

[13] Batini, C., Lenzerini, M., and Navathe, S. B., “A
comparative analysis of methodologies for database schema
integration,” ACM Computing Surveys (CSUR), Vol. 18,
Issue 4, (Dec. 1986), 323-364.

[14] Pohl, K., Böckle, G., Linden, F.J. v.d., Software Product
Line Engineering: Foundations, Principles and Techniques,
Springer-Verlag, 2005, ISBN 3540243720.

[15] Voelter, M. and Groher, I., “Handling Variability in
Model Transformations and Generators”, in Proceedings of
the 7th OOPSLA Workshop on Domain-Specific Modeling
(DSM’07), Sprinkle, J., Gray, J., Rossi, M., Tolvanen, J.-P.,
(eds.), Computer Science and Information System Reports,
Technical Reports, TR-38, University of Jyväskylä, Finland
2007, ISBN 978-951-39-2915-2.

[16] Voelter, M. and Groher, I., “Product Line
Implementation using Aspect-Oriented and Model-Driven
Software Development,” In Proceedings of the 11th
international Software Product Line Conference (September
10 - 14, 2007). International Conference on Software Product
Line. IEEE Computer Society, Washington, DC, 2007, pp.
233-242.

[17] Laguna, M. A., González-Baixauli, B., and Marqués, J.
M., “Seamless development of software product lines,” In
Proceedings of the 6th international Conference on
Generative Programming and Component Engineering
(Salzburg, Austria, October 01 - 03, 2007). GPCE '07. ACM,
New York, NY, 2007, pp. 85-94.

[18] Groher, I., "Aspect-Oriented Feature Definitions in
Model-Driven Product Line Engineering", Dissertation,
Johannes Kepler Universität, Linz, April 2008.

[19] Boehm, O., “eCR Application Architecture v1.2
Services and Interfaces“, Fraunhofer Institute for Software
and Systems Engineering (ISST), www.fallakte.de 2008

[20] Smith, A. and Mcbrien, P., “A Generic Data Level
Implementation of ModelGen,” In Proceedings of the 25th
British National Conference on Databases: Sharing Data,
information and Knowledge (Cardiff, Wales, UK, July 07 -
10, 2008). A. Gray, K. Jeffery, and J. Shao, Eds. Lecture
Notes In Computer Science, vol. 5071. Springer-Verlag,
Berlin, Heidelberg, 2008, pp. 63-74.

[21] Ying, B., Rong, Z., and Xiao, J., “A Data Integration
Approach to E-Healthcare System”. In Proceedings of the 1st
International Conference on Bioinformatics and Biomedical
Engineering, 2007 (ICBBE 2007), pp. 1129 – 1132.

[22] Saidi, R., Front, A., Rieu, D., Fredj, M., Mouline, S.,
“From a Business Component to a Functional Component
using a Multi-View Variability Modelling,” In Proceedings
of the International Workshop on Model Driven Information
Systems Engineering: Enterprise, User and System Models
(MoDISE-EUS'08) held in conjunction with the CAiSE'08
Conference, Montpellier, France, June 16-17, 2008, ISSN
1613-0073, pp. 34-45.

[23] Antkiewicz, M. and Czarnecki, K., “FeaturePlugin:
feature modeling plug-in for Eclipse,” In Proceedings of the
2004 OOPSLA Workshop on Eclipse Technology Exchange
(Vancouver, British Columbia, Canada, October 24 - 24,
2004), eclipse '04, ACM, 2004, pp. 67-72.

[24] Clauss M., “Generic modeling using UML extensions
for variability”, In Proceedings of the Workshop on Domain
Specific Visual Languages, OOPSLA 2001, Jyväskylä
University Printing House, Jyväskylä, Finland, 2001, ISBN
951-39-1056-3, pp. 11-18.

[25] Van Gurp, J., Bosch, J., and Svahnberg, M. “On the
Notion of Variability in Software Product Lines,” In
Proceedings of the Working IEEE/IFIP Conference on
Software Architecture (August 28 - 31, 2001). WICSA. IEEE
Computer Society, Washington, DC, 2001, pp. 45-54.

[26] Eclipse Modeling Framework Project,
http://www.eclipse.org/modeling/emf/ May 14, 2009.

[27] Vlissides, J., “Generation Gap,” C++ Report Volume 8,
Number 10, November / December, 1996, pp. 12-18.

[28] Generic Eclipse Modeling System (GEMS),
http://www.eclipse.org/gmt/gems/ May 14, 2009.

[29] OMG, “UML 2.1.2 Superstructure Specification”, OMG
doc# formal/07-11-02, 2007.

[30] OMG, “Meta Object Facility(MOF) 2.0 XMI Mapping
Specification, v2.1.1”, OMG doc# formal/07-12-01.

