
Efficient XML data management for systems biology:
Problems, tools and future vision

Lena Strömbäck, David Hall, Mikael Åsberg
Department of Computer and Information Science

Linköpings Universitet
Linköping, Sweden

Email: lestr, g-davha, g-mikas@ida.liu.se

Stefan Schmidt
Institute of Computer Science

Rostock University
Rostock, Germany

e-mail: mail.stefan.schmidt@googlemail

Abstract—Recently, XML has become a very popular repre-
sentation format for exchange of data within systems biology.
This has made large amounts of XML data available on the
Internet and there is a need for tools to easily and efficiently
manage this data. In this paper we give an overview of existing
standards and analyze the situation. We describe two tools
that have been developed to provide and experiment with
data management for XML standardized data. We evaluate
the efficiency for each of the tools, show that they provide
more efficient data management and make a proposal for a
future combined solution. The paper is an extended version of
[1] where we put the work in a larger context of efficient XML
data management for systems biology.

Keywords-XML; XQuery; hybrid XML management; graph
processing; systems biology

I. INTRODUCTION

During the past few years researchers within bioinformat-
ics and systems biology have started to produce larger and
larger quantities of experimental data. The goal in the area
is to understand how proteins, genes, and other substances
interact with each other within living cells. This is the key
to understand the secret of life, and as such it has been set
as a major goal for bioinformatics research by the Human
Proteome Organization [2] and the US National Human
Genome Research Institute [3]. Enhanced understanding in
this area is essential for discovering new medical treatments
for many diseases.

Within the area the tradition has been to publish results
from experiments in databases on the web [4], [5], [6],
[7], [8], making it possible for researchers to compare and
reuse results from other research groups. The information
content, data model and functionality are different between
the databases, which makes it hard for a researcher to track
the specific information he or she needs. However, most
of the databases provide some kind of export facility in
one or several XML-based exchange formats for protein
interactions, e.g. SBML [9], PSI MI [2], and BioPAX [10].

One important discipline within systems biology where
many standards exist and the emphasis of this article are
biological pathways and molecular interactions. In this area
the data form complex networks and it is important to

enable analysis of these networks to detect key molecules for
functionality or similarities between different species [11],
[12].

One reason for the popularity of XML for exchange of
data within bioinformatics and other areas is its flexibility.
XML can be used for representing all kinds of data ranging
from marked-up text, through so called semi-structured data
to well structured datasets. This is a benefit especially within
systems biology where datasets often contain well structured
parts, such as tables or interaction graphs and unstructured or
semi structured annotations or descriptions of, for instance,
the experimental setup.

Supporting the flexibility that makes XML appealing
is challenging from data management and technical per-
spectives. Two main approaches have been used, native
databases designed specifically for XML and shredding
XML documents to relations. More recently, hybrid imple-
mentations that combine native and shredding strategies are
provided by the major relational database vendors (Oracle
www.oracle.com, IBM www.ibm.com/db2 and Microsoft
www.microsoft.com/sql/default.mspx). This offers new op-
tions for storage design where native and relational storage
can be used side by side for different parts of the XML data.
Within systems biology the situation is further complicated
by the need for graph analysis functionality, which requires
complex analysis capacity.

In this paper we will further analyze the situation and
present two tools for management of XML data within
bioinformatics. The paper starts with a brief overview of
availability of standards and data within bioinformatics.
Based on this overview we present the goals and motivations
for the work. We then present two different tools. The first is
a graph analysis extension to XQuery that enables efficient
and easy to use graph functionalities. The second is a tool
that enables the user to design and compare hybrid XML
storage and thus further improve efficiency of the storage
model. For each tool we present the main ideas behind them,
exemplify the use of the tool and evaluate the performance.
At the end of the paper we discuss related work and lay
out the direction of a full scale future tool that could be

217

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

Figure 1. Excerpt of an SBML document.

supportive of data management within bioinformatics.

II. XML STANDARDS FOR BIOINFORMATICS

In a study [13] in 2006 we found 85 XML-based formats
in systems biology. These include formats for exchanging
information about substances, interactions, pathways, com-
partments, organisms and experiments.

With the large interest in using XML-based formats for
exchange and export of data within systems biology the
need for standardization has become obvious. Some formats
have become de facto standards or at least widely accepted
formats (for example Seq-entry and INSD-Seq [14]), while
other are intended as candidates for future standards. Table
I is based on the evaluation in [13] and lists examples of
commonly used XML-based bioinformatics formats. The
version given for each format is the latest version available.
However, in many cases, actual use and support in software
and databases may be predominant for earlier versions.

Of the formats listed there are formats for representing
molecular interactions or pathways, describing structure of
substances (DNA, RNA, proteins or other chemical com-
pounds). The formats for interactions and pathways could
be either aimed at describing simulation properties (e.g.
SBML[9] or CellML[15]) or experimental results (e.g. PSI
MI [2]). The formats for structure of substances are often
export formats for certain databases.

Figure 1 shows the basic structure of an SBML document.
It contains lists of compartments, species and reactions that
are part of the simulation model. Internal references are used
to connect species to reactions, thereby avoiding redundancy

Figure 2. Excerpt of an UniProtKB document.

of species information. Figure 2 shows the basic structure
of a UniProtKB document. It contains a list of entries
which in turn contains elements with name information
for proteins, genes, and organisms, database and literature
references, and additional information (annotations). The
entries also contain (not depicted in the figure) sequence (for
the protein) and keywords (using controlled vocabularies).
Here emphasis is on citations, names and taxonomy.

During the latest years efforts to standardize XML-based
formats in the bioinformatics area has been intensified. Or-
ganizations such as the Proteomics Standards Initiative (PSI)
and Institute for Systems Biology (ISB) have developed
standards within different fields of bioinformatics. Adoption
of standard formats is delayed due to implementation in tools
and database APIs/data dumps.

Sometimes several standard formats for the same type
of information are developed. In the mass spectrometry
area standardization attempts led to mzData[20] (PSI) and
mzXML[19] (ISB), both of which are supported in different
tools. The two organizations has been working on a joint
standard, mzML[23], that combines aspects of mzData and
mzXML and version 1.0.0 was released in June 2008 [24].
Another release, 1.1.0, was made in 2009 [24] for fixing

218

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

Name Ver. Year Defined by Purpose Data
SBML
[9]

2.4 2008 Systems Biology
Workbench
development
group.

A computer-readable format for
representing models of biochemi-
cal reaction networks.

Data available from
many databases, for
instance, KEGG,
www.genome.jp/kegg/ and
Reactome, www.reactome.org.

PSI MI
[2]

2.53 2006 HUPO Proteomics
Standards
Initiative.

A standard for data representa-
tion for protein-protein interaction
to facilitate data comparison, ex-
change and verification.

Datasets available from many
sources, for instace IntAct
www.ebi.ac.uk/intact/, and
DIP http://dip.doe-mbi.ucla.
edu/.

Bio-
PAX
[10]

L. 3 (0.92) 2008 The BioPAX
group.

A collaborative effort to create a
data exchange format for biological
pathway data.

Datasets available from Reac-
tome www.reactome.org

CellML
[15]

1.1 2002 University of Au-
ckland and Phys-
iome Sciences, Inc.

Support the definition of models of
cellular and subcellular processes.

CellML Model Repository
(240 models) www.cellml.org.

CML
[16]

2.2 2003 Peter Murray-Rust,
Henry S. Rzepa.

Interchange of chemical informa-
tion over the Internet and other
networks.

BioCYC www.biocyc.org.

EMBL-
xml
[14]

1.1 2007 European Bio-
informatics
Institute.

More stability and fine-grained
modelling of nucleotide sequence
information.

EMBL www.ebi.ac.uk/embl .

UniProt
KB [17]

1.28 2009 UniProt
Consortium

XML Schema for UniProtKB Swiss-Prot and TrEMBL
www.uniprot.org

INSD-
seq
[14]

1.5 2009 International
Nucleotide
Sequence Database
Collaboration

The purpose of INSDSeq is to pro-
vide a near-uniform representation
for sequence records.

EMBL www.ebi.ac.uk/embl
and GenBank www.ncbi.nlm.
nih.gov/Genbank .

Seqentry n/a n/a National Center for
Bio-technology In-
formation.

NCBI uses ASN.1 for the stor-
age and retrieval of data such as
nucleotide and protein sequences.
Data encoded in ASN.1 can be
transferred to XML.

Entrez www.ncbi.nlm.nih.gov/
Entrez.

