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Abstract—In a large number of applications, engineers have
to estimate a function linked to the state of a dynamic system.
To do so, a sequence of samples drawn from this unknown
function is observed while the system is transiting from state
to state and the problem is to generalize these observations
to unvisited states. Several solutions can be envisioned among
which regressing a family of parameterized functions so as to
make it fit at best to the observed samples. This is the first
problem addressed with the proposed kernel-based Bayesian
filtering approach, which also allows quantifying uncertainty
reduction occurring when acquiring more samples. Classical
methods cannot handle the case where actual samples are not
directly observable but only a non linear mapping of them is
available, which happens when a special sensor has to be used or
when solving the Bellman equation in order to control the system.
However the approach proposed in this paper can be extended to
this tricky case. Moreover, an application of this indirect function
approximation scheme to reinforcement learning is presented. A
set of experiments is also proposed in order to demonstrate the
efficiency of this kernel-based Bayesian approach.

Index Terms—supervised learning; reinforcement learning;
Bayesian filtering; kernel methods

I. INTRODUCTION

In a large number of applications, engineers have to estimate
values of an unknown function given some observed samples.
For example, in order to have a map of wifi (wireless fidelity)
coverage in a building, one solution would be to simulate
the wave propagation in the building according to Maxwell
equations, which would be intractable in practice. An other
solution is to measure the electromagnetic field magnitude in
some specific locations, and to interpolate between theses ob-
servations in order to build a field map which covers the whole
building. This task is referred to as function approximation or
as generalization. One way to solve the problem is to regress
a family of parameterized functions so as to make it fit at best
the observed samples. Lots of existing regression methods can
be found in the literature for a wide range of function families.
Artificial Neural Networks (ANN) [2] or kernel machines [3],
[4] are popular methods. Yet, usually batch methods are used
(gradient descent for ANN or Support Vector Regression for
kernel machines); that is all the observed samples have to
be known before regression is done. A new observed sample
requires running again the regression algorithm using every
sample.

Online regression describes a set of methods able to in-
crementally improve the regression results as new samples
are observed by recursively updating previously computed
parameters. There exists online regression algorithms using
ANN or kernel machines, yet the uncertainty reduction oc-
curring when acquiring more samples (thus more informa-
tion) is usually not quantified, as well as with the batch
methods. Bayesian methods are such recursive techniques
able to quantify uncertainty about the computed parameters.
They have already been applied to ANN [5], [6] and, to
some extent, to kernel machines [7], [8]. In this paper is
proposed a method based on the Bayesian filtering framework
[9] for recursively regressing a nonlinear function from noisy
samples. In this framework a hidden state (here the regression
parameter vector) is recursively estimated from observations
(here the samples), while maintaining a probability distribution
over parameters (uncertainty estimation).

Several problems are not usually handled by standard tech-
niques. For instance, actual samples are sometimes not directly
observable but only a non linear mapping of them is available.
This is the case when a special sensor has to be used (e.g.,
measuring a temperature using a spectrometer or a thermocou-
ple). This is also the case when solving the Bellman equation
in a Markovian decision process with unknown deterministic
transitions [10]. This is important for (asynchronous and
online) dynamic programming, and more generally for control
theory. The proposed approach is extended to online regression
of nonlinear mapping of observations. First a quite general
formulation of the problem is described in order to appeal
a broader audience. Indeed the technique introduced below
handles well nonlinearities in a derivative free way and it can
be useful in other fields. Nevertheless, an application of this
framework to reinforcement learning [11] is also described.
The general outline of the proposed method is as follows.

The parametric function approximation problem as well as
its extension to nonlinear mapped observations case mainly
breaks down in two parts. First, a representation for the
approximated function must be chosen. For example, it can
be an ANN. Notice that this also involves to choose a specific
structure, e.g., number of hidden layers, number of neurons,
synaptic connections, etc. A kernel representation is chosen in
this paper, because of its expressiveness given by the Mercer
theorem [4]. Moreover a dictionary method [12] allows quasi-
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automatizing the choice of the associated structure (that is
number and positions of kernel basis). Second, an algorithm
to learn the parameters is necessary. For this, the regression
problem is cast in a Bayesian tracking problem [9]. As it will
be shown, it allows handling well nonlinearities, uncertainty
and even non-stationarity.

The next section presents some necessary background:
the dictionary method and Bayesian filtering. The following
sections describe the proposed algorithm for function ap-
proximation [1], its extension to regression from nonlinear
mapping of observations [13] and the application of this
general algorithm to reinforcement learning [14]. All these
algorithms are experimented and compared to the state-of-the-
art, and the last section concludes.

II. BACKGROUND

Before introducing the proposed approach, some back-
bone methods are presented. The first one is a dictionary
method [12] based on mathematical signification of kernels
and basic linear algebra which allows automatizing the choice
of the structure (number and position of kernels). The sec-
ond one, Bayesian filtering and more precisely Sigma Point
Kalman filtering, is used as the learning part of the proposed
algorithms. First, kernel-based regression is briefly introduced.

A. Kernel-based Regression

A kernel-based regression is used, namely the approxi-
mation is of the form f̂θ(x) =

∑p
i=1 αiK(x, xi) where x

belongs to a compact set X of Rn (all the work is done
in X ) and K is a kernel, that is a continuous, symmetric
and positive semi-definite function. The parameter vector θ
contains the weights (αi)i, and possibly the centers (xi)i and
some parameters of the kernel (e.g., the variance for Gaussian
kernels). These methods rely on the Mercer theorem [4] which
states that each kernel is a dot product in a higher dimensional
space. More precisely, for each kernel K, there exists a
mapping ϕ : X → F (F being called the feature space)
such that ∀x, y ∈ X , K(x, y) = 〈ϕ(x), ϕ(y)〉. Thus, any
linear regression algorithm which only uses dot products can
be cast by this kernel trick into a nonlinear one by implicitly
mapping the original space X to a higher dimensional one.
Many approaches to kernel regression can be found in the lit-
erature, the most classical being the Support Vector Machines
(SVM) framework [4]. There are fewer Bayesian approaches,
nonetheless the reader can refer to [7] or [8] for interesting
examples. To our knowledge, none of them is designed to
handle the second regression problem described in this paper
(when observations are nonlinearly mapped).

B. Dictionary

A first problem is to choose the number p of kernel functions
required for the regression task and the prior kernel centers.
A variety of methods can be contemplated, the simplest one
being to choose equally spaced kernel fonctions. However
the method described below rests on the mathematical sig-
nification of kernels and basic algebra, and is thus well

motivated. By observing that although the feature space F
is a (very) higher dimensional space, ϕ(X ) can be a quite
smaller embedding, the objective is to find a set of p points
in X such that

ϕ(X ) ' Span {ϕ(x̃1), . . . , ϕ(x̃p)} (1)

This method is iterative. Suppose that samples x1, x2, . . .
are sequentially generated. At time k, a set

Dk−1 = (x̃j)
mk−1
j=1 ⊂ (xj)k−1

j=1 (2)

of mk−1 elements is available where by construction feature
vectors ϕ(x̃j) are approximately linearly independent in F . A
sample xk is then uniformly sampled from X , and is added to
the dictionary if ϕ(xk) is linearly independent on Dk−1. To
test this, weights a = (a1, . . . , amk−1)

T have to be computed
so as to verify

δk = min
a∈Rmk−1

∥∥∥∥∥∥
mk−1∑
j=1

ajϕ(x̃j)− ϕ(xk)

∥∥∥∥∥∥
2

(3)

Formally, if δk = 0 then the feature vectors are linearly depen-
dent, otherwise not. Practically an approximate dependence is
allowed, and δk is compared to a predefined threshold ν de-
termining the quality of the approximation (and consequently
the sparsity of the dictionary). Thus the feature vectors will
be considered as approximately linearly dependent if δk ≤ ν.

