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Abstract

This article presents a scenario-based testing approach,
in which user-defined abstract testing scenarios of the SUT
are automatically refined based on formal specifications of
the system under test (SUT). The latter are specified in
a stepwise manner using the Event-B formalism until a
sufficiently refined specification is obtained, which is then
used to generate a Java implementation template of the
system. The development of the specification is driven by the
requirements of the system which are traced throughout the
development and testing process. Abstract testing scenarios,
provided by the user, are automatically refined following
the same refinement steps used for the system specification.
The sufficiently refined scenarios are then transformed into
executable Java Unit Testing (JUnit) test cases, which are ex-
ecuted against the Java implementation of the SUT. During
the described process, the requirements linked to the testing
scenarios are propagated to JUnit tests. The main advantage
of the proposed approach that it allows the developer to
evaluate which requirements have been validated and to
trace back the failed tests to corresponding elements of the
formal specifications.

Index Terms

Scenario-based testing; Requirements Traceability; Event-
B; Formal Refinement; JUnit;

1. Introduction

Formal development ensures that the developed systems
are correct-by-construction. However, development of large
and complex systems by formal methods exhibit several
limitation including computation time and efforts it takes
for the verification, and handling of low-level implemen-
tation details [1]. In general practice, formal methods are
used to verify specifications of the system abstractly and
implementation of the system is hand-coded while following
formal specifications. In such cases, the implementation is
written in an informal programming language. Since the
implementation is no longer correct-by-construction, the
resulting implementation needs to be tested.

Traditionally, testing has been performed manually by the
tester carefully examining the implementation under test and
then designing test cases. As the software became more
complex, the resulting test cases have grown in numbers and
complexity. This naturally has lead to the need to automate
the testing process. Today, there exist several testing ap-
proaches that automate the testing process either completely
or partially. These approaches try to achieve their goal
by applying different means, i.e., code templates, scripts,
formal and semi-formal software models etc. However, these
approaches do not distinguish between different parts of the
system that might be more or less important for overall
system correctness. Therefore, it is important to test the
functionality of the system according to user’s requirements.

In this paper, we propose a testing methodology which
uses user-specified testing scenarios in order to generate
test cases. Our scenario-based testing approach can be seen
as a kind of model-based testing where tests are generated
from user-provided testing scenarios. The focus of this
testing approach is on explicit identification of important
behavior of the system that should be tested. The proposed
methodology uses formal models of the system along with
user-provided testing scenarios. These formal models and
scenarios are mapped using the requirements. Later on, the
formal models and scenarios are translated to Java and
JUnit artifacts, respectively, while the requirements are also
propagated to the JUnit test cases. The advantage of prop-
agating requirements to executable test cases is that upon
a a test case failure, it is possible to back-trace the failed
requirement(s) to the corresponding parts in the model.

The work we present in this paper builds on and extends
our previous work [9], [10] on scenario-based testing, where
we have used formal models of the SUT based on the
Event-B formalism. We have also proposed a collection
of formal refinement techniques that can be used in the
context of test generation. In this article, we elaborate our
previous results and as well as compliment them by building
a requirement traceability support. This allows us to keep
track on how requirements are addressed by the specification
at different abstraction levels and how they are propagated
to the generated test cases.
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To summarize, our proposed methodology encompasses
the following:
• inclusion of requirements in the formal specification

process and propagation of requirements to tests;
• traceability of requirements from tests back to formal

specifications;
• identification of abstract test cases from formal scenario

specifications;
• generation of Java templates of the system from suffi-

ciently refined Event-B specifications;
• generation of JUnit tests from abstract test cases in the

Communicating Sequential Processes (CSP) notation.
The organization of the paper is as follows. Section 2 pro-

vides necessary background on the modeling and program-
ming languages used in this paper. In Section 3, we look
in detail at the scenario-based testing process and present
extended guidelines for modeling of Event-B specifications
and of testing scenarios along with requirements. Section 4
gives overview of the tools we used for modeling, testing
and measuring test coverage. In Section 5, we analyze and
discuss the benefits and short-comings of our approach.
Section 6, presents some related work in the area of research.
Finally, Section 7 concludes the paper.

2. Background

In this section, we give overview of the languages and
techniques we use for our scenario-based methodology.

2.1. Overview of Event-B

The Event-B [3] is a recent extension of the classical B-
method [4] formalism. Event-B is particularly well-suited
for modeling event-based systems. The common examples
of event-based systems are reactive systems, embedded
systems, network protocols, web-applications and graphical
user interfaces. The language of the B-method and Event-B
is based on set theory and predicate calculus.

As an example of an Event-B model, consider the fol-
lowing model (also known as machine) M with a context
C. A context is considered as the static part of the Event-
B specifications. It contains constants, sets and properties
(axioms) related to these. On the other hand, an Event-B
machine describes the dynamic part of the specification in
the form of events (state transitions).
The context has the following general form.

CONTEXT C
SETS sets
CONSTANTS constants
AXIOMS axioms
END

A context is uniquely defined by its name in the CONTEXT
clause. The CONSTANTS and SETS clauses define constants
and sets respectively. The AXIOMS clause describes the

properties of constants and sets in terms of set-theoretic
expressions.
An Event-B machine has the following general form.

MACHINE M
SEES C
VARIABLES v
INVARIANT I
EVENTS
INITIALISATION = . . .
E1 = . . .
. . .
EN = . . .

