
Modernization of a Legacy Application: Does it Have to be Hard?

A Practical Industry Cooperation Case Study

Arne Koschel, Carsten Kleiner

Faculty IV, Dept. for Computer Science

Applied University of Sciences and Arts

Hannover, Germany

{akoschel | ckleiner}@acm.org

Irina Astrova

Institute of Cybernetics

Tallinn University of Technology

Tallinn, Estonia

irina@cs.ioc.ee

Abstract—Modernization of a legacy application is not very

hard any more. Whereas this may have been true a couple of

years ago, this paper describes a case study, which shows that

the modernization is significantly easier if modern integration

tools, a service-oriented architecture and Web services are

used. This is by contrast to a common belief that the

modernization is always hard, regardless of the technologies

used. The case study, where bachelor students succeeded to

carry out the modernization of a legacy application, shakes

that belief. The students neither had previous experience with

the technologies used in the legacy application nor with the

ones used for the modernization. As major contributions this

paper provides an overview of approaches to modernization, a

full case study for the modernization (including details on

business process analysis, architecture, and tools), and

comprehensive ‘lessons learned’ to help for ‘the practice’.

Keywords—service-oriented architecture; mainframe; legacy

integration; experience report; Web service

I. INTRODUCTION & MOTIVATION

Declared „dead‟ for quite a while now, many legacy
mainframe applications are still happily productive and will
continue to be. Indeed, until today legacy applications that
are based on mainframe database management systems
(DBMSs) like Adabas and associated fourth generation
programming languages (4GL) such as Natural, are still
often in practical use. However, those applications are often
only badly, if at all, integrated with newer enterprise
applications. The integration of legacy application assets is
required, e.g., due to joint use of functionality or data. It is an
important task, which occurs frequently in industrial
practice.

Figure 1. Overview of the SAG-Tours project

Initially, a punctual integration of the legacy assets was
achieved by means of „traditional‟ enterprise application
integration (EAI) technology (cf. [2][6]). Nowadays a
service-oriented architecture (SOA) [7][13] proposes a
promising solution to this task.

This paper describes a case study for legacy
modernization based on integration technology and Web
services. Used in conjunction, they served as the base for
integration of an existing legacy mainframe application
(SAG-Tours) into an up-to-date distributed SOA.

Figure 2. User interface of SAG-Tours application after modernization

The case study was done in scope of the SAG-Tours
project (see Figure 1). This project involved research and
industry cooperation with a German software company,
Software AG (SAG). The goal of the SAG-Tours project was

213

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to integrate the SAG-Tours mainframe application into a
modern Web environment – a requirement being driven by
Software AG customers. The customers wanted the SAG-
Tours application to become Internet-ready quickly (within a
year), thus giving end users the possibility to access the
application via a Web browser (see Figure 2). Previously,
„green screens‟ were the only way to access the application
(see Figure 3). The SAG-Tours project team consisted of 10
final-year bachelor students supervised by 2 professors. The
students had an average working effort of 1 day per week per
person. The team was given some „getting started‟ and
„configuration hotline‟ help from Software AG.

This paper provides two major contributions. First, it
shows how such a technically complex integration task
(where both old existing systems and several integration
technologies are involved) can be undertaken. Second, it
shows that this task could be carried out even with relatively
inexperienced students under only moderate supervision of
professors. This means the integration of at least functional-
wise not too complex legacy applications into a SOA should
not be a too difficult work any longer.

Figure 3. User interface of SAG-Tours application before modernization

This paper is an in-depth extension of our previous work
[1]. The related work has been extended by providing several
new references to related academic and industrial
publications. We examine different possible approaches to
modernization of a legacy application. Also, we explain
details on our approach to modernization of the SAG-Tours
application and our architecture that supports integration of
the application into a SOA. Finally, we bring together all the
lessons learned during the SAG-Tours project that can be
useful for application in other similar legacy modernization
projects.

The rest of the paper is organized as follows. Section II
describes the related work. Section III describes the SAG-
Tours application and its background technologies (viz.,
Natural and Adabas). Section IV analyzes existing
approaches to modernization of a legacy application (viz.
packaged applications, code conversion, re-hosting, re-
architecting, and SOA enablement). Section V gives details

on our approach to modernization of the SAG-Tours
application (viz. SOA enablement). Section VI gives details
on our integration architecture. Section VII describes lessons
we learned during the SAG-Tours project; it is followed by
conclusion and outlook to possible future work.

II. STATE OF THE ART

Related work especially regarding integration tools can
be found in industry as well (see, e.g., SAP [19], IBM [20],
Oracle [21][22], Software AG [23] and Microsoft [24]).
However, because Software AG‟s integration technology
stack was given us as a pre-requisite, we focus here on
academic related work only.

Although Canfora et al. [17] use a wrapper approach as
we do, they focus mainly on interactive functionality.

Englet [5] proposes a bottom-up integration approach,
which is not restricted to interactive components. It is,
however, suboptimal with respect to process modeling
because it might not take process optimization into account.

Smith [12] discusses several ways to introduce a SOA
into an enterprise, including legacy assets, but on a general
level. Erradi et al. [4] discuss similar strategies. Instead of a
general discussion, we focus mainly on concrete technical
integration aspects.