By using the kernel trick and the bilinearity of dot products,
equation (3) can be rewritten as

δk = min
a∈Rmk−1

{
aT K̃k−1a− 2aT k̃k−1(xt) + K(xk, xk)

}
(4)

where (
K̃k−1

)
i,j

= K(x̃i, x̃j) (5)

is a mk−1 ×mk−1 matrix and(
k̃k−1(x)

)
i
= K(x, x̃i) (6)

is a mk−1 × 1 vector. If δk > ν, xk = x̃mk
is added to the

dictionary, otherwise not. Equation (4) admits the following
analytical solution{

ak = K̃−1
k−1k̃k−1(xk)

δk = K(xk, xk)− k̃k−1(xk)T ak

(7)

Notice that the matrix K̃−1
k can be computed efficiently. If

δk ≤ ν no point is added to the dictionary, and thus K̃−1
k =

K̃−1
k−1. If xk is added to the dictionary, one can write the matrix

K̃k by blocs:

K̃k =
(

K̃k−1 k̃k−1(xk)
k̃k−1(xk)T K(xk, xk)

)
(8)

By using the partitioned matrix inversion formula, its inverse
is incrementally computed:

K̃−1
k =

1
δk

(
δkK̃−1

k−1 + akaT
k −ak

−aT
k 1

)
(9)
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where ak and δk are the given analytical solution to prob-
lem (4). This bounds the computational cost for the kth

sample by O(m2
k). Thus this approach allows computing

sequentially and incrementally an approximate basis of ϕ(X ).
The dictionary method is briefly sketched in Algorithm 1,
nevertheless see [12] for more details and theoretical analysis
of the properties of this approach.

Algorithm 1: Dictionary computation
inputs : a set of N samples randomly selected from X ,

sparsification parameter ν
outputs: a dictionary D
Initialization;
D1 = {x1};
Dictionary computation;
for k = 1, 2, . . . N do

Observe sample xk;
Compute approximate dependence:

δk = min
a∈Rmk−1

∥∥∥∥∥∥
mk−1∑
j=1

ajϕ(x̃j)− ϕ(xk)

∥∥∥∥∥∥
2

if δk > ν then
Add xk to the dictionary: Dk = Dk−1 ∪ {xk}

else
Let the dictionary unchanged: Dk = Dk−1

Thus, by choosing a prior on the kernel to be used, and
by applying this algorithm to a set of points (x1, . . . , xN )
randomly sampled from X , a sparse set of good candidates
to the kernel regression problem is obtained. This method is
theorically well founded, easy to implement, computationally
efficient and it does not depend on kernels nor space topology.
Notice that, despite the fact that this algorithm is naturally
online, this dictionary cannot be built (straightforwardly) while
estimating the parameters, since the hyper-parameters of the
chosen kernels (such as mean and deviation for Gaussian
kernels) will be parameterized as well (which leads to a
nonlinear parameterization). If the samples used for regression
are known beforehand, they can be used to construct the dic-
tionary. However, for online regression, samples are generally
not known beforehand. Knowing bounds on X is sufficient to
compute a dictionary.

C. Bayesian Filtering

Bayesian filtering was originally designed to track the state
of a stochastic dynamic system from observations (e.g., track-
ing the position of a plane from radar measures). When used
as a learner for function approximation, the parameter vector is
the hidden state to be tracked. As it will be shown below, this
parameter vector is modeled as a random variable, whereas it
is generally deterministic. However, this allows handling non-
stationary regression problems, and even if stationary, it helps
avoiding local minima. Indeed, the process noise (to be defined

below) then plays a role quite similar to simulated annealing.
A comprehensive survey of Bayesian filtering is given in [9].

1) Paradigm: The problem of Bayesian filtering can be
expressed in its state-space formulation; suppose that the
dynamic of a system and the associated generated observations
are driven by the following equations:{

sk+1 = fk(sk) + vk

yk = gk(sk) + nk

(10)

The objective is to sequentially infer the hidden state sk given
the observations y1, . . . , yk = y1:k. The state evolution is
driven by the possibly nonlinear mapping fk and the process
noise vk (centered and of variance Pvk

). The observation yk is
a function of the state sk, corrupted by an observation noise
nk (centered and of variance Pnk

). To do so, the posterior
density (of state over past observations) is recursively updated
as new observations arrive by making use of the Bayes rule
and of the dynamic state-space model of the system (10).

Such a Bayesian filtering approach can be decomposed
in two steps, which crudely consists in predicting the new
observation generated by the system given the current approx-
imated model, and then correcting this model according to the
accuracy of this prediction, given the new observation. The
first stage is the prediction step. It consists in computing the
following distribution:

p(Sk|Y1:k−1) =
∫
S

p(Sk|Sk−1)p(Sk−1|Y1:k−1)dSk−1 (11)

It is the prior distribution of current state conditioned on past
observations up to time k − 1. It is a projection forward in
time of the posterior at time k − 1, p(Sk−1|Y1:k−1) by using
the process model represented by p(Sk|Sk−1) which depends
on fk. For example, if the evolution function is linear and the
noise is Gaussian, the distribution of Sk|Sk−1 is Gaussian of
mean fk−1(Sk−1) and of variance Pvk−1 :

Sk|Sk−1 ∼ N
(
fk−1(Sk−1), Pvk−1

)
(12)

Second, the noisy measurement is incorporated using the
observation likelihood and is combined with the prior to update
the posterior. This is the correction step:

p(Sk|Y1:k) =
p(Yk|Sk)p(Sk|Y1:k−1)∫

S p(Yk|Sk)p(Sk|Y1:k−1)dSk
(13)

The likelihood Yk|Sk is linked to the observation function
gk. For exemple, if this function is linear and if the noise
is Gaussian, the likelihood is also Gaussian:

Yk|Sk ∼ N (gk(Sk), Pnk
) (14)

If the mappings are linear and if the noises nk and vk

are Gaussian, prior and posterior distributions are analytically
computable and the optimal solution is given by the Kalman
filter [15]: quantities of interest are random variables, and
inference (that is prediction of these quantities and correction
of them given a new observation) is done online by propagat-
ing sufficient statistics through linear transformations. If the
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mappings are nonlinear (but the noises are still Gaussian), a
first solution is to linearize them around the state: it is the
principle of the Extended Kalman Filter (EKF), and sufficient
statistics are still propagated through linear transformations.
Another approach is the Sigma Point Kalman Filter (SPKF)
framework [6]. The basic idea is that it is easier to approximate
a probability distribution than an arbitrary nonlinear function.
It is based on the unscented transform [16], which is now
described (the sigma-point designation can be seen as a
generalization of the unscented transform).

2) The Unscented Transform: The problem of approxi-
mating Bayesian filtering when evolution and observation
equations are not linear can be expressed as follows: given
first and second order moment of a random variable, compute
first and second order moments of a nonlinear mapping of this
random variable. The unscented transform addresses this issue
by deterministically sampling the distribution using its mean
and variance.

Let’s abstract from previous sections and their notations.
Let X be a random vector, and let Y be a mapping of X . The
problem is to compute mean and covariance of Y knowing
the mapping and first and second order moments of X . If
the mapping is linear, the relation between X and Y can be
written as Y = AX where A is a matrix of ad hoc dimension.
In this case, required mean and covariance can be analytically
computed: E[Y ] = AE[X] and E[Y Y T ] = AE[XXT ]AT .

If the mapping is nonlinear, the relation between X and Y
can be generically written as:

Y = f(X) (15)

A first solution would be to approximate the nonlinear map-
ping, that is to linearize it around the mean of the random
vector X . This leads to the following approximations of the
mean and covariance of Y :

E[Y ] ≈ f (E[X]) (16)

E[Y Y T ] ≈ (∇f (E[X]))E[XXT ] (∇f (E[X]))T (17)

This approach is the basis of Extended Kalman Filtering
(EKF) [17], which has been extensively studied and used in
past decades. However it has some limitations. First it cannot
handle non-derivable nonlinearities. It requires to compute the
gradient of the mapping f , which can be quite difficult even if
possible. It also supposes that the nonlinear mapping is locally
linearizable, which is unfortunately not always the case and
can lead to quite bad approximations, as exemplified in [16].

The basic idea of the unscented transform is that it is easier
to approximate an arbitrary random vector than an arbitrary
nonlinear function. Its principle is to sample deterministically
a set of so-called sigma-points from the expectation and the
covariance of X . The images of these points through the
nonlinear mapping f are then computed, and they are used
to approximate statistics of interest. It shares similarities with
Monte-Carlo methods, however here the sampling is deter-
ministic and requires less samples to be drawn, nonetheless
allowing a given accuracy [16].

