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Abstract—This paper describes challenges and approaches
that have been addressed during the development of a workflow
environment for digital preservation. The system addresses the
general problem of efficiently processing collections of binary
data using commodity software tools. We present a prototype
implementation of a job execution service that is capable of
providing access to clusters of virtual machines based on
standard grid mechanisms. The service allows clients to specify
individual tools and execute them in parallel on large volumes
of data. This approach allows one to utilize a cloud infras-
tructure that is based on platform virtualization as a scaling
environment for the execution of complex workflows. Here, we
outline the architecture of the workflow environment, introduce
its programming model, and describe the service enactment.
With this paper we extend work previously presented in [1].
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I. I NTRODUCTION

Due to rapid changes in information technology, a sig-
nificant fraction of digital data, documents, and records
are doomed to become uninterpretable bit-streams within
short time periods. Digital Preservation deals with the long-
term storage, access, and maintenance of digital data ob-
jects. In order to prevent a loss of information, digital
libraries and archives are increasingly faced with the needto
electronically preserve large volumes of data while having
limited computational resources in-house. However, due
to the potentially immense data sets and computationally
intensive tasks involved, preservation systems have become a
recognized challenge for e-science [2]. Preservation systems
must be scalable in order to cope with enormous data
volumes, for example such as are produced in fields like
science and the humanities. Here, we argue that grid and
cloud technology can provide the crucial technology for
building scalable preservation systems.

The Planets project1 aims to provide a service-based
solution to ensure long-term access to the growing collec-
tions of digital cultural heritage data. The system supports
the development, evaluation, and execution of preservation

1Preservation and Long-term Access through Networked Services,
http://www.planets-project.eu/

processes based on atomic software components. Compo-
nents that perform preservation actions often rely on third-
party tools (e.g. a file format converter) that must be pre-
installed on a specific hosting platform. Planets provides
an integrated environment for seamlessy accessing those
tools based on defined service interfaces. The workflow ex-
ecution engine implements the component-oriented enactor
that governs life-cycle operation of the various preservation
components, such as instantiation, communication, and data
provenance. It allows the user to create distributed preserva-
tion workflows from high-level components that encapsulate
the underlying protocol layers.

A crucial aspect of the preservation system is the estab-
lishment of a distributed, reliable, and scalable computa-
tional tier. A typical preservation workflow may consist of
a set of components for data characterization, migration,
and verification, and may be applied to millions of digi-
tal objects. In principle, these workflows could be easily
parallelized and run in a massively parallel environment.
However, the fact that preservation tools often rely on closed
source, third-party libraries and applications that oftenre-
quire a platform-dependent and non-trivial installation pro-
cedure prevents the utilization of standard high performance
computing (HPC) facilities. In order to efficiently executea
preservation plan, a varying set of preservation tools would
need to be available on a scalable number of computational
nodes. The solution proposed in this paper tackles this prob-
lem by incorporating hardware virtualization, allowing usto
instantiate sets of transient system images on demand, which
are federated as a virtualized cluster. The presented Job
Submission Service (JSS) is utilized as the computational
tier of a digital preservation system. Jobs are capable of
executing data-intensive preservation workflows by utilizing
a MapReduce [3] implementation that is instantiated withina
utility cloud infrastructure. The presented system is based on
the Planets Interoperability Framework, Apache Hadoop [4],
and a JSS prototype providing a grid middleware layer on
top of the AWS2 cloud infrastructure.

