
Metrics for the Evaluation of Adaptivity Aspects in Software Systems

Claudia Raibulet, Laura Masciadri
Dipartimento di Informatica Sistemistica e Comunicazione,

Universitá degli Studi di Milano-Bicocca
Milan, Italy

raibulet@disco.unimib.it, laura.masc@gmail.com

Abstract—Runtime adaptivity is related to the ability of the
information systems to perform changes by themselves and on
themselves during their execution. The engineering of runtime
adaptivity is one of the most challenging issues to address in
today’s information systems. This is due to the fact that
runtime adaptivity requires additional elements at the
architectural or structural levels. Moreover, it increases the
dimension and computation of a system. Its advantages are
mostly related to the improvement of performances,
enhancement of the functionalities’ quality and automation of
administrative tasks. In this paper we propose a set of metrics
for the description and evaluation of adaptive properties of the
information systems and of the frameworks which provide
support for the development of adaptive systems. They aim to
provide a concrete mechanism to analyze the quality of the
design of adaptive systems, to determine the type of adaptivity
of a system or to compare the adaptive features of different
systems. Metrics are grouped into six categories: architectural,
structural, performance, interaction, documentation, and
miscellaneous. They have been identified and specified by
analyzing several case studies which address runtime
adaptivity issues through different approaches with different
objectives in various application domains and several
frameworks for the design and implementation of adaptive
systems.

Keywords-adaptivity, adaptive systems, evaluation, software
metrics.

I. INTRODUCTION
Runtime adaptivity [3], [5], [7], [10], [15] indicates the

ability of a system or software to perform changes by itself
and on itself during its execution. The objectives of changes
may be of various natures and may concern different issues
which range from addressing unpredicted situations to
ensuring the optimal working of a system’s resources or to
improving the performances of a system. Essentially, they
result from the need to address the growing complexity of
emerging systems and to improve productivity and
performance, as well as to automate configuration, re-
configuration, control and management tasks [15].

Due to the wide range of possible objectives, types and
solutions related to runtime adaptivity, it would be very
useful to have common mechanisms to evaluate and compare
adaptive approaches in order to choose the most appropriate
solution for the current needs, to integrate various solutions,
or to make these solutions cooperate to achieve complex
tasks.

We tried to address these issues by considering the
available solutions described in the scientific literature [2],
[5], [7], [8], [16] in order to determine how adaptivity is
actually achieved, the main characteristics of the design of
adaptive systems, as well as the advantages outlined by the
authors of the adaptive systems.

The conclusions are summarized as follows. Adaptivity
is a complex task. Independently of what it is changed at
runtime, an adaptivity pattern consisting of four main steps
(which should be implemented by any adaptive system) can
be specified: monitoring (to retrieve information about the
context or status of a system which is exploited at run-time
in the adaptation process), analysis of the monitored
information, decision (to determine whether changes should
be made or not and, in the affirmative case, to choose the
best solution for the current situation) and application of
identified changes [3], [5], [10], [14].

Adaptivity requires additional elements at the
architectural or structural levels in order to implement these
steps. Even if it is considered a non-functional requirement,
it influences the execution of a system, its interaction with
the external world, and its performances. Therefore, its
design and implementation are fundamental for a system’s
lifecycle.

Authors describe the advantages of adaptive systems in
terms of performances, simplified and enhanced interaction
with the users, and automation of administrative tasks.
However, the evaluation of the described solutions is
adaptive and case study oriented: the authors provide their
point of view and outline the strong aspects of their solutions
through a particular vocabulary/terminology. Therefore, it is
difficult, if not impossible, to evaluate and compare adaptive
systems.

Furthermore, the scientific literature presents also various
frameworks [5], [7], [16], each introducing a different
approach for the design and implementation of adaptive
mechanisms. For example, the Rainbow framework [5]
proposes a control loop which defines mechanisms to
monitor the runtime properties of a system, to evaluate
constraint violations, and to perform global and module level
adaptations on a running system. All these mechanisms are
provided at the architectural level. On the other hand, the
Adaptive Server Framework (ASF) [7] describes an
infrastructure of components and services which facilitates
the construction of adaptation from a behavioral perspective.
Hence, when developing an adaptive system, on which basis

238

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

there can be evaluated which of these frameworks is more
appropriate for the current requirements?

In this context, we propose a set of metrics which may be
adopted in the description, design, and evaluation of the
adaptive properties of information systems and frameworks.
The metrics are grouped into the following categories:
architectural, structural, interaction, performance,
documentation, and miscellaneous [12]. The architectural
and structural metrics are mostly related to the design issues
of adaptive systems; while the interaction and performance
metrics reflect the advantages regarding the usability of the
adaptive systems. Even if it may play a secondary role, the
documentation category may be considered an indication on
the usability and reusability, personalization, and the
advantages of adaptive systems, as well as about their overall
quality. Furthermore, it is a valuable indication on the
usability and the overall quality of a framework for adaptive
systems.

For the presentation of the metrics of adaptivity, this
paper considers four of the available case studies, which in
our opinion are representative for this topic: a Web-based
client-server system and a video conferencing system which
exploit the Rainbow framework [5], an adaptive image
server which uses the Adaptive Server Framework [7], and
the AHA! [2] system for adaptive e-learning.

The rest of the paper is organized as follows. Section II
provides an overview on four representative adaptive case
studies. Section III introduces the categories and
subcategories of metrics defined in this paper. The
application of the defined metrics to the four cases studies
introduced in Section II is discussed within Section IV. The
similar approaches for the evaluation of runtime adaptivity
are addressed in Section V. Conclusions and future work are
dealt with in Section VI.

II. CASE STUDIES ON RUNTIME ADAPTIVITY
This section introduces four of the case studies we have

considered in the identification and specification of metrics.
In Section X, an analysis of these case studies from the
metrics point of view is presented.

A. Web-based Client-Server (WebCS)
In this case study Web-clients make requests of contents

to various Web-server groups [5]. Adaptivity is related to the
system’s performances and more precisely to the response
time the clients perceive for their requests to the Web
servers. The two factors which influence the response time
are the servers’ load and the available bandwidth. To address
this performance issue through adaptivity, an architectural
level approach is adopted consisting in the definition of an
architectural style enriched with adaptation operators and
strategies for the dynamic aspects of a system [5].
Furthermore, each client has associated an invariant which
verifies if the response time is less than a predefined value. If
this is not true an adaptivity strategy is invoked. The results
of the application of the adaptive strategies are reflected at
the architectural level.

B. VideoConferencing (VConf)
This case study deals with the management of

videoconferences in which participants may use various
videoconferencing tools and communication protocols [5].
Adaptivity is related to the performance (determined
essentially by the available bandwidth) and cost (determined
essentially by the gateway costs) aspects. As in the previous
example, adaptivity is addressed at the architectural level
through an architectural style. Each handheld device and
gateway has associated an invariant which establishes the
range of the accepted values. Whenever an invariant is
violated, an adaptive strategy is invoked. The results of the
application of the adaptive strategies are reflected at the
architectural level.

C. Adaptive Image Server (AIS)
In this case study, clients send to a server requests for

images specifying the minimum and maximum resolution for
the requested images [7]. In a non-adaptive scenario, the
server provides the images with their current resolutions. In
an adaptive scenario, the server scales the images resolution
in order to optimize the overall performances of the system.
In this case, performances are translated into the
improvement of the throughput and the reducing of the
response time which are determined by the resolution and the
quality of an image. Furthermore, adaptivity takes into
consideration also its overhead introduced in the system: the
computation load (of the CPU) of the server because the time
needed to process images may influence significantly the
response time. This is compared to the latency determined by
sending non-modified images.