END

The machine is uniquely defined by its name in the
MACHINE clause. The VARIABLES clause defines state
variables, which are then initialized in the INITIALISATION
event. The variables are strongly typed by constraining pred-
icates of the machine invariant I given in the INVARIANT
clause. In addition, the invariant can define other essential
system properties that should be preserved during system
execution. The operations of event-based systems are atomic
and are defined in the EVENT clause. An event is defined
in one of two possible ways

E = WHEN g THEN S END

E = ANY i WHERE G(i) THEN S END

where g is a predicate over the state variables v, and the body
S is an Event-B statement specifying how the variables v are
affected by execution of the event. The second form, with
the ANY construct, represents a parameterized event where i
is the parameter (or a local variable) and G(i) restricts i. The
occurrence of the events represents the observable behavior
of the system. The event guard (e.g., g or G(i)) defines the
condition under which event is enabled.

The occurrence of events represents the observable be-
havior of the system. The condition under which the action
can be executed is defined by the guards. An event is
known to be enabled when the guards evaluate to true. An
event execution is supposed to take no time and no two
events can occur simultaneously. When some events are
enabled, one of them is chosen non-deterministically and
its action is executed on the model state. When all events
are disabled, i.e. their guards evaluate to false, the discrete
system deadlocks. Then previous step is repeated to see if
any events are enabled for execution.

The actions of an event can be either a determinis-
tic assignment to the variables of the system or a non-
deterministic assignment from a given set or according
to a given post-condition. The semantics of actions are
defined by their before-after (BA) predicates, where a BA
predicate is a relation between before and after values of the
event variables. BA predicates for specific cases of Event-B
actions are given in Figure 1.
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Action Before-after (BA) predicate Explanation

x := F (x, y) x′ = F (x, y) ∧ y′ = y standard
assignment

x :∈ Set ∃t. (t ∈ Set ∧ x′ = t) ∧ y′ = y non-deterministic
assignment from set

x : | P (x, y, x′) ∃t. (P (x, y, t) ∧ x′ = t) ∧ y′ = y
non-deterministic
assignment by
given post-condition

where x and y are disjoint lists of state variables, and x′, y′ represent their
values in the after state. The F (x, y) represents a function that provides a
deterministic value for x′ while y does not change its value. The Set repre-
sents any defined set while P (x, y, x′) is a post-condition relating initial val-
ues of x and y to the final value x′. The :∈ and : | represent non-deterministic
assignment operators operating on sets and predicates respectively.

3.1.1 Proof obligations for specifications in Event-B

In order to check consistency of an Event-B machine, a number of pre-defined
conditions (called proof obligations) should be proven true (i.e discharged)
for each event [41, 62]. In recent practice, these proof obligations are gener-
ated and proved using the provided automated tool support. For each event
in a machine, two types of properties are needed to be verified: the event
feasibility property and the invariant preservation property. The event fea-
sibility states that it should be possible to execute an event from any state
when both the machine invariant and the event guards hold. In other words,
it can produce at least one after state that satisfies the before-after predicate,
i.e.,

I(v) ∧Ge(v) ⇒ ∃v′. BAe(v, v
′) (1)

The invariant preservation property states that the invariant should always
be maintained:

I(v) ∧Ge(v) ∧BAe(v, v
′) ⇒ I(v′) (2)

The initialisation is treated as any other event of the system. The only
difference is that it does not have initial state. Therefore, for the initialisa-
tion event, the event feasibility(1) and invariant preservation(2) properties
become the following.

17

Figure 1. The actions and before-after predicate

In Figure 1, x and y are disjoint lists of state variables, and
x′, y′ represent their values in the after state. The F (x, y)
represents a function that provides a deterministic value for
x′ while y does not change its value. The Set represents
any defined set while P (x, y, x′) is a post-condition relating
initial values of x and y to the final value x′. The :∈ and : |
represent non-deterministic assignment operators operating
on sets and predicates respectively.

To check consistency of an Event B machine, we should
verify two types of properties: event feasibility and invariant
preservation. Formally,

Inv(x, y) ∧ ge(x, y) ⇒ ∃v′. BAe(x, y, x
′)

Inv(x, y) ∧ ge(x, y) ∧BAe(x, y, x
′) ⇒ Inv(x′, y)

The main development methodology of Event B is re-
finement – the process of transforming an abstract specifi-
cation to gradually introduce implementation details while
preserving its correctness. Refinement allows us to reduce
non-determinism present in an abstract model as well as
introduce new concrete variables and events. The connection
between the newly introduced variables and the abstract
variables that they replace is formally defined in the invariant
of the refined model. For a refinement step to be valid, every
possible execution of the refined machine must correspond
to some execution of the abstract machine.

Further details about modeling and verification in Event-B
can be found in [3].

2.2. Overview of Communicating Sequential Pro-
cesses (CSP)

In the following, we present a brief overview of Com-
municating Sequential Processes (CSP) [6] which is needed
to model scenarios in our approach. In CSP, a system is
modeled as a process, which interacts with the environment
via a number of events whereas the occurrence of events is
atomic.

In CSP, there are two basic processes: STOP is a
deadlocked process, and SKIP is the terminating process.
The process a→ P can perform an event a and then behave
as P . There are two choice operators used in CSP, namely,
external choice (�) and internal choice (u) operators. In the

case of external choice, P1�P2, either process P1 or P2 is
executed based on which event occurs first. On the other
hand, the internal choice operator is used to model non-
determinism, e.g., P1 u P2 can arbitrarily choose to behave
as either P1 or P2.