Lewis et al. [9][10][15] develop a service-oriented
migration and reuse technique (SMART) to assist
organizations in analyzing legacy components in order to
determine if they can be reasonably exposed as services in a
SOA. SMART provides a preliminary analysis of viability of
different migration strategies and the associated costs, risks
and confidence ranges for each strategy. In particular,
SMART gathers information about legacy components and
produces the best migration strategy for a given organization.
Thus, SMART helps organizations to select the right
migration strategy. SMART can be used to analyze what
legacy functionality can be re-used in a SOA. However, we
do not need this analysis, because it was pre-defined for us,
which legacy functionality had to be re-used. We consider
this to be an everyday situation in practice.

Erl [14] introduces a pattern-oriented background for a
SOA. While being helpful in general, more detailed work is
required for a concrete integration task.

Sneed [18] proposes a salvaging and wrapping approach
(SWA). This is a three-step procedure for creating Web
services from a legacy application code. These steps are: (1)
salvaging the legacy code; (2) wrapping the legacy code; and
(3) exposing the legacy code as a Web service. SWA is
effective in process and service integration. But it provides
limited support for content integration by wrapping second-
level Web services. This is similar to the second step of our
approach.

Ziemann et al. [25] describe a business-driven legacy-to-
SOA migration approach called enterprise model-driven
migration approach (EMDMA). This approach is based on
enterprise modeling, by introducing an elementary process
model between the business function tree and the tree related
to the legacy application, which is then aligned to the
function tree of the legacy application. Finally, it applies a
transformation from the legacy business process model to the

214

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

SOA process model. EMDMA draws attention to the fact
that aspects such as functional granularity, security,
reliability, scalability, etc. are not taken into account
sufficiently during the migration. Thus, there is a need for
investigating how these aspects of the legacy application can
be mapped to a SOA.

III. SAG-TOURS APPLICATION

SAG-Tours [11] is a legacy mainframe application
written in Software AG‟s Natural. It is based on a 1-tier
terminal mainframe architecture (see Figure 4). Functional
wise one has the possibility to order fictitious cruises.

Figure 4. 1-tier system architecture of SAG-Tours application

Technically terminal emulations are used, which
communicate with a Unix variation of Natural via telnet
protocol. The SAG-Tours application itself has a connection
to an Adabas database [3]. Adabas is a high performance
mainframe DBMS, which is internally based on so-called
inverted lists. An example for a Natural query would be as
follows:

 FIND CRUISE

 WITH START HARBOR= „CURACAO‟

Figure 5. Internal structure of an Adabas

example query using inverted lists

This query delivers all journeys with the starting harbor
‟CURACAO‟. Figure 5 shows „3‟ as the total hits number of
query results. It also shows the resulting internal sequence
numbers (ISNs). These ISNs can be interpreted as logical
pointers to the relevant resulting tuples.

IV. APPROACHES TO MODERNIZATION OF LEGACY

APLLICATION

Legacy modernization is the process to supplement or
replace an organization‟s legacy applications and
technologies using newer applications and technologies that
are based on open standards, while retaining business logic
[28].

There are five basic approaches to legacy modernization
(that can be used alone or combined):

 Replacing legacy applications with packaged
applications.

 Re-architecting legacy applications.

 Legacy application code conversion (also called
automated migration of legacy applications [28]).

 Re-hosting legacy applications.

 Enabling SOA (also called enabling Web [29], re-
interfacing [29] or business logic wrapping [26]).

There are advantages and disadvantages with all these
approaches. An advantage of one approach is usually a
disadvantage of another and vice versa. But “organizations
that are SOA-enabling their legacy applications on the legacy
platforms are outperforming those that are using any other

215

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

approach. They report better productivity, higher agility, and
lower costs for legacy modernization projects.” [29].

Since legacy applications are typically not architected
with a SOA and Web services in mind, careful selection of
an approach is required before modernizing a legacy
application. Depending on the approach selected, the legacy
application may require big, small or no change at all.
Therefore, it was important to choose the right approach for
the SAG-Tours application.

A. Packaged Applications

This approach [28] consists of replacing the legacy
application with a packaged (commercial off-the-shelf) one
made up of SOA components. These components can then
be combined with re-architected components, re-hosted
components and automatically migrated components using a
SOA orchestration engine.

Because packaged applications are seen as sets of
reusable components, the biggest advantage of this approach
is the increased agility. However, this approach does not
work in a situation where legacy applications have unique
functionality that cannot be replicated by packaged
applications. In this case, the business logic can be retained
from the legacy application using one of other approaches
such as re-architecting or re-hosting. Therefore, we rejected
this approach.

B. Code Conversion

This approach [27][28] consists of converting the legacy
application code into a new programming language (e.g.,
Java). It is often used in combination with replacing the
legacy application with a packaged one.

The biggest advantage of code conversion is that the
process of migrating, e.g., from Natural to Java can be
automated; i.e., it can be carried out by a machine and
require no human intelligence during the migration process.

