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Abstract—Field Failure Data Analysis (FFDA) is a widely
adopted methodology to characterize the dependability behav-
ior of a computing system. It is often based on the analysis of
logs available in the system under study. However, current logs
do no seem to be actually conceived to perform FFDA, since
their production usually lacks a systematic approach and relies
on developers’ experience and attitude. As a result, collected
logs may be heterogeneous, inaccurate and redundant. This,
in turn, increases analysis efforts and reduces the quality of
FFDA results.

This paper proposes a rule-base logging framework, which
aims to improve the quality of logged data and to make the
analysis phase more effective. Our proposal is compared to
traditional log analysis in the context of a real-world case
study in the field of Air Traffic Control. We demonstrate
that the adoption of a rule-based strategy makes it possible to
significantly improve dependability evaluation by both reducing
the amount of information actually needed to perform the
analysis and without affecting system performance.

Keywords-Field Failure Data Analysis; Dependability Evalu-
ation; Logging Rules; Automated Log Analysis.

I. INTRODUCTION

Field Failure Data Analysis (FFDA) embraces several
techniques aiming to characterize the dependability behavior
of a computing system during the operational phase. De-
pendability of a computing system is the “ability to deliver
service that can justifiably be trusted” [9]. FFDA-based
dependability analysis relies on natural, i.e., not forced
errors and failures, and it commonly exploits logs available
in the system under study. Logs are files where applications
and system modules register events related to their normal
and/or anomalous activities. For this reason, logs “are one
of the few mechanisms for gaining visibility of the behavior
of the system” [2].

FFDA has shown its benefits over a wide range of sys-
tems even though logs are often an under-utilized resource
[3], since their production is known to be a developer-
dependent [4] and error-prone [5] task. Log production lacks
a systematic approach and relies on developers’ experience
and attitude. In fact, crucial decisions about logging are
left to the last phases of the software development cycle
(e.g., coding). As a result, it is reasonable to state that
current logs do not seem to be actually conceived to perform
dependability evaluation.

Logged information can be heterogeneous and inaccurate
[5], [6]. Heterogeneity may affect both format and content,
and usually increases as the system complexity increases.
Many current FFDA tools address format heterogeneity.
Content heterogeneity is more challenging since the meaning
of a logged event depends on what the developer actually
intended to log. Inaccuracy is related to the presence of
duplicate or useless entries as well as to the absence of
relevant failure data. Error propagation phenomena, which
result in multiple and apparently uncorrelated events [7], [8],
represent a further threat for logs effectiveness. A widely
adopted strategy to address this phenomena is to use an one-
fits-all timing window to coalesce related events. However,
this is usually performed without any awareness of the
actual correlation among log messages [2]. The risk is to
classify correlated failures as uncorrelated, and vice versa,
thus leading to unrealistic and wrong results.

The mentioned issues make the analysis of failure data a
very hard task. As a matter of fact it requires significant
manual efforts and ad-hoc algorithms and techniques to
remove useless data, to disambiguate events, and to coalesce
correlated ones. These efforts are exacerbated in case of
complex, networked systems composed by several software
items, each of them with its own logging mechanisms. As a
result, the quality of FFDA-based dependability evaluation
may significantly reduce.

We believe that a promising solution to overcome this
limitation is to re-think the way in which logs are produced
and analyzed. A viable strategy is to provide software de-
velopers with a comprehensive logging framework, inspired
by a high-level system model, which specifies rules to
produce log events, and tools to automate their collection
and analysis. Our proposal aims to improve the quality and
the effectiveness of logged events with respect to traditional
logging, to achieve accurate and homogeneous logs, which
are ready to be analyzed with no further processing, and
to make it possible to extract, even on-line, value-added
information based on log events produced by individual
system components.

This paper presents the concepts underlying our proposal
by focusing on dependability evaluation of complex systems.
More in details, we describe logging rules and algorithms
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aiming (i) to unambiguously detect the occurrence and the
location of a failure (in particular, in this paper the focus
is on timing failures [9]), (ii) to trace error propagation
phenomena induced by interactions within the system, and
(iii) to enable effective dependability measurements. We
also describe currently available automated log collection
and analysis tools. We demonstrate the effectiveness of
the proposed strategy, compared to a real-world logging
subsystem, in the context of a case study in the field of
the Air Traffic Control (ATC). The adoption of systematic
logging rules significantly increases the quality of FFDA-
based dependability evaluation (e.g., availability and time to
failure) and makes it possible to achieve valuable insights
about the behavior of the system in hand. We experience
that the proposed framework allows reducing the amount of
information actually needed to perform the analysis without
affecting performance. In particular, log size decreases by
more 94.3% and system performance is improved by more
12.1% when compared to the initial logging subsystem.

The rest of the paper is organized as follows. We de-
scribe related work in the area of FFDA in Section II
while Section III presents the system model underlying the
design of our framework. Rules to produce log events and
algorithms enabling their on-line processing are presented in
Sections IV and V, respectively, while Section VI describes
the ongoing implementation of the proposed log collection
and analysis infrastructure. We describe the reference case
study and the experimental campaign in Section VII and
results achieved with traditional logging techniques and the
proposed framework in Sections VIII and IX, respectively.
Section X provides the estimation of the overhead introduced
by the proposed framework on the system in-hand while
Section XI concludes the work.

The paper improves and extends the proposal presented in
[1]. In particular (i) we describe an additional set of logging
rules aiming to figure out the operational state of an entity,
(ii) we provide a comprehensive framework to collect and
analyze proposed rule-based logs, and (iii) we significantly
improve the experimental campaign by performing in-depth
availability and failure analyses of collected logs.

II. RELATED WORK

FFDA studies commonly adopt log files as source of
failure data. Logs are usually conceived as human-readable
text files for developers and administrators to gain visibility
in the system behavior, and to take actions in the face of fail-
ures. A programming interface usually allows applications
to write events, i.e., lines of text in the log, according to
developers’ needs. Well-known examples of event logging
systems are UNIX syslog [10] and Microsoft’s event logger.

FFDA has shown its benefits over a wide range of systems
during the last three decades. A non-exhaustive list includes,
for example, operating systems [5], [4], control systems
and mobile devices [11], [12], supercomputers [2], [13],

and large-scale applications [14], [15], [16]. These studies
contributed to gain a significant understanding on the failure
modes of these systems, and made it possible to improve
their successive generations [17].