In this paper, we present on an execution service for

2Amazon Web Services
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preservation tools which relies on standard grid mechanisms
and protocols like the Job Submission Description Lan-
guage [5] (JSDL) and the HPC basic web service profile
(HPCBP) [6]. We outline the architecture of the Planets
workflow environment and introduce an XML-based work-
flow language that is designed to integrate complex service
interaction based on reusable software components. Finally,
we present experimental results that have been conducted
using the Amazon Simple Storage Service (S3) and Elastic
Compute Cloud (EC2) services (AWS) [7]. The paper is
organized as follows: In section II we provide an overview
of related work in the area of cloud and virtual com-
puting, grids, and digital preservation, section III outlines
the problem domain, section IV presents the architecture
of the workflow environment, in section V, we introduce
the workflow model and language, section VI presents the
Job Submission Service and its prototype implementation,
section VII reports experimental results, and section VIII
concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Cloud and Virtual Computing

The demand for storage and computational power of
scientific computations often exceeds the resources that are
available locally. Grid infrastructures, services and remote
HPC facilities can provide a viable solution for scientists
to overcome these limitations. However, many applications
require dedicated platforms or need time-consuming adapta-
tions in order to utilize a remote resource. Virtual machine
technology provides software that virtualizes a physical host
machine, allowing the deployment of platform-independent
system images. The deployment of virtual computer in-
stances is supported by a virtual machine monitor, also
called a hypervisor. Cloud systems are consumable via
Internet-based services offering IT-technology in the form
of applications, hosting platforms, or access to computer
infrastructures. Amazon’s EC2 and S3 services, one of
the most prominent commercial offerings, allow users to
rent large computational and storage resources on-demand.
EC2 is based on the Xen [8] [9] hypervisor allowing one
to prepare and deploy virtual system instances that suit
individual application needs. S3 provides access to a global,
distributed, and replicated storage system. A detailed evalua-
tion of Amazon’s compute, storage, and coordination (SQS)
web services and their suitability for scientific computing
is given in [10] [11]. Deelman et al. provides cost-based
analysis of utilizing the Amazon cloud infrastructure for
scientific computing [12]. A proof-of-concept study that runs
a complex nuclear physics application on a set of virtual
machine nodes is presented in [13]. The Nimbus workspace
cloud provides a service to scientific communities allowing
the provisioning of customized compute nodes in the form
of Xen virtual machines that are deployed on physical nodes
of a cluster [14]. A study that compares differences of grid

and cloud systems that is based on Amazon’s EC2 and S3
services is given in [15]. An experiment were a large set
of scanned newspaper articles haven been converted to PDF
documents using the Amazon cloud infrastructure has been
reported in [16].

B. Distributed Data Infrastructures

Research in fields like high-energy physics and earth
science produce large amounts of irreplaceable data that
must be accessed and preserved over time. For example, in
earth observation, data is typically geographically dispersed
over different archive and acquisition sites, using a multitude
of data and meta-data formats [17]. Grid systems provide
dependable access and the coordinated resource sharing
across different organizational domains [18]. Data grids [19]
focus on the controlled sharing and management of large
data sets that are distributed over heterogeneous sites and
organizations. In this context, an important aspect is the
storage of data in a reliable, distributed, and replicated way.
Preservation archives are systems that aim to implement
long-term preservation in order to manage data integrity
and technological evolution. This includes migrating digital
objects to new technologies, maintaining their relationships
and preservation metadata. Data grids can be used as the
underlying technology to implement digital libraries and
distributed preservation archives [20]. The Storage Resource
Broker (SRB) [21] of the San Diego Supercomputer center
implements a distributed data management environment for
data collections based on a virtual file system, logical
namespaces, and a metadata repository (MCAT). The iRODS
system extends SRB by an adaptive rule system to enforce
data management policies based on server-sided micro ser-
vices [22]. The Transcontinental Persistent Archives Proto-
type (TPAP) [23] provides a testbed across a number of
independent US sites that are linked by high-performance
network (DREN), allowing the distribution of electronic
records across multiple institutions based on SDSC’s SRB.
An effort to develop a service-oriented infrastructure forthe
automated processing of linguistic resources effort is under-
taken by the Clarin project3. Computational grid systems
provide a complimentary technology and are often com-
bined with data grids. For example, the EGEE project [24],
currently the world’s largest production grid, provides large
quantities of distributed CPUs and petabytes of storage. A
survey of initiatives that focus on the integration of emerging
technologies like digital libraries, grid, and web services
for distributed processing and long-term preservation of
scientific knowledge is given in [25].