The original unscented transform is now described more
formally (some variants have been introduced since, but the
basic principle is the same). Let n be the dimension of X . A
set of 2n + 1 sigma-points is computed as follows:

x0 = X̄ j = 0 (18)

xj = X̄ +
(√

(n + κ)PX

)
j

1 ≤ j ≤ n (19)

xj = X̄ −
(√

(n + κ)PX

)
n−j

n + 1 ≤ j ≤ 2n (20)

as well as associated weights:

w0 =
κ

n + κ
and wj =

1
2 (n + κ)

∀j > 0 (21)

where X̄ is the mean of X , PX is its variance matrix, κ is
a scaling factor which controls the accuracy of the unscented
transform [16], and (

√
(n + κ)PX)j is the jth column of the

Cholesky decomposition of the matrix (n + κ)PX . Then the
image through the mapping f is computed for each of these
sigma-points:

yj = f(xj), 0 ≤ j ≤ 2n (22)

The set of sigma-points and their images can finally be used
to compute first and second order moments of Y , and even
PXY , the covariance matrix between X and Y :

Ȳ ≈ ȳ =
2n∑

j=0

wjyj (23)

PY ≈
2n∑

j=0

wj (yj − ȳ) (yj − ȳ)T (24)

PXY ≈
2n∑

j=0

wj (xj − x̄) (yj − ȳ)T (25)

where x̄ = x0 = X̄ .
3) Sigma Point Kalman Filtering: The unscented transform

having been presented, the Sigma-Point Kalman Filtering,
which is an approximation of Bayesian filtering for nonlinear
mapping based on unscented and similar transforms (e.g.,
central differences transform, see [6] for details), is shortly
described.

SPKF and classical Kalman equations are very similar.
The major change is how to compute sufficient statistics
(directly for Kalman, through sigma points for SPKF). Al-
gorithm 2 sketches a SPKF update based on the state-space
formulation (10), and using the standard Kalman notations:
sk|k−1 denotes a prediction, sk|k an estimate (or correction),
Ps,y a covariance matrix, n̄k a mean and k is the discrete
time index. The principle of each update is as follow. First,
the prediction step consists in predicting the current mean
and covariance for the hidden state given previous estimates
and using the evolution equation. From this and using the
observation equation, the current observation is predicted.
This implies to use the unscented transform if the mappings
are nonlinear. Then mean and covariance of the hidden state
are corrected using the current observation and some system
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statistics (the better the prediction, the lesser the correction).
Update (or equivalently correction step) is made according
to the so-called Kalman gain Kk which depends on statistics
computed thanks to the unscented transform and using system
dynamics. Notice also that being online this algorithm must
be initialized with some priors s̄0|0 and P0|0.

The reader can refer to [6] for details. More precise al-
gorithms will be given later, when developing specific ap-
proaches. Generally speaking, the computational complexity
of such an update is O(|S|3), where |S| is the dimension of
the state space. However, it will be shown that a square com-
putational complexity is possible for the approach developed
in next sections.

Algorithm 2: SPKF Update
inputs : s̄k−1|k−1, Pk−1|k−1

outputs: s̄k|k, Pk|k

Sigma-points computation;
Compute deterministically sigma-point set Sk−1|k−1

from s̄k−1|k−1 and Pk−1|k−1;

Prediction Step;
Compute sigma-point set Sk|k−1 from fk(Sk−1|k−1, n̄k)
and process noise covariance;
Compute s̄k|k−1 and Pk|k−1 from Sk|k−1;

Correction Step;
Observe yk;
Compute sigma-point set Yk|k−1 = gk(Sk|k−1, v̄k);
Compute ȳk|k−1, Pyk

and Psyk
from Sk|k−1, Yk|k−1 and

observation noise covariance;
Kk = Psyk

P−1
yk

;
s̄k|k = s̄k|k−1 + Kk(yk − ȳk|k−1);
Pk|k = Pk|k−1 −KkPyk

KT
k ;

III. SUPERVISED LEARNING

The approach presented in this section addresses the prob-
lem of nonlinear function approximation. The aim here is to
approximate a nonlinear function f(x), x ∈ X , where X is a
compact set of Rn, from noisy samples

(xk, yk = f(xk) + nk)k (26)

where k is the time index and nk is the observation random
noise, by a function f̂θ(x) parameterized by the vector θ. The
rest of this paper is written for a scalar output, nevertheless
Bayesian filtering paradigm allows an easy extension to the
vectorial output case.

The hint is to cast this regression problem in a state-space
formulation. The parameter vector is considered as the hidden
state to be infered. It is thus modeled as a random variable. As
a process model, a random walk is chosen, which is generally a
good choice if no more information is available. First it allows
handling non-stationarity, but it can also help to avoid local
minima, as discussed before. The observation equation links
the observations (noisy samples from the function of interest)

to the parameterized function. Notice that even if the function
of interest is not noisy, it does not necessarily exist in the
function space spanned by the parameters, so the observation
noise is also structural. This gives the following state-space
formulation : {

θk+1 = θk + vk

yk = f̂θk
(xk) + nk

(27)

As announced in Section I, the principle of the propose
approach is to choose a (nonlinear) kernel representation of
the value function, to use the dictionary method to automate
the choice of the structure, and to use a SPKF to track the
parameters.

A. Parameterization

The approximation is of the form

f̂θ(x) =
p∑

i=1

αiKσi
(x, xi) (28)

where θ = [(αi)
p
i=1, (xi)

p
i=1, (σi)

p
i=1]

T

and Kσi
(x, xi) = exp(−‖x− xi‖2

2σ2
i

)

The problem is to find the optimal number of kernels and a
good initialisation for the parameters (extension to other types
of kernel is quite straightforward). As a preprocessing step,
the dictionary method of Section II-B is used. First a prior
σ0 is put on the Gaussian width (or alternatively on ad hoc
parameters if another kernel is considered, e.g., degree and bias
for a polynomial kernel). Then N random points are sampled
uniformly from X and used to compute the dictionary. Thus
a set of p points D = {x1, . . . , xp} is obtained such that

ϕσ0(X ) ' Span {ϕσ0(x1), . . . , ϕσ0(xp)} (29)

where ϕσ0 is the mapping corresponding to the kernel Kσ0 .
Notice that even if the sparsification procedure is offline,
the algorithm (the regression part) is online. Moreover, no
training sample is needed for this preprocessing step, but only
classical prior which is anyway needed for the Bayesian filter
(σ0), one sparsification parameter ν and bounds for X . These
requirements are not too restrictive.

Let q be the number of parameters. Given the chosen
parameterization of equation (28), there is p parameters for
the weights, p parameters for Gaussian standard deviations
and np parameters for Gaussian centers: q = (2 + n)p.

B. Prior

As for any Bayesian approach (and more generally any
online method) a prior (an initialization) has to be put on the
(supposed Gaussian) parameter distribution:

θ0 ∼ N (θ̄0,Σθ0) (30)

where mean and covariance matrix are defined as{
θ̄0 = [α0, . . . , α0,D, σ0, . . . , σ0]T

Σθ0 = diag([σ2
α0

, . . . , σ2
α0

, σ2
µ0

, . . . , σ2
µ0

, σ2
σ0

, . . . , σ2
σ0

])
(31)
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The operator diag applied to a column vector gives a diagonal
matrix. In these expressions, α0 is the prior mean on kernel
weights, D is the dictionary computed in the preprocessing
step, σ0 is the prior mean on kernel deviation, and σ2

α0
, σ2

µ0
,

σ2
σ0

are respectively the prior variance on kernel weights,
centers and deviations. All these parameters (except the dic-
tionary) have to be set up beforehand. Notice that θ̄0 ∈ Rq

and Σθ0 ∈ Rq×q. A prior has also to be put on noises:
v0 ∼ N (0, Rv0) where Rv0 = σ2

v0
Iq, Iq being the identity

matrix, and n0 ∼ N (0, Rn0), where Rn0 = σ2
n0

is a scalar.

C. Artificial Process Noise

Another issue is to choose the artificial process noise.
Formally, since the target function is stationary, there is
no process noise. However introducing an artificial process
noise can strengthen convergence and robustness properties
of the filter. Choosing this noise is still an open research
problem. Following [6] two types of artificial process noise are
considered (the observation noise is chosen to be constant).

The first one is a Robbins-Monro stochastic approximation
scheme for estimating innovation. That is the process noise
covariance is set to

Rvk
= (1−αRM )Rvk−1+αRMKk(yk−f̂θ̄k|k

(xk))2KT
k (32)

Here αRM is a forgetting factor set by the user, and Kk is the
Kalman gain obtained during the Bayesian filter update.

The second type of noise provides for an approximate
exponentially decaying weighting past data. Its covariance is
set to a fraction of the parameters covariance, that is

Rvk
= (λ−1 − 1)Pk|k (33)

where λ ∈]0, 1] (1 − λ � 1) is a forgetting factor similar to
the one from the recursive least-squares (RLS) algorithm.

D. Tracking Parameters

A Sigma Point Kalman filter update (which updates first
and second order moments of the random parameter vector)
is applied at each time step, as a new training sample (xk, yk)
is available. The evolution equation being linear, the update
algorithm does not involve the computation of a sigma-point
set in the prediction step as in Algorithm 2. The proposed
approach is fully described in Algorithm 3.