Log analysis is usually done manually, by means of ad-
hoc algorithms and techniques to remove useless data (e.g.,
housekeeping events [8], which report non-error conditions)
to disambiguate events, and to coalesce correlated events.
In particular, with respect to dependability evaluation, sig-
nificant efforts are needed to identify system reboots and
failure occurrences, which are used to estimate, for example,
the system availability and Time To Failure. A commonly
used approach to figure out a reboot signal from logs is
to locate specific event patterns (e.g., [5]). On the other
hand, the identification of failure-related log events is more
challenging. This task usually requires a preliminary log in-
spection (e.g., to figure out events severity and error-specific
keywords within the logged text) as well as procedures to
cluster a set of related alerts to a single alert per failure [2].

It thus emerged the need for software packages which in-
tegrate a wide range of the state-of-the-art FFDA techniques,
such as tools easing, if not automating, the data collection,
coalescing, and modeling tasks. An example is MEADEP
[18], which consists of four software modules, i.e., a data
preprocessor for converting data in various formats to
the MEADEP format, a data analyzer for graphical data-
presentation and parameter estimation, a graphical modeling
interface for building block diagrams, e.g., Weibull and k-
out-of-n block, and Markov reward chains, and a model-
solution module for availability/reliability estimation with
graphical parametric analysis. Analyze NOW [19] is a set of
tools tailored for networks of workstations. It embodies tools
for the automated data collection from all the workstations,
and tools for automating the data analysis task. In [20], [21]
a tool for on-line log analysis is presented. It defines a set of
rules to model and to correlate log events at runtime, leading
to a faster recognition of problems. The definition of rules,
however, strongly relies on log content and analysts’ skills.

Despite these efforts, several works have pointed out the
inadequacy of event logs to perform dependability evalu-
ation. A study on Unix workstations [5] recognizes that
logs may be incomplete or imperfect, and it describes an
approach for combining different data sources to improve
system availability estimation. In [4], a study on a networked
Windows NT system shows that many reboots, i.e., about
50%, do not show any specific reason, thus enforcing the
need for better logging techniques. A study on supercom-
puters [2] shows that logs may lack useful information for
enabling effective failure detection and diagnosis. Recent
studies (e.g., [22], [23], [24]) highlight logs inadequacy at
providing evidence of software faults, which can be activated
on the field by complex environmental conditions [25]. For
example, bad pointer manipulations may originate a crash
before any information is logged in C/C++ programs.
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Recent contributions address inefficiency issues of log
files. A proposal for a new generation of log files is provided
in [26], where recommendations are introduced to improve
log expressiveness by enriching their format. A metric is
also proposed to measure information entropy of log files,
in order to compare different solutions. Another proposal
is the IBM Common Event Infrastructure [27], introduced
mainly to save the time needed for root cause analysis. It
offers a consistent, unified set of APIs and infrastructure for
the creation, transmission, persistence and distribution of log
events, according to a well-defined format.

All these studies represent an important step forward
for log-based dependability evaluation of computer systems.
However, they mainly address format heterogeneity issues,
i.e., they focus on what has to be logged. Logs incomplete-
ness and ambiguity cannot be solved acting solely on format.
Developers may miss to log significant failure events, and
they may produce events with ambiguous descriptions. At
the same time, tools for automated log analysis may co-
alesce uncorrelated events. In this paper logging rules are
introduced to define the points in the source code where,
other than what, events should be logged. We aim to achieve
homogenous, i.e., both in format and semantics, logs, even
if produced by software components coming from different
developers. This allows improving failures detection and
related coalescence, hence increasing the overall quality of
FFDA results.

III. SYSTEM MODEL

We use a high-level model to describe the main compo-
nents of a system and the interactions among them. This
makes it possible to design the proposed logging framework
without the need for focusing on a specific real-world
technology. More in details, we use the model (i) to figure
out where to place effective logging mechanisms within the
source code of an application, and (ii) to design general-
purpose algorithms and tools to automate log collection
and analysis. Following this objective we classify system
components in two categories, according to the following
definitions:
• entity: active system component. It provides services

that can be invoked by other entities. An entity executes
local computations, it starts interactions involving other
entities or resources of the system and it can be the
object of an interaction started by another entity.

• resource: passive system component. At most it is the
object of an interaction started by another entity of the
system.

Proposed definitions provide very general concepts, which
have to be specialized according to designer’s needs. For
example, entities may model processes or threads, i.e., active
elaboration components, while resources may model files
and/or databases. Furthermore, entities may represent logical
components, e.g., the executable code belonging to a library

or package of code, independently of the process/thread
executing it.

As stated, entities interact, e.g., by means of function
calls or method invocations, with other system components,
i.e., entities or resources, to provide complex services. We
do not consider a specific real-world interaction mechanism.
Our focus is on the properties of an interaction, i.e., (i) it
is always started by an entity (ii) its object can be another
entity or a resource of the system (iii) it possibly originates
further computation if the object of the interaction is an
entity.

system interface 

entity 

resource 
interaction 

Figure 1: System overview.

We adopt a graphic formalism to represent the pro-
posed concepts. More in details, entities and resources are
represented as circles and squares, respectively, while an
interaction as a direct edge from the caller entity to the
called. Figure 1 is provided for example.

IV. LOGGING RULES

Taking into account the proposed system model, we
investigate how to place log events within the source code of
an entity to enable effective dependability measurements. To
this aim, we identify two types of events, i.e., interaction and
life-cycle events, respectively. The former provides failure-
related information, the latter allows figuring out the opera-
tional state of an entity. Jointly with the event definition, we
present a logging rule, which formalizes its use during the
coding phase. Each rule defines what to log, i.e., the event
that has to be logged by the entity, and where to log, i.e.,
the point in the source code where entities have to log the
event.

A. Interaction Events

Interaction events aim to make it possible (i) to detect
entity failures, (ii) to discriminate if they are related to
a local computation or to an interaction towards a failed
entity or resource. We describe the principle underlying
interaction events in the following. Section V-A provides
an in-depth discussion about the hypothesis and failure
mode assumptions underlying their analysis during system
operations. We start focusing on services provided by system
entities, addressed by the following rules:
• R1, Service Start - SST: the rule forces the SST event

to be logged before the first instruction of each service

325

International Journal on Advances in Software, vol 2 no 4, year 2009, http://www.iariajournals.org/software/



provided by an entity. It provides the evidence that
the entity, when invoked, starts serving the requested
interaction.

• R2, Service End - SEN: the rule forces the SEN event
to be logged after the last instruction of each service.
It provides the evidence that the entity, when invoked,
completely serves the requested interaction.