MAGE-
ML
[18]

1.1 2003 Microarray Gene
Expression Data.

To facilitate the exchange of mi-
croarray information between dif-
ferent data systems.

ArrayExpress www.ebi.ac.uk/
arrayexpress.

Mz
XML
[19]

2.1 2004 Institute for Sys-
tems Biology

The common file format for mass
spectrometry data.

PeptideAtlas www.
peptideatlas.org, Sashimi
sashimi.sourceforge.net, Open
Proteomics Database http://
apropos.icmb.utexas.edu/OPD.

Mzdata
[20]

1.05 2005 HUPO Proteomics
Standards
Initiative.

To capture peak list information. Its
aim is to unite the large number of
current formats into one.

AGML
[21]

2.0 2004 Medical University
of South Carolina.

To model the concept of annotated
gel (AG) for delivery and man-
agement of 2D Gel electrophoresis
results.

AGML Central
http://bioinformatics.musc.
edu/agml2/web/pages/

ProtXML
[22]

n/a n/a Institute for Sys-
tems Biology

A format for storage, exchange,
and processing of protein iden-
tifications created from ms/ms-
derived peptide sequence data.

PepXML
[22]

n/a n/a Institute for Sys-
tems Biology

A format for storage, exchange,
and processing of peptide
sequences derrived from ms/ms
scans.

Table I
AVAILABLE STANDARDS, CREATORS AND AVAILABILITY.

219

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

shortcomings that had hindered the implementation of the
standard.

Due to the nature of the field, the community has realized
that there will exist a plethora of competing formats and a
number of specifications on minimum information required
within different fields has been devised, e.g. MIAME [25]
(Minimum Information About a Micro-array Experiment)
for micro-array data, MIAPE [26] (Minimum Information
About a Proteomics Experiment) for proteomics data, MIGS
(Minimum Information about a Genomic Sequence) for
genomics data and MIRIAM [27] (Minimum Information
Requested In the Annotation of bio-chemical Models) for
system biology models. They often require use of controlled
vocabularies. Other requirements could be literature source
references or information about from which organism data
was collected.

Given the situation today there will continue to exist a
large number of XML-based bioinformatics formats in the
future. In addition, several formats for storing the same type
of data and different versions of the same formats will be
used simultaneously.

III. GOALS AND MOTIVATION

There are a number of tools available for management
and processing of XML data. In addition, there are also a
number of dedicated tools available for handling data in the
special designed standards for bioinformatics. Examples of
such tools are simulation tools and visualization tools, e.g.
Cytoscape [28] and GNU MCSim [29], that offers import
and export in various predefined XML formats. The focus for
this paper are applications where there is a need for complex
information retrieval, i.e. where the user needs to combine
the data to gain new information. In addition we assume that
the user is interested in data from several different databases,
exported in several of the standards described above. The
most natural way to provide this is to store the data within
a database and query it.

However, for bioinformatics this puts hard requirements
on the data management solution. On the one hand the data
that we want to use is downloaded from the web in one
of the many XML standards that are available within the
area. This means that we need solutions where it is fast
to import the data into the database and where little effort
needs to be spent on designing the storage solution. On the
other hand many of the tasks that we are interested in, for
instance, combining and comparing information from several
datasets or graph analysis, requires quite complex queries on
the dataset. Previous studies have shown that native XML
solutions do not perform well when the query complexity
grows [30].

The main goal for this work is to explore ways for
more efficient data processing within bioinformatics. Our
primary goal is query efficiency, easy import and reuse of
data in any of the bioinformatics standardized formats is

also an important issue. We will address these issues in
two important tools. The first addresses graph processing
capabilities, and suggests a standard independent extension
to XQuery that provides easy to use and efficient graph
processing of XML data. The second tool provides an easy
way of exploring more efficient storage models for the data.
The motivation for this is that a pure native XML storage
yields too inefficient querying for the data while a relational
storage provides more efficient querying. The goal for our
second tool is to provide easy creation and import of data
to a hybrid XML storage model.

For our first tool we address cases where the databases
provide data export in one or several XML exchange formats
for protein interactions, e.g. SBML [9], PSI MI [2], and
CellML [15]. These datasets available in XML provide de-
scriptions of interaction networks or graphs [31]. Therefore,
it would be beneficial for the user to enable querying and
analysis based on the XML format, i.e. to be able to query
the data using XQuery. Our goal is to find a solution that
can preserve the full functionality of XQuery and in parallel
provide an efficient handle for graph analysis. As many
standardized data representation formats exist for the area
it is important to find a general solution where all XML-
based data formats can be used.

To reach our goal we need a way to enable graph process-
ing directly in the XML environment. One solution would be
to implement graph queries directly in XQuery [32]. How-
ever, our initial studies of this [30] were disappointing. The
queries get complex and inefficient to compute, which make
it impractical for biologists that may have limited knowledge
in programming. Therefore, we want to provide graph func-
tionality within XQuery by extending the language. As we
do not want to change the core functionality of XQuery
we want to add graph functionality through addition of
built-in functions which make them available directly from
XQuery. The first tool we describe presents an extension
to XQuery which allows extended analysis on graphs. The
main application for the work is biological interactions, but
the extension is generic and capable of handling graphs
represented as XML also for other applications. In section
IV we give a general description of the chosen solution, our
implementation and an evaluation of the tool.

For our second tool we will investigate how well hybrid
databases as provided by modern relational database man-
agers [33], [34], [35], [36], [37] can match the requirements
of bioinformatics. With hybrid solutions the user can choose
to use either native or relational storage for his data. It
is also possible to combine the solutions and store parts
of a document as XML and other parts of it as relations.
Consequently the user can work with XQuery for parts of
the data and SQL for other parts. He can also choose to
retrieve results from queries in the format the data is stored
or to convert it to the format he prefers.

We aim at combining the benefit of native XML databases,

220

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

which is an easy to use solution, with the efficiency pro-
vided by relational databases. The main drawback with this
solution is the cost for designing the hybrid storage, i.e. to
decide which parts of the XML code that should be stored
as relations and which parts should preferably be preserved
in its original XML structure. The work by Moro et al. [38]
addresses this problem by providing guidelines for when
parts of the XML structure should be translated or not. They
also provide a tool where the user can design hybrid XML
storage.

In our case the problem is a bit different. Our starting
point is the already available standards within bioinformatics
which provides us with the XML data model and in most
cases also the XML schema defining this model. Therefore
we want a solution where we can use this information as a
basis for the hybrid storage. We have chosen to adapt the
solution by Amer-Yahia et al. [39]. They present a system,
ShreX, which automatically can map an XML schema to
relational tables and import the resulting schema and dataset
into a database.

In section V we present a tool HShreX which extends the
original system to hybrid databases. We have also extended
it with some further functionality to vary the mapping
into relations. We present the main architecture behind the
system, an illustrating example and an evaluation illustrating
the benefit of using the system.

Together the two tools provide a powerful workbench
for analyzing bioinformatics data. In practice they can be
used as two separate tools. However, at the end of the
article we discuss how they can be combined into one single
environment.

IV. AN XQUERY EXTENSION FOR GRAPHS

Our first tool provides efficient and easy to use graph
analysis functionality for XQuery and was previously pre-
sented in [1]. In particular, we want to find a solution that
is applicable to all standards within the area of molecular
interactions and pathway data. We also want to find a solu-
tion where existing efficient graph algorithms can be reused
within the environment. We choose to do this by extending
XQuery with specialized functions for graph analysis. The
goal for our work is to find a solution that adds new
graph functionality that blends well into existing XQuery
functionality and does not introduce new features to XQuery
itself. At the same time we want the data, algorithms and
results to be accessible from XQuery. As the solution should
be independent of XML format, graphs should be freely
modeled by the XQuery/XPath expressions and changes to
the original XML data should not be necessary.

A. Architecture

One of the challenges is to provide a solution that is
independent of XML format, as the external functions must
know which parts of the XML file constitutes the graph.

To deal with this we define a common graph model that
the supplied functions are operating on. In addition to
this our solution must contain handles for connecting the
original XML representation to the general graph model.
The selected graph model enables labeled directed graphs.
It has been chosen so that it captures the most common
properties for biological pathways.

Definition A graph is defined as a quadruple G :=
(V,E, FV, FE) with:

• V , the set of vertices.
• E, the set of edges. An edge describes the relation

between its two endpoints - the two connected vertices
((v, w) ∈ E; v, w ∈ V). Furthermore, parallel edges
are not allowed, so no two distinct edges may have
the same endpoints. Edges with identical endpoints, so
called loops, are not allowed.