D. Adaptive Hypermedia Architecture (AHA!)
AHA! [2] is an adaptive e-learning system. Adaptivity

regards the content (visualized to a user as pages) and the
navigation in the content (implemented through links) based
on the knowledge level of a user. The information offered by
AHA! is organized hierarchically (consisting in fragments-
pages-courses) through a domain model. Each element in
this domain model may have associated one or more
concepts.

When a user requires a page, based on (1) the user’s
model (consisting in concepts which have associated a set of
attributes among which his knowledge level) and (2) the
adaptivity rules defined by the adaptation model, an
adaptivity engine (I) builds the requested page (inserting the
content and the navigation elements) accordingly to the
user’s current knowledge level, (II) updates the user model
(through the rules defined by the adaptation model by
considering the concepts inserted in the requested page) and
(III) visualizes the page.

III. METRICS FOR RUNTIME ADAPTIVITY EVALUATION
In the definition of the metrics we have assumed that the

functional part of a system is designed first, (or more
generally a system should provide a version of its
functionalities which does not exploit adaptivity), and further
it is enriched with adaptive mechanisms.

239

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Each metric is presented through its name, description
and further explanations wherever necessary.

We have defined five categories of metrics each of them
may be further divided into subcategories. Furthermore, we
have defined additional aspects which may be considered to
evaluate adaptivity and which are grouped in a
miscellaneous category due to the fact that they capture
different facets of adaptivity. An overview on these metrics
is presented in Figure 1.

The architectural category of metrics aims to capture the
main features of adaptivity which emerge at the system level.
These characteristics are visible and meaningful when
considering a global perspective on the architecture of a
system. The metrics in this category are further divided in
two subcategories: architectural growth and architectural
separation of concerns.

The structural metrics are collocated at a lower
abstraction level then the metrics in the previous category.
They concern the actual implementation aspects of an
adaptive system. The metrics in this category are further
divided in three subcategories: structural growth, structural
separation of concerns, and personalization.

The interaction category focuses on the advantages
provided by runtime adaptivity in terms of the automation of
the human tasks. Hence, it considers both the interactions of
the administrators and the final users with an adaptive

system.
The performance metrics aim to evaluate the quality of

the functionalities provided by the adaptive systems. Hence,
the aspects they consider are visible and meaningful for the
final users of a system.

The documentation category provides information on the
quality of a design of an adaptive system or a framework for
the implementation of adaptive systems. It defines
meaningful metrics for the usability and understandability of
the adaptive properties.

The miscellaneous indexes propose further evaluation
mechanisms which may be exploited to analyze the overall
effort necessary to implement adaptive functionalities.

These categories of metrics are described in detail in the
following sections.

A. Architectural Metrics
During the presentation of the architectural metrics we

use the term elements as defined by [1] for software
architecture: “The software architecture of a program or
computing system is a structure or structures of a system,
which comprise software elements, the external visible
properties of those elements and the relationships among
them”. Hence, the term element expresses an architectural
unit (e.g., components and connectors [6]). The metrics are

Figure 1. Overview on the metrics for runtime adaptivity

240

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

valid and applicable to any architectural element.
Generally, the systems addressing runtime adaptivity

through architectural mechanisms are composed of two
parts: functional and adaptive. The adaptive part is usually
composed of four main conceptual elements corresponding
to the adaptation steps: monitoring, analyzing, deciding and
changing (see Figure 3-A).

The architectural metrics concern two main aspects:
separation of concerns and architectural growth.

The separation of concerns regards two aspects: (1) the

separation between the functional logic and the elements
ensuring adaptivity, and (2) the separation among the
elements implementing the four steps of adaptivity. It is
expressed through two metrics.

aSCI: architectural Separation of Concerns Index

ܫܥܵܽ ൌ
ݏݐ݈݊݁݉݁݁ ݁ݒ݅ݐ݌ܽ݀ܽ ݂݋ ݎܾ݁݉ݑܰ

 ݂݀݁݅݅݀݋݉ ݏݐ݈݊݁݉݁݁ ݈ܽ݊݋݅ݐܿ݊ݑ݂ ݂݋ ݎܾ݁݉ݑܰ

This metric indicates the degree of dependence between

the functional logic and the adaptive elements of a system at
the architectural level. It enables the evaluation of the
separation of concerns at the architectural level by
comparing the number of elements inserted in the adaptive
part (which provide exclusively adaptive functionalities)
and the number of the functional elements which have been
modified (to interact with the adaptive ones).

aAPI: architectural Adaptivity Pattern Index

ܫܲܣܽ ൌ ݏݐ݈݊݁݉݁݁ ݈ܽݑݐ݌݁ܿ݊݋ܿ ݁ݒ݅ݐ݌ܽ݀ܽ ݂݋ ݎܾ݁݉ݑܰ

This metric indicates the separation of concerns between

the main conceptual (types of) elements implementing the
four steps defined by the adaptivity pattern at the
architectural level. If the value of this metric is four, then
the adaptive part of a system defines at least a conceptual
element for each of these four steps. If it is zero, the
adaptive part of the architecture is totally integrated with the
functional one. The values between zero and four suggest
that two or more adaptivity steps are provided by the same
conceptual architectural element.

These two metrics provide useful information related to
the modularity, reusability and maintainability of the
adaptive part of a system.

The architectural growth regards the number of elements

introduced by the adaptive part of an architecture. It is
express through five metrics.

MaAC: Minimum architectural Adaptive Cost

ܥܣܽܯ ൌ ݕݐ݅ݒ݅ݐ݌ܽ݀ܽ ݎ݋݂ ݏݐ݈݊݁݉݁݁ ݂݋ ݎܾ݁݉ݑ݊ ݉ݑ݉݅݊݅ܯ

This metric indicates the minimum number of elements
which should be added to make a system adaptive
independently of the number of functionalities it provides.
Essentially, this metric expresses the fix cost of adaptivity at
the architectural level. It considers the adaptive elements
necessary to make the first functionality adaptive.

aACF: architectural Adaptive Cost per Functionality

ܨܥܣܽ ൌ ݕݐ݈݅ܽ݊݋݅ݐܿ݊ݑ݂ ௧௛݅ ݄݁ݐ ݎ݋݂ ݏݐ݈݊݁݉݁݁ ݂݋ ݎܾ݁݉ݑܰ

This metric indicates the number of elements which

should be added to make the i-th functionality adaptive. It
may be seen as a variable cost for introducing adaptivity per
functionality at the architectural level.

OaAC: Overall architectural Adaptive Cost

ܥܣܱܽ ൌ ܥܣܽܯ ൅෍ܽܨܥܣ
௡

௜ୀଶ

The sum between the last two metrics expresses the

architectural growth in number of elements needed to add
adaptivity (see Figure 2). The results obtained through this
metric are dependent on the order in which the adaptive
functionalities of a system are actually implemented. If the
function has a linear evolution, then the adaptive
functionalities may be considered independent of each
other, hence they need independent components (see Figure
3-A). Otherwise, if the function has a logarithmic evolution,
then the adaptive functionalities may share common
components achieving implicitly reusability issues (see
Figure 3-B).

AvgaAC: Average architectural Adaptive Cost

ܥܣܽ݃ݒܣ ൌ
ܥܣܱܽ
݊

This metric expresses the average growth per

functionality at the architectural level due to the
introduction of adaptivity. It indicates the average number
of elements which have been added for each functionality.
Hence, for each functionality it is added 1/n (where n is the
total number of functionalities) of the fix costs related to the
introduction of adaptive mechanisms in a system.