Because a machine will carry out the migration process,
it can be done quickly and consistently. But it only works if
the gap between the legacy architecture and the new one is
relatively small. E.g., it is not possible to convert the
procedural design of Natural into the object-oriented design
of Java. The fundamental design concepts of Java – e.g., a
class and its behavior – are architectural concepts that
require human intelligence to design. The designer of a truly
object-oriented application will use these concepts in new
ways that cannot be recovered from a legacy application
designed using procedural techniques. Therefore, although
the automatic migration of Natural code into Java can be
done, but the resulting Java code will not be the same Java
code that would be designed for a truly object-oriented
application.

The biggest disadvantage of code conversion is that it is
much more invasive to the legacy application than other
approaches to legacy modernization such as re-hosting and
SOA enablement. Therefore, we rejected this approach also.

C. Re-hosting

This approach [28] consists of migrating the legacy
application to a lower cost platform. It can be used in

combination with code conversion. E.g., during the re-
hosting process, the legacy database calls to a mainframe
database such as Adabas can be eliminated.

The biggest advantage of re-hosting is that it is non-
invasive to the legacy application because the application is
left “as-is”.

Since re-hosting does not change the legacy application,
one disadvantage of this approach is that it forces a
continued reliance on legacy skills. Another disadvantage is
that re-hosting retains much of the legacy architecture. This
means that the implementation of Web services could be
cumbersome. Therefore, we rejected this approach also.

D. Re-architecting

This approach [28] consists of extracting business logic
from the legacy application, building a new application,
integrating this new application with the legacy one, and
finally, shutting down the legacy application.

The biggest advantage of re-architecting is that it
maximizes the benefits of a SOA and new technologies. But
it is the most expensive approach to legacy modernization –
a legacy modernization project can span many years.
Therefore, we rejected this approach also.

E. SOA Enablement

This approach [26][28] consists of wrapping business
processes and presenting them as Web services to an
enterprise service bus (ESB). This is the approach we
selected.

The biggest advantage of SOA enablement is that it
provides immediate integration of the legacy application into
a SOA. In addition, this approach is relatively non-invasive
to the legacy application. Therefore, legacy components can
be used as part of a SOA with no or little risk of destabilizing
the legacy application.

However, like re-hosting, SOA enablement forces a
continued reliance on legacy skills. Another disadvantage of
this approach is the need for communicating among
disparate environments because the legacy components
continue to reside on the legacy platform. However, using
SOA enablement combined with re-hosting can eliminate the
need for such communication because all the components –
the re-hosted components that have been integrated into a
SOA, the new components, the packaged application
components, and the SOA orchestration engine that brings
them all together – reside on the same new platform. This
also makes it easier to convert the legacy components into a
new programming language such as Java.

V. CONCEPTUAL INTEGRATION APPROACH AND

BUSINESS PROCESS MODEL

In this section we will show how the domain specific
business process model for the case study has been
developed and present some conceptually important aspects
of the result. We will also describe the conceptual integration
approach we have chosen and the advantages of this
approach.

216

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Conceptual Integration Approach

As explained above, for integrating the SAG-Tours
application into a SOA, we decided to follow SOA
enablement [26], which continues to use the application
itself. We selected SOA enablement primarily because rather
quickly (within a year) this approach can bring the
application into a modern Web environment, where the
application can be accessed via a Web browser. This is one
of the biggest advantages SOA enablement has over other
approaches to legacy modernization.

Our cooperation partner, Software AG, also offers tools
that use screen scraping to extract complete work processes
from a legacy application and make them available as Web
services (see Figure 6). We did not use these tools either. On
the one hand, we did that to stay technology-neutral as far as
possible. On the other hand, these tools typically yield only a
few rather coarse-grained services in the business process
layer (cf. [7]) and no services in the underlying layers of
business services and basic services. By doing so, increased
speed in an integration of the legacy application can be
reached; but the increased flexibility of process definitions
by variable combination of services of the underlying layers,
which is one of the main goals of introducing a SOA, may
not be achieved. We will show below how the services of the
business service layer have been variably composed into
business processes in the case study.

Figure 6. SOA enablement via screen scraping vs. Comprehensive

mainframe integration based on services via business logic wrapping

Encapsulation of functionality from the SAG-Tours
application in business services is shown in Figure 7. It
shows the detailed flow of the business process for deleting a
cruise, which is the result of the three-step integration
approach (see Section V). It is very easy to identify the
elementary tasks (such as finding and deleting of single
business objects), which had been implemented as Natural
programs in the SAG-Tours application. These programs
will now be wrapped as business services so that the whole
flow of the business process may be described as a
composition of such business services.

Figure 7. Sample business process „Delete journey‟ modeled as activity

diagram showing the integration of several existing business services

In the case study, the modeled business processes were
translated manually into executable code on the ESB since
there were only rather few processes. However, in the real-
world scenarios (even in medium-size legacy modernization
projects) an automated generation tool fitting for a particular
technology required by the ESB should be used.