• I , is a set of identifiers used to denote properties, e.g.
name or weight of edges.

• L, is a set of labels, i.e. the values of the properties,
usually a substance name or the weight of an edge.

• FV : V × I → L, is a set of mappings associating
labels for each vertex and a given identifier.

• FE : E × I → L, a set of mappings associating labels
for each edge and a given identifier.

Hence, labels can be attached to vertices and edges
to provide additional information, for instance, enabling
graph algorithms to incorporate weights. Graphs may be
directed or undirected. The focus for this work have been to
investigate connectivity. Therefore we made the restriction
to not allow parallel and looping edges since they not give
extended information to the graph queries of our interest.
The resulting model can capture all information inherent
in the protein interaction and pathway standard descriptions
presented in the previous sections. Hyperedges, i.e. edges
connecting several nodes, can be represented by a set of
edges in our model while identifiers and labels can be used
to represent information not directly captured by the vertices
and edges.

The final step needed for our solution is a way to map the
data between the original XML format and our graph model.
To achieve the required functionality we need handles to
load, get and execute graph analysis on our graph model. The
load functionality constitute mapping from the original XML
data to the graph model. The mapping between the original
XML format and graph model is done by specifying XPath
expressions. These define which parts in the original format
that corresponds to an edge, vertex or a label. Executing
these expressions will result in pointers to XML items
that are used to build the desired graph. The remaining
functionality is used to import graph data back to the
XQuery environment. This can be done either by fetching all
or part of the graph (get) or by retrieving a graph as part of

221

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

Figure 3. Architecture for the extension

executing an supplied algorithm on the graph (execute). As
the data returned from the graph package normally constitute
only part of the data (the graph information or in most
cases a subgraph) from the original format we decided to
use GraphML for its representation instead of the original
graph format. This gives a clear distinction between returned
results and the original data file.

The resulting architecture for our extension is depicted
in Figure 3. As desired XQuery is used to address the
data subject to analysis; the graph extension uses the graph
model to process the analysis. The user can create graphs
that are represented internally in the graph extension. Other
XQuery expressions allow the user to execute graph queries
by utilizing functionality available in the external graph
package. The result from these queries is received by the
user as an XML representation of the graph. If the user
wants he or she can then link these results to the original
XML file by a referencing mechanism.

B. Implementation

A prototype implementation in Java was built on the
native XML database eXist, its XQuery processors and the
JUNG graph framework in order to investigate usability,
performance and overall strength and weaknesses in prac-
tice. We chose eXist version 1.0.2 (exist.sourceforge.net)
since it is an open source native XML database with an
extensible XQuery implementation in Java. The JUNG graph
framework version 1.7.6 (jung.sourceforge.net) has been
chosen to implement the graph model. JUNG is like eXist
written in Java and supports directed and undirected graphs,
hypergraphs, bipartite graphs and labels for vertices and
edges; therefore it easily satisfies the proposed graph model.

To enable an environment where it was easy to experiment
with different functionality and several graphs in parallel we
introduced a set of functions. First we added two functions
to create and delete graphs explicitly (createGraphs and
releaseGraphs). Secondly the load functionality is imple-
mented by a set of easy to use functions to define the prop-
erties like vertex, edge and their labels (loadVertices, load-

LabeledVertices, loadEdges and loadLabeledEdges). Finally
we implemented two functions for retrieveing the graph data
or results of an algorithm (getGraphs and execute). In this
implementation, especially the load functions rely on related
sequences. Therefore, the document order, i.e. the order in
which XML nodes appear in the XML serialization of a
document, is the default order if no ordering is defined.

The required reference mechanism that are used to link
from graph data back into the original XML document are
implemented according to Chamberlin et al. [40] by two
functions, fn:ref and fn:deref. Obviously, the functions can
work correctly only if the node IDs are stable, regardless of
changes to the document if updates are allowed. Updates to
XML documents are not considered in the graph extension.

C. Example

We illustrate how the extension works by showing an
example using the SBML [9] data. An example data model
in SBML is given in figure 4. The example in figure 5
illustrates the usage of the functions in the implementation.

• The root element of the XML data is bound to $doc.
(Expression 2)

• One directed graph is created and bound to $graph.
(Expression 3)

• Two variables bound the IDs of interesting molecules.
(Expression 4 and 5)

• Then all IDs of the species element are selected by an
XPath expression, loaded as vertices into the referenced
graph. (Expression 6)

• A FOR-expression is used to access and load
each reaction into the graph. The URI of each
reaction serves as edge ID and is retrieved with
xqueryp:ref($reaction). The expression
$reaction/s:listOfReactants/s:species-
Reference/@species relates to the vertices
defined in the previous step. (Expression 7)

• After defining the graph’s properties the shortest
path is calculated, the returned XML node is in
GraphML format, the edge ID holds the refer-
ence to the original SBML data. The edge IDs
are selected by //edge/@id and then resolved by
xqueryp:deref which are the reactions in SBML
representing the shortest path between the specified
substances. (Expression 8)

• Finally, the graph is deleted. (Expression 9)

D. Evaluation

To evaluate our approach we have performed a series
of experiments. We were in particular interested in three
properties; the overall performance for graph analysis for
biological pathways data; comparing this with using plain
XQuery; and finally an analysis of the performance of
loading graphs. All experiments were done on a notebook

222

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1">
<model id="Tyson1991CellModel_6" name="Tyson1991_CellCycle_6var">
+ <annotation>
<listOfSpecies>

+ <species id="C2" name="cdc2k" compartment="cell">
+ <species id="M" name="p-cyclin_cdc2" compartment="cell">
+ <species id="YP" name="p-cyclin" compartment="cell">
... more species

</listOfSpecies>
<listOfReactions>

<reaction id="Reaction1" name="cyclin_cdc2k dissociation">
<annotation>

<rdf:li rdf:resource="http://www.reactome.org/#REACT_6308"/>
<rdf:li rdf:resource="http://www.geneontology.org/#GO:0000079"/>

</annotation>
<listOfReactants> <speciesReference species="M"/> </listOfReactants>
<listOfProducts> <speciesReference species="C2"/>

<speciesReference species="YP"/> </listOfProducts>
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply> <times/> <ci> k6 </ci> <ci> M </ci> </apply></math>

<listOfParameters> <parameter id="k6" value="1"/> </listOfParameters>
</kineticLaw>

</reaction>
+ <reaction id="Reaction2" name="cdc2k phosphorylation">
... more reactions

</listOfReactions>
</model>

</sbml>

Figure 4. SBML representation of the Tyson Cell model as it is represented in the Biomodels (www.biomodels.net) database. The example has been
abbreviated and simplified to improve readability.

1: declare namespace s = "http://www.sbml.org/sbml/level2";
2: declare variable $doc {doc("reactome/homo_sapiens.xml")};
3: declare variable $graph {graph:createGraphs("org.exist.xquery.modules.graph.JUNGGraphImpl",true())};
4: declare variable $source {"R_111584_xanthosine_5_monophosphate"};
5: declare variable $target {"R_29398_Pyruvate"};
6: graph:loadVertices($doc//s:listOfSpecies/s:species/@id, $graph),
7: for $reaction in $doc//s:listOfReactions/s:reaction

return graph:loadHyperEdge(xqueryp:ref($reaction),
$reaction/s:listOfReactants/s:speciesReference/@species,
$reaction/s:listOfProducts/s:speciesReference/@species,$graph),

8: xqueryp:deref(graph:execute("dijkstraShortestPath",($source, $target), false(),
true(), $graph)//edge/@id),

9: graph:releaseGraphs($graph)

Figure 5. Example on how to use extended graph functionality in XQuery.

with Windows XP Professional, a 1.6GHz Pentium Mobile
and 1GB main memory.

The first experiments exemplify how well the graph
extension scales for graphs with a few thousand vertices.
In the experiments sample test series were successfully
and efficiently executed on real application data from the
Reactome [6] and KEGG [7] databases. The Reactome data
set is stored in one SBML document of 1.2MB comprising
3054 substances and 1917 reactions which were resolved
into 4832 edges. The KEGG data set is stored in 92 SBML
files with a total of 1,2MB comprising 1652 substances and
1122 reactions which were resolved into 1296 edges.