First, the dictionary has to be computed and priors have
to be chosen. Then, as each input-output couple (xk, yk)
is observed, the parameter vector mean and covariance are
updated. First is the prediction phase. As the parameter vector
evolution is modeled as a random walk, the prediction of
the mean at time k is equal to the estimate of this mean at
time k − 1 (that is θ̄k|k−1 = θ̄k−1|k−1), and the parameters
covariance is updated thanks to the process noise covariance.
Then, the set of 2q +1 sigma-points Θk|k−1 corresponding to
the parameters distribution must be computed using θ̄k|k−1 and
Pk|k−1, as well as associated weights W (see Section II-C2):

Θk|k−1 =
{

θ
(j)
k|k−1, 0 ≤ j ≤ 2q

}
(34)

W = {wj , 0 ≤ j ≤ 2q } (35)

Notice that each of these sigma-points corresponds to a
particular parameterized function. Each of these functions is
evaluated in xk, the current observed input, which forms the
set of images of the sigma-points:

Yk|k−1 =
{

y
(j)
k|k−1 = f̂

θ
(j)
k|k−1

(xk), 0 ≤ j ≤ 2q
}

(36)

It can be seen as an approximated sampled prior distribution
over observations. This sigma-point set and its image are then
used to compute the prediction of the observation as well as
some statistics necessary to the computation of the Kalman
gain:

ȳk|k−1 =
2q∑

j=0

wjy
(j)
k|k−1 (37)

Pθyk
=

2q∑
j=0

wj(θ
(j)
k|k−1 − θ̄k|k−1)(y

(j)
k|k−1 − ȳk|k−1) (38)

Pyi
=

2q∑
j=0

wj

(
y
(j)
k|k−1 − ȳk|k−1

)2

+ Pnk
(39)

Finally, the Kalman gain can be computed, and the estimated
mean and covariance can be updated:

Kk = Pθyk
P−1

yk
(40)

θ̄k|k = θ̄k|k−1 + Kk

(
yk − ȳk|k−1

)
(41)

Pk|k = Pk|k−1 −KkPyk
KT

k (42)

If necessary, the artificial process noise is updated following
one of the two proposed schemes. A constant or null process
noise can also be considered.

Notice that practically a square-root implementation of this
algorithm is used, which principally avoids a full Cholesky
decomposition at each time-step. This approach is computa-
tionally cheaper: the complexity per iteration is O(q2), where
it is recalled that q = |θ| is the size of the parameter vector
(O(q3) in the general case). See [6] for details concerning this
square-root implementation of SPKF.

E. Experiments

In this section, the aim is to experiment Algorithm 3
by regressing a cardinal sine (sinc(x) = sin(x)

x ) on X =
[−10, 10]. It is an easy problem, but a common benchmark
too which allows comparison to state-of-the-art algorithms.
The uncertainty about function approximation which can be
computed from this framework is also illustrated.

1) Problem Statement and Settings: At each time step k
samples xk ∼ UX (xk uniformly sampled from X ) and yk =
sinc(xk) + wk where wk ∼ N (0, σ2

w) are observed. Notice
that the true observation covariance noise σ2

w and the prior
σ2

v are distinguished. For those experiments the first type of
artificial process noise presented in Section III-C is used. The
true noise is set to σw = 0.1. The algorithm parameters are
set to N = 100, σ0 = 1.6, ν = 0.1, α0 = 0, σv = 0.5,
αRM = 0.7, and all variances (σ2

α0
, σ2

µ0
, σ2

σ0
, σ2

n0
) to 0.1.

Notice that this parameters were not finely tuned (only orders
of magnitude seem to be important).
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Algorithm 3: Direct regression algorithm
Compute dictionary;
∀i ∈ {1 . . . N}, xi ∼ UX ;
Set X = {x1, . . . , xN} ;
D =Compute-Dictionary (X ,ν,σ0) ;

Initialisation;
Initialise θ̄0, P0|0, Rn0 , Rv0 ;

for k = 1, 2, . . . do
Observe (xk,yk);

SPKF update;

Prediction Step;
θ̄k|k−1 = θ̄k−1|k−1;
Pk|k−1 = Pk−1|k−1 + Pvk−1 ;

Sigma-points computation ;
Θk|k−1 =

{
θ
(j)
k|k−1, 0 ≤ j ≤ 2q

}
;

W = {wj , 0 ≤ j ≤ 2q } ;
Yk|k−1 =

{
y(j)
k|k−1 = f̂

θ
(j)
k|k−1

(xk), 0 ≤ j ≤ 2q
}

;

Compute statistics of interest;
ȳk|k−1 =

∑2q
j=0 wjy

(j)
k|k−1;

Pθyk
=

∑2q
j=0 wj(θ

(j)
k|k−1 − θ̄k|k−1)(y

(j)
k|k−1 − ȳk|k−1);

Pyi
=

∑2q
j=0 wj

(
y
(j)
k|k−1 − ȳk|k−1

)2

+ Pnk
;

Correction step;
Kk = Pθyk

P−1
yk

;
θ̄k|k = θ̄k|k−1 + Kk

(
yk − ȳk|k−1

)
;

Pk|k = Pk|k−1 −KkPyk
KT

k ;

Artificial process noise update;
Robbins-Monro covariance;
Rvk

=
(1− αRM )Rvk−1 + αRMKk(yk − f̂θ̄k|k

(xk))2KT
k ;

or;
Forgetting covariance;
Rvk

= (λ−1 − 1)Pk|k;

2) Quality of Regression: The quality of regression is
measured with the RMSE (Root Mean Square Error) ‖f− f̂θ‖
(where ‖.‖ is the usual L2-norm), computed over 200 equally-
spaced points. Averaged over 100 runs of Algorithm 3, a
RMSE of 0.0676 ± 0.0176 is obtained for 50 samples, of
0.0452 ± 0.0092 for 100 samples, and of 0.0397 ± 0.0065
for 200 samples, for an average of 9.6 kernels. This is
illustrated on Figure 1. A typical result is given in Figure 2 (50
observed samples). The dotted line, solid line and the crosses
represent respectively the cardinale sine, the regression and
the observations.

The proposed algorithm compares favorably with state-
of-the-art batch and online algorithms. Table I shows the
performance of the proposed algorithm and of other methods
(some being online and other batch, some handling uncertainty
information and other not), for which results are reproduced

Fig. 1. RMSE (mean ± deviation).

Fig. 2. Typical regression.

from [8] (see this paper and references therein for details about
these algorithms). For each method is given the RMSE as
well as the number of kernel functions, and the associated
variations, the SVM (Support Vector Machine) [4] being the
baseline. The proposed method achieves the best RMSE with
slightly more kernels than other approaches. However the
sparsification parameter ν of the dictionary can be tuned in
order to address the trade-off between number of kernels and
quality of approximation. Moreover, recall that the parameters
were not finely tuned.

3) Uncertainty of Generalization: Through the sigma point
approach, it is also possible to derive a confidence interval over
X . This allows to quantify the uncertainty of the regression at
any point (and not a global upper bound as it is often computed

Method test error # kernels
Proposed algorithm 0.0385 (-25.8%) 9.6 (-65.7%)
Figueiredo 0.0455 (-12.3%) 7.0 (-75%)
SVM 0.0519 (-0.0%) 28.0 (-0%)
RVM 0.0494 (-4.8%) 6.9 (-75.3%)
VRVM 0.0494 (-4.8%) 7.4 (-73.5%)
MCMC 0.0468 (-9.83%) 6.5 (-76.8%)
Sequential RVM 0.0591 (+13.8%) 4.5 (-83.9%)

TABLE I
COMPARATIVE RESULTS.
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Fig. 3. Confidence (uniform distribution).

Fig. 4. Confidence (normal distribution).

in kernel-based regression methods). A typical confidence
interval is illustrated on Figure 3. The dotted line, solid
line and the crosses represent respectively the cardinale sine,
the confidence interval (indeed the standard deviation, which
corresponds to a confidence interval if Gaussian noise is
assumed) and the observations. It can be particularly useful
when the regression is used in a control framework, where
this confidence approach can be used to take more cautious
decisions (see [18] for example). It can be also useful for
active learning, which aims at selecting costly samples such
as gaining the more possible new information.

In Figure 3, the samples used to feed the regressor are
sampled uniformly from X , and thus the associated confidence
interval has an approximately constant width. However, a
regressor which handles uncertainty should do it locally. This
is indeed the case for the proposed algorithm. In Figure 4, the
distribution of samples is Gaussian zero-centered. It can be
seen that the confidence interval is much larger where samples
are less frequent (close to the bounds). So the computed
confidence intervals make sens.