B. Business Process Model

In the case study, we started to set up a business process
model of the domain. Since we chose a combination of top-
down and bottom-up approaches to integrate the SAG-Tours
application into a SOA, at first the optimal target processes
had to be identified (top-down part). Since there have been
quite a large number of processes, in order to check that the
approach would also hold for larger legacy modernization
projects, we grouped the identified processes into packages.
The packages have to be formed based on domain-specific
criteria; in the case study packages could be formed based on
the domain entities, on which the processes primarily
operated. Figure 8 shows the package model of processes.
After identifying all processes and assigning them to
packages, it was also possible to define dependencies
between packages based on the underlying dependencies of
the processes. This yields another helpful structuring of the
whole set of processes and is also shown in Figure 8.

217

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Packages for business process services and business services

for structuring of the process model domain

After identifying the target processes, we identified the
functionality of the SAG-Tours application that would be
required in the processes and thus had to be modeled as
business services (bottom-up part) in order to compose the
processes in the final step. Identifying the legacy
functionality and assigning it to business services had been a
rather easy task. Most of the functional components could be
directly derived from the existing Natural programs of the
SAG-Tours application. However, some of the functional
components had to be implemented anew in Natural (based
on the Adabas database) in order to achieve a technologically
homogeneous implementation of the foundation. For
example, there was a Natural program DRINF-N0, which
computed and returned all available cruises for a given start
date and start harbor. This was encapsulated within the
business service BS_FindCruise and could subsequently be
used in different business processes.

Figure 9. Business process model for person related

processes and services

In the third and final step, the business services obtained
in the second step could be composed to detail the business
processes defined in the first step. For example, Figure 9
shows a part of the obtained business process model, which
contains the processes and services related to person entities.
The business process BP_AddPerson to add a new person in
any role to the SAG-Tours application is, e.g., composed of
the services BS_AddPerson and BS_FindPersonByName,
which directly correspond to the functional components of
the application.

As expected, most of the identified business services
could be used in several different business processes. This
can already be concluded from Figures 9 and 10, even
though only part of the corresponding package models are
shown there. For example, the business process
BP_ModifyPerson to change information about an existing
person in the Adabas database is composed of the services to
find and modify a person by his or her ID or name as well as
the services to obtain further information about the roles of
the person.

218

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. (Part of) the business process model for cruise and

contract related processes and services

It should be noted that reuse is possible not only on the
level of business services. As shown in Figure 10, there is
also potential for reusing complete business processes within
other business processes. For example, the business process
BP_ModifyContract, which is executed to change any aspect
of a booking by a person for a specific cruise, can be
composed of the business processes to add and remove
contracts, which in turn are composed of the business
process to remove a cruise among others. Consequently, we
can see that reuse on both levels is greatly simplified by the
integration approach. Of course, business services may not
be composed of business processes internally due to the
definition of the according layers.

VI. INTEGRATION ARCHITECTURE AND STEPS

In this section, we will describe technical steps we have
taken to bring up an integration architecture for the SAG-
Tours application. At first, we will describe a general
integration architecture, which is then mapped to a concrete
integration tool suite. This is followed by an overview and
more detailed technical steps one has to follow to use this
integration architecture.

A. Integration Architecture

Since in the case study we followed the comprehensive
mainframe integration approach (see Figure 6) that fits into a
SOA as well, an N-tier integration architecture [2][7][13]
was the appropriate means of choice. In this general
integration architecture (see Figure 11), an end user uses a

Web browser, which acts as a client front-end to a Web
server. The Web server hosts presentation preparation logic,
which (in a „traditional‟ Web technology environment)
prepares HTML pages for the end user‟s GUI and uses
HTTP to interact with the end user‟s Web browser. On the
other side, this logic accepts a service access protocol (e.g.,
SOAP over HTTP in the case of Web services) to access
integrated services. In this case, an encapsulated DBMS is
accessed, again, by means of some service access protocol,
say, an ordinary remote procedure call (RPC).

Figure 11. General N-tier system architecture using

Web technology and an enterprise service bus

Since the integration technology stack was pre-defined
for the SAG-Tours project, integration architecture for the
SAG-Tours application was based on Software AG‟s
integration tools such as EntireX Broker (see Figure 12).

At the lowest level of the integration architecture, there is
a persistence layer with an Adabas DBMS. Above it, there is
an application layer with a Natural runtime engine, a Natural
RPC server (which calls that engine), a Software AG‟s
EntireX Broker (which acts as an ESB that „understands‟
different service access protocols) and – optionally – a so
called integration server (which actually is an execution
engine for a specialized business process execution
language). At the highest level, there is a server-side Web
presentation layer (also called GUI layer). Here the Apache
Web server and the Servlet engine Tomcat are used. Like in
the general integration architecture in Figure 11, a typical
Web browser is used for the end user client access.

The integration can take place in three layers:

 Persistence layer. Here calls to the legacy database
(e.g., Adabas) are replaced with Web services that
issue the same native calls and return the requested
data. These calls may be further modernized by

219

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

allowing SQL calls to be issued instead, even though
data is still stored in the legacy database.

 Application layer. Here calls to the legacy
procedures and programs (e.g., Natural subprograms
and programs, respectively) are replaced with Web
services that issue the same calls. The legacy
procedures and programs that are called by the
legacy application may have been written as reusable
components and are candidates for reusable services.

