
Adaptable and Adaptive Visualizations
in Concept-oriented Content Management Systems

Hans-Werner Sehring
Experience Design and Emerging Technologies

T-Systems Multimedia Solutions GmbH
Dresden, Germany

hans-werner.sehring@t-systems.com

Abstract—One task of content management is the publication
of content. The necessary means to render content into
documents are usually developed alongside other aspects of
content management systems, in particular the content’s
schema. There are content management applications, however,
that require open and dynamic content modeling and
management. These concept-oriented content management
(CCM) systems have been studied carefully. As a consequence,
content visualization in this kind of applications has to be
adaptive and cannot be statically tailored to one given content
structure alone. This paper gives a roundup of CCM, discusses
means to abstractly define content visualizations, and presents
an approach to adaptive visualization. The paper is an
extended version of [1].

Keywords-concept-oriented content management; adaptive
user interfaces; personalization; content distribution

I. INTRODUCTION
In practice, there is no sharp definition of content

management. There is agreement, though, that content
management has to support the separation of layout,
structure, and content [2]. To this end a typical content
management system (CMS) allows to define structure
through a content schema or content model, to manage
content as data, and to render content into documents
following a specified layout through templates (static view
components plus code for the representation of content)
during playout.

CMSs are applied in different scenarios, though. In
particular there are cases where content is itself the primary
entity of interest – when digital content is considered like in
digital image collections, video portals, and Web 2.0
applications – and there are cases when content is used to
represent real-world entities that cannot adequately be
represented by structured data.

For the latter class of applications we have introduced
Concept-oriented Content Management (CCM). In addition
to the above-mentioned general requirements, Concept-
oriented CMSs (CCMSs) have to support personalization of
both data [3] and schemata [4] as a means to express
subjective interpretations of content. Additional requirements
follow from these properties: content models have to be open
to changes and CCMSs have to follow model changes
dynamically, while users need to be able to communicate

with each other in the presence of personalized content
(models) that may differ to a certain degree.

Earlier papers reported on the technical foundations of
CCM that allow handling schema evolution and
individualized communication in CCMSs. In this paper we
discuss visualization matters for such systems, both for
editing content according to personalized models as well as
the rendering of content into documents that can be
published independently of a content schema.

The remainder of this paper is organized as follows: in
Section II we revisit CCM as a content management
approach. Since the technical details of the CCM approach
have been described thoroughly in other publications [4], the
paper gives a summary of these topics. In Section III,
however, we provide a more detailed look on content
modeling with CCM. Sections IV and V cover the main topic
of this paper, adaptive visualization of content. In Section IV
adaptable visualizations for CCMSs are discussed in general,
and specifically details on view models. Section V discusses
the modeling of controllers to handle interaction. The paper
concludes in Section VI with an outlook on future research.

II. CONCEPT-ORIENTED CONTENT MANAGEMENT
The CCM approach has been designed for content

management applications that require handling content as
personalized variants rather than in one standardized form.
Two major requirements to CMSs have been identified for
this kind of applications: content models have to be open to
schema changes (openness), and CCMSs have to follow
model changes dynamically (dynamics).

As a means to meet these requirements, three major
contributions have been identified for the CCM approach: a
language for open content modeling, a model compiler that
translates content schema definitions into CCMSs that both
implement a given schema and allow communication
between subsystems with different variants of a schema, and
a CCMS architecture that allows systems evolution through
incremental compilation.

In this section we describe the definition of CCM models
and the technology to implement CCMSs.

A. Foundations of Concept-oriented Content Management
Various projects have shown the need for a form of

content management that is concerned about content that
represents real world entities. This form of content

265

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

management usually is employed for entities that cannot
accurately be described by structured data, e.g., by records in
databases. One example for a class of such entities is that of
pieces of art. A piece of art can be enjoyed as content, but it
also represents the process of its creation, in particular the
epoch in that it has been created, the artist and her or his way
of living, as well as the message that shall be conveyed by
the artwork (an opinion of the artist, or a statement of the
employer as it is the case for politically motivated art,
advertisements, etc.).

Content that represents entities is – in contrast to
structured data – subject to individual interpretations.
Content can be stored, shared, etc., but it will necessarily
lead to subjective views on the represented entities.

Collaborative work with content that represents entities
requires support to make those aspects of interpretations
explicit that are intended by the author. In accordance with
observations already made by others (in fact, they have been
made as early as by Cassirer’s works [5]), we propose to
provide a conceptual model that accompanies the content.