III. OVERVIEW

The Planets infrastructure aims to provide an e-research
and problem-solving environment for the development

3www.clarin.eu
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of preservation workflows that supports flexible tool and
workflow integration. It supports the planning as well as
the execution and evaluation of repeatable preservation
experiments. This preservation environment is implemented
as a service-oriented architecture that is accessible by users
via a portal server. The graphical end-user applications
typically implement a scientific experimentation process
and access the workflow execution engine (WEE) as
part of the portal environment. A major challenge of the
workflow execution engine is the enactment of a broad
range of experiments that tremendously vary in complexity
and scale. Experiments may be performed based on local
desktop components, remote application services, as well as
by incorporating large-scale compute and storage resources.
The workflow environment and execution service presented
in this paper addresses the following research issues:

• A grid service that provides access to a variety of
third-party tools based on clusters of customized
virtual images.

• The incorporation of data intensive computation
mechanisms for the efficient processing of non-textual
artifacts.

• A high-level workflow language for the task-parallel
execution of (parallel) compute jobs on different
middleware systems.

IV. T HE WORKFLOW ENVIRONMENT

This section outlines the workflow execution engine, it’s
service interaction mechanisms, as well as the programming
interface.

A. The Workflow Execution Engine

In the following, we outline the basic interaction pattern
between the user application, the workflow environment,
and the Job Execution Service. A detailed discussion of
the Planets workflow system and its implementation is
beyond the scope of this paper. The sequence diagram
in Fig. 1 schematically depicts the interaction of a work-
flow client (Preservation Application), the workflow service
API (Workflow Execution Engine), and the generic service
proxy (Execution Manager) during workflow execution. The
workflow service basically provides SOAP interfaces for
the submission and monitoring of workflow processes. A
workflow document provides an XML-based description
of an executable process (section V), which is typically
generated by a workflow editor and/or a domain specific
graphical application that utilizes the workflow service. The
workflow designer (application) is expected to lookup and
select the required services, tools, and job parameters based
on the Planets service and tool registries, which provide

graphical as well as SOAP interfaces. In its current imple-
mentation, the workflow execution engine does not provide
advanced resource management capabilities like on-demand
service selection, dynamic resource allocations, or quality
of service support. After a client has submitted a workflow
description for execution, an identifier is returned and the
control is handed over to the workflow execution engine.
The WEE enqueues the workflow and starts the execution
once all required preconditions are met. Resources are
limited to the number of overall available cloud nodes and
a maximum number of concurrently running workflows. A
workflow preprocessing stage (prepare Workflow) validates
the workflow document and evaluates the resource demand.
During workflow execution, each activity is associated with
an Execution Context, which provides a space that links an
ongoing activity (and all its metadata) with the correspond-
ing workflow instance. This includes information such as the
service interface, endpoint, tool configuration, walltime, as
well as a pointer to the result object. The implementation of
theExecution Contextis specific to the theExecution Service
that is invoked. At this stage of development, three types of
execution services are supported (see Fig. 2). TheLocalEx-
ecutionManagerexecutes local Java components which are
typically used for implementing metadata operations and
decision logic. TheWebServiceExecutionManageris used to
dynamically invoke remote preservation services. These ser-
vices implement a predefined Web service profile, which is
invoked by utilizing the Web Services Interoperability Tech-
nology (WSIT) 4 framework. Planets preservation services
implement interfaces and messaging protocols for operations
such as file characterization, modification, migration, val-
idation, or comparison [26]. TheEC2ExecutionManager
implements the invocation and message exchange with the
job submission service. This service implements a grid
service profile and is used to execute long-running and
data intensive jobs (section VII). Furthermore, the workflow
execution engine provides a method for status inquiry and
may send an email notification upon the completion of a
workflow.