 Presentation layer. Here „green screens‟ are replaced
with Web services that drive the legacy application
the same way the original screens did. „Green
screens‟ are good candidates for the integration
because many legacy applications use them to drive
a single transaction; e.g., deleting a journey, adding a
person / contract, etc. The integration in this layer
often involves screen scrapping.

Figure 12. 3-tier system architecture that supports integration of SAG-

Tours application into SOA and uses Software AG‟s integration tools

As shown in Figure 12, in the case study the integration
took place in the application layer. This was feasible because

the source code of the SAG-Tours application was available
for us.

B. Integration Steps

Based on the components in Figure 12, the following
technical integration steps have to take place:

1. Import Adabas database structures into a repository.
2. Map / import Adabas database structures for Natural

subprograms.
3. Re-use existing Natural subprograms if possible.

Otherwise, write suitable new ones based on the
business process analysis from the previous section.

4. Define Natural subprograms to be accessible via the
Natural RPC server. This server in turn is called by
the EntireX ESB (also known as EntireX Broker).

5. Generate Web services stubs (here Java-based) for
imported subprograms, thus exporting those stubs as
Web service definitions from EntireX Broker.

6. Access those Web services from Java programs
using JavaServer pages, e.g., via Axis / JAX-RPC.

7. Send the results from the JavaServer pages to the
end user‟s Web browser.

The components as well as their usage within those

integration steps are described below in more detail.

C. Steps 1-2: Accessing Adabas from Natural via RPC

Following the above steps, initially the existing Adabas
database needs to be accessed by Natural programs. For
existing Natural programs (which are re-used directly), there
is no extra work just because the SAG-Tours application
does this already. For new or re-written Natural programs,
however, the existing Adabas database structures, which they
want to access, need to be imported into a repository from
the Natural tool suite.

Figure 13. Data structure definitions

Natural programs and subprograms can query the
repository to define their database access data structure. Such
data structures are so called DEFINE DATA areas in
Natural. Within such data areas, local Natural program
variables are defined. Moreover, views to an underlying

220

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

database are defined by means of the USING clause within a
DEFINE DATA area definition. Such a view serves as a
common storage area between the Adabas DBMS and the
calling Natural program. (It should be noted that Natural is
not restricted to Adabas. Rather, it can also be used with
other DBMSs like DB/2 and Oracle.)

Figure 13 shows a screen shot of the Adabas data
mapping development environment from the Natural tool
suite. As can be seen, Natural data types are defined for local
and parameter data areas. These data areas have two
purposes. First, they are required for the Natural subprogram
itself as the communication structure with Adabas. This is
done by the LOCAL DATA area (YACHT-V and YACHT-
LD in Figure 13). Second, they specify the output data from
the Natural subprogram in the PARAMETER DATA area
(YACHT-INFO within YACHT-PD). This is then used as
the mapping input by the EntireX Broker (see Section D
below for more details).

The following little excerpt shows some Natural
subprogram code, which fills a data area called „YACHT-
VIEW‟ using a FIND statement that searches for „HUGE‟
yachts. This statement accesses the Adabas database from
the SAG-Tours application.

DEFINE DATA
PARAMETER USING YACHT-PD
LOCAL USING YACHT-V

1 COUNTER (N5.0) INIT <0> 1
1 LIMIT (N5.0) INIT <0>

END-DEFINE

FIND ALL YACHT-VIEW WITH

YACHT-VIEW.YACHT-TYPE = ‟HUGE‟
. . .
[code to check and increment COUNTER

 and to expand the size of the output
 data structure YACHT-INFO if required]

. . .
MOVE YACHT-VIEW.YACHT-NAME TO
YACHT-INFO.YACHT-NAME(COUNTER)
. . .

END-FIND

MOVE COUNTER TO YACHT-INFO.COUNTER
END

The query result in the „YACHT-VIEW‟ data area is then

moved to the output PARAMETER DATA „YACHT-PD /
YACHT-INFO‟ area. From this area, a „YACHT-INFO‟ data
structure in Figure 13 is filled. The „YACHT-
INFO.COUNTER‟ variable is filled with the number of
tuples, which were returned from the FIND statement.
Eventually, the newly filled YACHT-INFO data structure
(conceptually similar to a 2-dimensional array, technically
several 1-dimensional arrays) is returned as the Natural
subprograms result.

D. Steps 3-4: Accessing Natural via RPC

Following the above steps, the Adabas database can be
accessed by means of Natural programs. This is pretty much
the way, the SAG-Tours application works. Now in order for
this application to be re-used as services within the
application modernization context of the SAG-Tours project,
those programs need to become technically accessible from
the outside. For this purpose, the (Natural) remote procedure
call (RPC server in Figure 12 is used. Natural subprograms
(which run on remote machines) are accessed via a RPC.
This is conceptually comparable to protocols such as Java
Database Connectivity (JDBC), which are frequently used
for Java-based remote access to relational databases.

Within the integration architecture in Figure 12, the
EntireX Broker actually uses a RPC for such remote Natural
access. The EntireX Broker is Software AG‟s integration
turn table, which thus conceptually serves as the core of an
ESB as it is known from a SOA-based integration
architecture (see [7][13] for more detail).