We call the union of content and a conceptual model that
both describe the same real-world entity an asset.

In order to be able to express subjective views, CCMSs
support personalization, in particular personalization of asset
instances, models, and presentations. As already mentioned,
they do so by providing model openness and systems
dynamics.

B. Asset Definition Language
The asset definition language (ADL) allows expressing

entity models as laid out in the previous subsection. In this
subsection we give a small glimpse of the ADL syntax, while
we discuss modeling with assets in Section III.

Asset schemata are given as models. Models contain
classes with members (content handles and attributes) and
instance definitions. Furthermore, classes can be imported
from other models, thus allowing model reuse (see
Section III).

The following code shows an example of an asset model:
model MyModel
from SomeOtherModel import SomeClass
class MyClass
class MySubClass refines SomeClass
let myAsset :MyClass := …
Here, two classes and one instance are defined as part of

the model called MyModel, where one class is defined as a
refinement of an existing class imported from another model.

In the let statement for the definition of the named
instance myAsset a type constraint can be seen after the
colon. By using such type information a more general type
than that of the actual instance can be given.

A type is given by the name of a class. If an asterisk
follows the class name then the type refers to a set-valued
type over the given base type.

Classes separate the two aspects of an asset – content and
concept view – in respectively named compartments:

class MyClass refines SomeClass {
 content someContentHandle :HandleType
 concept … ; see below
}

Each content handle is given by a name and a type
constraint (introduced by the colon). Please also note the
semicolon introducing a one-line comment.

Since assets are similar to signs considered in Semiotics,
we loosely base the concept part of assets on Peirce [6], in
particular his distinction of three description categories.

The first category of the conceptual model consists of
attributes that contain values that are inherent to instances:

class MyClass {
 concept characteristic c :T
 characteristic d :T2 := … }
Characteristic values are not first class citizens of an

asset model. The usable types (in the example: T and T2) are
borrowed from an underlying implementation language.
Currently, we use Java for this purpose: any Java class from
the standard or other class libraries can be used as a type, and
Java expressions can be used in initializations (“:=”).

If an asset can be related to other assets, named and typed
relationships can be defined as the second kind of attribute:

class MyClass {
 concept relationship r1 :C
 relationship r2 :D* }
Here, a relationship r1 to an instance of asset class C and

a many-to-many relationship r2 to instances of type D are
defined.

The third contribution of class definitions is that of
regular definitions on the type level. These apply to all
instances of the respective class (and, by means of
inheritance, that of subclasses). Of course, classes itself as
well as the type constraints are already regular contributions.
Nevertheless, the need for application-specific constraints
often arises:

class MyClass {
 concept constraint constraint1 c = x
 constraint constraint2 c < y
 onviolation … }
These definitions define the value of c to always be equal

to x and less than y (where the comparison operators are
defined in a type-specific way). Changes to the asset that
would violate the first constraint are forbidden and lead to
runtime errors. The second constraint contains a productive
rule that establishes (or at least tries to establish) a situation
that conforms to the constraint.

There are seven built-in operators to check for equality
(“=”), inequality (“#”), ordering (“<”, “<=”, “>”, “>=”), and
similarity (“~”). These are implemented in a type-specific
way. E.g., “<” tests for a subtype for classes, and for a subset
for asset sets.

Named asset instances can be referred to by their name.
Members of instances can be accessed by the projection
operator (“.”), e.g., myAsset.x. Asset sets are given by a
comma-separated asset enumeration in brackets.

The asset creation and manipulation sublanguage
controls the lifecycle of asset instances. It allows creating
and modifying asset instances through operations like:

create MyClass { c := x }
create MyClass someMyClassInstance
modify someAsset { c := x }
modify someAsset someOtherAsset
delete someAsset

266

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The statements are available in intentional form (giving
member values) and in extensional form (giving a
prototype). A set of prototypes can be given in the
extensional forms; then statements are applied element-wise.

The asset query sublanguage allows finding asset
instances using statements like

lookfor MyClass { c # y }
Operations can be combined by means of concatenation.

The following sample statement updates all instances of
MyClass with a value x of attribute c so that c becomes y:

modify lookfor MyClass { c=x } { c:=y }
Concatenation follows the implicit rules that (1) sets of

sets of instances are flattened to sets of instances, that (2)
there is no distinction between singleton sets and single
instances, and that (3) projection can be applied to sets
element-wise. For example, the statement

{lookfor MyClass { c = x },
 lookfor MyClass { c = y }}.c

retrieves the union of all instances of MyClass with a c
value of x or y and projects it to the value(s) of the attribute
c (this can result to {}, x, y, or {x,y}, depending on the
existing asset instances).