Figure 6 shows the results of 100 passes of the Dijkstra
shortest path on pairs of substances from the Reactome data
set where the path length was 3, 5, 10 and 25, i.e. the query
presented in section 4 with selected start and end nodes. The
reason for running each query 100 times is to reduce the
impact of other processes, such as Java garbage collection

Figure 6. Performance on the Reactome dataset.

that may affect the result. Analogously, figure 7 shows the
results of 100 passes of the Dijkstra shortest path on pairs
of substances from the KEGG human data subset where
the path length was 3, 5, 10 and 14 on the same query.

223

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

Figure 7. Performance on the KEGG dataset.

Figure 8. Performance comparison of our extension with plain XQuery.

The query times include creating, populating and deleting
the graph, the execution of the algorithm and the XML
representation of the paths based on the original SBML data.
For these tests caching of shortest path results within JUNG
was deactivated. This shows that our graph extension works
well for the tested data.

Secondly, we wanted to compare our results with using
plain XQuery. An adapted depth-first search algorithm in
XQuery was implemented for comparison. All shortest paths
are searched within the given depth. The implementation
shown in figure 9 uses two functions. The local:findPath
creates the spanning search tree recursively, found paths are
marked with a <found/> element. The function expects
three parameters, the cut-off depth, the start and the end
vertex of the path. The second function, local:getParent is
used to traverse the found path up and collect the parents.
This implementation demonstrates how complicated and
inefficient it is to build an algorithm based on sequences
of items and temporary XML fragments.

Figure 8 illustrates the results together with the query
times on the same data set with the graph extension.
The query for XQuery (Reactions) takes longer because it
presents the path with all reaction elements, whereas the
query for XQuery (Substances) presents a condensed version
as a list of elements with the reaction IDs and only the
substance IDs found by the path search as attributes. It must

be noted, that the comparison with the graph extension is not
completely fair. The Dijkstra’s shortest path algorithms used
within the graph extension only returns the single shortest
path whereas the XQuery implementation completely ex-
plores all shortest path within the specified depth. The query
times for a path length of 5 are still acceptable if the data
volume is disregarded, but the query does not finish on the
same data set within an hour with 10 as cut-off depth. One
reason is certainly that with every step the search tree grows
tremendously by the fact that the query does not sufficiently
detect cycles.

Finally, we wanted to analyze the performance of loading
graphs into the graph module to understand how much of
the total execution time that were spent on creating the
graphs. For these experiments we used the Reactome dataset.
As for the total execution time we compared our loading
performance with an XQuery expression retrieving the same
information from the data file. From this experiment we
can conclude that loading the data is very fast. In fact,
most time is spent on retrieving the data from the XML
file. The execution of Dijkstra’s shortest path is even faster
and because of this the differences between different path
lengths are marginal. The divergence between different path
lengths is roughly between 5ms and 20ms on average. In
comparison, the difference between minimum and maximum
performance are significant, but still under half a second.

A final remark is that the presented results refer to small
amounts of data in particular in regards to data volumes
databases are built for and for our tests in memory pro-
cessing could be used. Query times increase dramatically
if the whole KEGG data set is utilized including different
species (132MB, 12122 files), because data is stored highly
redundantly. In that case most time is spent on the XQuery
expressions to retrieve the sequences of items to map onto
vertices and edges. The data volume to process the analyze
is reduced because of the integrated duplicate elimination.
This behaviour is beneficiary for scenarios, where we can
expect that the user loads the data into the database and then
runs a series of analysis on the dataset.

E. Discussion

The general architecture for our extension proposes that
XPath expressions are used to declare the XML data and the
graph model. In our implementation we choose to implement
this as a set of load functions which makes use of side
effects. This is controversial since XQuery is a side-effect
free query language. The main problem with introducing
side effects is that query optimization is hindered. The
order of execution of the graph functions matters putting
restrictions on optimization. However, the evaluation for
all other XQuery expression can still be optimized without
further limitations. Our view is supported by Chamberlin et
al. [40] who state that global optimization is difficult in a
mixed language environment.

224

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

declare function local:findPath($start as xs:string,
$end as xs:string, $n as xs:integer) {

for $species in
$doc//s:reaction[s:listOfReactants/s:speciesReference/@species = $start]

/s:listOfProducts/s:speciesReference/@species
return<item reaction="{$species/../../../@id}"species="{$species}"> {
if($species = $end) then <found/> else

if($species = $start or $n = 1) then () (: loop or max :)
else local:findPath($species, $end, $n - 1)} </item>};

declare function local:getParent($itema as node()?) {
if($itema[@species]) then (local:getParent($itema/..), <node>

{$itema/@species} {$itema/@reaction} </node>) else ()};

<paths>{for $found in local:findPath($source, $target, $maxLength)//found/..
return <path> <node species="{$source}"/{local:getParent($found)} </path>}

</paths>

Figure 9. XQuery version of findpaths used for comparison with our extension.

To avoid side effects one solution would be to implement
the graph as an extended index to the database. This is
possible in for instance eXist 1.1. With this solution the
functionality for creating the graph would be analogous to
creating an index and performed when new files are loaded
into the database. We did not choose this solution, as it
would give us less freedom to experiment with different
graph realizations of a dataset which was a goal for this
version of the tool. An alternate solution would be to
make use of further developments of XQuery like XQueryP
[40], [41] and XQuery! [42]. XQuery! proposes to extend
XQuery with a set of side-effecting operations, especially
handy for XML updates [42]. Therefore it introduces a
new operator that allows applying a sequential mode to an
XQuery fragment. XQueryP introduces even more features
to extend XQuery for application logic [40], [41]. Another
approach to separate the concerns of assembling the graph
and querying it using XQuery could be to annotate the XML
schema of the source format defining the desired structure
and elements of the graph.

V. USER DESIGNED HYBRID STORAGE

Our second tool [43] investigates how well hybrid
databases as provided by modern relational database man-
agers [33], [34], [35], [36], [37] can match the requirements
of bioinformatics. With hybrid solutions it is also possible
to combine the solutions and store parts of a document as
XML and other parts of it as relations. Our aim is to combine
benefit of native XML databases, which is an easy to use
solution, with the efficiency provided by relational databases
and minimizing the cost for designing the hybrid storage.
Our starting point is the already available XML schema
defining the model for the chosen standard. Our tool allows
the user to take benefit from and experiment with hybrid
XML storage.

A. Architecture

HShreX [43] is a tool that automatically can, from an
XML Schema, create a native, relational, or hybrid data

model. HShreX builds upon a previous tool ShreX [39]
developed for shredding XML data into pure relational
storage.

The starting point for HShreX is the XML Schema. When
the user loads a schema in HShreX, it first creates an internal
schema model, which is a tree-like structure specifying
the details of the schema. Once the schema model has
been created it is traversed in order to determine mapping
information (e.g., the simple XML element name should be
mapped to a field called name in the table xyz), from which
a relational model (that can be pure relational, native, or
hybrid) is created. The exact characteristics of the resulting
model depend on a default set of shredding rules which
can be influenced by using annotations in the XML schema.
The user can now inspect the relational model and redesign
it using schema annotations until a desired one has been
created. When a satisfactory model has been created, it
can be loaded onto a live database. This is done by a
relation generator which generates scripts adapted to the
chosen relational database manager. After this step, data can
be loaded by opening XML files. A data converter looks
up mapping information and generates a script with tuple
insertion statements and runs it when all the data has been
read. The architecture is visualized in figure 10. The default
shredding rules include the following behavior:

• Complex elements are shredded into tables. All tables
will get a primary key field named shrex id. If the
complex element is not a root element it will also get
a foreign key field named shrex pid that point to its
parent. This preserves the tree structure in the original
XML data. If the complex element can have simple
content (i.e., text content), a special field is created in
the table to hold any such content.

• Simple elements are shredded into columns in their
parent table if they can occur at most once under their
parent. If a simple element can occur more than once
under its parent it will be outlined to a separate table.

• Attributes are shredded into columns in their parent
table.

225

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

Figure 10. HShreX architecture

<xs:element name="minisbml">
<xs:complexType>

<xs:sequence>
<xs:element name="author" type="PersonType"/>
<xs:element name="molecule" type="Moleculetype"

minOccurs="1" maxOccurs="unbounded"/>
<xs:element name="reaction" type="Reactiontype"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:complexType name="Moleculetype">
<xs:attribute name="name" type="xs:string"

use="required"/>
</xs:complexType>

<xs:complexType name="Reactiontype">
<xs:sequence>

<xs:element name="reactant" type="Moleculetype"
minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="product" type="Moleculetype"
minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="name" type="xs:string"

use="required"/>
</xs:complexType>

<xs:complexType name="PersonType">
<xs:sequence>

<xs:element name="name" type="xs:string"/>
<xs:element name="affiliation" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:schema>

Figure 11. Sample XML schema

In figure 11 and 12 a sample XML schema is shown with
an accompanying XML document, respectively. The schema
lacks annotations so it will be processed by HShreX using
the default shredding rules, yielding the relational model
found in figure 13.