The processes can be combined together in parallel or
in sequence. For sequential composition, ′;′ operator is
used. For instance, P1;P2 ensures that P1 process executes
before P2. By parallel composition, we allow processes to
interact/communicate with each other through the events
they engage in. For parallel composition, ‖ operator is
used, e.g., P1‖P2. Further details about CSP operators, its
semantics and refinements can be read from [6].

2.3. Unit Testing

Unit testing aims at testing units of the program code, e.g.,
methods or modules, separately from each other. This kind
of testing is performed by writing programming methods
(called unit tests) that invoke the corresponding implemen-
tation methods under test. A unit test provides the needed
input to the unit under test and evaluates its output before
assigning any verdict about its success or failure. Unit testing
ensures that the functionality of individual units are tested
before these units are integrated to form a larger system.

In order to facilitate unit testing during the system devel-
opment, unit testing frameworks have been developed for al-
most every programming language. A unit testing framework
provides helper methods, reporting and debugging features
to aid unit testing. In our scenario-based approach, we use
Java Unit Testing (JUnit) [7] frameworks.

3. Scenario-based Testing Process

In our scenario-based testing process (Figure 2), the
system is specified in a stepwise manner using the Event-
B formalism until a sufficiently refined specification is ob-
tained. The formal models are refined manually based on
a set of guidelines which we will discuss in the following
section. The sufficiently refined specification is then used
to generate a Java implementation template of the system.
The development of the specification is driven by the re-
quirements of the system which are traced throughout the
process, including to the generated Java code.

The testing scenarios are gradually developed from re-
quirements. The first abstract scenario is provided by the
user. This scenario represents a valid behavior of the abstract
model present on the same level of abstraction. In short,
we say that the abstract model conforms to or formally
satisfies the abstract scenario. Later on, we refine this
abstract scenario along the refinement chain of the system
models until a sufficiently detailed scenario is obtained. In
fact, this detailed scenario represents an abstract test case.
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Figure 2. Overview of our scenario-based approach

3.1. Modeling Requirements

The sufficiently refined scenarios are then transformed
into executable JUnit test cases, which are executed against
the Java implementation. During the process, requirements
linked to the testing scenarios are propagated to JUnit
tests, where they are used for producing a test report. The
approach allows us to evaluate which requirements have
been validated and to trace back the failed tests to the formal
specifications.

Usually the software systems are built according to in-
formal requirements provided by user. The link between
informal requirements and formal models is quite important
in software development. The requirements are used for
creating the initial specification of the SUT and also for
refining this specification on the next level of abstraction.

In our approach, a stand-alone document specifying the
requirements of the SUT in a structured manner is used.
In this document, the requirements are described using
ID, Category, Title, Priority, and Description, as shown in
Figure 3. The hierarchy of the requirements is implemented
using the requirement ID. For instance, requirement REQ1−1
is a sub-requirement of requirement REQ− 1.

Throughout this paper we will use excerpts from a Hotel
Booking System. For the sake of the understanding, we will
briefly go through the main functionalities of the system
which will be used for exemplification later on in the paper.
The four main functional requirements of the system are:
the system should allow the user to search for a room in
the room database (REQ−1), to reserve the room (REQ−2),

to allow him to pay for the reserved room (REQ − 3) or to
cancel an existing reservation (REQ− 4).
The requirement REQ− 1 is described as

Requirement : REQ− 1

The system should be able to find a room of given

type if it is available in the database and

connection to the database is successfully

established. In case of failed connection,
an exception is reported.

Each requirement can be divided into several sub-
requirements. For instance, (REQ1 − 1) and (REQ1 − 2) are
given in the following.

Requirement : REQ1− 1

The system should be able to find a room of given

type if it is available in the database and

connection to the database is successfully

established.

Requirement : REQ1− 2

The system should return an error message if

connection to the database is not established

successfully.

The requirement (REQ1− 1), is further divided as

Requirement : REQ1.1− 1

The system should be able to accept room type as

an input.

Requirement : REQ1.1− 2

The system should be able to connect to the

database.

Requirement : REQ1.1− 3

The system should be able to retrieve results.

These sub-requirements serve as basis for refining the
Event-B model.

3.2. Using Event-B for Scenario-based Testing

In our approach, we create formal descriptions of the
SUT starting from the requirements as shown in Figure 2.
Subsequent refinements of the specification are preformed
based on the sub-requirements of a given requirement. In
order to be able to generate executable test cases, one
needs to have available sufficient information regarding the
inputs and outputs of the system. For this purpose, we
structure the information about the inputs and outputs based
on set of guidelines, following the basic refinement types
we suggested in [10]. These basic refinement types are also
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Figure 3. Requirements specification excerpt

referred to as controlled refinements. The guidelines are used
in a similar way for the development of both Event-B models
and corresponding user scenarios.

3.2.1. Classification of Events. In order to identify informa-
tion about the inputs and outputs of the system we classify
the Event-B event types into input, output, and internal
events, as follows:

Definition 1: The Events. Set of all events in the system,
denoted by Σ, is divided into following subsets of:
• Input events denoted by εI

• Output events denoted by εO

• Internal events denoted by ετ

�

The input events, εI , accept inputs from user or environ-
ment. Apart from their input behavior, these events may take
part in the normal functioning of the system. However, the
input events do not produce externally visible output. The
output events εO produce externally visible outputs. Finally,
the internal events do not take part in any input/output
activity. These events however, may produce intermediate
results used by the events in εI and εO. The motivation
of this classification is explained in next section, where we
further divide our system into logical functional units.