IV. EXTENSION TO THE CASE OF NONLINEARLY MAPPED
OBSERVATIONS

The problem addressed here is slightly different from the
one in Section III. The function of interest is not directly
observed, but only a nonlinear (and possibly non-derivable)
mapping of it is available, the mapping being known analyt-

ically. Moreover, some of the involved nonlinearities can be
just observed. This is the case when a special sensor has to
be used (e.g., measuring a temperature using a spectrometer
or a thermocouple). This is also the case when solving
the Bellman equation in a Markovian decision process with
unknown deterministic transitions, which will be developped
in Section V.

More formally, let x = (x1, x2) ∈ X = X 1 × X 2 where
X 1 (resp. X 2) is a compact set of Rn (resp. Rm). Let t :
X 1 × X 2 → X 1 be a nonlinear transformation (transitions in
case of dynamic systems) which will be observed. Let g be a
nonlinear mapping such that g : f ∈ RX → gf ∈ RX×X 1

. The
aim here is to approximate sequentially the nonlinear function
f : x ∈ X → f(x) = f(x1, x2) ∈ R from samples(

xk, tk = t(x1
k, x2

k), yk = gf (x1
k, x2

k, tk)
)
k

(43)

by a function f̂θ(x) = f̂θ(x1, x2) parameterized by the vector
θ. Here the output is scalar, however the proposed method can
be straightforwardly extended to vectorial outputs. Notice that
as

(
RX )RX ⊂

{
g ∈

(
RX×X 1

)RX
|gf : x ∈ X → gf (x, t(x))

}
(44)

this problem statement is quite general. Thus the work pre-
sented in this section can be considered with g : f ∈ RX →
gf ∈ RX (g being known analytically), this case being more
specific. The interest of this particular formulation is that a
part of the nonlinearities has to be known analytically (the
mapping g) whereas the other part can be just observed (the
t function).

As before, this regression problem is stated in the corre-
sponding state-space formulation:{

θk+1 = θk + vk

yk = gf̂θk
(x1

k, x2
k, tk) + nk

(45)

Recall that the algorithm proposed in Section III is derivative
free and handle nonlinearities. Thus it is quite simple to adapt
it to this new state-space formulation. A kernel-based repre-
sentation is chosen as before, and its structure is automatized
thanks to the dictionary method. A prior is put, and then a
SPKF is used to learn the parameters.

A. Parameterization

Recall that the objective here is to sequentially approximate
a nonlinear function, as samples (xk, tk = t(x1

k, x2
k), yk) are

available, with a weighted sum of kernel functions. This pa-
rameter estimation problem can be expressed as the state-space
problem (45). Notice that here f does not depend on time,
however this approach can be easily extended to nonstationary
function approximation. In this section, the approximation is
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of the form

f̂θ(x) =
p∑

i=1

αiKσ1
i
(x1, x1

i )Kσ2
i
(x2, x2

i ), with (46)

θ = [(αi)
p
i=1,

(
(x1

i )
T
)p

i=1
, (σ1

i )p
i=1,

(
(x2

i )
T
)p

i=1
, (σ2

i )p
i=1]

T

and Kσj
i
(xj , xj

i ) = exp(−‖x
j − xj

i‖2

2(σj
i )2

), j = 1, 2

Notice that Kσi
(x, xi) = K(σ1

i ,σ2
i )

(
(x1, x2), (x1

i , x
2
i )

)
=

Kσ1
i
(x1, x1

i )Kσ2
i
(x2, x2

i ) is a product of kernels, thus it is a
kernel. Again, extension to other kernels is straightforward.
The optimal number of kernels and a good initialisation for
the parameters have to be determined first.

To tackle this initial difficulty, the dictionary method is used
in a preprocessing step. A prior σ0 = (σ1

0 , σ2
0) on the Gaussian

width is first put (the same for each kernel). Then a set of N
random points is sampled uniformly from X and used to com-
pute the dictionary. A set of p points D = {x1, . . . , xp} is thus
obtained such that ϕ(X ) ' Span {ϕσ0(x1), . . . , ϕσ0(xp)}
where ϕσ0 is the mapping corresponding to the kernel Kσ0 .
As before, even though this sparsification procedure is offline,
the proposed algorithm (the regression part) is online.

B. Prior, Learning and Artificial Noises
A SPKF is then used to estimate the parameters. As for

any Bayesian approach an initial prior on the parameter
distribution has to be put. The initial parameter vector follows
a Gaussian law, that is θ0 ∼ N (θ̄0,Σθ0), where{

θ̄0 = [α0, . . . , α0,D1, σ1
0 , . . . , σ1

0 ,D2, σ2
0 , . . . , σ2

0 ]T

Σθ0 = diag(σ2
α0

, . . . , σ2
µ1

0
, . . . , σ2

σ1
0
, . . . , σ2

µ2
0
, . . . , σ2

σ2
0
, . . . )

(47)
In these equations, α0 is the prior mean on kernel weights,
Dj = [(xj

1)
T , . . . , (xj

p)
T ] is derived from the dictionary

computed in the preprocessing step, σj
0 is the prior mean

on kernel deviation, and σ2
α0

, σ2
µj

0
(which is a row vector

with the variance for each component of xj
i , ∀i) and σ2

σ0
are

respectively the prior variances on kernel weights, centers and
deviations. All these parameters (except the dictionary) have
to be set up beforehand. Let |θ| = q = (n + m + 3)p. Notice
that θ̄0 ∈ Rq and Σθ0 ∈ Rq×q. A prior on noises has to be
put too: more precisely, v0 ∼ N (0, Rv0) where Rv0 = σ2

v0
Iq

and n ∼ N (0, Rn) where Rn = σ2
n. Notice that here the

observation noise is also structural. In other words, it models
the ability of the parameterization f̂θ to approximate the true
function of interest f . Then, a SPKF update is simply applied
at each time step, as a new training sample (xk, tk, yk) is
available, as summarized in Algorithm 4. The only difference
between this algorithm and Algorithm 3 is what is observed,
as well as how to compute the set of images of sigma-points,
directly using the approximated function f̂θ for the first one,
and using its nonlinear mapping gf̂θ

for the second one.
A last issue is to choose the artificial process noise. The

same noises as in Section III-C are considered, namely the
Robbins-Monro stochastic approximation scheme for estimat-
ing innovation and the approximate exponentially decaying

Algorithm 4: Indirect regression algorithm
Compute dictionary;
∀i ∈ {1 . . . N}, xi ∼ UX ;
Set X = {x1, . . . , xN} ;
D =Compute-Dictionary (X ,ν,σ0) ;

Initialisation;
Initialise θ̄0, P0|0, Rn0 , Rv0 ;

for k = 1, 2, . . . do
Observe (xk, tk,yk);

SPKF update;

Prediction Step;
θ̄k|k−1 = θ̄k−1|k−1;
Pk|k−1 = Pk−1|k−1 + Pvk−1 ;

Sigma-points computation ;
Θk|k−1 =

{
θ
(j)
k|k−1, 0 ≤ j ≤ 2q

}
;

W = {wj , 0 ≤ j ≤ 2q } ;
Yk|k−1 =

{
y(j)
k|k−1 = gf̂

θ
(j)
k|k−1

(xk, tk), 0 ≤ j ≤ 2q
}

;

Compute statistics of interest;
ȳk|k−1 =

∑2q
j=0 wjy

(j)
k|k−1;

Pθyk
=

∑2q
j=0 wj(θ

(j)
k|k−1 − θ̄k|k−1)(y

(j)
k|k−1 − ȳk|k−1);

Pyi
=

∑2q
j=0 wj

(
y
(j)
k|k−1 − ȳk|k−1

)2

+ Pnk
;

Correction step;
Kk = Pθyk

P−1
yk

;
θ̄k|k = θ̄k|k−1 + Kk

(
yk − ȳk|k−1

)
;

Pk|k = Pk|k−1 −KkPyk
KT

k ;

Artificial process noise update;
Robbins-Monro covariance;
Rvk

=
(1−αRM )Rvk−1 +αRMKk(yk−gf̂θ̄k|k

(xk, tk))2KT
k ;

or;
Forgetting covariance;
Rvk

= (λ−1 − 1)Pk|k;

weighting past data. Alternatively a constant or null process
noise can be considered. The observation noise is chosen
constant.