Two major pre-requisites for this approach exist. First, he
Natural programs need to be callable as subprograms. This
just requires a well-written Natural subprogram with clearly
defined input / output data areas. Another option is to have
Natural programs as a base, which can reasonably easy be
modified to fulfill this requirement. However, one of those
options is due to Natural coding practices not to seldom
given for existing Natural code and it does hold for the SAG-
Tours application.

Second, the semantic structure of the existing
subprograms must be „good enough‟ to be re-usable in a
modernized business context. To ensure this, we did the
business process analysis of the existing Natural programs as
described in the previous section.

Since most of the existing programs were easily
understandable, e.g., comparable to functions like „DELETE
JOURNEY‟ or „FIND-AVAILABLE-YACHTS‟, this was a
manageable task for us (see [16] for more details). However,
such an analysis might not be an easy task for more complex
existing Natural code.

It should be noted that as a „side effect‟, all the students
were able to read and write Natural code afterwards (even
though they had no previous experience in Natural coding).

E. Step 5: Re-using integrated legacy code as Web

services

Having integrated the Natural subprograms using
EntireX Broker, one now wants to re-use them within non-
Natural contexts. In the case of the SAG-Tours project, Web
services are the means of choice. Thus, a Web Services
Description Language (WSDL) based service interface
definition and SOAP access to the integrated Natural
„services‟ needs to be enabled.

Easily enough, the EntireX Broker development
environment can generate all the required code. It utilizes the
PARAMETER DATA-areas form the above steps to enable
a mapping specification from the Natural procedure
parameters to XML data types. Of course, this requires a
suitable PARAMETER DATA areas for each Natural

221

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

subprogram (either newly written or existing), which is to be
mapped to another service description.

The mapping itself is based on a XML mapping
specification (XMM), which is used by EntireX Broker at
runtime for data type conversions (see XMM in Figure 12).

Now that the task of technically integrating the existing
Natural subprograms is achieved utilizing the EntireX
Broker, those programs can directly be accessed as Web
services based on SOAP. EntireX Broker does the internal
mapping and provides a WSDL based service endpoint for
each of the exposed „Natural‟-Web services.

F. Step 6-7: Using Web services from JSP clients

As shown in Figure 12, we then just used Java code
within JavaServer Pages (JSPs), which in turn called the
Web services above.

Instead of hard-coding JSPs and Java code, the Web
services could also be called using Software AG‟s business
process engine. This component in Figure 12 is called
integration server. We tried this exemplary as well – it
worked fine except for some minor data type issues. But we
did not explore it in more depth due to given time limits –
the SAG-Tours project was limited to one year.

Eventually the JSPs allowed for an easily developed GUI
front-end for the end user. In the real-world scenario, there is
also the possibility to call the Web services from other
external programs. Since our legacy components are
completely enclosed as Web services, they can easily be
embedded in a larger SOA environment.

VII. LESSONS LEARNED

Looking back at the SAG-Tours project, we can derive a
good bit of experiences, which might also be valuable for
other legacy modernization projects. These experiences are
described below as learned lessons (both technical and
pedagogical).

A. Technical Lessons

From a technical point of view, the most interesting
insight gained by the SAG-Tours project has been related to
mainframe legacy software. In particular, it was interesting
to see how easy or difficult it was to integrate a legacy
mainframe application into modern software architecture and
how object-oriented programmers could cope with this task.
(The students involved in the SAG-Tours project were
reasonably experienced in Java coding.)

1) Complexity of integration:

 Integration effort: The integration of existing legacy
mainframe applications into a SOA is not too hard
any more. Whereas this may have been true a couple
of years ago, the SAG-Tours project showed that the
integration is rather simple. This has been proven in
the case study where final-year bachelor students
succeeded to carry out the project. The students had
no previous experience in mainframes and the
technology used in the SAG-Tours application.

 Tool support: The integration of Adabas / Natural
legacy applications is very well supported by
Software AG‟s integration tools. Since Software
AG‟s integration technology stack was given us as a
pre-requisite, a general conclusion on tool support
cannot be drawn. It will be interesting to evaluate
this aspect in follow-up projects; i.e., whether
integration tools provided by different vendors can
also be used to implement our integration approach.

 Effort dependencies: As expected, the exact effort
required depends heavily on the size and number of
the target processes and (even more) on the amount
of knowledge of and documentation on the existing
code in the legacy application itself.

2) Integration Approach:

 Regarding the conceptual integration approach to the
legacy modernization, we used a combination of top-
down and bottom-up approaches. However, this may
not be viable in all situations. Factors that have to be
taken into consideration in order to choose the right
approach include:
o Quality of Service (QoS): the screen

scraping approach can never yield better QoS than
the original application at best. This time, the
comprehensive mainframe integration approach
might open up possibilities for improving the QoS
externally.
o Time to market requirements: if it is

important to have the legacy application usable in a
service environment as fast as possible, regardless
of the technology used, the bottom-up approach
will be a better choice.
o Effort (time and money): In most cases,

comprehensive mainframe integration (which is
based on services) will be more costly from a short
project point of view because of the conceptual
complexity. This effort could, on the other hand,
well pay off in the long run because such
integration has the potential to increase re-using of
components and may simplify software
maintenance.
o Knowledge about existing code: if there is

only a black-box like knowledge of what the
existing application components do and not how
they do it in detail, then the comprehensive
mainframe integration approach may not be
feasible at all. This is especially true if existing
components have to be modified or extended for
the integration (as in the case study). This scenario
which seems unrealistic at first sight can actually be
found in many organizations nowadays.