3.2.2. Logical Units. As we develop our system in a
stepwise manner, the main functional units of a system are
already identified at the abstract level. Each of these abstract
functional units are modeled as a separate logical unit, called
IOUnit, in our Event-B models.

Definition 2. An IOUnit, U, consists of a finite sequence of
events and has the following form.

U =< εI , ετ+, εO >

Here εI and εO denote the input and output events re-
spectively, and ετ+ represents one or more occurrences of
internal events.

�

It can be observed from the above definition that an
IOUnit consists of the sequence of events occurring in such
an order that the first event in the unit is always an input
event and the last event is always an output event, with
possibly one or more internal events in between. Moreover,
an IOUnit can not contain more than one input or output
event.

An IOUnit takes input and produces output, as the pres-
ence of the input and output events indicates. The classifi-
cation of events, defined previously, helps us in identifying
the inputs and outputs of each unit, and when combined,
of the whole system. The motivation for this approach is
the following. The developer of the SUT may decide to
implement the system independently of the structure of an
Event-B model. Indeed, it is sometimes hard to construct
the strict one-to-one mapping between the events of the
model and corresponding programming language units. For
example, two events in a model can be merged to form
one programming-language operation, or the functionality
of an event in the model may get divided across multiple
operations or classes in the implementation. However, for
successful execution of the system, the interfaces of the
model and implementation, i.e., the sequence of the inputs
and outputs, should remain the same.

3.2.3. Example. Reserving a room in such the hotel booking
system can be modeled as a sequence of events that occur
in a specific order. On the abstract level, we may have only
a few events, representing some particular functionalities
of the system. For example, if we model requirements
REQ − 1 to REQ − 4, each top-level user requirement will
be implemented as one IOUnit. Consequently, there are four
main IOUnits namely, Finding a room, Reserving it, Paying
for it, and Canceling a reserved room. After we structure our
model according to the guidelines described in Section 3.2.1,
the resulting events and their sequence of execution can be
seen in Figure 4(a).

As it can be observed, the main functional events are
wrapped with the input and output events. For example,
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the Find event is wrapped around with the InputForFind
and OutputForFind events, where InputForFind and Output-
ForFind are the input and output events, respectively.

I N I T

R e s e r v e

F i n d

P a y

O u t p u t F o r F i n d

O u t p u t F o r R e s e r v e

O u t p u t F o r P a y

I n p u t F o r F i n d

I n p u t F o r R e s e r v e

I n p u t F o r P a y

I O U n i t s

I n p u t F o r C a n c e l

O u t p u t F o r C a n c e l

C a n c e l

n e w  I O U n i t

(a)

I N I T

I n pu t Fo rF i n d

C o n n e c t D B

Fe t c hRe c o r d s

Ou t p u t F o r F i n d

Connec t i o nFa i l u r e

Re t r i e v e

IOUn i t

(b)

Figure 4. (a) Abstract System (b) Refined System

Within an IOUnit, we treat our main functional events
as internal events (e.g., Find, Reserve, Pay and Cancel).
Such events can be further refined, in one or more steps,
consequently adding more internal events within the input-
output unit. The refinement is performed according to the
sub-requirements of the requirement that was the source of
the IOUnit. For instance, the Find IOUnit in Figure 4(a) has
been refined by applying successive refinements based on the
requirement REQ − 1 and its sub-requirements, introduced
earlier in Section 3.1, into four internal events depicted
graphically with dashed line pattern in Figure 4(b).

The complete Event-B specifications of this example have
been developed and proved using the RODIN [5] platform.
In the final refined system, there was a total of 42 proof
obligations. Out of these, 38 proof obligations were automat-
ically discharged by the tool, while the remaining 4 needed
manual assistance.

3.3. Modeling the Testing Scenarios

As previously mentioned, we use CSP to represent testing
scenarios. The advantage of using CSP is twofold. First,
a CSP expression is a convenient way to express several
scenarios in a compact form. Second, since we develop our
system in a controlled way, i.e. using the basic refinement
transformations, we can associate these Event-B refinements
with syntactic transformations of the corresponding CSP
expressions. For instance, the abstract scenario SA in Figure
2 is refined into scenario Si, while considering the controlled

refinement steps involved in refining the abstract model MA

to the refined model Mi. Similarly, this process continues
until we get a sufficiently detailed, concrete testing scenario
SC to which the model MC conforms.

3.3.1. Testing Scenarios. We define a testing scenario as a
finite sequence of events occurring in some particular order.
Since we have grouped the events in the form of logical
IOUnits, our scenarios will also include a finite sequence of
IOUnits. This means that the scenarios will include the same
events as in the corresponding Event-B model. However,
the scenarios must follow the same rules that were set for
constructing IOUnits in the previous section, i.e.,

1) The first event in the scenario is always an input event;
2) The last event in the scenario is always an output

event;
3) There can not be two input-type events in the sequence

without any output event in between them, i.e., the fol-
lowing sequence in a CSP expression is not allowed;

< · · · → εIk → εIk+1 → · · · >
4) There can not be two output-type events in sequence

without any input event in between them, i.e., the
following sequence is also not allowed.