As for the OaAC metric, if this function has a linear
behavior then we can assume that the adaptive
functionalities are independent of each other (see Figure 3-
A).

241

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Overall architectural Adaptive Cost

Otherwise, if the function has a logarithmic behavior,

there is a reuse of several of the already inserted elements in
the adaptive part (see Figure 3-B). In this case the behavior
of the function may be influenced by the order in which
functionalities are made adaptive (because some of them
share common elements). Figure 3 shows the generic
components implementing the four steps of the adaptivity
pattern: 1a for the monitoring, 2a for the analyzing, 3a for
the deciding, and 4a for the changing.

GaE: Growth of architectural Elements

ܧܽܩ ൌ
ܥܣܱܽ

ݏݐ݈݊݁݉݁݁ ݈ܽ݊݋݅ݐܿ݊ݑ݂ ݂݋ ݎܾ݁݉ݑܰ כ 100

Figure 3. Adaptive functionalities and elements

This metric expresses the percentage growth at the

architectural level due to the introduction of adaptivity.

B. Structural Metrics
During the presentation of the structural metrics we use

the term entity to denote the software units. For example, in
an object-oriented system an entity is a class.

The systems addressing runtime adaptivity at the
structural level are composed of two types of entities:

functional and adaptive. The structural metrics concern
three main aspects: separation of concerns, structural growth
and personalization.

As for the architectural metrics, the separation of

concerns regards two aspects: (1) the separation between the
functional entities and the entities ensuring adaptivity, and
(2) the separation among the conceptual (types of) entities
implementing the four steps of adaptivity. It is expressed
through six metrics.

sSCI: structural Separation of Concerns Index

ܫܥܵݏ ൌ
ݏ݁݅ݐ݅ݐ݊݁ ݁ݒ݅ݐ݌ܽ݀ܽ ݂݋ ݎܾ݁݉ݑܰ

 ݂݀݁݅݅݀݋݉ ݏ݁݅ݐ݅ݐ݊݁ ݈ܽ݊݋݅ݐܿ݊ݑ݂ ݂݋ ݎܾ݁݉ݑܰ

This metric indicates the degree of dependence between

the functional and adaptive entities at the implementation
level. It enables the evaluation of the separation of concerns
by comparing the number of entities inserted in the adaptive
part (which provide exclusively adaptive functionalities)
and the number of the functional entities which have been
modified (to interact with the adaptive ones). Theoretically,
the obtained value should be similar to the one resulted for
the aSCI metric. Actually, the two values may be
significantly different being determined by the adopted
implementation strategy: an approach based on few entities
(each implementing more functionalities) or a highly
modular one (each entity implementing few functionalities).
Hence, the two values may differ from each other for
different design methodologies at the architectural and the
implementation levels.

sAPI: structural Adaptivity Pattern Index

ܫܲܣݏ ൌ ݏ݁݅ݐ݅ݐ݊݁ ݈ܽݑݐ݌݁ܿ݊݋ܿ ݁ݒ݅ݐ݌ܽ݀ܽ ݂݋ ݎܾ݁݉ݑܰ

This metric indicates the separation of concerns between

the main conceptual (types of) entities implementing the
four steps of adaptivity at the implementation level. If the
value of this metric is four, then the adaptive part of a
system defines at least a conceptual entity for each of these
four steps. If it is zero, the adaptive entities are totally
integrated with the functional one. The values between zero
and four suggest that two or more adaptivity steps are
provided by the same conceptual entity.

IFLAL: Influence of the Functional Logic on the

Adaptive Logic

ܮܣܮܨܫ ൌ ܿ݅݃݋݈ ݁ݒ݅ݐ݌ܽ݀ܽ ݄݁ݐ ݊݅ ݏݐݑ݌݊݅ ݂݋ ݎܾ݁݉ݑܰ

IALFL: Influence of the Adaptive Logic on the
Functional Logic

ܮܨܮܣܫ ൌ ܿ݅݃݋݈ ݁ݒ݅ݐ݌ܽ݀ܽ ݄݁ݐ ݉݋ݎ݂ ݏݐݑ݌ݐݑ݋ ݂݋ ݎܾ݁݉ݑܰ

242

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

These two metrics provide information about the role of
the adaptive part of a system in its overall functionality.
Higher is the value for the IFLAL, stronger is the influence
of the application domain or contextual aspects on the
adaptive part of a system (see Figure 4-B). Vice-versa, the
IALFL metric indicates the degree of influence of the
adaptive logic on the functionalities provided by a system
(see Figure 4-A). Comparing the values denoted by these
two metrics it is possible to determine the degree of
influence of one part on the other.

Figure 4. Influence of the adaptive part on the functional one (A) and vice-

versa (B)

AvgIFLAL: Average Influence of the Functional Logic

on the Adaptive Logic

ܮܣܮܨܫ݃ݒܣ ൌ
ܮܣܮܨܫ

 ݏ݁݅ݐ݈݅ܽ݊݋݅ݐܿ݊ݑ݂ ݂݋ ݎܾ݁݉ݑܰ

AvgIALFL: Average Influence of the Adaptive Logic

on the Functional Logic

ܮܨܮܣܫ݃ݒܣ ൌ
ܮܨܮܣܫ

 ݏ݁݅ݐ݈݅ܽ݊݋݅ݐܿ݊ݑ݂ ݂݋ ݎܾ݁݉ݑܰ

The last two metrics provide information about the

average number of inputs (respectively outputs) in the
adaptive part for each of the functionalities of a system. The
information they provide can be seen as a complexity degree
of the provided functionalities based on the influence of the
adaptive part of a system.

When AvgIFLAL is significantly greater than
AvgIALFL the adaptive logic is strongly related to the
application domain and the strategies of the adaptive part
consider more factors in their logic than those they can
influence in the functional part of a system. Vice-versa,
when AvgIALFL is significantly greater than AvgIFLAL
we expect that the functional part of a system has different
behaviors in the presence of the adaptive part than in its
absence due to the strong influence it has from the adaptive
entities.

The structural growth regards the number of entities

introduced by the adaptive part of a system. It is express
through ten metrics.

MsAC: Minimum structural Adaptive Cost

ܥܣݏܯ ൌ ݕݐ݅ݒ݅ݐ݌ܽ݀ܽ ݎ݋݂ ݏ݁݅ݐ݅ݐ݊݁ ݂݋ ݎܾ݁݉ݑ݊ ݉ݑ݉݅݊݅ܯ

This metric indicates the minimum number of entities to
be added to a system to become adaptive independently of
the number of the functionalities it provides. Essentially,
this metric expresses the fix cost of adaptivity at the
implementation level.

sACF: structural Adaptive Cost per Functionality

ܨܥܣݏ ൌ ݕݐ݈݅ܽ݊݋݅ݐܿ݊ݑ݂ ௧௛݅ ݄݁ݐ ݎ݋݂ ݏ݁݅ݐ݅ݐ݊݁ ݂݋ ݎܾ݁݉ݑܰ

This metric indicates the number of entities which

should be added to make the i-th functionality adaptive. It
may be seen as a variable cost for introducing adaptivity per
functionality at the implementation level. The results of this
metric may influence the interpretation of the AvgIFLAL
and AvgIALFL: minor is the reusability of the entities
implementing the adaptive steps, more precisely are the
considerations derived from these metrics.

OsAC: Overall structural Adaptive Cost

ܥܣݏܱ ൌ ܥܣݏܯ ൅෍ܨܥܣݏ
௡

௜ୀଶ

The sum between the last two metrics expresses the

structural growth in number of entities needed to add
adaptivity at the implementation level. The observations
made for the OaAC are valid also for OsAC.