Figure 2 clarifies the aim of R1 and R2 by means of an
example in the field of object oriented programming. Let
A be an object providing the service named serviceA()
and log() be a facility to log the described events. When
the service is invoked, A logs the SST event. If a fault is
triggered during the service execution (e.g., due to a bad
pointer value used by I1 in Figure 2) SEN will miss in the
log of the entity.

void A : : serviceA ( int∗ ptr ) {
log(SST); //R1
cout << ∗ptr ; //I1
b . service ( ) ; //I2
log(SEN); //R2

}

Figure 2: Logging rules (R1,R2)

SST and SEN events alone are not enough to figure out
if an entity failure is due to a local error or to an interaction
with a failed entity or resource. As depicted in Figure 2, if
A does not log the SEN event, we are not be able to figure
out if the outage is due to I1, i.e., the local computation, or
to I2, i.e., the interaction involving another entity. For this
reason we introduce interactions-related events:
• R3, Entity (Resource) Interaction Start - EIS (RIS): the

rule forces the EIS (RIS) event to be logged before the
invocation of each service. It provides the evidence that
the interaction involving the entity (resource) is actually
started by the calling entity.

• R4, Entity (Resource) Interaction End - EIE (RIE): the
rule forces the EIE (RIE) event to be logged after the
invocation of each service. It provides the evidence that
the interaction involving the entity (resource) ends.

No other instructions are allowed between the events EIS
(RIS)-EIE (RIE). By using R3 and R4 the example code
shown in Figure 2 turns in Figure 3. In this case, if the
interaction b.serviceB() fails (e.g., by never ending, as in
case of a hang in the called entity), we are able to find it
out, since the event EIE is missing.

An entity usually provides more than one service or start
more than one interaction. In this case multiple SSTs (EISs)
are produced by the entity and it is not possible to figure
out the service (interaction) they are actually related to. To
overcome this limitation, the start and end events, related to
each service or interaction within the same entity, are logged
jointly with a unique key.

void A : : serviceA ( int ∗ptr ) {
log(SST); //R1
cout << ∗ptr ; //I1
log(EIS); //R3
b . service ( ) ; //I2
log(EIE); //R4
log(SEN); //R2

}

Figure 3: Logging rules (R3,R4)

We recognize that the extended use of logging rules may
compromise code readability. However, by taking advantage
of their simplicity, it is possible to design ad-hoc supports
to automatically insert them just before the compilation
stage. Such an approach makes rules-writing transparent to
developers and does not require the direct modification of the
source code. This issue is not currently a priority, however
we aim to address it in the future.

B. Life-cycle Events

Interaction events do not allow understanding if an entity
is currently down, or if it restarted after a failure. To
overcome this limitation, we introduce life-cycle events,
which aim to make it possible to figure out the operational
state of an entity by providing evidence that it actually
started its execution or it has terminated properly. Two rules
fit this aim:
• R5, Start up - SUP: the rule forces the SUP event to

be logged as the first instruction executed by an entity,
at its startup.

• R6, Shut down - SDW: the rule forces the SDW event to
be logged as the last instruction executed by an entity,
when it is properly terminated.

These events are useful to evaluate dependability figures,
even on-line, such as uptime and downtime for each system
entity. Furthermore, SUP and SDW sequences allow identi-
fying clean and dirty shutdowns, e.g., two consecutive SUP
events are an evidence of a dirty shutdown. This type of
events has been already used or proposed by past studies to
identify clean and dirty reboots of operating systems [28],
[4]. Our idea is to exploit this concept at a finer grain,
according to the system model and applied to all entities.

V. EVENTS PROCESSING

The joint use of both the proposed model and logging
rules makes a system to be perceived, from the analyst
point of view, as a set of entities, each producing an event
flow. These flows can be used to extract, during system
operations, useful insights about the current execution state
of the entities as well as to detect failure occurrences. To
this aim we design algorithms to identify and to correlate
alerts during system operations and to perform effective
dependability measurements.
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A. Alerts Identification

Analyzing log files to isolate entries, which provide
evidence that a failure occurred in the system, is a time-
consuming task of FFDA. We refer to these entries as to
alerts. As discussed in Section II, alerts identification is
usually preformed by looking at the severity level or the
type of the entry (if available in the logging mechanism)
and by analyzing the free text contained in the entry (e.g.,
to understand if it contains specific error-related keywords,
such as error, halt, unable, etc.). As discussed, logs
inaccuracy may compromise this kind of analysis. Entries
with the semantics, but containing a different text, can be
erroneously classified as different and vice versa. In addition,
some failures, e.g., hangs, are unlikely to produce entries
useful for their identification.

Interaction events are designed to make it possible to auto-
mate alerts identification, and to discriminate between alerts
due to local or external causes, as explained in the following.
By construction, logging code interleaves the source code of
the entity. Hence we assume as possible errors the ones that
result in modification, suspension or termination of the entity
control flow, thus leading to delayed or missing log events.
This assumption indirectly provides possible failure modes
covered by the proposed logging mechanism. Let clarify
the concept by examples. The assumption covers crashes
or hangs (both active and passive) failures of the system
entities. When an entity crashes (or hangs) while serving
a request, SEN is missing in the related flow. At the same
time the calling entity may not be able to correctly log its
EIE. The assumption, on the other hand, does not fit value
failures, but, at the state of art, it is known that they seem
to be not detectable solely via logs.

…	  
…	  

SST	  	  	  4	  
EIS	   	   	  2	  
EIE	   	   	  2	  
RIS	   	   	  7	  
RIE	   	   	  7	  
SEN	   	  4	  
…	  
…	  

ev
en

t f
lo

w
 

…	  
…	  
t1	  
t2	  	  
t3	  
t4	  
t5	  
t6	  
…	  
…	  

events arrivals 
times 

estimated  
durations 

2 

7 

4 

time 

Figure 4: Alert identification.

Since our focus is on anomalies that ultimately result
in delayed or missing events, we design external detectors
based on timeouts. As a reminder, log events are provided
in start-end pairs. A SST has to be followed by the related
SEN, and an EIS has to be followed by the related EIE (in
a similar way for a resource). We measure the time between

two related events (i.e., the start and end events belonging
to the same service or interaction) during each fault-free
operation of the target system, in order to keep constantly
updated the expected duration (e.g., ∆2, ∆7, and ∆4, in
Figure 4) of each pair of events. A proper timeout is then
tuned for the alerts identification process. Figure 4 clarifies
the concept. Proposed detector generates an alert whenever
an end event is missing. We define three types of alerts:
• entity interaction alert - EIA: it is generated when EIS

is not followed by the related EIE within the currently
estimated timeout;

• resource interaction alert - RIA: it is generated when
RIS is not followed by the related RIE within the
currently estimated timeout;

• computation alert - CoA: it is generated when SST is
not followed by the related SEN within the expected
timeout and neither an entity interaction alert, i.e., EIA,
nor a resource interaction alert, i.e., RIA, has been
generated.