B. Programming Interface

Planets preservation workflows are build from Java com-
ponents, allowing a workflow developer to assemble typical
preservation cases from atomic services. The workflow API
defines a set of functional interfaces that allow users to easily
assemble and executable preservation workflows including
preservation services likemigrate, characterize, compare,
or validate. The interfaces are compatible among each other
and operate based on a minimal data abstraction, called
a digital objects. Hence, on the API level each service
consumes and produces a digital object. A digital object
holds metadata like technical, provenance, or other preserva-

4https://wsit.dev.java.net/
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Figure 1. Sequence diagram showing the interactions between a Preservation Application, the Workflow Execution Engine, and the Execution Manager
during workflow execution.

tion information about a digital resource including a handle
to the actual data. Digital objects can be passed between
different preservation services and point to different types
of digital resources (e.g. files, collections, archives). The
preservation metadata of processed digital objects must be
be handled on the workflow level and is managed by trusted
Java components.

Figure 2. Class diagram showing different implementationsof the abstract
Execution Manager and Execution Context classes.

V. THE WORKFLOW MODEL

A. Objectives

In this section, we present a resource intensive preser-
vation workflow that can be executed by employing the
Planets Job submission service. Such a workflow requires a
complex control logic, which must be defined and executed
by the workflow system. In section IV-B, we outline a
workflow API that abstracts away low-level details such as
service interfaces and messaging protocols from the work-
flow developer. These components could be easily assembled
into executable workflow based on the natural programming
language (i.e. Java). However, for reasons like simplicity,
robustness (e.g. checkpointing and restart), and platform
independence, workflows should be defined in a declarative
fashion. In section V-C, we introduce initial developmentson
an XML-based workflow language for orchestrating Planets
preservation services, in particular the JSS. Work on this
workflow environment is influenced by a number of existing
web/grid service workflow systems including DAGMan [27],
Triana [28], and GridAnt [29].

B. Use Case and Data Flow

The typical preservation use-case we are targeting is the
processing of large data collections. A collection describes
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Figure 3. Data flow for a simple bulk processing application:data objects
are physical and referenceable entities in a data store, activities are executed
on parallel hardware, regions need to be co-scheduled. Messaging, metadata
management, control flow and decision logic are not shown in the diagram.

data that is logically interrelated and described using some
metadata language. If a collection is organized and curated
within a digital repository system, it must be exported first
before it can be processed by the presented preservation
system. A major difficulty for data preservation in gen-
eral arises from the diversity of digital data resources and
methods to store, describe, and organize them. Examples
of data collections we aim to preserve range from simple
file collections, over data organized using some markup
language (XML, HTML), to data organized in triple stores
(RDF/XML).

Figure 3 shows the data flow graph for a simple preserva-
tion use case. ParallelRegionsindicate that one or many
tasks might be executed as data parallel jobs. Consider
a collection of scanned book pages and associated text
documents for a historic book collection, organized by a
set of XML files. The idea of the preservation workflow is
to convert all images into the JPEG 2000 format and all
documents into the PDF/A format. The process flow works

as follows; first separate the data into images and documents
based on filename extensions. This can be done by running
an application (script) for each desired output type. The
activity takes a handle to the input data (for example pointing
to an S3 bucket) as input and produces a data handle for
each output type, represented as collection A and B in
the diagram. Once the data is sorted, a migration task is
started for each file set using a tool like ImageMagick5 for
the image migration and another tool for PDF/A document
conversion. Both activities should be run as parallel jobs in
order to minimize execution time. Therefore, each of the
migration tasks is launched as a parallel job that executes
on a specified number of (e.g. hadoop) cluster nodes. After
both migration tasks are finished, collection A’ and B’ are
created. In the next step, one needs to verify the format
of the resulting files and extracts relevant properties like
file size, image size, or the number of pages. This is done
by starting two parallel jobs that invoke a characterization
tool like jHove 6 using a handle to collection A’ and B’ as
input. In the final step the data collections are merged and
an updated version of the XML records linking to the new
data manifestations are generated.