 In summary, we feel that our combined integration
approach is ideal for many situations because it joins
the long-term potential of the top-down approach
with the technological ease of the bottom-up
approach.

222

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Pedagogical Lessons

From a pedagogical point of view, there are several
lessons learned as well, which are interesting from higher
computer science education perspective. Within the SAG-
Tours project the following conclusions were derived:

1) Usage of complex technologies in bachelor projects

 Possible project type: A technology environment can
involve different technical skills such as different
programming languages, several tools, and different
hardware and networking technologies, as well as
conceptual knowledge in software / system
architectures, project management techniques, etc.
The usage of such a complex environment is still
feasible, although certainly not an easy project for
students.

 Enhanced motivation: Not only was the SAG-Tours
project feasible, but also the students were highly
motivated because they felt the „real world‟
characteristics of the project. During a visit to
Software AG, they were shown recent integration
software improvements and a roadmap, and they got
a guided tour including visiting Software AG‟s real
IBM mainframes. All these things enhanced student
motivation very much. At the end of the SAG-Tours
project, the students highly ranked the value of the
project for their computer science education.

 Team dependency: Although legacy modernization
projects are doable by students, at least reasonable
motivated students are required, who want to dig
into the game. The skills of students involved in the
SAG-Tours project have been „average‟ to „above
average‟. A project team of „below average‟ students
would likely not have finished the project with this
success. As said before, the students had a good
knowledge of Java, and database and networking
technologies but no prior exposure to Web services,
integration software or even mainframe technology.

 Reasonable environment: As known from software
projects in general, a proper organizational
framework is required. This includes a project room
with dedicated project team time and at least a
drawing board, dedicated machines, occasional
pizzas, a project poster to show etc.

2) SOA / Mainframe technology

 SOA principles / Web services: As expected usage of
Web services and SOA principles such as service-
oriented design, process analysis, well-defined
interfaces, etc., resulted in a reasonably better
„interface-oriented‟ software and system design.

 ‘Interesting mainframes’: Mainframe technology in
general was seen as a quite interesting topic,
especially when the students recognized that many
topics such as transaction processing have been
around for quite a while in computer science history.

 Willingness to ‘struggle through it’: Especially the
interplay of all the technologies and a mostly new
terminology for (although partially known) concepts
did require from the students some willingness to
„struggle through it‟. This clearly demanded student
motivation. But once that motivation had been
raised, the SAG-Tours project clearly became a self-
runner for the supervising professors.

VIII. CONCLUSION AND FUTURE WORK

There is a common belief that SAO enablement on the
application layer (also known as business logic wrapping) is
a very expensive approach to modernization of a legacy
application in case of a lack of legacy skills because of huge
efforts required to understand the legacy application.
However, the case study showed that this approach can
require rather few efforts if the right technologies are used.

In other words, integration of legacy applications into a
SOA is neither impossible nor too complex. Simple evidence
of this fact is that in the scope of the SAG-Tours project,
final-year bachelor students were able to do this within a
year, with an average effort of one day per week for 10
students. The students were experienced in Java coding and
network technologies in general. But they had no previous
experience in Natural coding, mainframe technologies
(Adabas in particular) or integration of legacy applications.

However, for a full SOA, we have to add some more
components to complete the integration architecture in
Figure 12. But the fact that it was possible without any major
problems in the context of the SAG-Tours project carried out
by bachelor students [8] shows that it is not necessary to
have a disproportional knowledge or to make huge efforts for
such integration.

Whether a particular integration would be possible in a
heterogeneous system environment (e.g., without using
newly offered components from the same vendor) or what
efforts would be required could be evaluated in future work
within another legacy modernization project.

ACKNOWLEDGMENTS

We would like to especially thank our students [16] from
the SAG-Tours project, who were instrumental in
implementing the above concepts.

Irina Astrova‟s work was supported by the Estonian
Centre of Excellence in Computer Science (EXCS) funded
mainly by the European Regional Development Fund
(ERDF).

REFERENCES

[1] A. Koschel, C. Kleiner, and I. Astrova. Mainframe application
modernization based on service-oriented architecture: a practical
industry cooperation case study. Proceedings of IARIA Computation
World: Future Computing, Service Computation, Cognitive, Content,
Patterns, ComputationWorld 2009, 298 – 301, 2009.

[2] S. Conrad, W. Hasselbring, A. Koschel, and R. Tritsch. Enterprise
application integration: Grundlagen - Konzepte - Entwurfsmuster –
Praxisbeispiele. Spektrum Akademischer Verlag, 2005.

[3] C. Date, An introduction to database systems 5th Edition, Volume I,
1992.