< · · · → εOk → εOk+1 → · · · >
Since the scenarios are defined on the abstract level, they

lack details about the system inputs and outputs. The input
details can be identified from the input event(s) of each
IOUnit. For example, if an input event reads three input
variables then these three variables become the inputs for
the unit that the input event belongs to. The details about
the inputs can be retrieved from the Event-B model since the
model specifies the type, initial value and invariant properties
for all variables.

The expected outputs are generated after the model is
animated using the ProB model checker. For a given input
of a test case, the ProB can animate the model and return
the result, which is then saved as the expected output of
the test case. This expected output can be then used to
compare the values while testing the real implementation.
The ProB model checker can only produce output values
based on the available abstract values. For example, to test
whether a room is available in the Hotel Booking System,
ProB can check the expected result for a pre-defined set of
inputs, while in the actual implementation this result might
be retrieved from the database. Therefore, we need to define
a mapping relation between the abstract and concrete data
types. At the moment this mapping is provided manually.
However, it is possible to automate its generation for the
commonly used types, e.g., boolean and integers.

3.3.2. Example. In the case of the previously discussed
Hotel Booking System example, there can be many possible
testing scenarios. For example, if we want to test the room
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finding, reservation and paying functionality, the correspond-
ing abstract scenario expressed as a CSP expression would
be as follows.

S0(A) = InputForFind?roomType→ Find→
OutputForFind!(roomId, anyException)→
InputForReserve?roomId→ Reserve→
OutputForReserve!reserveId→
InputForPay?reserveId→ Pay→
OutputForPay!payId→ SKIP

After a number of successive refinements of event Find,
we achieve the following scenario. For keeping the example
simple, we only show the refinement of Find event which
is also shown graphically in Figure 4(b).

S0 = InputForFind?roomType→ ConnectDB→
((FetchRecords→ Retrieve) u ConnectionFailure))
→ OutputForFind!(roomId, anyException)→
InputForReserve?roomId→ Reserve→
OutputForReserve!reserveId→
InputForPay?reserveId→ Pay→
OutputForPay!payId→ SKIP

The variable roomType is the input for this IOUnit,
whereas roomId, anyException are possible outputs. The
variable anyException specifies if there was any exception,
e.g., a connection failure.
Often, the subsequent event depends on the results of
the previous ones. For example, the event Reserve takes
roomId as an input from the previous event. It can be
noticed that the refinement of the Find event has created
two branches, one leading to successful case and the other
to a database connection failure exception. When the above
scenario is checked for conformance with the ProB model
checker, it will be found that one can not proceed to
Reserve if an exception occurred at the previous step.
Therefore, this scenario will be split into two scenarios S0
and S1 given in the following.

S0 = InputForFind?roomType→ ConnectDB→
FetchRecords→ Retrieve→
OutputForFind!(roomId, anyException)→
InputForReserve?roomId→ Reserve→
OutputForReserve!reserveId→
InputForPay?reserveId→ Pay→
OutputForPay!payId→ SKIP

S1 = InputForFind?roomType→ ConnectDB→
ConnectionFailure→
OutputForFind!(roomId, anyException)→ SKIP

These scenarios, when sufficiently refined, are transformed
into JUnit tests which will be discussed later in Section 3.5.

In the next section, we will discuss how Event-B model
is used to generate an implementation template in Java.

3.4. Generating Java Implementation Templates

Once developed, we use the Event-B models of the SUT
to generate Java implementation templates. We start by
translating a (sufficiently refined) Event-B model into a
Java class. As a result, Event-B events are translated to the
corresponding Java methods. For our Hotel Booking System
example, the excerpts of the respective Event-B machine and
its implementation template are shown as follows.

MACHINE  BookingSystemRef1 
REFINES  BookingSystem 
SEES  BookingContext 
VARIABLES 

roomType 
. . . 

INVARIANTS 

EVENTS 
Initialisation 

act5 : roomType := Null_roomType 

Event InputForFind ≙
Refines InputForFind 
any 

tt 
where 

grd1 : tt ∈ RTYPES 
then 

act1 : roomT ype := tt 
act2 : inputForFindCompleted := TRUE 

end  

END 

An operation in an Event-B specification consists of
two parts. The first part contains the pre-condition(s) for
the event operation to be enabled, while the second part
consists of the actions that the operation performs. For every
event in an Event-B model, we create two separate methods
in the corresponding Java implementation representing the
pre-conditions and actions respectively. The first method,
which contains the pre-conditions of an event, returns the
evaluation result in the form of a boolean value. The name
of this method is pre-fixed with the string “guard ”. The
second method encapsulates the actions of the event. For
example, for the InputForFind event from our Hotel Booking
System example, the Java implementation methods are given
in the Listing 1. As one can notice, the requirements attached
to different IOUnits in Event-B are preserved during the
transformation and included in the generated template (see
line 19 of Listing 1).