It is important to note that the dataflow graph does not
represent the workflow programming model. The presented
workflow execution engine follows a more service-oriented
approach where the execution services are orchestrated
by the WEE during execution time. Hence, a continuous
message exchange between workflow execution engine and
the preservation services is required. Such a model gives
the workflow execution engine much more control over the
execution during runtime as compared to batch submission
of workflow graphs. This adds additional communication
overhead to the overall system but allows one to implement
much more complex workflow logic. This is for example
required in order to implement decision logic that depends
on metadata that is generated and evaluated during runtime.

C. Control Flow

Although a final data flow - as shown in figure 3 -
results in a Directed Acyclic Graph (DAG), many workflows
cannot be specified in this way. In order to define such
processes, it is important to be able to express control
logic like conditions or iterations. For a typical preservation
workflow that is executed within this environment, it is
for example required to evaluate intermediate results or
implement error handling. In the following, we describe first
results in defining an XML-based workflow language for
data-intensive preservation workflows. These workflows can
include activities that are local, distributed and/or executed
on parallel hardware (i.e. through the JSS). A major design
goal is to foster simplicity of the language based on reusable

5http://www.imagemagick.org/
6http://hul.harvard.edu/jhove/
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software components. Therefore, our approach is to encap-
sulate the complexity of interacting with the system within
an extensible set of high-level Java components. A workflow
can be assembled by interlinking these component based on
an XML document. We employ two abstraction layers: (a)
reusable Java components for implementing complex logical
tasks and (b) an XML schema for interlinking these compo-
nents. This approach can be contrasted to the approach taken
by low-level service orchestration languages like WS-BPEL.
WS-BPEL7 provides a very precise language that allows the
specification of web service interactions at a messaging level
using Web service standard languages like BPEL, XML,
XPath. However, creating BPEL-based workflow documents
can become a difficult and error prone task which is difficult
to automate. The presented approach is less universal but
designed with the idea in mind to be easily supported by a
graphical editor.

D. Example

Figure 4 provides an example workflow snippet for the
exection of two activities using the Job Submission Service
(JSS). Both services are concurrently executed using theex-
ecutecommand. The command does not block the program
execution until a correspondingreceiveoperation is issued
(similar to MPI 8 send/receive). The service is specified
by its endpoint address as well as a proxy component
(class) that implements the interaction with a certain service
interface. Furthermore, the preservation service needs to
be configured by a list of name-value pairs. The required
parameters depend on the service implementation (published
within the service registry), which specify the underlying
application/tool, specific arguments, or the resource demands
(e.g. number of nodes). In case of the execution service
this information is required to automatically generate thejob
descriptor. The service execution is furthermore associated
with a handle (puid) to the digital object representation of
the input data. Digital objects contain provenance and other
metadata about a physical data entity and are organized
within a metadata repository. Thereceiveoperation blocks
the workflow until the corresponding service execution has
been completed and a resultingdigital object has been
created. The object represents the result of a preserva-
tion service, which might be enriched metadata (e.g. by a
characterization) or the generation of new data items (e.g.
migration, modification). Methods for evaluation and storing
digital objects are implemented by the metadata repository
API.

E. File Transfer

A significant research challenge in executing Grid work-
flows is the transfer of large files between activities. This
is in particular true, when the data needs to be transferred

7www.oasis-open.org/committees/wsbpel/
8http://www.mpi-forum.org/docs/

between different sites during workflow execution. For the
presented experiments, we exploit a utility cloud for running
data-intensive experiments and only transfer metadata during
workflow execution. The data resides within an virtual
storage environment (S3) and is processed by a range of
parallel applications.

Figure 4. XML workflow declaration for execution two concurrently
running services. The workflow execution is blocked until both services
complete by corresponding receive operations.

VI. T HE JOB SUBMISSION SERVICE

A. Motivation

In the context of grid computing and data grids, digital
preservation archives are systems that can preserve the
output of computational grid processes [20]. An important
issue in the context of preserving existing digital content
is the process of deriving metadata from digital assets like
file collections in order to extract significant semantic infor-
mation for their preservation (e.g. format characterization).
Decisions in preservation planning [30] rely on information
that needs to be generated by algorithms and tools for fea-
ture extraction, format identification, characterization, and
validation [31]. Migrating digital entities between different
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formats typically relies on sequential, third-party libraries
and tools that are not supported by scientific parallel and
grid systems. Therefore, we propose a service that employs
clusters of customizable virtual nodes in order to overcome
these restrictions. The IF JSS implements a grid service
that provides access to a virtual cluster of large numbers
of individually tailored compute nodes that can process bulk
data based on data-intensive computing mechanisms and that
is integratable with computational and data grid systems.