C. Experiments

This section aims at illustrating Algorithm 4. The proposed
artificial problem is quite arbitrary, it has been chosen for its
interesting nonlinearities so as to emphasize on the potential
benefits of the proposed approach. Let X = [−10, 10]2 and f
be a 2d nonlinear cardinal sine:

f(x1, x2) =
sin(x1)

x1
+

x1x2

100
(48)

Let the observed nonlinear transformation be

t(x1, x2) = 10 tanh(
x1

7
) + sin(x2) (49)
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Recall that this analytical expression is only used to generate
observations in this experiment but it is not used in the
regression algorithm. Let the nonlinear mapping g be

gf

(
x1, x2, t(x1, x2)

)
= f(x1, x2)− γ max

y∈X 2
f

(
t(x1, x2), y

)
(50)

with γ ∈ [0, 1[ a predefined constant. This is a specific form
of the Bellman equation [10] with the transformation t being
a deterministic transition function. Recall that this equation is
of special interest in optimal control theory. The associated
state-space formulation is thus{

θk+1 = θk + vk

yk = f̂θk
(x1

k, x2
k)− γ maxx2∈X 2 f̂θk

(
t(x1

k, x2
k), x2

)
+ nk

(51)
1) Problem Statement and Settings: At each time step k

the regressor observes xk ∈ UX (xk uniformly sampled from
X ), the transformation tk = t(x1

k, x2
k) and yk = f(xk) −

γ maxx2∈X 2 f(tk, x2). Once again the regressor does not have
to know the function t analytically, it just has to observe it. The
function f is shown on Figure 5(a) and its nonlinear mapping
on Figure 5(b). For these experiments the first type of artificial
process noise presented in Section III-C is used. The algorithm
parameters were set to N = 1000, σj

0 = 4.4, ν = 0.1, α0 = 0,
σn = 0.05 , αRM = 0.7, and all variances (σ2

α0
, σ2

µj
0
, σ2

σj
0
,

σ2
n0

) to 0.1, for j = 1, 2. The factor γ was set to 0.9. Notice
that this empirical parameters were not finely tuned.

2) Quality of Regression: Because of the special form
of gf , any constant bias added to f still gives the same
observations and it may exist other invariances: the root mean
square error (RMSE) between f and f̂ should not be used
to measure the quality of regression. Instead the nonlinear
mapping of f is computed from its estimate f̂ and is then
used to calculate the RMSE. The quality of regression is thus
measured with the following RMSE:√∫

X

(
gf (x, t(x))− gf̂θ

(x, t(x))
)2

dx (52)

As it is computed from f̂ , it really measures the quality of
regression, and as it uses the associated nonlinear mapping, it
will not take into account the bias. Practically it is computed
on 104 equally spaced points. The function gf is what is
observed (Figure 5(b)) and it is used by the SPKF to ap-
proximate f (Figure 5(a)) by f̂θ (Figure 6(a)). The nonlinear
mapping of the approximated function gf̂θ

is computed from
f̂θ (Figure 6(b)) and it is used to compute the RMSE.

As the proposed algorithm is stochastic, the results have
been averaged over 100 runs. Figure 7 shows an errorbar plot,
that is mean ± standard deviation of RMSE. The average
number of kernels was 26.55 ± 1.17. This results can be
compared with the RMSE directly computed from f̂ , that is√∫

x∈X
(f(x)− f̂θ(x))2dx (53)

(a) 2-dimensional nonlinear cardinal sine.

(b) Nonlinear mapping observed by the regressor.
Fig. 5. Original functions.

500 1000 1500
gf̂θ

0.072± 0.022 0.031± 0.005 0.024± 0.003

f̂θ 0.296± 0.149 0.108± 0.059 0.066± 0.035

TABLE II
RMSE (MEAN ± DEVIATION).

which is illustrated on Table II (RMSE as a function of number
of samples). There is more variance and bias in these results
because of the possible invariances of the considered nonlinear
mapping. However one can observe on Figure 6(a) that a good
approximation is obtained.

Thus the RMSE computed from gf is a better quality
measure. As far as we know, no other method to handle
such a problem has been published so far, thus comparisons
with other approaches is made difficult. However the order of
magnitude for the RMSE obtained from gf is comparable with
the state-of-the-art regression approaches when the function of
interest is directly observed. This is demonstrated on Table III.
Here the problem is to regress a linear 2d cardinal sine
f(x1, x2) = sin(x1)

x1 + x2

10 . For the proposed algorithm, the
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(a) Approximation of f(x).

(b) Nonlinear mapping calculated from f̂θ(x).
Fig. 6. Approximated functions.

Fig. 7. RMSE (nonlinear mapping).

test error
Method f̂ gf̂ %DV/SVs
Proposed Alg. 2.45× 10−1 4.5× 10−2 2.6%
KRLS 1.5× 10−2 7%
SVR 5.5× 10−2 60%

TABLE III
COMPARATIVE RESULTS.

nonlinear mapping is the same as considered before. RMSE
results of Algorithm 4 are compared to Kernel Recursive Least
Squares (KRLS) and Support Vector Regression (SVR). For
the proposed approach, the approximation is computed from
nonlinear mapping of observations. For KLRS and SVR, it is
computed from direct observations. Notice that SVR is a batch
method, that is it needs the whole set of samples in advance.
The target of the regressor is indeed gf , and the same order of
magnitude is obtained (however much nonlinearities are intro-
duced for this method and the representation is more sparse).
The RMSE on f̂ is slightly higher for this contribution, but this
can be mostly explained by the invariances (as bias invariance)
induced by the nonlinear mapping.

V. APPLICATION TO REINFORCEMENT LEARNING

The work presented in this section is a rather direct applica-
tion of the general algorithm proposed in Section IV. However,
before presenting the so-called Bayesian Reward Filter, the
reinforcement learning paradigm is briefly introduced. Notice
that the notion of state used in this section is different from
the one used in Section II-C, despite same name and notation.
Here the state is the state of a dynamic system to be controlled
and not a parameter vector. Moreover it is directly observable
and there is no need to infer it.

A. Reinforcement Learning Paradigm

Reinforcement learning (RL) [11] is a general paradigm
in which an agent learns to control a dynamic system only
through interactions. A feedback signal is provided to this
agent as a reward information, which is a local hint about the
quality of the control. Markov Decision Processes (MDP) are
a common framework to solve this problem. A MDP is fully
described by the state space that can be explored, the action
set that can be chosen by the agent, a family of transition
probabilities between states conditioned by the actions and
a set of expected rewards associated to transitions. This is
further explained in Section V-B. In this framework, at each
time step k, the system adopts a state sk. According to this,
the agent can chose an action ak, which leads to a transition
to state sk+1 and to the obtention of a reward rk, the agent
objective being to maximize the future expected cumulative
rewards. Here the knowledge of the environment is modelled
as a Q-function which maps state action pairs to the expected
cumulative rewards when following a given associated policy
after the first transition. The proposed approach is model-free,
no model of transitions and reward distributions is (directly or
explicitly) learnt or known.
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Solutions exist for the RL problem with discrete state and
action spaces. However they generally do not scale up very
well and cannot handle continuous state and/or action spaces.
A wide variety of function approximation schemes have thus
been applied to reinforcement learning (see [11] as a starting
point). This is known as the generalization problem, and it is
proposed here to handle it with a Bayesian filtering approach.
The idea to use Bayesian filtering for reinforcement learning is
not novel, but it has been surprisingly little studied. In [19] a
modification of the linear quadratic Gaussian Kalman filter
model is proposed, which allows the on-line estimation of
optimal control (which is off-line for the classical one). In
[20] Gaussian processes are used for reinforcement learning.
This method can be understood as an extension of the Kalman
filter to an infinite dimensional hidden state (the Gaussian
process), but it can only handle (optimistic) policy-iteration-
like update rules (because of the necessary linearity of the
observation equation), contrarily to the proposed contribution,
which can be seen as a nonlinear extension of the parametric
case developed in [20] to a nonlinear and value-iteration-like
scheme. In [21] a Kalman filter bank is used to find the
parameters of a piecewise linear approximation of the value
function.

B. Problem Statement

A Markov Decision Process (MDP) consists of a state
space S, an action space A, a Markovian transition proba-
bility p : S × A → P(S) and a bounded reward function
r : S × A × S → R. A policy is a mapping from state to
action space: π : S → A. At each time step k, the system is
in a state sk, the agent chooses an action ak = π(sk), and the
system is then driven in a state sk+1 following the conditional
probability distribution p(.|sk, ak). The agent receives the
associated reward rk = r(sk, ak, sk+1). Its goal is to find
the policy which maximizes the expected cumulative rewards,
that is the quantity Eπ[

∑
k∈N γkr(Sk, Ak, Sk+1)|S0 = s0] for

every possible starting state s0, the expectation being over the
state transitions taken upon executing π, where γ ∈ [0, 1[ is a
discount factor.