C. On Open Content Modeling
Asset models are units of model reuse. Through the

import statement classes can be imported and used for two
reasons: for domain interrelation and for personalization.

The first way of reuse, domain interrelation, allows
integrating definitions in order to use a domain as a related
domain or subdomain. If studying art history, for example,
one will want to reuse some work of historians.

One specific property of the ADL is its ability to redefine
content classes in a specific context. By this means the ADL
can be used for personalization and for the management of
content revisions and content variants. Imports of classes for
this reason are the second use of model reuse.

The redefinition of classes can include the addition of
attributes, the removal of attributes, and changes to the
inheritance hierarchy. For example, based on

model SomeModel
class SomeClass {
 concept characteristic c :T1
 characteristic d :T2 }

some user may define
model MyModel
from SomeModel import SomeClass
class MyBaseClass
class SomeClass refines MyBaseClass {
 concept
 characteristic c :T3 ; changed type
 characteristic d unused ; omitted
 characteristic e :T4 } ; new attribute
Note that class redefinition has neither subtype semantics

nor does is create revisions of types. Instead, each model is
checked for consistency separately. Therefore, regardless of
class definitions being based on imports, changes like a
modified class hierarchy and the omission of attributes
(keyword unused) are sound when looking at one model
alone. Relationships between models (for model
personalization etc.) are handled by explicit inter-model

relationships established by, e.g., initializations with default
or computed values. For example, a class C like

model BaseModel
class C { concept characteristic i :int }

can be changed using the origin reference to the original
class definition to become:

model DerivedModel
from BaseModel import C
class C { concept characteristic i :String
 := Integer.toString(origin.i) }
This way one can change the type of an attribute and

have the new value computed, e.g., when passing an instance
from a BaseModel context to one using DerivedModel.

This way, one can even change attribute kinds, e.g., lift a
characteristic value

class Painting {
 concept characteristic painter :String }
to a relationship
class Painting {
 concept relationship painter :Painter
 :=lookfor Painter{name=origin.painter}}

D. A Model Compiler for Concept-oriented CMSs
Due to the openness and dynamics requirements CCMSs

call for specific implementations. Both well-known extreme
software development approaches, individual development
and generic software, fail to meet these requirements:
individual software is not dynamic since it needs interference
of programmers when model changes occur. Generic
software does not meet the openness constraint since it
prescribes certain model constructs that cannot be overcome
and require the user to translate concepts as expressed in the
generic language. Therefore, automatic software generation
in conjunction with a fine-grained architecture is necessary
to allow dynamics of information systems.

There are different approaches to the problem of
generating whole software systems which are composed of
various parts that are produced by independent generators:
(1) the generated software modules have to be adapted in
order to be composed [7], (2) generic software modules are
wrapped in a domain-specific way [8], (3) glue code to
combine modules needs to be generated [9], or (4) the
generators need to cooperate in order to create a consistent
set of modules. For the fully automatic generation approach
required for CCM we favor the latter approach for content
management systems.

Writing coordinated generators is a complex task, mainly
because setting up an infrastructure for them [10] is difficult.
Therefore, our model compiler for content management
systems is designed as a framework. In conjunction with a
facility for code generation it constitutes a domain-
independent meta-programming infrastructure [11].

An instance of the compiler framework is defined by
providing a parser, one or more dictionaries, several
generators, and a configuration of the framework [12].

A typical compiler is divided into frontend and
backend [13] in order to decouple source language
recognition from target language generation. To this end, a
compiler frontend creates an intermediate representation of
the input definitions. Such an intermediate representation

267

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Activity diagram of a sample CCM compiler framework application.

forms the input of a compiler’s backend that generates code
in the target language. This allows compiler setups for
multiple targets as well as – at least in theory – to process
different source languages.

The model compiler for our conceptual language is built
in an object-oriented fashion. The classical division into
frontend and backend has been translated into a framework
architecture that allows configuring compilers for the
generation of dynamic content management systems. This
framework addresses the need to generate multiple targets in
conjunction.

A set of parsers is readily available for model compiler
instances. The one most commonly used reads files
containing asset language expression as defined in Section B.
Other options are parsers for different syntactical forms, e.g.,
in XML, or parsers that adapt an internal model
representation from modeling tools. For the purpose of user
interface generation, an input language that is related to
established presentation technology could be used (see
Section V.B).