B. Web Service Profile

Developing an infrastructure for digital preservation in-
volves many grid-specific aspects including the processingof
large volumes of data, conducting experiments in distributed
and heterogeneous environments, and executing workflows
that cross administrative and institutional boundaries. The
service presented in this paper focuses on the aspect of
submitting and executing data-intensive jobs as part of a
digital preservation infrastructure. In order to be able totake
advantage of existing grid solutions and to promote interop-
erability and integration, the IF JSS service is based on a
standard grid service profile (HPCBP) for job scheduling
(called the basic HPC use case) that is being well adopted
by scientific and industrial systems [32]. The OGF Basic
Execution Service (BES) [33] defines Web service inter-
faces for starting, managing, and stopping computational
processes. Clients define computational activities in a grid
based on JSDL documents. The OGF HPC Basic Profile
(HPCBP) specification defines how to submit, monitor, and
manage jobs using standard mechanisms that are compliant
across different job schedulers and grid middlewares by
leveraging standards like BES, JSDL, and SOAP. Our current
implementation provides interfaces that support the BES
base case specification and accept JSDL documents that are
compliant with the HPCBP profile.

C. Basic Service Components

The Job Submission Service (JSS) prototype has been im-
plemented based on a set of exchangeable core components,
which are described below. The JSS is a stand-alone Web
Service deployed in a Java EE Web Container as shown
in Fig. 5. It is secured using HTTPS and SSL/TLS for
the transport-layer and WS-Security based on X.509 server
certificates and username/password client credentials forthe
message-layer. In order to submit a request to the JSS,
username and password have to be provided that match a
previously created account for the institution that utilizes
the service. The individual accounts, utilization history, and
potentially billing information are maintained by theAccount
Managercomponent. As HPCBP is used as the web service
profile, JSDL documents are used to describe the individual
job requests which need to be mapped to physical resources
by the resource manager. TheJSDL parser component
validates the XML document and creates an object structure

that serves as input for theExecution Manager. A Session
Handler maps service requests based on activity identifiers
to physical jobs and keeps track of their current status (e.g.
pending, running, finished, failed). TheExecution Manager
interfaces with three componentsthe Handle Resolver, Input
Generator, and Job Managerthat depend on the resource
manager implementation, which is provided by Apache
Hadoop in our case. The file handle resolver is used to
validate a logical file handle (a URI) and resolve the physical
and accessible data reference. The next step is the generation
of an input file for a bulk of data that needs to be processed
by a parallel application utilizing a particular preservation
tool. Finally, the Job Manager prepares a job script and
schedules a job using the resource manager.
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Figure 5. Job Submission Service Components

D. Implementation for MapReduce and Amazon’s EC2, and
S3 Services

The experimental results presented in section VII have
been conducted using anExecution Managerimplementa-
tion for (1) the Hadoop resource manager, (2) Amazon’s
EC2 compute cloud, and (3) the S3 storage infrastruc-
ture. In principle, each of the aforementioned components
could be exchanged by different implementations and be
connected to different resources, for example a local (e.g
Condor [34] based) workstation cluster and network file
system. In the following, we describe the functionality of the
“cloud-enabled” execution manager. A file handle resolver
is used to map a logical handle of a data collection to
physical references that are meaningful for the application
that needs to access the data (e.g. a file URI, a HTTP
URL). Our file handle resolver is implemented in a way
that it utilizes the S3 REST-based API to simply generate
a list of URIs for files that are contained within an input
bucket. TheInput Generatoruses this information to create
an input file for the MapReduce application that processes
the input data.MapReduceis a framework and programming
model that has been introduced by Google to support parallel
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data-intensive computations. Apache Hadoop is an open
source MapReduce implementation that can be used to
cluster commodity computers. Also, Hadoop provides built-
in support for EC2 and S3. We use Hadoop’s own distributed
file system to store input files across the computing nodes.
The Job Managercomponent passes the input file together
with an MapReduce application (theCommandExecuter)
and information extracted from the JSDL object to the
Hadoop job scheduler. TheCommandExecuteris responsible
for handling the S3 bulk data i/o, processing theinput splits
based on pre-installed applications as specified by the user,
and for output generation. Finally, the outputs produced by
each node are merged to form the output data collection.