223

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[4] A. Erradi, S. Anand, and N. Kulkarni. Evaluation of strategies for
integrating legacy applications as services in a service oriented
architecture. In IEEE SCC, pages 257–260. IEEE Computer Society,
2006.

[5] S. Englet. Wiederverwendung von Legacy Systemen durch einen
bottom up Ansatz bei der Entwicklung einer SOA. In H. Hegering, A.
Lehmann, H. Ohlbach, and C. Scheideler, editors, GI Jahrestagung
(1), volume 133 of LNI, pages 96–100. GI, 2008.

[6] W. Keller. Enterprise Application Integration. Erfahrungen aus der
Praxis. Dpunkt-Verlag, 2002.

[7] D. Krafzig, K. Banke, and D. Slama. Enterprise SOA: Service-
oriented architecture best practices. Prentice Hall, 2005.

[8] C. Kleiner and A. Koschel: Legacy vs. Cutting edge technology in
capstone projects: What works better? Proceedings of the 40th ACM
Technical Symposium on Computer Science Education (SIGCSE09),
2009.

[9] G. Lewis, E. Morris, and D. Smith. Analyzing the reuse potential of
migrating legacy components to a service-oriented architecture. In
CSMR ‟06: Proceedings of the Conference on Software Maintenance
and Reengineering, pages 15–23,Washington, DC, USA, 2006. IEEE
Computer Society.

[10] G. Lewis, E. Morris, D. Smith, and L. O‟Brien. Serviceoriented
migration and reuse technique (smart). In STEP ‟05: Proceedings of
the 13th IEEE International Workshop on Software Technology and
Engineering Practice, pages 222–229, Washington, DC, USA, 2005.
IEEE Computer Society.

[11] Software AG, SAG-Tours: SOA integration projects, Application
Document (Technical Report), Darmstadt, 2007.

[12] D. Smith. Migration of legacy assets to service-oriented architecture
environments. In ICSE COMPANION ‟07: Companion to the
proceedings of the 29th International Conference on Software
Engineering, pages 174-175,Washington, DC, USA, 2007. IEEE
Computer Society.

[13] G. Starke and S. Tilkov (Edts.). SOA-Expertenwissen: Methoden,
Konzepte und Praxis serviceorientierter Architekturen. Dpunkt-
Verlag, 2007.

[14] T. Erl. SOA Design Patterns, Prentice Hall, 2009.

[15] G. Lewis, E. Morris, and D. Smith. Analyzing the reuse potential of
migrating legacy components to a service-oriented architecture. In
CSMR ‟06: Proceedings of the Conference on Software Maintenance
and Reengineering, pages 15–23,Washington, DC, USA, 2006. IEEE
Computer Society.

[16] A. Koschel, C. Kleiner, M. Safris, A. Budina, O. Efimov, A.
Morozov, W. Schaefer, D. Schaefer, S. Kirstein, W. Zlobin, A.
Kolesnikov, and A. Brockwitz. Abschlussdokumentation für das
Bachelor-Projekt „SAG Tours‟. FH Hannover, Fakultät IV. 2008.

[17] G. Canfora, A. Fasolino, G. Frattolillo, and P. Tramontana. A
wrapping approach for migrating legacy system interactive
functionalities to service oriented architectures. Journal of Systems
and Software, 81(4):463–480, 2008.

[18] H. Sneed. Integrating legacy software into a service-oriented
architecture. CSMR‟06, IEEE CSP, 2006.

[19] SAP. NetWeaver Open Integration Platform.
https://www.sdn.sap.com/irj/sdn/developerareas/netweaver Last
access: June 2010.

[20] K. Channabasavaiah and K. Holley. Migrating to a service-oriented
architecture. IBM White paper, 2004.

[21] Oracle. Oracle IT modernization series: The types of modernization.
Oracle White paper, 2006.

[22] F. Mohammed. Oracle SOA Suite. Sys-Con XML Journal, 2007.

[23] Sofware AG. webMethods ApplinX.
https://www.softwareag.com/ApplinX Last access: June 2010.

[24] Microsoft Corporation. Enabling real-world SOA through the
Microsoft Platform. 2006.

[25] J. Ziemann, K. Leyking, T. Kahl, and W. Dirk. Enterprise model
driven migration from legacy to SOA. Software Reengineering and
Services Workshop, 2006.

[26] A. Erradi, S. Anand, and N. Kulkarni. Evaluation of strategies for
integrating legacy applications as services in a service oriented
architecture. In IEEE SCC, pages 257–260. IEEE Computer Society,
2006.

[27] T. Suganuma, T. Yasue, T. Onodera, and T. Nakatani. Performance
pitfalls in large-scale java applications translated from cobol. In
OOPSLA Companion ‟08: Companion to the 23rd ACM SIGPLAN
conference on Object oriented programming systems languages and
applications, pages 685–696, New York, NY, USA, 2008. ACM.

[28] Oracle. Oracle IT modernization series: Approaches to IT
modernization. Oracle White paper, 2009.

[29] T. Laszewski. SOA and the mainframe: Two worlds collide and
integrate.
http://www.theserviceside.com/tt/articles/content/SOAandtheMainfra
me/article.html, 2009 Last access: June 2010.

224

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