AvgGsE: Average Growth of structural Entities

ܧݏܩ݃ݒܣ ൌ
ܥܣݏܱ
݊

This metric expresses the average growth per

functionality at the implementation level due to the
introduction of adaptivity. It indicates the average number
of entities which have been added for each functionality.
Hence, for each functionality it is added 1/n (where n is the
total number of functionalities) of the fix costs related to the
introduction of adaptive mechanisms in a system.

SDG: Storage Dimension Growth

ܩܦܵ ൌ ௪௜௧௛஺ௗ௔௣௧௜௩௜௧௬ܤܭ െ ܤܭ௪௜௧௛௢௨௧஺ௗ௔௣௧௜௩௜௧௬

PSDG: Percentage Storage Dimension Growth

ܩܦܵܲ ൌ
ܩܦܵ

௪௜௧௛௢௨௧஺ௗ௔௣௧௜௩௜௧௬ܤܭ
כ 100

These two metrics indicate the physical storage growth

in kilo bytes, and respectively in percentage, due to the
presence of the adaptive mechanisms in a system. Adaptive
mechanisms include both adaptive entities and their link
with the functional entities.

243

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

SDAE: Storage Dimension of the Adaptive Entities

ܧܣܦܵ ൌ ஺௟௟஺ௗ௔௣௧௜௩௘ா௡௧௜௧௜௘௦ܤܭ

PSDAE: Percentage Storage Dimension of the Adaptive
Entities

ܧܣܦܵܲ ൌ
ܧܣܦܵ
ܩܦܵ כ 100

These two metrics indicate the physical storage growth

in kilo bytes, and respectively in percentage, needed to store
the adaptive entities.

SDCAF: Storage Dimension of the Connections

between Adaptive and Functional parts

ܨܣܥܦܵ ൌ ௪௜௧௛஺ௗ௔௣௧௜௩௜௧௬ܤܭ െ ሺܤܭ௪௜௧௛௢௨௧஺ௗ௔௣௧௜௩௜௧௬ ൅ ሻܧܣܦܵ

PSDCAF: Percentage Dimension of the Connections
between Adaptive and Functional parts

ܨܣܥܦܵܲ ൌ
ܨܣܥܦܵ
ܩܦܵ כ 100

These two metrics indicate the physical storage growth

in kilo bytes and percentage, due to the entities which have
been defined for the link and communication between the
functional and adaptive part of a system.

The personalization category of metrics regards the

changes which are made on a framework for runtime
adaptivity or an adaptive system in order to apply it to an
actual case study. These metrics are defined from the
developers’ point of view and try to capture the effort
needed to adapt the framework or a system to other
solutions.

It consists of nine metrics.

MpAC: Minimum personalization Adaptive Cost

ܥܣ݌ܯ ൌ
ே௨௠௕௘௥ ௢௙ ௣௘௥௦௢௡௔௟௜௭௘ௗ ௘௡௧௜௧௜௘௦ ௜௡ ௧௛௘
௔ௗ௔௣௧௜௩௘ ௣௔௥௧ ௙௢௥ ௧௛௘ ଵೞ೟ ௙௨௡௖௧௜௢௡௔௟௜௧௬
ே௨௠௕௘௥ ௢௙ ௘௡௧௜௧௜௘௦ ௜௡ ௧௛௘ ௔ௗ௔௣௧௜௩௘

௣௔௥௧ ௙௢௥ ௧௛௘ ଵೞ೟ ௙௨௡௖௧௜௢௡௔௟௜௧௬

*100

This metric indicates the percentage of entities which are

personalized considering only the minimum number of
entities necessary to make a system adaptive. Hence, it is
calculated through the number of personalized entities for
making one (e.g., the first) functionality adaptive.

If the result is 100%, then it may be assumed that the
adaptive entities are totally generic or that the factors which
influence the adaptive logic are totally domain dependent
due to the fact that all the necessary adaptive entities have
been personalized.

If the result is sensibly less than 100%, then it can be
considered that the adaptive entities are dependent on
general factors which may be considered generic enough to
be reused without modifications in many application
domains or case studies.

pACF: personalization Adaptive Cost per Functionality

ܨܥܣ݌ ൌ

݊݅ ݏ݁݅ݐ݅ݐ݊݁ ݀݁ݖ݈݅ܽ݊݋ݏݎ݁݌ ݂݋ ݎܾ݁݉ݑܰ
ݕݐ݈݅ܽ݊݋݅ݐܿ݊ݑ݂ ݄ܿܽ݁ ݎ݋݂ ݐݎܽ݌ ݁ݒ݅ݐ݌ܽ݀ܽ ݄݁ݐ

 ݄݁ݐ ݊݅ ݀݁݀݀ܽ ݏ݁݅ݐ݅ݐ݊݁ ݂݋ ݎܾ݁݉ݑܰ
 ݕݐ݈݅ܽ݊݋݅ݐܿ݊ݑ݂ ݄ܿܽ݁ ݎ݋݂ ݐݎܽ݌ ݁ݒ݅ݐ݌ܽ݀ܽ

כ 100

This metric indicates the percentage of entities which are

personalized for each adaptive functionality considering the
number of adaptive entities added for this particular
functionality in the adaptive part. This metric may be
influenced by the order in which adaptive functionalities are
added (two or more functionalities may exploit common
adaptive entities, and hence these entities are added only for
the first inserted functionality).

If the result is greater than 100% it means that the new
functionality required the modification of already available
adaptive entities which have been added previously for
other functionalities.

If the result is 100% or less, then it is considered that a
number of adaptive entities equal or less then the number of
the added functionalities have been modified (without being
able to specify if only new added entities have been
personalized).

AvgpACF: Average personalization Adaptive Cost per

Functionality

ܨܥܣ݌݃ݒܣ ൌ
ܥܣ݌ܯ ൅ ∑ ௡ܨܥܣ݌

௜ୀଶ
݊

This metric indicates the average cost for introduction of

adaptive mechanisms per functionality.

MpOC: Minimum personalization Overall Cost

ܥܱ݌ܯ ൌ

݄݁ݐ ݊݅ ݏ݁݅ݐ݅ݐ݊݁ ݀݁ݖ݈݅ܽ݊݋ݏݎ݁݌ ݂݋ ݎܾ݁݉ݑܰ
ݕݐ݈݅ܽ݊݋݅ݐܿ݊ݑ݂ 1௦௧݄݁ݐ ݎ݋݂ ݉݁ݐݏݕݏ ݁ݎ݅ݐ݊݁

݄݁ݐ ݊݅ ݏ݁݅ݐ݅ݐ݊݁ ݂݋ ݎܾ݁݉ݑܰ
ݕݐ݈݅ܽ݊݋݅ݐܿ݊ݑ݂ 1௦௧݄݁ݐ ݎ݋݂ ݐݎܽ݌ ݁ݒ݅ݐ݌ܽ݀ܽ

כ 100

This metric indicates the percentage of entities which are

personalized in the entire system (functional and adaptive)
with respect to the minimum number of entities in the
adaptive part necessary to make a system adaptive. As in the
case of MpAC, it is calculated for the first functionality
chosen to be made adaptive.

If the result is equal to the one obtained for the MpAC,
then no entity in the functional part has been modified. If
these two results differ, then functional entities have been

244

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

modified too. Greater is the difference between the values of
the two metrics, more significant are the modifications in
the functional part of the system.