Alike a programming language compiler that creates an
intermediate code representation the frontend in the compiler
framework creates intermediate model representations in
which asset class definitions are available as an object graph.

CCM model compilers have access to one or more
dictionaries in which model definitions are stored. This way
a compiler gets access to the models named in import

statements. It furthermore registers information on the
generated code in an own dictionary. This includes the
names of implementation classes (e.g., fully qualified Java
class names) that have been created for asset classes.
Through the dictionaries compilers can create model
interrelationships by accessing the information that has been
stored by earlier compiler runs.

Code generators constitute the most important extension
point of the model compiler framework. Each generator
produces one module of a CCMS (see subsequent
subsection) in one particular technology. The framework
schedules the generators with respect to their dependencies.

There is a direct correspondence between generators and
the modules of content management systems. For each
implementation of one of the module kinds introduced below
there is at least one generator. Often more than one generator
contributes to the creation of a module. For example, client
modules for database access are typically created by a pair of
generators; one of them creates the database schema, the
other one creates code to access the database as well as to
store and retrieve asset instances.

Sets of generators are given in model compiler
configurations. Generator instances out of the set of known
generator implementations are chosen by means of selecting
a configuration. In the context of user interface generation,
for example, there are typically different configurations for
different presentation technologies used for a CCMS.

268

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Traditional compilers use symbol tables to store
information about the language constructs recognized. Our
model compiler for content management systems builds on
the concept of symbol tables, but extends it significantly:
these tables are not only used in the frontend of a compiler,
but they are the means by which generators communicate
during the generation process.

Symbol tables contain detailed information about the
artifacts that were created by the respective generator. The
aim of symbol tables is to make access to the artifact
descriptions explicit for generators that rely on artifacts
created by others (and most generators do). Without symbol
tables, generators further down the chain would have to
make assumptions about naming and would have to recover
the corresponding pieces from the whole of the generated
artifacts.

Each generator fills its symbol table during its execution
and passes the symbol table back to the compiler framework
afterwards. The framework in turn gives available symbol
tables to further generators making them the essential means
of generator communication.

A complete system is normally built from artifacts in
several languages. Different meta-programming facilities are
available to the generators that share a common intermediate
model to create their output.

Figure 1. illustrates the cooperation of generators within
the compiler framework. The main task of the frontend is to
parse a CCM model definition and to create an intermediate
model from it.

As part of the initialization of the generators in the
backend, the framework determines the symbol tables each
generators needs as input. Based on this information a
schedule for generator execution is computed.

The compiler backend passes the CCM model (in the
form of an intermediate model) and the required symbol
table(s) to each generator. The example shows a setup with
three generators. The first one, the API generator, is found in
every setup. It creates the uniform module interface with
respect to the CCM model. The current implementation
creates Java interfaces.

The other two generators together create a client module
(s.b.) for use with a relational database management system.
One generator creates a relational schema out of the asset
model, the other one a module implementation using JDBC
to access the database according to the generated schema.

The JDBC generator will always be scheduled last since
it requires information on both the schema (to create the
proper “embedded” SQL statements) and the module API (in
order to make the JDBC module implement it).

The final compilation step is the component assembly. A
CCMS component is assembled from the generated modules
and parameterizations of third party products when all
contributing generators have finished their task. This
includes two activities: actually building the modules and
combining them in a component of a CCMS.

Modules are built from the generated artifacts. Each
generated artifact needs a special final treatment: source code
needs to be compiled, database schemata have to be
deployed, etc.

E. An Architecture for Concept-oriented CMSs
A model-driven code generator – in contrast to

programming language compilers – is in full charge of the
architecture of the software it generates. This enables the
CCM compiler to generate CCMSs in a form that allows
incremental compilation. Consequently we have designed an
architecture that allows CCMSs to evolve dynamically, thus
meeting the dynamics requirement of our content
management approach.

The creation of such an evolvable system can in some
cases entail changes to its setup. The architecture of the
system must therefore allow for flexible reconfiguration. A
monolithic system is certainly not capable of such flexible
change. Quite the contrary, we propose a modular system
architecture that is built of many small modules.

Consequently, the most important concepts of the CCMS
architecture are components and modules [4]. Conceptually,
components are units of model reuse, while modules
establish code reuse.

Components are logical units that implement one asset
model. They are in turn implemented by modules that are
each generated specifically for one functionality aspect – like
persistence, distribution, transformation, etc. – in one
component.