VII. E XPERIMENTAL RESULTS

A. Preliminary Considerations

The experiments were carried out as a quantitative eval-
uation of utilizing a virtual, cloud-based infrastructures for
executing digital preservation tools. For all experiments, a
simple workflow was implemented that migrates one file
collection into a new collection of a different format using
the ps2pdf command-line tool. It is important to note
that the selected tool is replaceable and not relevant for the
presented experiments. Four dimensions have been analyzed
and compared to sequential executions on local execution
environments: the execution time, the number of tasks,
the number of computing nodes, the physical size of the
digital collections to migrate. As performance metrics we
calculate Speedup and Efficiency [35] as formally described
in equationsSs,n (1) andEp (2).

Ss,n = Tseqs,n/Tps,n (1)

Ep = Ss,n/p (2)

where:
s - is the physical object size,
n - is the number of tasks,
p - is the number of computing nodes.
Tseq - is the sequential execution time,
Tp - is the execution time with p computing nodes.

B. Experiment Setup

For the experiments, we utilized the Amazon Elastic
Compute Cloud (EC2) as a cloud infrastructure, leasing up
to 150 cluster nodes, each running a custom virtual images
based on RedHat Fedora 8 i386, Apache Hadoop 0.18.0, and
a set of pre-installed the migration tools. The used default
system instances provide one virtual core with oneEC2
Compute Unit, which is equivalent to the capacity of a 1.0-
1.2 GHz 2007 Opteron or a 2007 Xeon processor. Bulk
data was stored outside the compute nodes using Amazon’s
Simple Storage System (S3) due to scale and persistence
considerations. We experienced an average download speed

from S3 to EC2 of 32.5 MByte/s and an average upload
speed from EC2 to S3 of 13.8 MByte/s at the Java level. At
the time conducting the presented experiments, the per hour
price for an EC2 default instance was $0.10.

C. Measurements and Results

For the experiments shown in Fig. 6 we executed all
computations on a constant number of five virtual nodes.
The number of migration tasks was increased using different
sized digital collections to compare the execution time
within EC2 to a sequential local execution (SLE) on a single
node with identical hardware characteristics. Fig. 6 focuses
on the intersection points of the corresponding curves for
SLE and EC2 identifying the critical job size for which the
parallel execution within EC2 is faster than the sequential
execution on a local machine. The results including Speedup
and Efficiency for jobs with a large task sizes outside the
bounding box of Fig. 6 are shown in table I. For the
experiments shown in Fig. 7 we held the number of tasks
constant (migration of a set of one thousand 70kB files) and
increased the number of computing nodes form 1 to 150
to evaluate scalability. The values for Speedup, Efficiency
and execution time were calculated based on the sequential
local execution time for a given parallel job. As shown in
table II, Speedup increases significantly with an increasing
number of nodes due to relatively small overheads of the
data parallel application model (see VII-D).
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Figure 6. Execution time for an increasing number of migrations tasks
and a constant number of computing nodes. The execution on five (EC2)
nodes is compared to a sequential local execution (SLE) of the same task.

D. Interpretation of Results

Already for a small number of migration tasks the parallel
execution within EC2 proved to be faster than the sequential
execution on a single node (see Fig. 6). A Speedup of 4.4
was achieved for 5 nodes with n=1000 and s=7.5 MB (see
table I) proving the suitability and potential of employing
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Figure 7. Execution time for 1000 constant migration tasks using an
increasing number of computing nodes.