This metric may be useful during the analysis of the
separation between the functional and adaptive parts, as well
as of the integration of the adaptive part in a system.

pOCF: personalization Overall Cost per Functionality

ܨܥܱ݌ ൌ

 ݏ݁݅ݐ݅ݐ݊݁ ݀݁ݖ݈݅ܽ݊݋ݏݎ݁݌ ݂݋ ݎܾ݁݉ݑܰ
݉݁ݐݏݕݏ ݁ݎ݅ݐ݊݁ ݄݁ݐ ݊݅

ݐݎܽ݌ ݁ݒ݅ݐ݌ܽ݀ܽ ݄݁ݐ ݊݅ ݏ݁݅ݐ݅ݐ݊݁ ݂݋ ݎܾ݁݉ݑܰ
ݕݐ݈݅ܽ݊݋݅ݐܿ݊ݑ݂ ݄ܿܽ݁ ݎ݋݂

כ 100

This metric indicates the percentage of entities which are

personalized in the entire system (functional and adaptive)
with respect to the total number of adaptive entities
necessary to provide a functionality.

If the result is equal to the one obtained for the pACF,
then no entity in the functional part has been modified
(besides the modifications made for one functionality). If
these two results differ, then functional entities have been
modified too. Greater is the difference between the values of
the two metrics, more significant are the modifications in
the functional part of the system.

Comparing this metric to the previous one MpOC,
usually it can be observed that the modifications performed
for the first functionality made adaptive may be greater than
those performed for each of the other functionalities
(because there may be entities which are used further by all
functionalities).

AvgpOCF: Average personalization Overall Cost per

Functionality

ܨܥܱ݌݃ݒܣ ൌ
ܥܱ݌ܯ ൅ ∑ ௡ܨܥܱ݌

௜ୀଶ
݊

This metric indicates the average overall cost for

introduction of adaptive mechanisms per functionality. If
the result is equal to the one obtained for the AvgpACF,
then the functional part is not modified. If these two results
differ, then functional entities have been modified too.
Greater is the difference between the values of the two
metrics, more significant are the modifications in the
functional part of the system.

ApOC: Adaptive personalization Overall Cost

ܥܱ݌ܣ ൌ

݊݅ ݏ݁݅ݐ݅ݐ݊݁ ݀݁ݖ݈݅ܽ݊݋ݏݎ݁݌ ݂݋ ݎܾ݁݉ݑܰ
ݐݎܽ݌ ݁ݒ݅ݐ݌ܽ݀ܽ ݄݁ݐ

݀݁ݖ݈݅ܽ݊݋ݏݎ݁݌ ݂݋ ݎܾ݁݉ݑ݊ ݈ܽݐ݋ܶ
݉݁ݐݏݕݏ ݁ݎ݅ݐ݊݁ ݄݁ݐ ݊݅ ݏ݁݅ݐ݅ݐ݊݁

כ 100

This metric indicates the percentage of the

personalization of the adaptive part with respect to the

personalization of the entire system (functional and
adaptive) to make it adaptive.

DSAI: Domain Specific Adaptivity Index

ܫܣܵܦ ൌ

݁ܿ݊݁ݑ݈݂݊݅ ݊݅ܽ݉݋݀ ݂݋ ݎܾ݁݉ݑܰ
ݏݎ݋ݐ݂ܿܽ

ݏݎ݋ݐ݂ܿܽ ݁ܿ݊݁ݑ݈݂݊݅ ݈ܽݐ݋ݐ ݂݋ ݎܾ݁݉ݑܰ כ 100

This metric indicates the percentage of the factors

specific to the application domain which influence the
adaptive part of a system. Higher is this value, higher is the
number of personalized entities in the entire system.

pAEF: personalization of Adaptive Entity Functionality

ܨܧܣ݌ ൌ

ݕݐ݈݅ܽ݊݋݅ݐܿ݊ݑ݂ ݀݁ݖ݈݅ܽ݊݋ݏݎ݁݌ ݂݋ ݎܾ݁݉ݑܰ
ݕݐ݅ݐ݊݁ ݁ݒ݅ݐ݌ܽ݀ܽ ݊ܽ ݂݋ כ 100
݊ܽ ݂݋ ݏ݁݅ݐ݈݅ܽ݊݋݅ݐܿ݊ݑ݂ ݈ܽݐ݋ܶ

ݕݐ݅ݐ݊݁ ݁ݒ݅ݐ݌ܽ݀ܽ

This metric indicates the percentage of functionalities
personalized for an adaptive entity. For example, in an
object-oriented system this regards the methods signature. If
this value is low, then modifications are made mostly inside
the functionalities (in the definition of methods and not in
their declarations).

C. Interaction Metrics
The purpose of the interaction metrics is to evaluate the

variations in the interaction between administrators or users
and the adaptive and non-adaptive versions of a system.

MAiAI: Modified Administrator interaction Adaptivity

Index

ܫܣ݅ܣܯ ൌ෍ቄ1 ݂݅ ܽ݊ ݂݀݁݅݅݀݋݉ ݏ݅ ݇ݏܽݐ
݁ݏ݅ݓݎ݄݁ݐ݋ 0

This metric indicates the modified tasks which should be

performed by the administrator. These tasks are necessary
both in the non-adaptive and adaptive versions of the
system. The introduction of the adaptive part may have
made them more or less complex.

AAiAI: Added Administrator interaction Adaptivity

Index

ܫܣ݅ܣܣ ൌ෍ቄ1 ݂݅ ܽ݊ ݏ݅ ݇ݏܽݐ ܽ݀݀݁݀
݁ݏ݅ݓݎ݄݁ݐ݋ 0

This metric indicates the new added tasks which should

be performed by the administrator after the introduction of
the adaptive part. These tasks were not necessary in the non-
adaptive version of the system.

245

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

RAiAI: Removed Administrator interaction Adaptivity
Index

ܫܣ݅ܣܴ ൌ෍ቄ1 ݂݅ ܽ݊ ݀݁ݐ݈݁݁݀ ݏ݅ ݇ݏܽݐ

݁ݏ݅ݓݎ݄݁ݐ݋ 0

This metric indicates the removed tasks which should

not be further performed by the administrator after the
introduction of the adaptive part. These actions were
necessary in the non-adaptive version of the system.

Greater is the RAiAI and/or lower is the AAiAI, more
efficient is the introduction of the adaptivity mechanisms
from the administration of the system point of view.
However, these three metrics do not provide information on
the complexity of the administration tasks. This would be
very useful to complement the MAiAI metric in order to
check whether adaptivity has simplified or not the
administration tasks (for those which have not been
removed).

The user interaction metrics concern two aspects: the

variations in the interaction between users and a system in
the absence and presence of adaptivity, as well as the
provisioning of the parameters needed for adaptivity.

MUiAI: Modified User interaction Adaptivity Index

ܫܣܷ݅ܯ ൌ෍ቄ1 ݂݅ ܽ݊ ݂݀݁݅݅݀݋݉ ݏ݅ ݇ݏܽݐ

݁ݏ݅ݓݎ݄݁ݐ݋ 0

This metric indicates the modified tasks which should be

performed by the users. These tasks are necessary both in
the non-adaptive and adaptive versions of the system. The
introduction of the adaptive part may have made them more
or less complex.

AUiAI: Added User interaction Adaptivity Index

ܫܣܷ݅ܣ ൌ෍ቄ1 ݂݅ ܽ݊ ݏ݅ ݇ݏܽݐ ܽ݀݀݁݀

݁ݏ݅ݓݎ݄݁ݐ݋ 0

This metric indicates the new added tasks which should

be performed by the users after the introduction of the
adaptive part. These actions were not necessary in the non-
adaptive version of the system.