1 p u b l i c c l a s s Hote lBookingSys tem {
2
3 / / c l a s s−l e v e l v a r i a b l e s
4 p u b l i c S t r i n g roomType ;
5 . . . .
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6
7 p u b l i c Hote lBookingSys tem ( ) {
8 / / i n i t i a l i z a t i o n . . .
9 }

10
11 /∗ P r e C o n d i t i o n s / Guards f o r I n p u t F o r F i n d e v e n t

∗ /
12 p r i v a t e boolean g u a r d i n p u t F o r F i n d ( S t r i n g

roomType ) {
13 re turn ( roomType != n u l l ) ;
14 }
15
16 /∗ I m p l e m e n t a t i o n method f o r I n p u t F o r F i n d

e v e n t ∗ /
17 p u b l i c boolean i n p u t F o r F i n d ( S t r i n g roomType )
18 throws P r e C o n d i t i o n V i o l a t e d E x c e p t i o n {
19 / / REQ1.1−1
20
21 boolean i n p u t F o r F i n d C o m p l e t e d = f a l s e ;
22 i f ( g u a r d i n p u t F o r F i n d ( roomType ) ) {
23
24 / / a c t i o n s . . .
25
26 t h i s . roomType = roomType ;
27 i n p u t F o r F i n d C o m p l e t e d = t rue ;
28 }
29 e l s e {
30 throw new
31 P r e C o n d i t i o n V i o l a t e d E x c e p t i o n ( ” For

i n p u t F o r F i n d ” ) ;
32 }
33 re turn i n p u t F o r F i n d C o m p l e t e d ;
34 }
35
36 / / more I m p l e m e n t a t i o n methods f o r e v e n t s
37 . . . .
38 }
39
40 c l a s s P r e C o n d i t i o n V i o l a t e d E x c e p t i o n ex tends

E x c e p t i o n {
41
42 p u b l i c P r e C o n d i t i o n V i o l a t e d E x c e p t i o n ( S t r i n g

mesg ) {
43 super ( mesg ) ;
44 }
45 }

Listing 1. Implementation template example

Each Java implementation method, representing an
Event-B event, first evaluates its pre-condition(s)
by calling its “guard ” method. If the pre-
conditions are evaluated to false then the exception
PreConditionViolatedException is raised,
otherwise the actions of the corresponding event are
executed. The variables of an Event-B machine are
translated into the corresponding class variables in Java.
The type information for these variables can be retrieved
from the invariant clause of the Event-B machine. We
assume that a mapping relation between data types in
Event-B and Java is provided by the user. For non-primitive
data types, Java enumeration (enum) type can be used, e.g.,
to represent a set of finite elements. While most of the
Java code can be automatically translated from Event-B
constructs, the user can add more code statements according
to his/her requirements. This means that the generated class

actually constitutes a Java template.
In the next section, we will discuss how testing scenarios

are translated into JUnit test cases.

3.5. Generating JUnit test cases from Scenarios

In Section 3.4, we presented the guidelines for generating
implementation templates for Java. Once such a template is
generated, we can generate the corresponding executable test
cases from the scenarios. These test cases are represented as
JUnit test methods.

Since our Event-B events are now presented as sequences
of IOUnits, we write JUnit test cases to test these IOUnits.
The Find IOUnit from scenario S0 is represented as an
abstract test case T0 as given in the following.

T0 = InputForFind?roomType→ ConnectDB→
FetchRecords→ Retrieve→
OutputForFind!(roomId, anyException)→ SKIP

For scenario S1, the abstract test case T1 would be expressed
as following.

T1 = InputForFind?roomType→ ConnectDB→
ConnectionFailure→
OutputForFind!(roomId, anyException)→ SKIP

For each of the test cases T0 and T1, a separate JUnit test
method is implemented. The JUnit test method for T0 is
shown in the Listing 2. In a similar way, JUnit test cases
are generated for each IOUnit in the scenario.

1 p u b l i c c l a s s Hote lBook ingSys t emTes t {
2
3 Hote lBookingSys tem bSys ;
4 . . .
5
6 @Before
7 p u b l i c vo id se tUp ( ) throws E x c e p t i o n {
8 bSys = new Hote lBookingSys tem ( ) ;
9 }

10
11 @Test
12 p u b l i c f i n a l vo id T0 ( ) {
13 / / REQ1−1
14
15 S t r i n g roomType = ‘ ‘ S i n g l e ” ;
16
17 t r y {
18 b o o l e a n v1 , v2 , v3 , v4 , v5 ;
19 v1 = v2 = v3 = v4 = v5 = f a l s e ;
20
21 / / c a l l i n g methods o f IOUni t
22 v1 = bSys . i n p u t F o r F i n d ( roomType ) ;
23 v2 = bSys . connectDB ( ) ;
24 v3 = bSys . f e t c h R e c o r d s ( ) ;
25 v4 = bSys . r e t r i e v e ( ) ;
26 v5 = bSys . o u t p u t F o r F i n d ( ) ;
27
28 / / a s s e r t s t a t e m e n t s ( v e r d i c t )
29 a s s e r t T r u e ( ‘ ‘ S u c c e s s f u l c o m p l e t i o n ’ ’ ,
30 v1 && v2 && v3 && v4 && v5 ) ;
31
32 a s s e r t T r u e ( bSys . r e s u l t S e t . s i z e ( ) > 0) ;
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33 a s s e r t T r u e ( bSys . a n y E x c e p t i o n == f a l s e )
;

34 }
35 c a t c h ( P r e C o n d i t i o n V i o l a t e d E x c e p t i o n e ) {
36 f a i l ( e . ge tMessage ( ) ) ;
37 }
38 }
39 }

Listing 2. JUnit Test method for T0

In the test case example shown in Listing 2, there is only
one input parameter, i.e., roomType. However, in practice,
there can be more than one input parameters. Generating
all possible values for each parameter and then making all
possible combinations of these parameters values may result
in combinatorial explosion. In order to handle this problem,
the input space partitioning [14] approach is used for test
case generation. Information about each input variable is
retrieved from the invariant clause and the pre-condition part
of the input event. The pre-conditions and invariant clauses
specify the type and possible restrictions (value ranges) for
each variable. Using this information, the input space for
each parameter is divided into equivalent partitions. Then
from each partition, one value is selected to represent the
whole partition. Combining the values of different variables
from different partitions reduces the total number of input
combinations needed for testing.