A component is implemented by a combination of
modules, usually arranged in layers. Components as software
artifacts themselves provide several services to their
modules: resolution of identifiers, management of module
lifecycles, and initialization of modules at system startup.
Each module can use other modules and can also be used by
several others. However, the setup of modules in a
component always must be a directed acyclic graph.

All modules have a uniform interface and can therefore
freely be composed in layers. The module interface reflects
the capabilities of the asset language to create, modify, delete
and query for asset instances. Each module can thus express
its functionality in terms of calls to the module(s) on the
underlying layer. This makes it possible to always combine
modules in the way most appropriate to the task at hand.

Figure 2. Six kinds of modules of CCMSs.

Figure 2. illustrates the kinds of modules for the most
frequently occurring tasks:
• Components are accessed via server modules using

standard protocols.
• Asset instances (content, characteristic values, and

relationships) are stored in third party systems,
databases in most cases. Client modules perform the
mapping of assets from asset models to schemata for
such third party systems.

269

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• A central building block of the architecture of
generated content management systems is the
mediator architecture [14]. Modules of two kinds
implement it in our approach. The first are mediation
modules that delegate requests to other modules
based on the request (operation and assets involved).

• The other modules are transformation modules. By
encapsulating mappings in such modules, rather than
integrating this functionality into other modules,
mappings can be added dynamically (compare [15]).

• Hub modules uniformly distribute calls to a larger
number of underlying modules.

• By use of distribution modules components can
reside at different physical locations and
communicate by exchanging data, e.g., XML
documents generated from the asset definitions
(comparable to the approach of [16]).

These module kinds have been identified with respect to
the requirements of content management systems. They
provide basic services by the principle of Separation of
Concerns.

The functionality of a content management system is
implemented by a component configuration that composes
selected modules. Important building blocks are typical
module constellations, the perhaps most important one being
an implementation of the mediator pattern [14] consisting of
a transformation and a mediation module. Figure 3.
illustrates it. Mediator pattern applications are discussed
below.

Figure 3. Architectural building block for evolution in CCMSs

For each kind of module used and for each supported
implementation technology there needs to be one generator
to equip the compiler framework with.

According to the two ways of combining asset models –
model interrelation and personalization – openness and
dynamics in CCMSs happen along two dimensions: (1) the
organization and (2) the application structure [17]. Along
the organization structure users can define their own views
(by personalizing content and schema). Along the
application structure, entity descriptions are shared and
reused across domains.

In our approach the architecture of the generated systems
allows changes along the organization structure by its ability
to enable dynamic system evolution and personalization

through open redefinition of assets and dynamic invocation
of the model compiler [4].

Schema evolution leads to a mediator combination of
client, transformation, and mediation modules as indicated in
Figure 3. Evolution or personalization requires a mediation
module that implements the desired personalization
functionality (mmed in the figure). Typically this includes the
delegation of requests in such way that new instances are
created in the component for the new schema (M2),
modifications lead to the creation of a modified copy in that
component while removing it from the component holding
the outdated model (M1), and search queries and deletion
requests are posed on both components. Such a mediation
module can be generated based on the input information,
namely a base model and the changes applied to it in a
derived model.

Personalization is quite similar, with the difference that
modification of an asset leads to the creation of a copy that
contains a reference to the personalized asset (instead of
deleting the original), and deletion leads to the creation of a
null asset hiding the original.

The association of models along the application structure
is realized by component configurations. Figure 4. shows a
configuration that combines two domains – regent and artist
descriptions – into the new domain of political iconography.
The component is accessed via mediation module mmed1. It
distributes requests according to the type of the assets on
which operations are invoked. If assets from one of the base
domains Regents or Artists are affected, requests are
delegated to the mediation module mmed2. This mediation
module similarly delegates requests further to one of the
components holding theses models. These components are
accessed via distribution modules mdistrib1 and mdistrib2. In the
example of Figure 4. the components consist of client
modules mclient1 and mclient2 and the respective base systems
only. Requests to the derived model Political_Iconography
are forwarded by mmed1 to the client module mclient that
manages the users' assets from the political iconography.

Figure 4. Sample CCMS components for domain interrelation.

As can be seen in Figure 4. the components for Regents
and Artists are integrated into the overall CCMS for Political

270

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Sketch of a CCM model for the domain of political iconography.

Iconography without modification. This way the components
remain unaffected, thus preserving their autonomy, i.e., to be
maintained by experts from the respective domains.

III. CONCEPT-ORIENTED CONTENT MODELING
As a running example for the discourse on visualization

led in the next section we introduce a tiny asset model in this
section. It is a rather condensed extract from a model used in
one actual project.