RUiAI: Removed User interaction Adaptivity Index

ܫܣܷܴ݅ ൌ෍ቄ1 ݂݅ ܽ݊ ݀݁ݐ݈݁݁݀ ݏ݅ ݇ݏܽݐ

݁ݏ݅ݓݎ݄݁ݐ݋ 0

This metric indicates the removed tasks which should

not be further performed by the users after the introduction
of the adaptive part. These tasks were necessary in the non-
adaptive version of the system.

Greater is the RUiAI and/or lower is the AUiAI, more
efficient is the introduction of the adaptivity mechanisms

from the users’ point of view. However, these three metrics
do not provide information on the complexity of the user
interaction tasks. This would be very useful to complement
the MUiAI metric in order to check whether adaptivity has
simplified or not these tasks (for those which have not been
removed).

UIiI: User Information interaction Index

ܫ݅ܫܷ ൌ ቄ0 ݂݅ ݈݈ܽ ݁݀݅ݏ ݉݁ݐݏݕݏ ݁ݎܽ ݏݎ݁ݐ݁݉ܽݎܽ݌

݁ݏ݅ݓݎ݄݁ݐ݋ 1

This metric indicates if the monitored parameters are

available on the system side or they should be gathered
through the interaction with the users.

D. Performance Metrics
The performance metrics concern five main aspects

related to the usage of the system resources (in terms of
RAM and CPU), the response time, the improvement of the
response quality in the presence of adaptivity and influence
of the performance factors on the adaptive strategies.
Usually, these metrics reflect the goals of the adaptive
systems.

pRAM: performance RAM

ܯܣܴ݌ ൌ
ݕݐ݅ݒ݅ݐ݌ܽ݀ܽ ݂݋ ݁ܿ݊݁ݏ݁ݎ݌ ݊݅ ݁݃ܽݏݑ ܯܣܴ
ݕݐ݅ݒ݅ݐ݌ܽ݀ܽ ݂݋ ݁ܿ݊݁ݏܾܽ ݊݅ ݁݃ܽݏݑ ܯܣܴ כ 100

This metric indicates the variation of the RAM usage

due to the computational overhead introduced by the
adaptive part of a system.

pCPU: performance CPU

ܷܲܥ݌ ൌ
ݕݐ݅ݒ݅ݐ݌ܽ݀ܽ ݂݋ ݁ܿ݊݁ݏ݁ݎ݌ ݊݅ ݁݃ܽݏݑ ܷܲܥ
ݕݐ݅ݒ݅ݐ݌ܽ݀ܽ ݂݋ ݁ܿ݊݁ݏܾܽ ݊݅ ݁݃ܽݏݑ ܷܲܥ כ 100

This metric indicates the variation of the CPU usage due

to the computational overhead introduced by the adaptive
part of a system.

pLatency: performance Latency

ݕܿ݊݁ݐܽܮ݌ ൌ

݁ܿ݊݁ݏ݁ݎ݌ ݊݅ ݁݉݅ݐ ݁ݏ݊݋݌ݏܴ݁
ݕݐ݅ݒ݅ݐ݌ܽ݀ܽ ݂݋

݁ܿ݊݁ݏܾܽ ݊݅ ݁݉݅ݐ ݁ݏ݊݋݌ݏܴ݁
ݕݐ݅ݒ݅ݐ݌ܽ݀ܽ ݂݋

כ 100

This metric indicates the variation of the system’s

responses in the presence of adaptivity with respect to the
response in the absence of adaptivity.

246

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

pQoR: performance Quality of Response

ܴ݋ܳ݌ ൌ

݁ܿ݊݁ݏ݁ݎ݌ ݊݅ ݁ݏ݊݋݌ݏ݁ݎ ݂݋ ݕݐ݈݅ܽݑܳ
ݕݐ݅ݒ݅ݐ݌ܽ݀ܽ ݂݋

݁ܿ݊݁ݏܾܽ ݄݁ݐ ݊݅ ݁ݏ݊݋݌ݏ݁ݎ ݂݋ ݕݐ݈݅ܽݑܳ
ݕݐ݅ݒ݅ݐ݌ܽ݀ܽ ݂݋

כ 100

This metric indicates the variation of the quality of the

system’s responses in the presence of adaptivity. Generally,
the obtained value for this metric should be greater than
100% in order to overcome the increments introduced by
one or more of the previous three metrics.

pIA: performance Influence on Adaptivity

ܣܫ݌ ൌ ቄ0 ݂݅ ݁ܿ݊݁ݑ݈݂݊݅ ݋݊ ݏ݅ ݁ݎ݄݁ݐ

݁ݏ݅ݓݎ݄݁ݐ݋ 1

This metric indicates if the adaptive strategies are

influenced by the first three performance metrics. For
example, the adaptive part may decide to apply a strategy
which uses less RAM or CPU, or which provides a response
in less time by paying in the quality of the response
(offering a medium, rather than a high quality).

E. Documentation Metrics
The documentation metrics concern two aspects: the

comments and the available documentation related to an
adaptive system. Their roots are in the general software
metrics and they have been interpreted and adapted to
provide useful information related to the design of adaptive
issues.

CE: Comments per Entity

ܧܥ ൌ
ݏ݈݁݊݅ ݐ݊݁݉݉݋ܿ ݂݋ ݎܾ݁݉ݑܰ
ݏ݈݁݊݅ ݕݐ݅ݐ݊݁ ݂݋ ݎܾ݁݉ݑܰ כ 100

This metric indicates the percentage of the number of

comment lines for each adaptive entity. It may be computed
for the entities which do not need personalization and those
which need personalization (but before their actual
personalization). If these two values differ significantly we
may suppose that the last category has been predisposed to
be personalized and due to the available comments, the
personalization may be performed easier.

CF: Comments per Functionality

ܨܥ ൌ
ݏ݈݁݊݅ ݐ݊݁݉݉݋ܿ ݂݋ ݎܾ݁݉ݑܰ

ݏ݈݁݊݅ ݕݐ݈݅ܽ݊݋݅ݐܿ݊ݑ݂ ݂݋ ݎܾ݁݉ݑܰ כ 100

This metric indicates the percentage of the number of

comment lines for each functionality offered by an adaptive
entity. It may be computed for the functionalities which do
not need personalization and those which need

personalization (but before their actual personalization). The
considerations for the previous metric hold also for the
present one.

CTI: Comments Type Index

ܫܶܥ ൌ
ݕݎ݋݃݁ݐܽܿ ݎ݁݌ ݏ݈݁݊݅ ݐ݊݁݉݉݋ܿ ݂݋ ݎܾ݁݉ݑܰ

 ݊ܽ ݊݅ ݏ݈݁݊݅ ݐ݊݁݉݉݋ܿ ݂݋ ݎܾ݁݉ݑܰ
ݕݐ݅ݐ݊݁ ݁ݒ݅ݐ݌ܽ݀ܽ

כ 100

This metric indicates the percentage of the comments of

a given type (e.g., auto-generated, formal language, natural
language, commented code) considering all the comments in
an adaptive entity.

DTI: Documentation Type Index

ܫܶܦ ൌ

ݕݎ݋݃݁ݐܽܿ ݎ݁݌ ݕݐ݅ݐ݊ܽݑݍ ݊݋݅ݐܽݐ݊݁݉ݑܿ݋ܦ
݊݋݅ݐܽݐ݊݁݉ݑܿ݋݀ ݈ܾ݈݁ܽ݅ܽݒܽ ݈݈ܽݎ݁ݒܱ כ 100

This metric indicates the percentage of the

documentation of a given type (e.g., descriptive, samples,
personalization examples for adaptive entities, auto-
generated) considering all the available documentation.