If a scenario involves multiple IOUnits in a sequence and
JUnit test case for that sequence is desired, then JUnit test
also includes calls to the relevant implementation methods
of the the IOUnit involved. Moreover, the JUnit assert
statements are also appended in the test case.

During the test case generation, the requirements asso-
ciated to CSP specifications (at this stage called abstract
test cases) are propagated to JUnit test cases, as Java
comments in the code (see Listing 2–line 13). In addition,
each requirement present in the requirement document listed
in Figure 3 will be associated with the test cases that covers
it. The approach allows one to trace which requirements
have been covered and validated during the test execution.
The approach will be discussed in more detail in Section 4.

3.6. Backtraceability of Requirements

Once the JUnit tests are run against the SUT a test report
is produced. The report will tell which requirements have
been covered by the selected set of test cases, which require-
ments have been left uncovered, and which requirements
were not validated. Having the requirements associated to
test cases and in the same time to different parts of both
Event-B and CSP specifications, allows us to trace at which
abstraction level a requirement was introduced and how it
reflected in the generated test cases. Based on this analysis,
one can identify the source of the error: either in the
SUT implementation or an incorrect formalization of the
requirement.

4. Tool Support

In this section we will have a brief overview of the tool
chain used to support our scenario-based testing process
described in Section 3.

Tool support for Event-B modeling and verification is
provided by the RODIN platform [5]. RODIN is an Eclipse-
based development platform providing effective support for
mathematical proof and refinement. The platform is an open-
source and further extendible with plugins. RODIN comes
along with several useful plugins facilitating smooth and
quick development of Event-B specifications. Some of its
important features include interactive prover, proof manager,
requirement manager and visual modeling. Figure 4 shows
a screenshot of RODIN platform with interactive prover.

The consistency of Event B models as well as correctness
of refinement steps should be formally demonstrated by
discharging proof obligations. The RODIN platform au-
tomatically generates the required proof obligations and
attempts to automatically prove them. Sometimes it requires
user assistance by invoking its interactive prover. However,
in general the tool achieves high level of automation (usually
over 90%) in proving.

The JFeature Eclipse plugin [?] ver. 1.2 is used for
specifying and managing the requirements of the system. A
screenshot was presented in Figure 3. The requirements are
specified in the Eclipse GUI and exported to a textual file.
The requirements file is then used by the the Requirement
plug-in [13] of RODIN for creating associations to Event-
B models. In the Requirement plug-in, a parser parses
the requirement document and lists individual requirements.
Then, any requirement can be selected to be mapped to
one or more Event-B elements. This mapping information is
stored in a mapping file. Similarly, a separate mapping file
is used for storing the mapping between requirements and
scenarios. A requirement can be associated with a model
element by first selecting a requirement in the requirement
manager and then choosing the “Add Association” menu
option, which appears after right-clicking the element to be
associated. A caption of the Requirement plugin displaying
the requirements of the Hotel Booking system is given
in Figure 4.

Another important tool in our tool chain is ProB [12]
animator and model-checker. Once an initial abstract sce-
nario is provide and expressed in CSP, the generation of
the refined testing scenarios is automatic. ProB is used to
check conformance between the models and the scenarios.
This satisfiability check is performed at each refinement
level as was shown earlier in Figure 2. ProB supports
execution (animation) of Event-B specifications, guided by
CSP expressions. In fact, the available tool support is an-
other motivating reason for representing scenarios as CSP
expressions. Otherwise, regular expressions could also have
served the purpose.
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Figure 5. Screenshot of RODIN showing the formal proofs of the Hotel Booking System

Once the JUnit tests are generated they are executed
using the JUnit plugin in Eclipse. The code coverage is
performed by EclEmma [15], which is a freely available
open source Java code coverage tool for Eclipse. With
EclEmma, it is also possible to generate the test execution
and coverage analysis reports. Figure 4 shows execution and
code coverage of a unit test.

As mentioned previously, when the JUnit test cases are
generated, the requirement document (listed in Figure 3) is
updated such that each requirement is associated with the
JUnit tests that cover it. Figure ?? shows a screenshot of the
JFeature view in Eclipse. In the top frame, the requirements
of the system are linked to one or many JUnit tests. In the left
frame, the result of executing the JUnit tests is presented,
whereas in the bottom frame, the JFeature test report on
how different requirements have been covered by the test
execution. In this concrete example, the TestT1() test
failed, and since it was associated with requirement REQ1-2
FindException, the report presents the requirement as
broken (with red background). The report presents also the
successful requirements in green color and the uncovered
requirements in yellow color.

For back-traceability of requirements for failed test cases,
a manual approach is used. Basically, we examine the test
reports for failed test cases. With the help of the RODIN
Requirement plugin we identify in what parts of the formal
specification a requirement was introduced and specified.
Alternatively, we examine the Java code of the implantation
and debug the code accordingly. Tracing requirements to
back to code and formal specifications proved useful in
identifying wrongful formalization of requirements or errors
in the implementation of the SUT.

5. Discussion

In this section, we analyze our testing approach and
discuss some related issues.