Shredding a schema using just the default rules will
in most cases create a pure relational model. The only
exception is elements that have the type anyType, i.e. ele-

<minisbml>
<author>

<name>Lena Strömbäck</name>
<affiliation>IDA</affiliation>

</author>
<molecule name=M1/>
<molecule name=M2/>
<molecule name=M3/>
<reaction name=R1>

<reactant name=M1/>
<reactant name=M2/>
<product name=M3/>

</reaction>
<reaction name=R1>

<reactant name=M3/>
<product name=M2/>

</reaction>
</minisbml>

Figure 12. Sample XML document

ments that have no XML structure definition in the schema,
which are mapped to XML. In many cases this will cause
a large number of tables to be created, which can be a
problem because it makes the model hard to understand
and overview. Another problem with models that suffer
from an explosion of tables is that semantically related
data run a risk of being separated into different tables.
Combined this can make the task of writing queries complex
and performance can suffer. Therefore, HShreX allows the
default shredding rules to be influenced via annotations.
A number of annotations are supported and they are used
on the schema to change the default shredding rules. A
document describing all annotations supported by HShreX
can be found on http://hshrex.sourceforge.net/. Here follows
a few of the more important annotations:

• maptoxml – makes this part of the XML tree to be
stored natively. The annotation can be used on both
complex and simple elements.

• ignore – this part of the XML tree will be ignored, i.e.

226

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

minisbml:
shrex id

1

minisbml molecule:
shrex id shrex pid name

1 1 M1
2 1 M2
3 1 M3

minisbml reaction:
shrex id shrex pid name

1 1 R1
2 1 R2

minisbml reaction reactant:
shrex id shrex pid name

1 1 M1
2 1 M2
3 2 M3

minisbml reaction product:
shrex id shrex pid name

1 1 M3
2 2 M2

minisbml author:
shrex id shrex pid name

1 1 Lena Strömbäck
minisbml affiliation:
shrex id shrex pid affiliation

1 1 IDA

Figure 13. Generated relational tables.

it will not be represented in the resulting data model.
• outline – used on simple elements (or attributes) where

it is desired that they be stored in a separate table.
• withparenttable – used to merge a child with its parent

in order to reduce the number of tables in model. This
annotation can be used only for children with a single
occurrence in the parent.

• tablename – can be used to simply rename a table but
a more powerful use is to merge two tables that do
not have a parent/child relationship (in those cases the
annotation described above, withparenttable, is used).

Maptoxml, ignore and withparenttable are new annota-
tions for HShreX whereas the other annotations work as
in the previous ShreX tool. In addition the system allows
varying the underlying basic shredding principle. This will
not be further discussed here.

B. Implementation

HShreX is developed in Eclipse and written in Java
version 1.6. The main development platform is Windows
Vista, but HShreX also runs on Windows XP and Linux. A
large part of what HShreX does is processing XML and for
that Xerces2-J version 2.9.1 is used. HShreX knows how
to communicate with IBM DB2 9.5 fixpack 1 or later and
Microsoft SQL Server 2008 but in order to do that HShreX
needs drivers supplied by the vendors. For Microsoft SQL

<xs:element name="minisbml">
<xs:complexType>

<xs:sequence>
<xs:element name="author" type="PersonType"

shrex:maptoxml="true"/>
<xs:element name="molecule" type="Moleculetype"

minOccurs="1" maxOccurs="unbounded"
shrex:ignore="true"/>

<xs:element name="reaction" type="Reactiontype"
minOccurs="0" maxOccurs="unbounded"
shrex:maptoxml="true"/>

</xs:sequence>
</xs:complexType>

</xs:element>

minisbml:
shrex id author

1

<author>
<name>Lena Strömbäck</name>
<affiliation>IDA</affiliation>

</author>
minisbml reaction:
shrex id shrex pid xml

1 2

<reaction name=”R1”>
<reactant name=”M1”/>
<reactant name=”M2”/>
<product name=”M3”/>

</reaction>

<reaction name=”R1”>
<reactant name=”M3”/>
<product name=”M2”/>

</reaction>

2 1

<reaction name=”R1”>
<reactant name=”M3”/>
<product name=”M2”/>

</reaction>

Figure 14. Hybrid mappings with maptoxml and ignore.

Server sqljdbc4.jar is used and for IBM DB2 the dependency
is db2jcc4.jar. A large set of unit tests is part of the HShreX
sourcebase and to run them one needs JUnit version 4.3 or
later. HShrex together with documentation can be obtained
in binary and source form at http://hshrex.sourceforge.net/.

C. Example

To illustrate how HShreX can be used we give two
examples of using the annotations to design the shredding.
The first example in figure 14 illustrates how the hybrid
mapping can be used. In this example the aim is to map
the information about authors and reactions to XML and
remove information about molecules (assuming these are
not interesting for the current information need). This kind
of mapping is common in bioinformatics since most of the
bioinformatics standards are very rich and define a large
amount of elements for representing various portions of
information. In many real cases parts of this information are
not interesting for the end user or many of those elements
is not even used by the source exporting the data.

To achieve this shredding we have added maptoxml anno-

227

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

<xs:element name="minisbml">
<xs:complexType>

<xs:sequence>
<xs:element name="author" type="PersonType"

shrex:withparenttable="true"/>
...rest of definition in figure 2...

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:complexType name="Reactiontype">
<xs:sequence>

<xs:element name="reactant" type="Moleculetype"
minOccurs="0" maxOccurs="unbounded"
shrex:tablename="participant"/>

<xs:element name="product" type="Moleculetype"
minOccurs="0" maxOccurs="unbounded"
shrex:tablename="participant"/>

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>

minisbml:
shrex id name

1 Lena Strömbäck
minisbml molecule:
shrex id shrex pid name

Content as in Figure 4
minisbml reaction:
shrex id shrex pid name

Content as in Figure 4
participant:
shrex id shrex pid name

1 1 M1
2 1 M2
3 1 M3
4 2 M4
5 2 M5

minisbml author affiliation:
shrex id shrex pid name

Content as in Figure 4

Figure 15. Example of withparenttable and tablename.

tations to the author and reaction elements in the definition
of minisbml. As shown in the bottom of the figure this results
in adding author as an attribute in the minisbml table. The
minisbml reaction will still be generated, but with all its
content as XML in the XML column of the table. To remove
the molecule information we have added the annotation
ignore in the XML schema.

Figure 15 demonstrates an alternative way to make the
relational mapping easier to understand and use. In this
case we do not want to use hybrid storage. Instead the
goal is to remove unnecessary relations in the generated
shreddings; in this case we can move the author to the
minisbml table since only one author per table is allowed,
and force all participants of reactions to be shredded into
on single relation, thus decrease the number of relations
generated by HShreX.

Removing the author relation is achieved by using the
annotation withparenttable. To shred several substructures

Figure 16. Query performance [ms] with growing datasets (number of
UniProt entries on the y axis).

SELECT accession
FROM entry, accession, comment, subcellularLocation, location
WHERE entry.shrex_id = accession.shrex_pid
AND entry.shrex_id = comment.shrex_pid
AND comment.shrex_id = subcellularLocation.shrex_pid
AND subcellularLocation.shrex_id = location.shrex_pid
AND location.nodeValue=’Cytoplasm’;

Figure 17. UniProt query (for mapping 1)

into the same table the annotation tablename can be used as
renaming substructures into the same tablename forces the
corresponding data to be shredded into the same table.

D. Evaluation

In this section we will evaluate the benefit of working with
HShreX. There are two issues, performance of queries and
the complexity of data models. We have chosen to work
on data available for two commonly used bioinformatics
standards SBML 2.1 [9] and UniProt [17]. All tests are done
on an AMD Athlon Dual Core 2.9 GHz and 4 GiB RAM.

For our first test we have designed three different data
models. The first one is a pure native representation where
the XML data files are stored as XML in an XML attribute in
one main relation. The second one is a mixed representation,
where we have translated parts of the XML into relations and
kept other parts as XML. The intuition for creating the mixed
representation is to create a hybrid data model reflecting
the semantics of the original SBML standard. The third
data model is the purely shredded representation produced
without any annotations.