As discussed in Section IV a computation alert represents
a problem that is local with respect to the entity that
generated it. On the other hand, an interaction alert reports
a misbehavior due to an external cause.

B. Alerts Coalescence

Error propagation phenomena, due to interactions among
system components, usually result in multiple alerts. Coales-
cence makes it possible to reduce the amount of actually use-
ful information to perform the analysis, by putting together
distinct alerts into a clustered one. As discussed in Section I,
traditional log-analysis commonly faces alert redundancy by
means of time-based approaches, but without any awareness
of the actual correlation among log messages.

…	  
SST	  	  	  2	  
EIS	   	   	  7	  
EIE	   	   	  7	  

A 
B 

A interacts with B 

…	  
SST	  	  	  4	  
SEN	   	  4	  

! 

tim
e 

tim
e 

missing events 

Figure 5: Example.

The use of precise logging rules significantly reduces anal-
ysis efforts and increases the effectiveness of the coalescence
phase. As a matter of fact, interaction events make it possible
to discriminate different types of alerts, each of them with
its own specific meaning: CoA and RIA allow to identify a
failure source, EIA to trace error propagation phenomena.

Figure 5 clarifies the concept. Let A and B be two system
entities. A starts an interaction with B. If a latent fault is
triggered during the service execution, B does not log SEN.
At the same time A, that is still working, is not able to
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properly log the EIE because of the outage of B. An entity
interaction alert and a computation alert are raised for A
and B, respectively.

We generalize the example according to the proposed
model. A system is composed by several entities, which
interact among them in order to provide complex services.
An interaction chain is ultimately composed by simpler one-
to-one interactions between (i) two entities or (ii) an entity
and a resource. When a fault is triggered within an entity,
we experience one CoA or RIA, related to the component
ultimately responsible of the problem, possibly followed
by multiple EIAs coming from the entities involved in the
interaction chain.

The described principle underlies the following coales-
cence strategy. When a CoA or RIA is observed in the
system, a new tuple, i.e., a clustered alert, is created. Each
experienced EIA is stored until the previous and successive
tuples have been created and it is subsequently coalesced
with the one that is closer in time. Each tuple allows achiev-
ing useful insights about the failure occurred in the system.
As a matter of fact it provides information about the source
of a failure and all the entities involved due to propagation
phenomena. Tuples produced with this approach can be used
to evaluate the failure behavior of each system entity, e.g.,
in terms of the time-to-failure statistical distribution.

C. Identification of Execution States

We design a state-machine (Figure 6) to figure out the
execution state of an entity during system operations. To
this aim we use both life-cycle events and described alerts.
We identify three possible states detailed in the following:
UP - the entity is up and properly running;
BAD - the entity may be in a corrupted state;
DOWN - the entity is stopped.

UP	   BAD	  

DOWN	  

SUP 
SDW 

SUP 

SDW 

SUP 

CoA 

CoA,EIA,RIA SUP, EIA, RIA 

Figure 6: Entity execution states

When an entity starts, a SUP event is received, and the
UP state is assumed. If an interaction alert, i.e., EIA or RIA,
is received, the entity is considered to be still UP, but it
is likely involved in a failure caused by another system
entity or resource. In some cases, e.g., due to scheduled
maintenance or to the persistence of interaction problems,

an entity may be restarted. In this case, a SDW event will
be observed, which makes the entity transit into the DOWN
state. If a CoA is received, the entity transits into the BAD
state. As discussed, a CoA is the result of a local problem
within the entity. We thus assume that the internal state of
the entity may be corrupted. An entity in a BAD state may
be (i) still able to perform normal operations (e.g., the CoA
is the result of a transitory problem) or (ii) actually failed
(e.g., crashed). If an alert, i.e., CoA, EIA or RIA, is received,
the entity is considered to be still BAD. When the entity is
resumed, we may observe either a clean or dirty restart. In
the former case the couple SDW, SUP is observed, which
means that the entity was still active and able to handle a
shutdown command. In the latter case, only the SUP event
is observed (transition BAD to UP), i.e., the entity is restarted
abruptly.

The evolving of the state machine over time makes it
possible to achieve useful insights about the dependability
behavior of the entity. As for example, (i) the time the entity
persists in the UP state contribute to the estimation of the
uptime of the entity, (ii) the time between a SUP and a CoA
event is an estimate of the Time To Failure.

VI. LOGGING FRAMEWORK

We design a comprehensive framework to automate on-
line collection and analysis of described events. Figure 7
depicts the proposed infrastructure and highlights its main
components, i.e., (i) the operational system producing log
events according to the rules (ii) a transport layer named
LogBus (iii) a set of pluggable components, which perform
several types of analyses.

Events are sent over the LogBus, which is the adopted
transport layer among the machines of the system under
analysis and the processing components. LogBus keeps
logically separated event flows coming from distinct entities
of the system by means of labeling each flow with a unique
key. We implement a C++ object-based LogBus prototype
using standard TCP sockets to transmit events. An API
exposing simple methods to access the infrastructure hides
internal event management mechanisms.

LogBus forwards events towards an extensible set of plug-
gable components. Each component connect the LogBus
during system operations and subscribe only the class of
events (i.e., interaction or life-cycle) it is interested in, by
using a filtering mechanism provided by the LogBus API.
This makes it possible to design specific tools, just doing a
part of the whole FFDA analysis but doing it in an effective
way. Furthermore, the adoption of a model-based approach
makes it possible to reuse a designed tool. In fact the
analysis is performed on events with well-defined semantics,
despite of the system producing them. Output coming from
different components is combined to produce value-added
information.
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Figure 7: Logging and Analysis Infrastructure.

We describe currently available tools in the following. It
should be noted that they only provide a possible set of
analysis tools. In fact, LogBus is an open platform, which
makes it possible to connect novel components provided by
third-party developers.

The on-agent component includes a set of monitors and a
coalescer. Each monitor subscribes interactional events for
a unique entity and implements the alert identification stat-
egy described in Section V-A. Generated alerts are supplied
to the coalescer during operations. This component, in turn,
implements the coalescence approach described in Section
V-B. Produced tuples are not immediately stored on a log
file, but they are forwarded to the logger.