F. Miscellaneous Metrics
We have identified three more aspects which should be

considered for evaluation of adaptive systems.

ADI: Adaptivity Distribution Index
It regards the distribution of the adaptive elements and

entities on the physical nodes of an adaptive system. ADI
provides information on the replication of adaptive elements
and entities inside a system.

RAMI: Results of Adaptivity Memorization Index
It indicates if the results of each adaptive step are stored

temporarily or persistently in the system in order to provide
or optimize the adaptive functionalities.

AAI: Adaptive Alternatives Index
It is related to the way in which the various alternatives

of adaptivity are provided. Alternatives may be of two
types: horizontal and vertical. In the horizontal mode,
adaptivity optimizes the usage of the resources to provide
the required functionality; while, in the vertical mode,
adaptivity optimizes the quality of information to provide
the required functionality.

IV. ANALYSIS OF CASE STUDIES THROUGH METRICS
This section analyzes the four case studies introduced in

Section II from the adaptivity metrics point of view. Two
premises should be made here. First, the case studies are
well-defined and thought to outline their adaptivity features.
However, several observations have been extracted from

247

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

their study. Second, the information we used to analyze
these case studies consisted exclusively in their description
in various articles. Hence, only qualitative observations
have been drawn.

Table I summarizes the main adaptive aspects of the four
case studies in terms of the goals of runtime adaptivity, the
type of the addressed issues, the main conceptual steps of
adaptivity, the models or frameworks used to achieve
adaptivity, and the categories of metrics which provide
meaningful information for their evaluation.

The analysis of the case studies through the adaptivity
metrics has lead to the following considerations.

The goals of exploiting runtime adaptivity are of various
natures: automate administration tasks, resource usage
optimization, or enhancement of functionalities. A recurring
goal is related to the performance optimization. The
question is what to measure to evaluate performance
aspects? The authors of three case studies indicate as one of
the performance aspects the response time, which is
expressed through the pLatency metric. Only WebCS uses
this terminology, while the other two focuses on the
bandwidth (which influences the response time). WebCS
and VConf are proposed by the same authors. These are
simple examples, however they point out the importance of
having the same metrics for the same performance issues
and moreover, for their evaluation and comparison in
different case studies.

Adaptivity may regard various aspects (architectural,
behavioral, content and navigation in these cases).
Independent of these aspects, it is fundamental to fulfill the
separation of concerns metrics at the architectural and/or
structural levels. The last two case studies merge the
analysis and decision steps in one single step. This is mostly
related to the fact that the adaptivity issues are strongly
related to the application domain (e.g., specific information
as images or learning content) and the factors which are
considered in input of the adaptive process.

The separation of concerns and growth metrics at the
architectural or structural levels provide information on the
modularity, reusability, flexibility, extensibility and
scalability of an adaptive system.

Furthermore, in three of the case studies changes are
visible at the functional level. The metrics providing
information about this aspect are the structural and
performance ones. AIS updates also the adaptive knowledge
by storing the information resulted from the various
adaptive steps in a repository in order to use it in similar
cases without performing the same computation again. This
characteristic is described through the RAMI index. AIS
considers also the computational overhead introduced by the
adaptivity part and expressed through the pCPU
performance metric.

There are various changes which may be applied to
address the same performance issues. For example, in
WebCS, to improve the response time an architectural

TABLE I. ADAPTIVE ASPECTS RELATED TO FOUR CASE STUDIES

248

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

approach is used: a server is added to the system. This
implies that horizontal adaptive alternatives are available
(see Figure 5-A). In AIS, the same performance issue is
addressed by modifying images, which have different
dimensions and hence, may be changed less or more
depending on the current request and the status of the
system. This implies the availability of vertical adaptive
alternatives (see Figure 5-B). As in the case of the AAI
index, in the first case, the usage of the resources which
provide adaptive functionalities is optimized, while in the
second case, the quality of the information needed to
provide adaptive functionalities is optimized. In WebCS the
administrator tasks have been automated in that the adaptive
mechanisms decide whenever a server should be connected
or disconnected from the system in order to ensure its
performances. In this context, interaction metrics provide
information on the efficiency of the adaptivity modules
from the point of view of the reduction of the overhead
introduced by the interaction with the administrators.

The first three case studies exploit the adaptive concepts
(e.g., elements and entities) defined by a general model
(e.g., the Rainbow and ASF framework). Moreover, WebCS
and VConf are based on a common approach: Rainbow. In
these cases the personalization metrics are useful to evaluate
the adaptation and usability of the models’ concepts in
various contexts.

The AHA! approach does not exploit or personalize any
model. One of the reasons motivating this characteristics is
that adaptivity is specific to the application domain and
furthermore, only domain-specific content and its
provisioning are adapted. The functioning of AHA! in the
absence and in the presence of adaptivity differs
significantly: in a non-adaptive scenario the same content is
presented in the same way to all users, while in an adaptive
scenario users have to be identified and the content
representation and provisioning modified. These
modifications are properly described through the structural
growth metrics, user interaction, and pQoR metric.

Figure 5. Adaptive alternatives in WebCS and AIS

The last column in Table I lists the categories and
subcategories (as shown in Figure 1) of the metrics which
are meaningful to evaluate the adaptive features of each case

study. The documentation category has been not mentioned
because the only documentation we have considered is
composed of the articles describing these case studies.

V. RELATED WORK
There are various approaches for the evaluation of

runtime adaptivity properties. Typically, they are defined for
specific application domains and/or consider a particular
perspective on adaptivity.

For example, a methodology for empirical evaluation of
adaptive systems is presented in [21]. It considers the use of
adaptivity to reduce the complexity of the interaction
between users and information systems. Hence, it addresses
adaptivity from the users’ point of view. The methodology
defines six steps to achieve this goal: evaluation of reliability
and external validity of input data acquisition, evaluation of
the inference mechanism and accuracy of user properties,
appropriateness of adaptation decisions, change of system
behaviour when the system adapts, change of user behaviour
when the system adapts, and change and quality of total
interaction. Each of these steps is addressed independently in
the context of a framework which enables the evaluation of
reliability and external validity of input data acquisition,
inference mechanisms and accuracy of user properties,
adaptation decisions, and overall interaction (including
system and user behaviour and usability).

Or, [19] proposes a set of primary features based on
which adaptive hypermedia systems may be evaluated.
These features are categorized as follows: adaptation,
software quality, software engineering, and technology. This
approach considers only a specific type of systems.

Metrics for the evaluation of adaptivity in information
systems are introduced in [20], which identifies three generic
indexes applicable at the architectural level: element
adaptability index (which is 1 for adaptable elements, and 0
otherwise), architecture adaptability index (defined as the
sum of all element adaptability indexes divided per total
number of elements), and software adaptability index
(defined as the sum of the architecture adaptability indexes
for all the architecture of a software divided per the total
number of architectures of that software). The same authors
propose a framework called the Process-Oriented Metrics for
Software Architecture Adaptability (POMSAA) [4] to
calculate scores for the adaptability of software architectures.
The quantitative scores are computed based on the satisficing
degree [4] of a non-functional requirement, which in this
case regards adaptivity. Both these works consider
adaptability only at the architectural level.

A more detailed set of evaluation mechanisms is
presented in [11]. This work proposes the evaluation of self-
* systems from three points of view: (1) the methodology
adopted for their development, (2) the performances offered
at runtime, and (3) the intrinsic characteristics of such
systems. More specifically, this paper focuses on aspects
related to performance, robustness, computational
complexity, and decentralization and local algorithms. Even

249

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

if this approach is strongly related to the multi-agent domain,
it may be adopted for other application domains.