Figure 5. shows an overview in the form of a UML class
diagram with attributes for asset characteristics and
associations for asset relationships.

A. A Sample Structural Content Definition
The following code shows two simple sample classes:
class Document refines Extent {
 content docHandle :my.pkg.Handle }
class Picture refines Document {
 concept characteristic title :String
 relationship painter :Painter }
The content handle docHandle refers to document

data, e.g., a digitized picture for a Picture instance. Let
the Java class Handle be some class to handle references to
such data.

The asset class Picture describes picture entities like
paintings. In inherits the document handle, and defines a
conceptual model consisting of a picture’s title and a
reference to a Painter asset.

B. Sample Content Classification by Relationships
Apart from the (structural) definition of the document

descriptions it is necessary to define a hierarchy of
(semantic) classifiers, here modeled as instances of class
Subject. The base class Extent of Document defines
the extent of subjects.

These are provided in the form of subject terms and
corresponding relationships:

class Subject {
 content term :String
 concept
 relationship narrowed :Subject*
 relationship broader :Subject
 = lookfor Subject {narrowed>={self}}
 relationship extent :Extent* }
The content term is the subject term itself, and Java’s

standard String class is used for instances. The relationship
narrowed points to more specific subject terms, and
extent to the documents classified under the term at hand.
The reverse of narrowed, broader, is modeled by a
constraint that returns the broader terms based on the
(persistent) relationship narrowed.

C. A Sample Content Evaluation Rule
The intended form of classification with the sample

model given so far is the following: each document is
classified under the most specific subject terms that apply. If

271

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

one wants to use the typical subsumption – documents also
showing up under more general terms than those assigned
directly – with the definitions made so far this has to be
handled by, e.g., the visualization layer.

To make such evaluation rules part of the asset model,
additional classes can be introduced for this purpose. For our
example we would like to define a special Subject with a
“deep” extent that takes extents from narrower terms into
consideration:

class SubjectRec refines Subject {
 concept
 relationship extent :Extent* := {
 origin.extent,
 (create SubjectRec narrowed).extent }}
To further stress the importance of a rule-based level,

please note that the transitive extent can be expressed by
means of relationships (with the help of a productive rule to
keep the relationships up-to-date):

class SubjectRec2 refines Subject {
 concept constraint deepExtent
 extent >= narrowed.extent
 onviolation modify self {
 extent += narrowed.extent }}
This way the recursive extent is materialized in each

subject. Of course, the usual problems arise from this
redundancy, e.g., updates of extents on picture removal.

IV. OPEN DYNAMIC ASSET REPRESENTATIONS
In this section we shed a light on the second typical task

of CMSs, the rendering of representations of content.
The openness and dynamics properties of CCMSs require

user interfaces (UIs) to follow model changes. This can only
partially be achieved since suitable presentations require
manual design [18]; there is no means to automatically
produce a visualization that is guaranteed to meet the users’
demand for adequateness and ergonomics.

Nevertheless, if visualizations are handled like content,
then openness like that of content models can be achieved for
them: visualizations can be defined in conjunction with
domain models, e.g. group-wise, they can be passed between
users that share the same domain models, and then they can
be personalized group-wise or individually.

With this kind of user interface modeling presentations
are not automatically generated from domain models, but
users can define presentations on their own, using a language
they are using anyhow. By the correspondence between
domain and visualization models the CCM personalization
capabilities are beneficial for user interface modeling. Not
every user has to define a complete presentation. Usually,
domain experts build their models reusing those of other
domain experts (by means of personalization) or they use
models of neighboring domains (by means of cooperation).
Together with the reuse of domain models also
accompanying presentation models can be reused.

To this end, we need to avoid “programming” of
templates as found in typical CMSs. Instead, declarative
definitions of visualization constructs are needed similar to
the idea of Model-Based User Interface Development
Environments [19]. Our aim is to express visualization using
the ADL since domain experts already use it (compare [20]),

and it allows direct links to domain models. It should be
noted that the difference between content and a rendered
document is in the eye of the beholder: view classes can be
seen as normal classes from the domain of “views”.

For the asset-based visualization descriptions we suggest
models that follow the Model-View-Controller pattern. In
this section the view part of the user interface models is
presented. The subsequent section discusses the
interrelationship between views and models, as well as the
definition of controllers.

Three interrelated models for (1) abstract definitions of
presentation components, (2) presentation technologies, and
(3) component implementations are provided to CCMS users
who can define asset visualizations with the help of these
basic contributions for visualization specification.