The logger component is the one in charge of maintaining
a log file, i.e., the Rule-Based (RB) log, specifically con-
ceived to perform dependability analyses. It jointly stores
both tuples supplied by on-agent and life-cycle events com-
ing from the LogBus. Figure 8 shows the content of the RB
log. This enables detailed analyses without preprocessing
effort. As a matter of fact, tuples provide clustered failure
data, thus avoiding the need for coalescence procedures. This
information is combined with life-cycle events, which avoid
the need for manual efforts to figure out reboot occurrences.
Section IX shows how this log has been used to characterize
the dependability behavior of the reference case study.

The statistics component keeps the state machine de-
scribed in Section V-C for each entity of the system. More
in details, it manages a set of variables, which are updated
upon state transitions during system operations. These are
used, for example, to estimate, for each entity (i) uptime,
downtime (i.e., the time between a SDW and a SUP), and
failtime (i.e., the time between a CoA and a SUP when no
SDW event has been experienced between them) (ii) SUP,
SDW and alert counts and, (iii) availability. This information
is used to provide an on-line snapshot for the overall system,
i.e., the Rule-Based (RB) report.

Timestamp Type Source Affected
------------------------------------------------------------------
. . .
2 0 0 9 / 0 5 / 0 3 1 6 : 4 2 : 5 5 SUP [ E1 ]
2 0 0 9 / 0 5 / 0 3 1 6 : 5 0 : 4 0 SUP [ E4 ]
. . .
2 0 0 9 / 0 5 / 0 6 0 9 : 4 5 : 0 5 CoA [ E3 ] [ E4 , E1 , E2 ]
. . .
2 0 0 9 / 0 5 / 1 0 0 8 : 1 5 : 0 7 CoA [ E1 ] [ E5 , E3 ]
. . .
2 0 0 9 / 0 5 / 1 0 1 0 : 5 0 : 4 0 SDW [ E4 ]
2 0 0 9 / 0 5 / 1 0 1 0 : 5 0 : 4 3 SDW [ E5 ]
2 0 0 9 / 0 5 / 1 0 1 0 : 5 1 : 2 0 SDW [ E3 ]
. . .

Figure 8: Content of RB log.

VII. CASE STUDY

We evaluate the effectiveness of both traditional and rule-
based logging approaches at characterizing the dependability
of an operational system. To this aim we deliberately em-
ulate a known failure behavior into a real-world software
system producing both its own logs and instrumented to use
the described framework. Field data collected with both the
mechanisms during a 32 days long-running experiment are
analyzed.

A. Air Traffic Control (ATC) Application

The reference application consists of a real-world software
system in the field of ATC. In particular we consider a Flight
Data Plan (FPL) Processor. FPLs provide information such
as a flight expected route, its current trajectory, vehicle-
related information, and meteorological data.

The FPL Processor is developed on the top of an open-
source middleware platform named CARDAMOM1. This
platform provides services intended to ease the development
of critical software systems. For example, these include Load
Balancer (LB), Replication (R), and Trace Logging (TL)
services, used by the application in hand. The FPL Processor
integrates the OMG-compliant2 Data Distribution System
(DDS) [29]. DDS allows applicative components to share
FPLs in our case study. This is done by means of the read
and write facilities provided by the DDS API, which allow
to retrieve and to publish a FPL instance, respectively.

Figure 9 depicts the FPL Processor. It is a CORBA-based
distributed object system. It is composed by a replicated
Facade object and a set of processing Servers managed
by the LB. Facade accepts FPL processing requests (i.e.,
insert, delete, update) supplied by an external Tester and
guarantees data consistency by means of mutual exclusion
among requests accessing the same FPL instance. Facade
subsequently redirects each allowed request to 1 out of the
3 processing Server, according to the round robin service
policy. The selected server (i) retrieves the specified FPL

1http://forge.objectweb.org/projects/cardamom
2OMG specification for the Data Distribution Service,

http://www.omg.org
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Figure 9: Case study.

instance from the DDS middleware (ii) executes request-
related computation, and (iii) returns the updated FPL in-
stance to the Facade object. Facade publishes the updated
FPL instance and finalizes the request by acknowledging the
Tester.

Tester object invokes Facade services with a frequency
of 1 request per second. Under this workload condition a
request takes about 10 ms to be completed, as shown in
Section X. We instrument the Tester object in order to detect
request failures. A timeout-based approach is adopted to
this aim. We assume 15 ms to be an upper bound for a
request to be completed. Consequently, if a request is not
acknowledged within a 50 ms timeout, it is considered as
failed. Due to the replicated nature of both Facade and
Server objects, one request failure does not imply that the
mission of the FPL Processor is definitively compromised.
The system may be in a degraded state, but still able to
satisfy further requests. For this reason we assume the
mission of the system to be definitively compromised only
if 3 consequent requests fail. In this case the Tester object
triggers the FPL Processor reboot via the start.sh bash
script. We experience that the application reboot time varies
between 300 s and 400 s.

Machines composing the application testbed (Intel Pen-
tium 4 3.2 GHz, 4 GB RAM, 1,000 Mb/s Network Interface
equipped) run a RedHat Linux Enterprise 4. A dedicated
Ethernet LAN interconnects these machines. About 4,000
FPLs instances, each of them of 77,812 bytes, are shared
with the DDS.

Table I: Time To Failure (TTF) distributions
Object Distribution
Facade F (t) = 1− e−0.000001t0.92

Server S(t) = 1− e−0.000005t0.92

B. Logging Subsystems

FPL Processor uses the TL service to collect log mes-
sages produced by applicative components (Figure 9). TL
provides a hierarchical mechanism to collect data. A trace
collector daemon is responsible to store messages coming
form processes deployed on the same node. A trace admin
process collects per-node log entries and store these data in
a file. Each log entry contains information such as a times-
tamp, 1 out of 5 severity levels (i.e., DEBUG, INFO, WARN,
ERROR, FATAL), source-related data (e.g., process/thread id),
and a free text message. We assume data collected via the
TL service to be an example of traditional logs.

We instrument the application code to produce rule-based
events and to integrate the LogBus infrastructure (Figure 9).
To this aim we assume a high-level system model. In
particular each FPL object (i.e., Facade and Serves) is an
entity and the DDS, as a whole, is modeled as a resource.
Interactions consist of both CORBA-based remote methods
invocations and DDS read/write facilities.

C. Experiments

We leave the FPL Processor running for about 32 days,
from Aug-07-2009 to Sep-07-2009. During this period we
do not wait for natural occurring errors but we deliberately
emulate a known failure behavior in the system. Our aim
is to evaluate if/how traditional and rule-based logs allow
to reconstruct this known dependability behavior. More in
details we perform availability and failure analyses by using
both logs.