A classical approach to solve this optimization problem is
to introduce the Q-function defined as:

Qπ(s, a) =
∫

S

p(z|s, a)
(
r(s, a, z) + γQπ(z, π(z))

)
dz (54)

It is the expected cumulative rewards by taking action a in state
s and then following the policy π. The optimality criterion
is to find the policy π∗ (and associated Q∗) such that for
every state s and for every policy π, maxa∈A Q∗(s, a) ≥
maxa∈A Qπ(s, a). The optimal Q-function Q∗ satisfies the
Bellman’s equation:

Q∗(s, a) =
∫

S

p(z|s, a)
(

r(s, a, z) + γ max
b∈A

Q∗(z, b)
)

dz

(55)
In the case of discrete and finite action and state spaces, the
Q-learning algorithm provides a solution to this problem. Its

principle is to update a tabular approximation of the optimal
Q-function after each transition (s, a, r, s′):

Q̂(s, a)← Q̂(s, a)+α

(
r + γ max

b∈A
Q̂(s′, b)− Q̂(s, a)

)
(56)

where α is a learning rate. An interesting fact is that the
Q-learning is an off-policy algorithm, that is it allows to
learn the optimal policy (from the learned optimal Q-function)
while following a suboptimal one, given that it is sufficiently
explorative. The proposed contribution can be seen as an
extension of this algorithm to a Bayesian filtering framework
(however with other advantages). See [11] for a comprehensive
introduction to reinforcement learning, or [22] for a more
formal treatment.

The reward is what is observed, the Q function is what
is searched, and both are linked by the Bellman equation.
Suppose that the Q-function is parameterized (either linearly
or nonlinearly) by a vector θ. The aim is to find a good
approximation Q̂θ of the optimal Q-function Q∗ by observing
transitions (s, a, r, s′). This reward regression problem is cast
into a state-space representation. For an observed transition
(sk, ak, rk, s′k), it is written as:{

θk+1 = θk + vk

rk = Q̂θk
(sk, ak)− γ maxa∈A Q̂θk

(s′k, a) + nk.
(57)

Here vk is the artificial process noise and nk the centered
observation noise including all the stochasticity of the MDP.
The framework is thus posed, but is far from being solved.
The observation equation is nonlinear and even non-derivable
(because of the max operator), that is why classical methods
such as the standard Kalman filter cannot be used. Formally,
the process noise is null, nevertheless introducing an artificial
noise can improve the stability and convergence performances
of the filter, as discussed before. This can be seen as a
special case of the algorithm of the previous section, which is
developed next.

C. Algorithm

As before Gaussian kernels are chosen, and their mean and
deviation are considered as parameters:

Q̂θ(s, a) =
p∑

i=1

αiKσs
i
(s, si)Kσa

i
(a, ai) (58)

with Kσx
i
(x, xi) = exp

(
−(x− xi)T (Σx

i )−1(x− xi)
)
,

where x = s, a, Σx
i = diag(σx

i )2,

and θ = [(αi)
p
i=1, (s

T
i )p

i=1, (a
T
i )p

i=1, ((σ
s
i )

T )p
i=1, ((σ

a
i )T )p

i=1]
T

Once again, the dictionary method is used to automatize the
choice of the structure for this kernel parameterization and the
ad hoc prior is chosen. Once the parameters are initialized, the
parameter vector has still to be updated as new observations
(sk, ak, rk, s′k) are available. A SPKF is used, and this is
a special case of the theory developed in Section IV, the
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functions t and g being given by:

t : S ×A→ S (59)
s, a 7→ s′

and

g : RS×A → RS×A×S (60)

Q 7→
(

s, a, s′ 7→ Q(s, a)− γ max
b∈A

Q(s′, b)
)

Thus Algorithm 4 can be specialized for reinforcement learn-
ing, which gives the Bayesian Reward Filter summarized in
Algorithm 5.

Algorithm 5: Bayesian Reward Filter
Compute dictionary;
∀i ∈ {1 . . . N}, [si, ai]T ∼ US×A;
Set X = {[s1, a1]T , . . . , [sN , aN ]T } ;
D =Compute-Dictionary (S ×A,ν,σ0) ;

Initialisation;
Initialise θ̄0, P0|0, Rn0 , Rv0 ;

for k = 1, 2, . . . do
Observe (sk, ak, s′k, rk);

SPKF update;

Prediction Step;
θ̄k|k−1 = θ̄k−1|k−1;
Pk|k−1 = Pk−1|k−1 + Pvk−1 ;

Sigma-points computation ;
Θk|k−1 =

{
θ
(j)
k|k−1, 0 ≤ j ≤ 2q

}
;

W = {wj , 0 ≤ j ≤ 2q } ;
Rk|k−1 =

{
r
(j)
k|k−1 = Q̂

θ
(j)
k|k−1

(sk, ak)−

γ maxb∈A Q̂
θ
(j)
k|k−1

(s′k, b), 0 ≤ j ≤ 2q
}

;

Compute statistics of interest;
r̄k|k−1 =

∑2q
j=0 wjr

(j)
k|k−1;

Pθrk
=

∑2q
j=0 wj(θ

(j)
k|k−1 − θ̄k|k−1)(r

(j)
k|k−1 − r̄k|k−1);

Pri =
∑2q

j=0 wj

(
r
(j)
k|k−1 − r̄k|k−1

)2

+ Pnk
;

Correction step;
Kk = Pθyk

P−1
yk

;
θ̄k|k = θ̄k|k−1 + Kk

(
rk − r̄k|k−1

)
;

Pk|k = Pk|k−1 −KkPyk
KT

k ;

Artificial process noise update;
Robbins-Monro covariance;
Rvk

= (1− αRM )Rvk−1 + αRMKk(rk +
γ maxb Q̂θ̄k|k

(s′k, b)− Q̂θ̄k|k
(sk, ak))2KT

k ;
or;

Forgetting covariance;
Rvk

= (λ−1 − 1)Pk|k;

D. Maximum over action space

Notice that a technical difficulty can be to compute the
maximum over the actions for the parameterized Q-function.
This computation is necessary for the filter update. If the
action space is discrete and finite, computation of the max
is easy. Otherwise it is an optimization problem. A first
solution could be to sample the action space and to compute
the maximum over the obtained samples. However this is
especially computationally inefficient. The used method is
close to one proposed in [23].

The maximum over action kernel centers is computed: µa =
argmaxai

Q̂θ(s, ai). It serves then as the initialization for the
Newton-Raphson method used to find the maximum :

am ← am −
(
(∇a∇T

a )Q̂θ(s, a)
)−1

a=am

∇aQ̂θ(s, a)
∣∣∣
a=am

If the Hessian matrix is singular, a gradient ascent/fixed point
scheme is used:

am ← am + ∇aQ̂θ(s, a)
∣∣∣
a=am

The obtained action am is considered as the action which
maximizes the parameterized Q-function.

E. Experiments

The proposed Bayesian Reward Filter is demonstrated on
two problems. First, the “wet-chicken” task is a continuous
state and action space and stochastic problem. Second, the
“mountain car” problem is a continuous state, discrete action
and deterministic problem. The latter one requires an hybrid
parametrization. Let’s first discuss the choice of parameters.
They are given for reproducibility, nevertheless the reader can
skip this without hurting understanding.

1) Choice of Parameters: For both tasks the reinforcement
learning discount factor is set to γ = 0.9. The dictionary
sparsity factor is set to ν = 0.9. The second type of arti-
ficial process noise presented in Section III-C is used, and
similarly to the recursive least-squares algorithm, the adaptive
process noise covariance is set to a high value, such that
λ−1 − 1 ' 10−6.

The initial choice of kernel deviations is problem dependant.
However a practical good choice seems to take a fraction
of the quantity x(j)max − x(j)min for the kernel deviation
associated to x(j), the jth component of the column vector
x, x(j)max and x(j)min being the bounds on the values taken
by the variable x(j). The prior kernel weights are supposed
to be centered, and the associated standard deviations are set
to a little fraction of the theoretical bound on Q-function,
that is rmax

1−γ . Because of geometry of Gaussian distributions,
centers provided by the dictionary are supposed to be approx-
imately uniformly distributed, and the prior deviation of the
jth component of the vector x is set to a little fraction of
(x(j)max − x(j)min)p−

1
ns+na , with the convention that for

discrete spaces n = 0. Finally the deviation of the prior
kernel deviations is set to a little fraction of them. Otherwise
speaking, σ

σ
x(j)
0

is set to a little fraction of σ
x(j)
0 for the jth

component of x.
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Fig. 8. Wet-chicken.