The models apply to both pure presentations, like web
pages, and interactive applications, e.g., for content editing.

Figure 6. gives an overview of the usage of the models
presented in the remainder of this paper. The packages
Components and Technologies represent two of the models
discussed in this section (elsewhere called platform
model [21]). The model of component implementations is
omitted from the figure since it is not of interest to the
domain expert using the models; it is exclusively used by the
compiler. The package Layout sketches an application of the
models (elsewhere called presentation model [21]). The
relationships to the DomainModel are explained in the
subsequent section.

A. Presentation Component Model
A very basic contribution for declarative UI descriptions

is the presentation component model. This model enumerates
abstract descriptions of visual components that are usually
available in the supported visualization technologies. The
following small model excerpt gives an impression of the
class definitions, showing a base class of containers for other
UI components and a text label class (to display some text):

model UIComponents
class UIComponent
class Container refines UIComponent {
 content children :UIComponent* }
class TextLabel refines UIComponent {
 content text :String }
Such an abstract component library is used to specify

presentations for assets in a platform-independent way:
model MyPresentationModel
from UIComponents import ImageLabel,
 Panel, TextField, TextLabel
let picturePanel :Panel := create Panel {
 children := {
 create ImageLabel,
 create Panel {
 children := { create TextLabel,
 create TextField }
 } } }
In this example a user defines a Panel consisting of an

image, a text label, and a text field. It might be used to
display pictures by showing the content (the picture data
itself) and its title, where the text label is displaying “Title:”
as a label to the text field, and the text field is holding the
actual picture’s title.

272

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. CCM models for user interface component implementations.

B. Presentation Technologies Model
The second basic contribution, the technologies model, is

rather simple: it just enumerates the supported technologies
by defining an asset class for each of them.

A snippet from a technologies model looks like this:
model UITechnologies
class UITechnology
class SGMLDescription refines UITechnology
class HTML refines SGMLDescription
class Java refines UITechnology
class AWT refines Java
class Swing refines Java
class SWT refines Java
The sole purpose of these classes is to be referenced in

the component implementations model and being passed as a
parameter to the presentation generator (see Section D).

C. Presentation Component Implementations Model
The third basic contribution is a model that contains

implementations of components in certain technologies.
Again a quite small excerpt shall present the basic idea:

model UIImplementations
from AssetMetaModel import AssetClass
from UIComponents import Panel,UIComponent
from UITechnologies
 import HTML, Swing, UITechnology
class UIImplementation {
 content prototype :java.lang.Object
 concept relationship component
 :AssetClass < UIComponent
 relationship technology
 :AssetClass < UITechnology }
create UIImplementation {
 prototype := my.HtmlUtils.element("div")
 component := Panel
 technology:= HTML }

create UIImplementation {
 prototype := new javax.swing.JPanel()
 component := Panel
 technology := Swing }
The model contains one class UIImplementation

whose instances refer to prototypical implementations (in the
current implementation given as Java objects) of abstract
component definitions. The set of UIImplementation
instances defines the pool of implementation artifacts that a
UI generator (see Section D) can benefit from.

The link between abstract components and technologies
is made by referencing the respective asset classes. The class
AssetClass is imported from the ADL’s metamodel (that
is also available in ADL itself) for the required type
constraints that furthermore restrict the referable classes to
UIComponent and UITechnology, respectively.

The example sketches implementations of the abstract
component Panel in HTML (here assuming a helper class
to create HTML elements) and in Java Swing.

The definitions in UIImplementations are in fact
written using more compact statements, but the necessary
linguistic means have not been introduced in this paper.

D. Presentation Generation Using Abstract Models
User interface code is generated from the models

presented to far, with one addition: links are established
between presentation component instances and domain
model entities in order to be able to create the demanded
adaptive code. The links are based on the AssetView and
MemberView assets as indicated in Figure 6. They will be
discussed in Section V.A.

The actual rendering of assets is based on a rather simple
algorithm: for each asset class c of the domain model to
visualize and a technology (from the technologies model) t,

273

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a UI generator first looks for the UI component(s) to use in
the model relating content assets to UI component assets:

let v := (lookfor AssetView { type >= c }
).view
Then implementation prototypes for the UI components

can be found in the component implementations model:
let p := (lookfor UIImplementation {
 component <= v.type
 technology = t }).prototype
The prototypes are used to create fresh instances that are

assembled to a UI as prescribed in the presentation
component model. Assembly of the implementations usually
has to be performed in a technology-specific way, so that
there are specific generators for the supported technologies.
These can be easily included in the asset compiler
framework (see Section II).