There is a clear relation between the choice of model and
the query performance as illustrated in figure 16. The query
(as it is formulated in SQL for the purely shredded mapping)
is listed in 17. The example illustrates the benefit of using the
mixed representation in a case where we are joining many
tuples. In this case we want to combine data from UniProt
(www.uniprot.org). Here, the native representation results
in poor performance, while the shredded version is very
fast. However, the mixed representation gives a considerable
improvement over the purely native representation. This
shows that shredding parts of the XML data could have a
considerable improvement of the performance.

To illustrate the complexity of the created models we

228

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

Data model Native Mixed Shredded
SBML Nr of annotations 1 21 0

Nr of relations 3 8 121
UniProt Nr of annotations 1 24 0

Nr of relations 2 32 121

Table II
INFORMATION ABOUT THE DIFFERENT DATA MODELS

 entry

 accession comment

 subcellularLocation

 location

...

...

Figure 18. Part of the UniProtKB XML tree. The comment node can be
seen in figure 2.

present more details of selected models for SBML and
UniProt. Table II presents the number of annotations needed
and the number of produced relational tables for these
mappings. The purely native and the mixed representation
produce data models with a limited amount of tables, while
the purely shredded model generates many relational tables.
This explosion of tables causes data that semantically belong
together to be shredded into many places in the data model.
The mixed version of our data models creates a data model
that provides relational storage for entities that we assume
will be commonly accessed in queries and native XML
representation used for other parts. We do not use the
ignore annotation for this example to make the three models
comparable in information content. The examples in the
previous section illustrate the intuition on how to build this
mapping, basically we add maptoxml annotations to the parts
to be stored as native XML and withparenttable annotations
to levels in the XML-tree that we want to omit. As shown
in table 2 this is easily done and we only need around 20
annotations for the given schemas.

To further illustrate the impact of shreddings we have
also evaluated query performance for all possible hybrid
representations relevant for the query in figure 17. There

Figure 19. Query performance [ms] for shredded mapping (1), different
hybrid mappings (2–8) and native mapping (9).

are seven possible hybrid mappings where a varying de-
gree of the XML subtree affected by the query is stored
as a XML value instead of being shredded to relations.
Since the sub-tree has two branches (see figure 18) we
can design eight different hybrid mappings; accession (2
in figure 19), one of location (3), subcellularLocation (4)
and comment (5) or accession together with one of location
(6), subcellularLocation (7) or comment (8) can be mapped
as XML. The mappings where comment is shredded but
accession and/or subcellularLocation or location is mapped
as XML all run in under 75 ms on the test system with a
dataset of 2750 entries and using no XML indexes. When
comment is mapped as XML the run time rises to 300–
360 ms (depending on whether accession is shredded or
not). The native mapping is much slower (1650 ms). This
demonstrates how choosing a preferable shredding gives
acceptable performance and a more comprehensible table
structure than the purely shredded mapping. Data stored
as XML values do not need serializing back into XML
which is a time benefit for certain types of data. Which
mapping results in the best query performance while keeping
a comprehensible structure is non-intuitive. How efficient a
mapping is in terms of performance depends on the query,
the structure of the schema and distribution of data within
the structure.

VI. RELATED WORK

Regarding related work there is a lot of work on extended
functionality for XQuery. Here, the Mark Logic Corporation
provides for its XQuery implementation several function
libraries to ease application development [44]. In addition,
the eXist community has added a number of new functions
as function modules to the XQuery implementation, for
example a mail, math, SQL and spatial module. Our XQuery
extension combines the ideas above to realize graph process-
ing based on the additionally introduced graph model. We
also looked at relational database systems and found similar
tendencies. Besides, for spatial data applications relational
database vendors recognized the need of graph support in
areas like biology. One example is the Life Science Platform

229

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

by Oracle [45]; another is the Systems Biology Graph
Extender (SBGE) for IBM’s DB2 database system [46].

The SBGE is of particular interest since it resembles
our graph extension tool. It introduces a data model which
introduces graphs as a first-class SQL data type. This means
that graphs can be manipulated the same way as other data
types. In addition it defines operators that can convert data
between the graph representation and relational tables con-
taining the corresponding information. The workflow of this
extension is very similar to the one of our graph extension.
Analogue to the load-functions data stored as SQL tables can
be converted to the graph representation. Then operations
can be efficiently performed on the graph representation of
the data as can be done with our execute-function. Finally,
the results can be stored as plain SQL tables or SQL
tables containing graphs, similar to access the graph data
through the get-function or the XML node returned by the
execute function. Similar to our current implementation, the
SBGE implementation requires that each graph fit into main
memory. SBGE functions can be seamlessly composed in a
single SQL query with user defined functions (UDF) written
in Java.

The HShreX tool, on the other hand, combines ideas from
two related areas for XML storage. The first is the work
on automatic shredding of XML documents into relational
databases by capturing the XML structure or based on the
DTD or XML schema for the XML data [39], [47], [48].
The intention with these approaches is to create an efficient
storage for the XML data. The resulting data model is
often not easy to understand and is usually hidden from the
user via an interface providing automatic query translation
of XQuery into the model. Several authors also explore
the efficincy of strategies for shredding XML to relational
engines [49], [50], [51].

The other related area is work on hybrid XML storage,
as provided by the major relational database vendors. The
underlying representation for the XML type differs, in some
cases it is a byte representation of the XML whereas in
other cases it is some kind of shredding of the XML
data [33], [34], [37]. These database vendors provide a
number of tools to import XML natively or shred the data
into the system. These tools are intended for design of
one database solution, thus generation and evaluation of
alternative solutions becomes time consuming.

Other interesting work regarding design of hybrid storage
is the work by Moro et al. [38]. They address the problem
by a database design tool based on a conceptual design
language and provide guidelines for when parts of the XML
structure should be translated or not. In our case the problem
is a bit different. The work has similar goals to HShreX but
in our case we want to use the already existing XML schema
as a starting point.

VII. TOWARDS A FUTURE SYSTEM

We currently use HShreX for creation of hybrid storage
models that allows us to compare and evaluate different
storage alternatives. Our experience so far is that the system
allows fast creation of alternate storage models and that it is
easy to create the models that we want to test. However, our
experiments so far have highlighted extended functionalities
that would be of interest for future versions of the system.

One such is enhanced annotation functionality, for in-
stance to change data typing and add indexes to the created
data model. For the moment the system contains a rudimen-
tary implementation for data typing while indexes must be
created by hand after loading the model into the database.

The bottleneck of the system is querying for the dif-
ferent data models. This is due to the complexity of the
generated data model and the many alternatives provided by
SQL/XML. We are investigating ways of automating this
process as well, the idea is to use an automatic query trans-
lator that suggest a SQL/XML query based on a XQuery
query where the user can reformulate the translated query if
desired. Currently, we have a solution for using XPath query
capabilities within HShreX. This would allow the user to
issue XPath expressions inside HShreX that correspond to
the original XML data. HShreX will then consult its internal
shredding information and query the database for the right
data.

Our long term goal is to get a better understanding of how
to shred XML into good hybrid data models that is easy to
work with and provide an efficient storage model. The final
goal is to make HShreX smarter about its shredding rules,
i.e., to make HShreX have a more dynamic set of rules and
also enable the user to inform HShreX about usage scenarios
which would influence these rules. To reach this goal we
would like to develop a system which by analyzing data and
XML structure could propose different hybrid data models
for the user to choose from.

This would also involve combining the two systems i.e.
to enable graph functionality directly within HShreX. This
could be achieved either by specialized annotations for
nodes and edges or possibly also in this case by automatic
analysis of the XML data and queries to allow HShreX to
automatically detect substructures that should be imported
to the graph engine. This would yield a system where the
user can choose to store parts of data as graphs, relational
or native XML and take advantage of all the possibilities
depending on his needs.

For the future it would be interesting to introduce more
advanced graph functionality demanded for many biolog-
ical applications. There is currently a lot of research in
specialized and efficient graph management for biological
pathways, such as aligning pathways [11] and identifying
target molecules for creation of drugs [12]. To extend
our solution with this functionality we need to extend the

230

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

graph functionality provided by the graph package. The
main contribution of this paper, i.e. how to integrate the
functionality with XQuery, would, however, be unaffected.