We instrument FPL Processor objects (i.e., Facade and
Servers) to trigger failures according to the Time To Failure
(TTF) distributions shown in Table I (time measured in
centiseconds). We find the Weibull distribution a proper
choice since it has shown to be one of the most used
distribution in failure analysis [30]. However, any other
reliability function clearly fits the aim of the experiment.
Different scale parameters assure that Facade and Servers
fail with different rates. When an object failure has to be
triggered according to the current TTF estimate we inject
either a crash or a hang with the same probability. A faulty
piece of code, i.e., a bad pointer manipulation and an infinite
wait on a locked semaphore, is executed to emulate, crashes
and hangs failures, respectively. Jointly with the execution
of the faulty code we record the type of the emulated failure,
i.e., crash or hang, as well as the component executing it. An
object failure always results in a system failure in our case
study, as the current FPL request does not correctly succeed.
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Table II: Failures breakup by object
Object Failures
Facade 260

Server 1 732
Server 2 772
Server 3 738

Total 2,502

Furthermore an object is not immediately resumed after a
crash failure. This is the reason why subsequent crashes
lead progressively to the reboot signal. In this case the FPL
Processor as a whole is restarted. We experience that during
the 32 days period the FPL Processor is rebooted 400 times
and 2,502 object failures are triggered. Table II reports the
failures breakup by object. We collect logs and/or reports
produced both by the TL service and pluggable components
to perform the analysis.

VIII. ANALYSIS OF TRACE LOGGING (TL) LOG

TL log collected during the long-running experiment is
about 2.2 MB and contains 24,126 lines.

A. Availability Analysis

We perform FPL Processor availability analysis by es-
timating system uptimes and downtimes, as described in
previous works in the area of FFDA (e.g., [4], [28]). To
this aim, for each reboot occurred during the experiment,
we identify the timestamp of (i) the event notifying the end
of the reboot, and (ii) the event immediately preceding the
reboot. A downtime estimate is the difference between the
timestamps of the two events. An uptime estimate is the time
interval between two successive downtimes. Uptime and
downtime estimates are used to evaluate system availability
by means of Equation 1.

A =
∑

i uptimei∑
i uptimei +

∑
i downtimei

· 100 (1)

The described approach requires the identification of
application reboots from logs. To this aim we directly inspect
TL log in order to identify sequences of log events triggered
by application reboots. Figure 10 depicts a simplified version
of such a reboot sequence. The “Startup complete” event
identifies the end of the reboot. We assume the event pre-
ceding the “CDMW Finalize” event to be the one preceding
the reboot.

We develop an ad-hoc algorithm to automatically extract
(i) reboot events, and (ii) uptime and downtime estimates
from TL log. Table III provides statistics characterizing the
estimates. Downtime estimates are close to the expected re-
boot time. We estimate FPL Processor availability according

2 0 0 9 / 2 6 / 0 8 1 4 : 4 1 : 0 5 INFO CDMW Finalize
2 0 0 9 / 2 6 / 0 8 1 4 : 4 1 : 2 0 INFO Parsing XML Finalize FDPSystem
2 0 0 9 / 2 6 / 0 8 1 4 : 4 1 : 4 7 INFO FDP Server
2 0 0 9 / 2 6 / 0 8 1 4 : 4 3 : 5 4 INFO Finalize APP1 / Server process
. . .
[omissis]
. . .
2 0 0 9 / 2 6 / 0 8 1 4 : 4 3 : 1 3 INFO CDMW Init
2 0 0 9 / 2 6 / 0 8 1 4 : 4 3 : 2 3 INFO Parsing XML Init file FDPSystem
2 0 0 9 / 2 6 / 0 8 1 4 : 4 3 : 2 7 INFO FDP Server
2 0 0 9 / 2 6 / 0 8 1 4 : 4 3 : 3 0 INFO Initialize APP1 / Server process

with XML File
2 0 0 9 / 2 6 / 0 8 1 4 : 4 3 : 4 0 INFO CDMW init ongoing for APP1 / Server
2 0 0 9 / 2 6 / 0 8 1 4 : 4 4 : 1 0 INFO Acknowledge creation of process

APPL1 / Server
. . .
[omissis]
. . .
2 0 0 9 / 2 6 / 0 8 1 4 : 4 6 : 4 4 INFO Acknowledge creation of process

APPL4 / Facade
2 0 0 9 / 2 6 / 0 8 1 4 : 4 6 : 4 8 INFO Startup complete

Figure 10: FPL Processor reboot sequence (TL log).

Table III: Downtime and uptime estimates: statistics (TL log)
Downtime Uptime

Value 350.2 (±23.6) s 6,740.6 (±4,399.6) s
Minimum 300.1 s 843.4 s
Maximum 400.2 s 32,518.6 s

to Equation 1. Equation 2 provides AT , i.e., the availability
estimate resulting from TL log.

AT =
2, 689, 487.9 s

2, 689, 487.9 s + 143, 736.5 s
· 100 ≈ 94.9% (2)

AT is about 94.9%. The overall downtime is 143,736.5 s.
It should be noted that this is a realistic finding. As a matter
of fact a reboot of the FPL Processor takes about 350.2 s
(Table III). During the long-running experiment 400 reboots
occur. An overall downtime estimate is thus 400 · 350.2s =
140, 080s, which is close to the actual one.

B. Failure Analysis

As discussed in Section II, we investigate TL log to
characterize failure related data. The analysis reveals that
anomalous conditions and error propagations phenomena
usually result in the higher severity levels, i.e., WARN, ERROR,
and FATAL, provided by the TL logging mechanism. We
develop an algorithm to automatically extract failure related
entries from TL log by means of the severity information.
This procedure filters 20,637 out of the collected 24,126
events. In other words 3,489 events, i.e., about 14% of the
amount of the collected information, are used to perform
failure analysis.

It should be noted that a component failure might lead to
multiple log entries due to propagation phenomena within
the system. We filter out redundant entries by applying the
tuple heuristic [8]. Its aim is to put together distinct entries in
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a clustered one, i.e., the tuple, with respect to a coalescence
timing window. The objective is to build one tuple for
each actually occurred failure. We implement LogFilter as
described in [2] to analyze the collected TL log.
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Figure 11: Time effect on tuple count

We perform a sensitivity analysis to choose a suitable
coalescence window for the proposed case study. Figure 11
shows the analysis results. Tuple count suddenly decreases
from the 3,489 initial value, since log entries related to the
same failure are very close in time. As suggested in [8]
the vertex of the “L” shaped curve represents the internal
clustering time of the system and the coalescence window
should be greater that this value. We thus assume 2 s, i.e.
1,289 tuples, to be a suitable coalescence window for our
case study. It should be noted that only 1,289 out of the
2,502 actually emulated failures result from the analysis.
An in depth analysis reveals that only crashes are logged
while hangs do not leave any trace in TL log.
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Figure 12: FPL Processor estimated TTF (TL log).