The presented test generation process produces test cases
in JUnit, which is a well-known and widely used testing
framework. The test cases are generated according to the
user provided scenarios. More scenarios the user provides,
the more code coverage we are likely to achieve. There are
several good coverage measuring tools available that can be
used with the generated test suites. We have tried EclEmma
as described earlier in Section 4.

Furthermore, our approach has the distinguishing advan-
tage that it also accommodates those changes which can not
categorized and proved as formal refinement. Referring back
to Figure 2, in some cases the model Mi may contain some
extra functionalities or features, such as the incorporated
fault-tolerance mechanisms, which were omitted or out of
scope of the scenario SA. These extra features, denoted
by SEF , can be added in the scenario Si manually. The
modified scenario Si ∪ SEF must be checked, by means of
the ProB model checker, to satisfy the model Mi. We can
then follow the same refinement process, now starting with
Si∪SEF , until we get a sufficiently refined scenario at level
of the final model MC .

Our approach also describes how one can generate Java
implementation templates and the corresponding JUnit test
cases. However, if for some reason, the user does not want
to use the generated template, s/he can still use the JUnit test
generation part to test his/her own implementation, provided
that s/he has implemented the system keeping the operation
interfaces consistent with the already generated JUnit tests.
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Figure 6. Screenshot of the Requirement plugin in RODIN showing requirements mapping

At the moment, we do not support translation of more
complex pre-condition and invariant expressions from Event-
B to Java. Namely, the existential and universal quantifiers
are not covered. However, this can be achieved by using an
approach similar to the one used in JML [16].

We do not explicitly support testing for negative scenarios
i.e., the behavior that should not exist in the SUT. However,
this kind of testing can also be accommodated if we model
such negative behavior in our Event-B models as events and
then provide testing scenarios covering those events. In order
to show correctness, the JUnit tests, generated from these
negative scenarios, should fail when applied on SUT.

6. Related Work

The jSynoPSys tool [17] performs scenario-based testing
using symbolic animation of the B machines. This work
defines a scenario-description language used to represent
scenarios. However, authors do not provide any guidelines
for the refinement of the specifications or scenarios. It is
also not mentioned how scenarios will be transformed into
executable test cases.

Nogueira et al. in [18] present a test generation approach
based on the CSP formalism. The CSP models are con-

structed from use cases described in a pre-defined subset of
natural language. The test scenarios are then incrementally
generated as counter-examples for refinement verifications
using a model checker. The main difference between their
work and our approach is that we use Event-B to represent
our system models and use CSP to represent testing sce-
narios. A model checker in our case is used to check the
conformance between models and scenarios.

Stotts et al. in [19] describe a JUnit test generation scheme
based on the algebraic semantics of Abstract Data Types
(ADTs). The developer codes ADT in Java, while tests
are generated for each ADT axiom. One of the advantages
of this approach is that the formalism is hidden and the
developer only needs to know Java to use this method.
However, unlike our approach, in their case it would not
be possible to mathematically prove any safety properties or
to find deadlocks in the specifications.

In our earlier work [20], we presented the scenario-
based testing approach for B models, where we designed
an algorithm for constructing test sequences across different
refinement [21] models. However, this algorithm is expo-
nential in its nature thus limiting its practical applicability.

In our current approach, ordering of events are enforced
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Figure 7. Executing Unit Tests and Measuring Code Coverage

by the guards and actions of the events. In [22], Iliasov
has proposed a support of control flow as an explicit event
ordering mechanism for Event-B models. The control flow
of events resemble the notion of scenarios used by our
approach. The difference between the two approaches is that
we use a model-checker and an animator to verify existence
of these scenarios, whereas in [22], the additional proof obli-
gations are generated and then proved by a theorem prover.
The control flow approach can be used as an alternative to
the scenario-conformance steps, shown in Figure 2.

7. Conclusion and Future Work

In this paper, we presented a model-based testing ap-
proach using user-provided testing scenarios. These sce-
narios are first validated using a model checker and then
used to generate test cases. Additionally, we have provided
the guidelines for stepwise development of formal models
and automatic refinement of testing scenarios. We also
proposed an approach to generate Java language implemen-
tation templates from Event-B models. The abstract testing
scenarios can then be used to generate executable JUnit test
cases. Optionally, user can map informal requirements to the
formal model and testing scenarios at different refinement
steps. This mapping of informal requirements is extended
till concrete test cases so that upon test case failure, these
unfulfilled requirements can be back-traced into the model.

We believe that our approach is very scalable. It can
help developers and testers to automatically generate large
number of executable test cases. Generating these test case
by hand would be very laborious and error-prone process.

As future work, we aim at providing graphical repre-
sentation for the testing scenarios and their refinements.
Moreover, at the moment, the mapping between abstract and
concrete data types needs to be provided manually by the
user. An automatic translation would be very helpful and
time-saving in this respect.

In addition to that, we also intend to use the UML-B [23]
formalism as the main modeling language in our scenario-
based testing approach. UML-B is a new graphical language,
which combines certain UML features with Event-B. UML-
B is similar to UML but has its own meta model. The main
advantages of using UML-B is that it provides an UML-like
front-end to Event-B, which make the modeling language
familiar to the majority of the developers. Moreover, it
provides additional structuring of Event-B models in the
form of UML classes and state-machines.

Another direction for our future work is to use the Next
Generation Java Testing (TestNG) framework [8] for im-
plementing the test cases. TestNG provides some important
extensions to JUnit 4 framework, e.g., parameterized test
methods.

158

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 8. Requirement coverage report in JFeature.
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