To sum up, the Gaussian prior on parameterization is chosen
such that: 

σ
x(j)
0 ∝ x(j)max − x(j)min

µα0 = 0 and σα0 ∝ rmax
1−γ

σ
µ

x(j)
0
∝ x(j)max−x(j)min

(ns+na)√p

σ
σ

x(j)
0
∝ σ

x(j)
0

(61)

2) Wet-Chicken: In the wet-chicken problem (inspired by
[24]), a canoeist has to paddle on a river until reaching a
waterfall. It restarts if it falls down. Rewards increase linearly
with the proximity of the waterfall, and drop off for falling.
Turbulences make the transition probabilistic. More formally,
the state space is S = [0, 10] (10 being the waterfall position),
the action space A = [−1, 1] (continuously from full backward
padding to full forward padding), the transition is s′ = s+a+c
with c ∼ N (0, σc), σc = 0.3 and the associated reward is
equal to r = s′

10 . If s′ ≥ 10 the canoeist falls, the associated
reward is r = −1 and the episode ends.

To test the proposed framework, random transitions are
uniformly sampled and used to feed the filter: at each time
step k, a state sk and an action ak are uniformly sampled
from S×A, and used to generate a (random) transition to s′k,
with associated reward rk, and the transition (sk, ak, s′k, rk) is
the input of the algorithm. The results are shown on Figure 8.
For each run of the algorithm and every 250 samples, the
expected cumulative rewards for the current policy has been
computed as an average of cumulative rewards over 1000
episodes which were randomly (uniform distribution) initiated
(thus the average is done over starting states and stochasticity
of transitions). Notice that the lifetime of the agent (the
duration of an episode) was bounded to 100 interactions with
its environment. Then a two dimensional histogram of those
averaged cumulative rewards is computed over 100 different
runs of the algorithm. In other words, the distribution of
cumulative rewards over different runs of the algorithm as
a function of the number of observed transitions is shown.
The bar on the right shows the percentages associated to the
histogram.

The optimal policy has an averaged cumulative rewards of
6. It can be seen on Figure 8 that the proposed algorithm
can learn near optimal policies. After 1000 samples some of
policies can achieve a score of 5 (84% of the optimal policy),
which is achieved by a majority of the policies after 3000
samples. After 7000, very close to optimal policies were found
in almost all runs of the algorithm (the mode of the associated
distribution is at 5.85, that is 98% of the optimal policy).
To represent the approximated Q-function, 7.7 ± 0.7 kernel
functions were used, which is relatively few for such a problem
(from a regression perspective).

Two remarks of interest have to be made on this benchmark.
First, the observation noise is input-dependant, as it models
the stochasticity of the MDP. Recall that here a constant
observation noise has been chosen. Secondly, the noise can
be far to Gaussianity. For example, in the proximity of the
waterfall it is bimodal because of the shift of reward. Recall
that the proposed filter assumes Gaussianity of noises. Thus it
can be concluded that the proposed approach is quite robust,
and that it achieves good performance considering that the
observations were totally random (off-policy aspect).

3) Mountain Car: The second problem is the mountain-
car task. A underpowered car has to go up a steep mountain
road. The state is 2-dimensional (position and velocity) and
continuous, and there are 3 actions (forward, backward and
zero throttle). The problem full description is given in [11].
A null reward is given at each time step, and r = 1 is given
when the agent reaches the goal.

A first problem is to find a parameterization for this task.
The proposed one is adapted for continuous problems, not
hybrid ones. But this approach can be easily extended to
continuous states and discrete actions tasks. A simple solution
consists in having a parameterization for each discrete action,
that is a parametrization of the form θ = [θa1 , θa2 , θa3 ] and
an associated Q-function Qθ(s, a) = Qθa(s). But it can be
noticed that for a fixed state and different actions the Q-values
will be very close. In other words Q∗(s, a1), Q∗(s, a2) and
Q∗(s, a3) will have similar shapes, as functions over the state
space. Thus consider that the weights will be specific to each
action, but the kernel centers and deviations will be shared
over actions. More formally the parameter vector is

θ = [(αa1
i )p

i=1, (α
a2
i )p

i=1, (α
a3
i )p

i=1, (s
T
i )p

i=1, ((σ
s
i )

T )p
i=1]

T

(62)
the notation being the same as in the previous sections.

As for the wet-chicken problem, the filter has been fed with
random transitions. Results are shown on Figure 9, which is
a two-dimensional histogram similar to the previous one. The
slight difference is that the performance measure is now the
“cost-to-go” (the number of steps needed to reach the goal).
It can be linked directly to the averaged cumulative rewards,
however it is more meaningful here. For each run of the
algorithm and every 250 samples, the expected cost-to-go for
the current policy has been computed as an average of 1000
episodes which were randomly initiated (average is only done
over starting states here, as transitions are deterministic). The
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Fig. 9. Mountain car.

lifetime of the agent was bounded to 1000 interactions with
its environment. The histogram is computed over 100 runs.

The optimal policy has an averaged cost-to-go of 55. It can
be seen on Figure 9 that the proposed algorithm can find near
optimal policies. After 1500 samples most of policies achieve
a cost-to-go smaller than 120. After 6000 samples, policies
very close to the optimal one were found in almost all runs
of the algorithm (the mode of the associated distribution is
at 60). To represent the approximated Q-function, 7.5 ± 0.8
kernel functions were used, which is relatively few for such a
problem (from a regression perspective).

This problem is not stochastic, however informative rewards
are very sparse (which can cause the Kalman gain to converge
too quickly), transitions are nonlinear and rewards (that is
observations) are binary. Despite this, the proposed filter
exhibits good convergence. Once again it can be concluded
that the proposed approach achieves good results considering
the task at hand.

4) Comparison to Other Methods: For now the proposed
algorithm treats the different control tasks as regression prob-
lems (learning from random transitions), thus it is ill com-
parable to state-of-the-art reinforcement learning algorithms
which learns from trajectories. Nevertheless it is argued that
the quality of learned policies is comparable to state-of-the
art methods. Measuring this quality depends on the problem
settings and on the measure of performance, however the
Bayesian reward filter finds very close to optimal policies.
See [24] for example.

In most approaches, the system is controlled while learning,
or for batch methods observed samples come from a subopti-
mal policy. In the proposed experiments, totally random tran-
sitions are observed. However for the mountain-car problem it
is often reported that at least a few hundreds of episodes are
required to learn a near-optimal policy (see for example [11]),
and each episode may contain from a few tens to hundreds
steps (this depends on the quality of the current control). In
the proposed approach a few thousands of steps have to be
observed in order to obtain a near optimal policy. This is
roughly the same order of magnitude for convergence speed.

VI. CONCLUSION

A Bayesian approach to online nonlinear kernel regression
with a preprocessing sparse structure automatization procedure
has been proposed. This method has proven to be effective
(from a RMSE point of view) on a simple cardinale sine
regression problem. This example demonstrated that the pro-
posed approach compares favorably with the state-of-the-art
methods and it illustrated how the uncertainty of generalization
is quantified.

An approach allowing to regress a function of interest f
from observations which are obtained through a nonlinear
mapping of it has also been proposed as an extension. The
regression is still online, kernel-based, nonlinear and Bayesian.
This method has proven to be effective on an artificial problem
and reaches good performance although much more nonlinear-
ities are introduced.

Finally the proposed approach has been specialized into a
general Bayesian filtering framework for reinforcement learn-
ing. By observing rewards (and associated transitions) the filter
is able to infer a near-optimal policy (through the parame-
terized Q-function). It has been tested on two reinforcement
learning benchmarks, each one exhibiting specific difficulties
for the algorithm. This off-policy Bayesian reward filter has
been shown to be efficient on these two continuous tasks.

However, this paper did not demonstrated all the poten-
tialities of the proposed framework. The Bayesian filtering
approach allows to derive uncertainty information over es-
timated Q-function which can be used to handle the so-
called exploration-exploitation dilemma, in the spirit of [25]
or [26]. This could allow to speed-up and to enhance learn-
ing. This uncertainty information can also be useful from a
regression perspective if used for active learning. Moreover,
the partial observability problem (the issue of non-directly
observable state in RL) can be quite naturally embedded in
such a Bayesian filtering framework, as the Q-function can be
considered as a function over probability densities. Finally, the
observation noise arising in the Bayesian Reward Filter is not
purely white if the Markovian decision process has stochastic
transition probabilities. The whiteness of this noise being a
necessary assumption for the derivation of the sigma-point
Kalman filter, which is a baseline of the proposed framework,
this aspect should be investigated further.
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