VIII. CONCLUSION

In this paper we present two tools allowing easy and
efficient access and analysis to the large amount of graph
related XML data available within systems biology. The
first tool is specialised on providing analysis for graph
data. A graph model for handling directed and undirected
labeled graphs was introduced. Access to the graph model
is realized through the XQuery environment. The user can
define vertices and edges, execute algorithms and access the
graph data as XML for further processing. This results in
an efficient framework for processing graph views of XML
data with a prototype implementation in eXist and JUNG.
The second tools support the user in exploring more efficient
storage and querying for XML data. The tool enables hybrid
XML storage by adding annotations to the XML schema.
We evaluate the tools and show that they provide efficient
processing. In the end of the paper we discuss our results
and discuss steps towards a future tool that combine the
features of the current tools.

ACKNOWLEDGMENT

We acknowledge the financial support of the Center for
Industrial Information Technology, the Swedish Research
Council and the German Academic Exchange Service. We
thank Nahid Shahmehri, Andreas Heuer, Adelinde Uhrma-
cher and Dr. Holger Meyer for supporting the thesis work
which provides the foundation for this paper. We are also
grateful to Juliana Freire for input and discussions regarding
the HShreX tool.

REFERENCES

[1] L. Strömbäck and S. Schmidt, “An Extension of XQuery for
Graph Analysis of Biological Pathways.” in The First Inter-
national Conference on Advances in Databases, Knowledge,
and Data Applications, DBKDA, 2009.

[2] H. Hermjakob, L. Montecchi-Palazzi, G. Bader, J. Wojcik,
L. Salwinski, A. Ceol, S. Moore, S. Orchard, U. Sarkans,
C. von Mering, B. Roechert, S. Poux, E. Jung, H. Mersch,
P. Kersey, M. Lappe, Y. Li, R. Zeng, D. Rana, M. Nikolski,
H. Husi, C. Brun, K. Shanker, S. Grant, C. Sander, P. Boork,
W. Zhu, P. Akhilesh, A. Brazma, B. Jacq, M. Vidal, D. Sher-
man, P. Legrain, G. Cesareni, I. Xenarios, D. Eisenberg,
B. Steipe, C. Hogue, and R. Apweiler, “The HUPO PSI’s
Molecular Interaction format - a community standard for the
representation of protein interaction data,” Nature Biotechnol-
ogy, vol. 22, no. 2, pp. 177–183, 2004.

[3] F. Collins, E. Green, A. Guttmacher, and M. Guyer,
“A vision for the future of genomics research,”
Nature, vol. 422, pp. 835–847, April 2003. [Online].
Available: http://adsabs.harvard.edu/cgi-bin/nph-bib\ query?
bibcode=2003Natur.422..835C

[4] G. Bader, I. Donaldson, C. Wolting, B. Oulette et al., “BIND
- The Biomolecular Network Database,” Nucleic Acids Re-
search, vol. 29, no. 1, pp. 242–245, 2001.

[5] H. Hermjakob, L. Montecchi-Palazzi, C. Lewington, S. Mu-
dali, S. Kerrien, S. Orchard, M. Vingron, B. Roechert,
P. Roepstorff, A. Valencia, H. Margalit, J. Armstrong,
A. Bairoch, G. Cesareni, D. Sherman, and R. Apweiler,
“IntAct - an open source molecular interaction database,”
Nucleic Acids Research, vol. 32, pp. D452–D455, 2004.

[6] G. Joshi-Tope, M. Gillespie, I. Vastrik, P. D’Eustachio,
E. Schmidt, B. de Bono, B. Jassal, G. Gopinath, G. Wu,
L. Matthews, S. Lewis, E. Birney, and L. Stein, “Reactome:
a knowledgebase of biological pathways,” Nucleic Acids
Research, vol. 33, no. D428-D432, 2005.

[7] M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hat-
tori, “The KEGG resources for deciphering the genome,”
Nucleic Acids Research, vol. 32, pp. D277–D280, 2004.

[8] P. Karp, M. Arnaud, J. Collado-Vides, J. Ingraham, I. Paulsen,
and M. J. Saier, “The E. coli EcoCyc Database: No Longer
Just a Metabolic Pathway Database,” ASM News, vol. 70,
no. 1, pp. 25–30, 2004.

[9] M. Hucka, A. Finney, H. Sauro, H. Bolouri, J. Doyle,
H. Kitano, A. Arkin, B. Bornstein, D. Bray, A. Cornish-
Bowden, A. Cuellar, S. Dronov, E. Gilles, M. Ginkel,
V. Gor, I. Goryanin, W. Hedley, T. Hodgman, J.-H. Hofmeyr,
P. Hunter, N. Juty, J. Kasberger, A. Kremling, U. Kummer,
N. L. Novère, L. Loew, D. Lucio, P. Mendes, E. Minch,
E. Mjolsness, Y. Nakayama, M. Nelson, P. Nielsen, T. Saku-
rada, J. Schaff, B. Shapiro, T. Shimizu, H. Spence, J. Stelling,
K. Takahashi, M. Tomita, J. Wagner, and J. Wang, “The
systems biology markup language (SBML): a medium for
representation and exchange of biochemical network models,”
Bioinformatics, vol. 19, no. 4, pp. 524–531, 2003.

[10] G. D. Bader and M. P. Cary, BioPAX - Biological Pathways
Exchange Language Level 2, Version 1.0 Documentation,
BioPAX workgroup, December 2005.

[11] F. Ay, T. Kahveci, and V. Crecy-Lagard, “Consistent align-
ment of metabolic pathways without any abstraction model-
ing.” in International Conference on Computational Systems
Biology (CSB), 2008.

[12] P. Sridhar, B. Song, T. Kahveci, and S. Ranka, “Mining
methabolic networks for optimal drug targets.” in Pacific
Symposium on Biocomputing (PSB), 2008, pp. 291–302.

[13] L. Strömbäck, D. Hall, and P. Lambrix, “A review
of standards for data exchange within systems biology.”
Proteomics, vol. 7, no. 6, pp. 857–867, March 2007. [Online].
Available: http://dx.doi.org/10.1002/pmic.200600438

[14] G. Cochrane, P. Aldebert, N. Althorpe, M. Andersson,
W. Baker, A. Baldwin, K. Bates, S. Bhattacharyya,
P. Browne, A. van den Broek, M. Castro, K. Duggan,
R. Eberhardt, N. Faruque, J. Gamble, C. Kanz, T. Kulikova,
C. Lee, R. Leinonen, Q. Lin, V. Lombard, R. Lopez,
M. McHale, H. McWilliam, G. Mukherjee, F. Nardone, M. P.
Pastor, S. Sobhany, P. Stoehr, K. Tzouvara, R. Vaughan,
D. Wu, W. Zhu, and R. Apweiler, “EMBL Nucleotide

231

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

Sequence Database: developments in 2005.” Nucleic Acids
Res, vol. 34, no. Database issue, January 2006. [Online].
Available: http://dx.doi.org/10.1093/nar/gkj130

[15] A. Garny, D. Nickerson, J. Cooper, R. W. dos Santos,
A. Miller, S. McKeever, P. Nielsen, and P. Hunter, “CellML
and associated tools and techniques,” Philosophical Transac-
tions of the Royal Society A, vol. 366(1878), pp. 3017–3043,
2008.

[16] P. Murray-Rust and H. S. Rzepa, “Chemical Markup,
XML, and the World Wide Web. 4. CML Schema,”
Journal of Chemical Information and Computer Sciences,
vol. 43, no. 3, pp. 757–772, May 2003. [Online]. Available:
http://dx.doi.org/10.1021/ci0256541

[17] The UniProt Consortium, “The Universal Protein Resource
(UniProt),” Nucl. Acids Res., p. gkm895, 2007. [Online].
Available: http://nar.oxfordjournals.org/cgi/content/abstract/
gkm895v1

[18] P. T. Spellman, M. Miller, J. Stewart, C. Troup, U. Sarkans,
S. Chervitz, D. Bernhart, G. Sherlock, C. Ball, M. Lepage,
M. Swiatek, W. L. Marks, J. Goncalves, S. Markel, D. Iordan,
M. Shojatalab, A. Pizarro, J. White, R. Hubley, E. Deutsch,
M. Senger, B. J. Aronow, A. Robinson, D. Bassett, C. J.
Stoeckert, and A. Brazma, “Design and implementation of
microarray gene expression markup language (mage-ml).”
Genome Biol, vol. 3, no. 9, August 2002. [Online]. Available:
http://dx.doi.org/10.1186/gb-2002-3-9-research0046

[19] P. G. A. Pedrioli, J. K. Eng, R. Hubley, M. Vogelzang, E. W.
Deutsch, B. Raught, B. Pratt, E. Nilsson, R. H. Angeletti,
R. Apweiler, K. Cheung, C. E. Costello, H. Hermjakob,
S. Huang, R. K. Julian, E. Kapp, M. E. Mccomb, S. G.
Oliver, G. Omenn, N. W. Paton, R. Simpson, R. Smith,
C. F. Taylor, W. Zhu, and R. Aebersold, “A common open
representation of mass spectrometry data and its application
to proteomics research,” Nature Biotechnology, vol. 22,
no. 11, pp. 1459–1466, November 2004. [Online]. Available:
http://dx.doi.org/10.1038/nbt1031

[20] S. Orchard, C. F. Taylor, H. Hermjakob, Weimin-Zhu, R. K.
Julian, and R. Apweiler, “Advances in the development of
common interchange standards for proteomic data.” Pro-
teomics, vol. 4, no. 8, pp. 2363–2365, Aug 2004.