To our knowledge there is no work in the scientific
literature addressing the evaluation of the frameworks for
adaptivity through metrics.

VI. CONCLUSIONS AND FURTHER WORK
This paper has proposed a set of metrics for runtime

adaptivity. These metrics should be considered as a starting
point towards the identification and specification of what
should it be evaluated and how should it be evaluated in
adaptive system.

Our initial work on this topic has been previously
presented in [13], [17], [18]. In [17] we have focused our
attention on the feasibility of the definition of measurable
evaluation mechanisms for adaptive systems, and on the
usability of these metrics as design hints in the development
process of new adaptive systems and as formal approaches
for the evaluation of the existing adaptive systems. A first
set of metrics for the evaluation of adaptive systems has
been presented in [18]. The aim of this work was to provide
a concrete mechanism for the evaluation of the adaptive
features of information systems. In [13] we have extended
the evaluation of adaptive properties also to the frameworks
which provide support for the development of adaptive
systems. It is fundamental to understand their
personalization and documentation aspects in order to
evaluate the effort necessary to develop an adaptive system
based on such a framework.

 The advantage of such metrics is the specification of a
common vocabulary for different design, implementation,
and performance issues of adaptivity. They provide a
common means for the evaluation of adaptive systems, as
well as for the comparison of information systems from the
adaptivity point of view.

From the software engineering point of view, the
architectural and structural metrics suit best as hints in the
analysis and design phases of adaptive systems, as well as
concrete mechanisms to evaluate the design of adaptive
systems. They provide valuable information about the
modularity, maintainability, re-usability, or scalability of
adaptive systems. Structural metrics are particularly relevant
for the implementation and its evaluation in adaptive
systems. The personalization sub-category defines common
mechanisms to evaluate and choose an appropriate solution
for the issues of the current system in the case a framework
or a previous solution should be exploited. The
documentation metrics may complement the architectural
and structural categories in order to offer additional
information on the design of runtime adaptivity. These
metrics provide additional information on the quality of the
design of adaptive systems and frameworks.

 The interaction metrics provide information on the
advantages of runtime adaptivity from the administrators
and users points of view. This is significantly important in

various application domains such as e-learning, finance or
healthcare.

On the other hand, the performance metrics provide
information on the advantages of exploiting runtime
adaptivity from the resource usage and overall systems’
quality points of view. They are of a determinant
significance for all the actors of adaptive systems.

The miscellaneous indexes capture conceptual and
distributed aspects of adaptive systems. They are more
related to the deployment and efficiency of such systems.

The metrics proposed in this paper have been identified
through a process similar to the reverse engineering by
considering the available relevant case studies addressing
runtime adaptivity issues. Hence, they regard those aspects
which are outlined as advantages of the design and
exploitation of adaptivity by the authors of these case
studies.

Further work will concern the validation and revision of
these metrics by applying them to more case studies.
Moreover, we will consider the extensibility of this set of
metrics also towards standard software engineering metrics
for non-functional properties [9] which may be adopted and
adapted for the evaluation of runtime adaptivity.

A future development is related to the application of
these metrics from the initial phases of the development of
adaptive systems. Hence, they should be considered during
the identification and specification of the non-functional
requirements regarding the runtime adaptivity properties. In
this way, it will be possible to indicate a range of acceptable
values which should be satisfied by the final system in order
to be successfully deployed and exploited.

REFERENCES
[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in

Practice, Addison Wesley, USA, 2003
[2] P. De Bra, A. Aerts, B. Berden, D. de Lange, B. Rousseau, T. Santic,

D. Smits, and N. Stash, “AHA! The Adaptive Hypermedia
Architecture”, Proceedings of the 14th ACM Conference on Hypertext
and hypermedia, 2003, pp. 81-84

[3] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee,
“Software Engineering for Self-Adaptive Systems”, LNCS 5525,
Springer, 2009

[4] L. Chung and N. Subramanian, “Process-Oriented Metrics for
Software Architecture Adaptability”, Proceedings of the 5th
International Symposium on Requirements Engineering, 2001, pp.
310-311

[5] D. Garlan, S. W. Cheng, A. C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-based Self-Adaptation with Reusable
Infrastructure”, IEEE Computer, Vol. 37, No. 10, 2004, pp. 46-54

[6] D. Garlan and M. Shaw, “An Introduction to Software Architecture”,
Technical Report CMU/SEI-94-TR-21, 1994

[7] I. Gorton, Y. Liu, and N. Trivedi, “An extensible and lightweight
architecture for adaptive server applications”, Software – Practice
and Experience Journal, Vol. 38, No. 8, 2007, pp. 853-883

[8] J. He, T. Gao, W. Hao, I.-L. Yen, and F. Bastani, ”A Flexible Content
Adaptation System Using a Rule-Based Approach”, IEEE
Transactions on Knowledge and Data Engineering, Vol. 19, No. 1,
2007, pp. 127-140

[9] ISO IEC 9126-1 Standard, http://www.iso.org, 2001, June 2010.

250

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[10] G. Karsai, A. Ledeczi, J. Sztipanovits, G. Peceli, G. Simon, and T.
Kovacshzy, “An Approach to Self-Adaptive Software Based on
Supervisory Control”, LNCS 2614, 2003, pp. 77-92

[11] E. Kaddoum, M-.P. Gleizes, J.-P. Georgé, and G. Picard,
“Characterizing and Evaluating Problem Solving Self-* Systems”,
Proceedings of the ADAPTIVE 2009 Conference, IEEE Press, 2009,
pp.137-145.

[12] L. Masciadri, “A Design and Evaluation Framework for Adaptive
Systems”, MsC Thesis, University of Milano-Bicocca, Italy, 2009

[13] L. Masciadri and C. Raibulet, “Frameworks for the Development of
Adaptive Systems: Evaluation of Their Adaptability Feature Software
Metrics”, Proceedings of the 4th International Conference on
Software Engineering Advances (ICSEA 2010), 2009, pp. 309-321

[14] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng,
“Composing Adaptive Software. Computer”, IEEE Computer Society,
Vol. 37, No. 7, 2004, pp. 56-64

[15] C. Raibulet, “Facets of Adaptivity”, Proceedings of the 2nd European
Conference on Software Architecture, LNCS 5292, 2008, pp. 342-345

[16] C. Raibulet, F. Arcelli, S. Mussino, M. Riva, F. Tisato and L. Ubezio,
“Components in an Adaptive and QoS-based Architecture”,
Proceedings of the ICSE 2006 Workshop on Software Engineering for
Adaptive and Self-Managing Systems, pp. 65-71

[17] C. Raibulet and L. Masciadri, “Evaluation of Dynamic Adaptivity
through Metrics: an Achievable Target?”, Proceedings of the Joint
IEEE/IFIP Conference on Software Architecture 2009 & European
Conference on Software Architecture 2009, pp.341-344

[18] C. Raibulet and L. Masciadri, “Towards Evaluation Mechanisms for
Runtime Adaptivity: from Case Studies to Metrics”, Proceedings of
the ADAPTIVE 2009 Conference, IEEE Press, 2009, pp. 146-152

[19] H. Sadat and A. A. Ghorbani, “On the Evaluation of Adaptive Web
Systems”, Proceedings of the Workshop on Web-based Support
Systems, 2004, pp. 127-136.

[20] N. Subramanian and L. Chung, “Metrics for Adaptability”, Journal of
Applied Technology Division, 1999, pp. 95-108.

[21] S. Weibelzahl, “Evaluation of Adaptive Systems”, Lecture Notes
Computer Science LNCS 2109, 2001, pp. 292-29

251

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