Tasks Size SLE exec. EC2 exec.Ss,n Ep

(n) (s) time time
[MB] [min] [min]

1000 0.07 26.38 8.03 3.28 0.67
100 7.5 152.17 42.27 3.60 0.72
1000 7.5 1521.67 342.70 4.44 0.88
100 250 523.83 156.27 3.36 0.67
1000 250 5326.63 1572.73 3.37 0.68

Table I
RESULTS OUTSIDE THE BOUNDING BOX OFFIG. 6 INCLUDING SPEEDUP

AND EFFICIENCY

(even small) clusters of virtual nodes for digital preservation
of large data amounts. Results in Fig. II show that the sys-
tem achieves good scalability when significantly increasing
the number of utilized cluster nodes. However, following
overheads which affect the efficiency of the described ex-
periments have been identified: (1) Local execution (SLE)
vs. cloud-based execution (p=1, n=1000). The master server
for the Hadoop distributed file system which is running on
a single worker node added 30% (8min) overhead on that
node compared to an SLE (26min). We experienced less than

Number of EC2 exec. Ss,n Ep

nodes (p) time [min]
1 36.53 0.72 0.72
5 8.03 3.28 0.66
10 4.82 5.48 0.55
25 2.63 10.02 0.40
50 1.68 15.67 0.31
75 1.40 18.84 0.25
100 1.03 25.53 0.26
125 0.98 26.83 0.21
150 0.87 30.44 0.20

Table II
RESULTS SHOWN INFIG. 7 COMPARED TO THE SEQUENTIAL LOCAL
EXECUTION OF A GIVEN JOB(N=1000,S=0.07 MB) OF 26.38MIN .

10% overhead introduced by S3 (compared to a local file
system). (2) For a larger number of nodes (p> 50, n=1000)
efficiency decreases for various reasons, e.g. coordination.
As all nodes are considered blocked until a job is processed,
a large fraction of nodes are idle until the last process has
finished. Also for short execution times per node, relatively
small overheads like network delays and startup time have
considerable impact on efficiency.

VIII. C ONCLUSIONS ANDFUTURE WORK

The emergence of utility cloud services introduced a novel
paradigm for the provisioning of large-scale compute and
storage resources [36]. Clouds allow their users to lease
and utilize hard and software resources residing in large
global data centers on-demand. This provides a generic
model that can be exploited for business as well as for
scientific applications. In the context of high-performance
computing, it is obvious that such a model cannot replace
dedicated clusters or other high-end and supercomputing
facilities. However, it has been shown that applications in
the area of data-intensive and high-throughput computing
can be well applied to the cloud computing model [37].
Cloud infrastructures provide in general much less specific
services than dedicated systems like compute clusters or
Grid resources. The AWS EC2 service for example allows
the user to control the software that is installed on the
utilized virtual machines, commission and decommission
computational resources on demand, and it does not require
the user to wait for free instances/nodes before using them.

The integration of such resources into an infrastructure
for distributed computing provides an important challenge
in this context. It is important to identify the differencesin
orchestrating clouds compared to existing service-computing
models. In this paper, we have presented a grid execu-
tion service that provides parallel processing of bulk data
based on customizable virtual nodes as part of a digital
preservation infrastructure. This service has been deployed
and evaluated using Amazon’s utility cloud infrastructure.
We argue that building such computational services based
on virtual images can provide a viable technology for the
provisioning of domain-specific applications on a larger
scale. Furthermore, we introduce work on a workflow system
for the concurrent orchestration of cloud-based execution
services. Future work will deal with the employment of a
common authorization mechanism and protocol for secure
web-based data access. In the area of digital libraries and
archives, we feel that in particular, legal concerns, security
policies, and SLAs will require extensive consideration.
Another research goal will be the elaboration of resource
management issues for on-demand computing. In particular,
we will investigate in scheduling algorithms for distributing
tasks across cloud nodes and clusters.
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