We estimate the TTF distribution for the FPL Processor,
named s_TL(t), by using the timestamp information of both
the tuples and the events notifying the end of a reboot. Figure
12 depicts the analysis finding. Resulting Mean Time To
Failure (MTTF) is approximately 34 minutes. This is greater
than the expected since only 1,289 out of the 2,502 actual
emulated failures result from the analysis.

Table IV: Downtime and uptime estimates: statistics (RB
log)

Downtime Uptime
Value 350.2 (±23.6) s 6,740.6 (±4,399.6) s

Minimum 300.1 s 843.4 s
Maximum 400.2 s 32,518.6 s

Regardless of the quality of the achieved finding, s_TL(t)
provides a characterization of the failure behavior of the
system under study. Anyway, it is not clear how this finding
could be actually exploited by developers, e.g., to drive
specific dependability improvements where needed. In the
proposed case study, among multiple notifications reported
by the TL log, we are not able to figure out the object
that first signaled a problem, thus preventing and in-depth
characterization of the system in hand.

IX. ANALYSIS OF RULE-BASED (RB) LOG

During the 32 days long-running experiment about 30
millions of rule-based events are sent over the LogBus.
Resulting RB log, provided by the logger pluggable compo-
nent, is about 128 KB and contains 4,500 lines. It should be
noted that the size of RB log is about 5.7% when compared
to TL log. The amount of information actually needed for
the analysis phase has been significantly reduced with the
proposed strategy.

A. Availability analysis

We perform FPL Processor availability analysis by tailor-
ing the approach described in Section VIII-A to RB log. In
this case, application reboots are identified by SDWs-SUPs
sequences. Figure 13 is provided as an example.

2 0 0 9 / 2 6 / 0 8 1 4 : 4 1 : 0 5 SDW [ Facade ]
2 0 0 9 / 2 6 / 0 8 1 4 : 4 2 : 5 5 SUP [ Server1 ]
2 0 0 9 / 2 6 / 0 8 1 4 : 4 3 : 4 0 SUP [ Server2 ]
2 0 0 9 / 2 6 / 0 8 1 4 : 4 5 : 0 5 SUP [ Server3 ]
2 0 0 9 / 2 6 / 0 8 1 4 : 4 6 : 4 0 SUP [ Facade ]

Figure 13: FPL Processor reboot sequence (RB log).

Facade SUP identifies the end of a reboot. We assume
the event preceding the first SDW of a reboot sequence to
be the one preceding the reboot itself. Table IV provides
statistics characterizing uptime and downtime estimates. We
estimate FPL Processor availability according to Equation
1. Equation 3 provides ARB , i.e., the availability estimate
resulting from RB log.

ARB =
2, 689, 488.1 s

2, 689, 488.1 s + 143, 736.3 s
·100 ≈ 94.9% = AT

(3)
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Figure 14: Estimated TTF distributions (RB log).

Table V: Kolmogorov-Smirnov test
Process Samples D L
Server 1 732 0.0410 0.80<L<0.90
Server 2 772 0.0325 L<0.80
Server 3 738 0.0253 L<0.80

ARB is about AT . The proposed framework allows to
estimate system availability as well as a traditional logging
approach, however the introduction of SUP and SDW events
significantly reduces analysis efforts. In addition, as shown
in Section IX-C we are allowed to perform a detailed
availability analysis for each system entity.

B. Failure analysis

We exploit the RB log to gain insights of the FPL
Processor dependability behavior. The tuple heuristic is not
needed anymore. By construction, RB log already contains
a clustered entry for each occurred failure, and the presence
of life-cycle events allows to easily extract TTF estimates.

RB log contains 2,502 tuples. It should be noted that this
is the amount of the actually emulated failures as shown in
Table II. We perform a TTF analysis for the FPL Processor
as a whole, i.e., by jointly considering tuples from all system
entities. Figure 14a shows both s_TL(t) and s_RB(t),
i.e., the application TTF estimated by analyzing RB log.
Resulting MTTF is approximately 17 minutes, thus shorter
if compared to s_TL(t). This finding highlights deficiency
of TL log at providing evidence of all the occurred failures
in the reference case study.

Information provided by RB log makes it possible to
achieve further insights about the dependability behavior
of the proposed case study. As a matter of fact, we use
the source field supplied by the logger component for each
tuple, to figure out TTF distributions for each entity of the
system. Figure 14b depicts the estimated TTF, named s(t),
when compared to S(t), for Server 2 (a similar finding
comes out for the two remaining Servers). The experienced
distribution is close to the one emulated during the long
running experiment. We perform the Kolmogorov-Smirnov

test to evaluate if s(t) is a statistically good S(t) estimate.
Let (i) D be the maximum distance between the analytical
and the estimated distributions and (ii) L be the resulting
significance level of the test. Table V reports results obtained
for the all the Servers. The low value of L assures that
the collected samples are consistent with the actual failure
distributions.

We perform a similar analysis for the Facade object.
Figure 14c shows f(t), i.e., the TTF estimate. It is imme-
diate to figure out that f(t) is different form the emulated
F(t), but lower than S(t). This is a realistic finding, which
depends on the recovery strategy adopted in the case study.
In our long-running experiment Servers exhibit a failure
rate higher than the Facade (Table I). This makes it very
likely that all Servers have crashed while the Facade is still
properly working. In this case the Tester object triggers the
FPL Processor reboot, thus preventing the Facade object
from exhibiting its actual behavior.

By concluding, the proposed strategy enables an in-
depth characterization of the FPL Processor dependability
behavior. The comparison between the estimated TTF dis-
tributions, i.e., f(t) and s(t), makes it possible to identify
the actual most failure-prone entity within the system. This
information can be used, for example, to reduce the Mean
Time To Repair [31] or to apply proper recovery actions
only when needed [32].

C. On-line Report

The statistics component provides a snapshot, i.e., the RB
report, of the current states of the system entities during the
operational phase. This information is not available with the
TL logging subsystem and it is the result of the proposed
strategy. Table VI shows the RB report at the end of the
long running experiment. In the following, we discuss the
resulting findings in order to evaluate if they are realistic
with respect to the emulated failure behavior.