[21] R. Stanislaus, L. H. Jiang, M. Swartz, J. Arthur, and
J. S. Almeida, “An XML standard for the dissemination
of annotated 2D gel electrophoresis data complemented
with mass spectrometry results.” BMC Bioinformatics,
vol. 5, no. 1, January 2004. [Online]. Available: http:
//dx.doi.org/10.1186/1471-2105-5-9

[22] A. Keller, J. Eng, N. Zhang, X.-J. Li, and R. Aebersold,
“A uniform proteomics MS/MS analysis platform utilizing
open XML file formats,” Molecular Systems Biology, vol. 1,
no. 1, pp. msb4 100 024–E1–msb4 100 024–E8, August 2005.
[Online]. Available: http://dx.doi.org/10.1038/msb4100024

[23] E. Deutsch, “mzML: A single, unifying data format for
mass spectrometer output,” Proteomics, vol. 8, no. 14, pp.
2776–2777, 2008. [Online]. Available: http://dx.doi.org/10.
1002/pmic.200890049

[24] “mzML 1.1.0 Specification,” 2009. [Online]. Available:
http://www.psidev.info/index.php?q=node/257

[25] A. Brazma, P. Hingamp, J. Quackenbush, G. Sherlock,
P. Spellman, C. Stoeckert, J. Aach, W. Ansorge, C. A. Ball,
H. C. Causton, T. Gaasterland, P. Glenisson, F. C.
Holstege, I. F. Kim, V. Markowitz, J. C. Matese,
H. Parkinson, A. Robinson, U. Sarkans, S. Schulze-
Kremer, J. Stewart, R. Taylor, J. Vilo, and M. Vingron,
“Minimum information about a microarray experiment
(MIAME)-toward standards for microarray data.” Nat Genet,
vol. 29, no. 4, pp. 365–371, December 2001. [Online].
Available: http://dx.doi.org/10.1038/ng1201-365

[26] S. Orchard, H. Hermjakob, R. K. Julian, K. Runte,
D. Sherman, J. Wojcik, W. Zhu, and R. Apweiler,
“Common interchange standards for proteomics data: Public
availability of tools and schema.” Proteomics, vol. 4,
no. 2, pp. 490–491, February 2004. [Online]. Available:
http://dx.doi.org/10.1002/pmic.200300694

[27] N. Le Novère, A. Finney, M. Hucka, U. S. Bhalla,
F. Campagne, J. Collado-Vides, E. J. Crampin, M. Halstead,
E. Klipp, P. Mendes, P. Nielsen, H. Sauro, B. Shapiro,
J. L. Snoep, H. D. Spence, and B. L. Wanner, “Minimum
information requested in the annotation of biochemical
models (miriam),” Nature Biotechnology, vol. 23, no. 12,
pp. 1509–1515, December 2005. [Online]. Available: http:
//dx.doi.org/10.1038/nbt1156

[28] T. cytoscape consortium, 2009. [Online]. Available: www.
cytoscape.org

[29] F. Bois, “GNU MCSim: Bayesian statistical inference
for SBML-coded system biology models,” Bioinformatics,
vol. 25, no. 11, pp. 1453–1454, 2009.

[30] L. Strömbäck and D. Hall, “An Evaluation of the Use of XML
for Representation, Querying, and Analysis of Molecular
pathways.” in EDBT Workshops., 2006.

[31] L. Strömbäck and P. Lambrix, “Representation of molecular
pathways: an evaluation of SBML, PSI MI and BioPAX,”
Bioinformatics, vol. 21, no. 24, pp. 4401–4407, October 2005.

[32] W3C, “XQuery 1.0: An XML Query Language.”
W3C, 2007. [Online]. Available: www.w3.org/TR/2007/
REC-xquery-20070123/.

[33] K. Beyer, F. Özcan, S. Saiprasad et al., “DB2/XML:Designing
for Evolution.” in SIGMOD 2005, 2005, pp. 31–38.

[34] M. Rys, “XML and relational Management Systems; Inside
Microsoft SQL Server 2005.” in SIGMOD 2005, 2005.

[35] R. Murthy, Z. Hua Liu, M. Krishnaprasad, S. Chandrasekar,
A.-T. Tran, E. Sedlar, D. Flurescu, S. Kotsovos, N. Agarwal,
V. Arora, and V. Krishnamurthy, “Towards an enterprise XML
architecture,” in SIGMOD 2005, 2005.

[36] M. Krishnaprasad, Z. Hua Liu, A. Manikutty, J. Warner, and
V. Arora, “Native XQuery processing in Oracle XMLDB,” in
SIGMOD 2005, 2005.

[37] Z. Hua Liu, M. Krishnaprasad, and V. Arora, “Native XQuery
Processing in XMLDB,” in SIGMOD 2005, 2005.

232

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

[38] M. Moro, L. Lim, and Y.-C. Chang, “Schema Advisor for
Hybrid Relational-XML DBMS.” in SIGMOD 2007, 2007.

[39] S. Amer-Yahia, F. Du, and J. Freire, “A Comprehensive
Solution to the XML-to-Relational Mapping Problem.” in
ACM International Workshop on Web Information and Data
Management (WIDM), 2004, pp. 31–38.

[40] D. Chamberlin, M. Carey, M. Fernandez, D. Florescu,
G. Ghelli, D. Kossmann, J. Robie, and J. Simeon, “XQueryP:
An XML Application Development Language.” in XML 2006,
2006.

[41] D. Chamberlin, M. Carey, D. Florescu, D. Kossman, and
J. Robie, “XQueryP: Programming with XQuery.” in Third
International Workshop on XQuery Implementation, Experi-
ence, and Perspectives., 2006.

[42] G. Ghelli, C. R, and S. J., “XQuery!: An XML query language
with side effects,” in Second International Workshop on
Database Technologies for Handling XML Information on the
Web (DataX 2006), 2006.

[43] L. Strömbäck, M. Åsberg, and D. Hall, “HShreX: a Tool
for Design and Evaluation of Hybrid XML Storage,” in
FLexDBIST 2009, 2009.

[44] Mark Logic Corporation, “Mark Logic Server, XQuery
API Documentation,” Mark Logic Corporation, 2007.
[Online]. Available: http://xqzone.marklogic.com/pubs/3.0/
apidocs/Extension.html

[45] Oracle, “Oracle life science platform,” Oracle, 2007.
[Online]. Available: www.oracle.com/technology/industries/
life sciences/

[46] B. Eckman and P. Brown, “An overview of data models for the
analysis of biochemical pathways.” Systems Biology, vol. 50,
no. 1, pp. 246–259, 2006.

[47] B. Bohannon, J. Freire, P. Roy et al., “From XML Schema
to Relations: A Cost-Based Approach to XML Storage.” in
IEEE International Conference on Data Engineering, 2002,
pp. 64–75.

[48] D. Floresco and D. Kossman, “Storing and Querying XML
data using RDBMS.” IEEE Data Eng. Bull., vol. 22, no. 3,
pp. 27–34, 1999.

[49] H. Georgiadis and V. Vassalos, “XPath on stereoids: Ex-
ploiting relational engines for XPath performance.” in SIG-
MOD’07, 2007.

[50] I. Mlynkova, “Standing on the Shoulders of Ants: Towards
More Efficient XML-to-Relational Mapping Strategies.” in
19th International Workshop on Databaseand Expert Systems
Applications,, 2009.

[51] T. Grust, J. Rittinger, and J. Teubner, “Why Off-the-shelf
RDBMSs are better at XPath Than you Might Expect.” in
SIGMOD’07, 2007.

233

International Journal on Advances in Software, vol 2 no 2&3, year 2009, http://www.iariajournals.org/software/