Facade availability is 95%, thus close to the one estimated
for the system as a whole (Equation 3). As a matter of
fact when the Facade is unavailable, the FPL Processor is
rebooted, since FPL requests cannot be satisfied anymore.
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Table VI: RB report at the end of the long-running experiment
Uptime Downtime Failtime SUP SDW CoA EIA Avalability

Facade 2,700,740 s 129,111 s 4,863 s 400 385 260 2,242 95.0%
Server 1 1,479,900 s 770 s 1,354,250 s 400 7 732 0 52.2%
Server 2 1,591,580 s 1,470 s 1,240,200 s 400 7 772 0 56.1%
Server 3 1,522,890 s 1,860 s 1,308,500 s 400 6 738 0 53.8%

Consequently, the Facade object is not allowed to remain in
a failed state for a long time (i.e., a low failtime). On the
other hand, Servers availability is around 54%. Due to the
adoption of the LB policy, even if a Server crashes, the two
remaining ones make it possible to execute subsequent FPL
request. It may take a long time before the application is
rebooted and a crashed Server is resumed.

Facade SDWs are mainly clear, i.e. the SUP count is close
the SDW one. This is a realistic finding, since the Facade
object has a failure rate lower than the Servers. As discussed,
it is very likely that it is still able to correctly handle FPL
requests when the reboot signal is triggered. Not the same
for the Server objects. In this case most of the reboots are
dirty.

Adopted logging rules, make it possible to understand if a
problem with an entity is caused by a propagating error and
thus to prevent erroneous findings. Table VI reports CoA
and EIA counts, which allow to break the total amount
of outages for each system entity by local, i.e. CoA, and
interaction, i.e., EIA. Servers exhibit only CoAs, as they
do not start interactions with any other entity within the
system. It should be noted that the CoA count is equal to
the actual emulated failure count for each Server (Table II).
This finding demonstrates the effectiveness of the proposed
alerts identification strategy with respect to the proposed
case study. On the other hand, alerts experienced by the
Facade object are mainly due to interaction causes.

X. OVERHEAD ESTIMATION

We evaluate how both TL and LogBus subsystems affect
application performance. It should be noted that system
response time and resource usage are widely recognized to
be effective metrics for performance analysis in computer
systems [33]. This is the reason why we choose the Round
Trip Time (RTT) of FPL requests, measured at the Tester
node, to be the reference metric for our case study. RTT
makes it possible to achieve insights about the FLP Proces-
sor performability.

We analyze performance by taking into account two
parameters, i.e., the specific logging subsystem and the FPL
request invocation period. The logging subsystem assumes
a value in LS = {T, RB, TL} with T, RB, TL denoting,
no logging subsystem, Rule-Base framework and Trace
Logging, respectively. Invocation period varies in the range
I = {300, 400, 600, 800, 1, 000} ms. These values take

into account real world traces coming from the Air Traffic
Control domain where CARDAMOM is commonly used as
support middleware.

We design a full-factorial experimental campaign by ex-
ecuting a stress test for each combination of parameters in
LS × I . In particular, for each test we execute 3,000 FPL
Processor requests, i.e, 1,000 requests per type (i.e., insert,
delete, update) and we subsequently estimate the mean RTT
after filtering outliers out. Figure 15 depicts experienced
RTTs.
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Figure 15: FPL requests RTT.

For each value of the invocation period in I we estimate
the overhead of TL with respect to RB, i.e., OTL,RB , when
compared to T. Equation 6 shows how we estimate OTL,RB .
OTL,T and ORB,T denote the overhead of TL and RB with
respect to T, respectively.

OTL,T =
RTTTL −RTTT

RTTT
· 100 (4)

ORB,T =
RTTRB −RTTT

RTTT
· 100 (5)

OTL,RB = OTL,T −ORB,T =
RTTTL −RTTRB

RTTT
· 100

(6)
Table VII summarizes overhead estimates. For each value

of the invocation period in I , OTL,RB is a positive value. In
other words, according to Equation 6, overhead introduced
by RB is lower than TL when compared to T. Mean OTL,RB
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Table VII: Overhead estimates
1s 800ms 600ms 400ms 300ms

OTL,T 16.3% 17.1% 15.7% 20.0% 23.8%
ORB,T 3.8% 6.3% 4.8% 7.1% 10.2%

OTL,RB 12.5% 10.8% 10.9% 12.9% 13.6%

is approximately 12.1%. This value roughly estimate the
expected overhead of TL when compared to RB. By con-
cluding, the proposed logging framework does not affect, if
not improve, application performance in the proposed case
study.

XI. CONCLUSION

The paper described a framework to overcome the well-
known limitations of traditional logging with respect to the
dependability evaluation of complex systems. After present-
ing the principles underlying our proposal, we describe log-
ging rules and algorithms enabling effective dependability
evaluation of complex systems. We provide an in-depth
comparison between the proposed framework and a real-
world logging subsystem in the context of the Air Traffic
Control domain. Results show that the proposed rule-base
strategy:
• Eliminates preprocessing effort to analyze data. We

show that the analysis of a traditional log, such as the
one collected via the Trace Logging service, requires
significant manual effort and ad-hoc procedures to
identify and extract log events (e.g., reboot and failure
occurrences) relevant for the analysis phase.

• Preserves and improves findings of traditional log
analysis. Rule-based log makes it possible to estimate
system availability as well as traditional logging. Fur-
thermore it increases the quality of TTF analysis by
means of an exhaustive coverage of timing failures in
our case study.

• Provides value-added information. The proposed
framework makes it possible to gain in-depth visibility
of the dependability behavior of a system by means of
a finer analysis grain. In particular, it enables valuable
results (e.g., TTF distributions, on-line statistics) for
each system entity, which cannot be achieved with
traditional logging techniques.

• Reduces the amount of information actually needed to
perform the analysis. Log size is reduced by more than
94.3% with respect to an example of traditional log.
This improvement does not introduce information loss.

• Does not affect application performance. The overhead
introduced by the proposed framework on the FPL
Processor is 12.1% lower than the one introduced by
the Trace Logging service.

Future work will encompass the definition of novel log-
ging rules, aiming to support a wider range of FFDA

analyses. LogBus and pluggable components will be conse-
quently enhanced in order to provide additional features and
capabilities. We also intend to explore the use of standard
languages, e.g., XML, to represent the rule-based log.

Additionally, it is needed to deal with existing components
that do not adopt the proposed logging rules. In this case, we
claim the need for component-specific wrappers to produce
events according to the described strategy. Following this
direction, future work will be also devoted to research
for model-driven techniques to automate the logging-code
writing process. This is a need to significantly reduce, if not
completely eliminate, manual instrumentation efforts.
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