The generated code does not create a static presentation.
Instead, the user interface adapts to the asset bound to the
presentation (see Section V.A). Such code forms an
“adaptation engine” as proposed in [22] and establishes a
type-based clustering ([23] presents a time-based clustering).

To this end, the code adjusts the presentation to the
bound asset by selecting only those components that are
defined for an asset type that matches the current asset’s
class. The selected components are added to the presentation,
and child components that do not apply anymore (because
they were added for a previously bound asset) are removed
(equivalent to “generation at execution-time” in [24]).

How this adaptation is performed depends on the
visualization technology. In Java (AWT, Swing, or SWT)
applications, container components can dynamically be
altered. Web pages need to be reloaded, or there could be
JavaScript code to perform changes dynamically using
AJAX (not yet implemented).

Figure 7. shows screenshots of a running Swing
application. The screenshots show a GUI with a bound
picture asset (a) and a movie asset (b). The panel in the lower
right adapts to the bound asset. As can be seen, the artist
(Künstler) of a picture is given as a relationship to a painter
(Jacques-Louis David), while the director (Regisseur) of a
movie is a characteristic string (Abel Gance).

(a) A CCM GUI showing a picture asset.

(b) A CCM GUI showing a movie asset.

Figure 7. Screenshots of a generated CCM visualization.

274

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Sample layout models for a user interface like the one shown in Figure 7.

V. MODEL BINDINGS AND CONTROLLER MODELS
In the previous section the static layout of visualizations of
assets of specific types has been presented, and it was
already specified that the asset presentations should depend
on the type of assets bound to the view. This section is
concerned about the behavioral aspects of user interfaces.
Following the model-view-controller pattern views are

related to the two other interface components, models and
controllers.

Bindings from the view layout to the domain model are
covered by Section A. Section B presents and alternative
form of defining layouts and model bindings.

Controllers typically serve one of two purposes: updating
the view, e.g., by navigating between assets, and updating
the model, e.g., by creating, modifying, or deleting one or

model ViewWithLinksToModel
from DomainModel import Picture, Subject
from UIComponents import horizontal, ImageLabel, Movie, Orientation, Panel,
 TextField, TextLabel, UIComponent, vertical
class LabelAndField refines Panel {
 concept relationship label :UIComponent
 relationship field :UIComponent
 relationship children :UIComponent* = { label, field }
 relationship orientation :Orientation := horizontal }
class DocumentPanel refines Panel {
 concept relationship iconPanel :LabelAndField
 relationship children :UIComponent* := { iconPanel }
 relationship orientation :Orientation := vertical }
class MoviePanel refines DocumentPanel {
 concept relationship directorPanel :LabelAndField
 relationship children :UIComponent* := {super.children, directorPanel}}
class PicturePanel refines Panel {
 concept relationship titlePanel :LabelAndField
 relationship painterPanel :LabelAndField
 relationship children :UIComponent*
 := { super.children,titlePanel,painterPanel } }
let classifierTree := create TreeView {
 nodeRenderer := create TextLabel }
let extentList := create ListView {
 itemRenderer := create TextLabel }
let moviePanel := create MoviePanel {
 iconPanel := create LabelAndField {
 label := create TextLabel { text := "Icon:" }
 field := create ImageLabel
 }
 directorPanel := create LabelAndField {
 label := create TextLabel { text := "Director:" }
 field := create TextField
 } }
let picturePanel := create PicturePanel {
 iconPanel := create LabelAndField {
 label := create TextLabel { text := "Icon:" }
 field := create ImageLabel
 }
 titlePanel := create LabelAndField {
 label := create TextLabel { text := "Title:" }
 field := create TextField
 }
 painterPanel := create PicturePanel {
 label := create TextLabel { text := "Painter:" }
 field := create TextLabel
 } }

275

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. CCM model interrelating views and model classes.

more assets. CCM models to define controllers for view
updates are covered by Section C and such to define
controllers for model updates in Section D. All kinds of
controllers work on regular CCM assets.

A. Relating Content to Presentation Components
Users define the presentations they need on the basis of

the abstract UI components model. They have to provide two
kinds of definitions: an implementation-independent layout
description as sketched in Section IV.A and links from
content to the UI components that shall display that content.

In easy cases the link between content and a UI
component can be made by referring to the content from the
content compartment of a UI component. Additionally, the
UI component is responsible for the access to the attributes
of the asset to be visualized: the selection of members and
the decision which relationships to follow (and to which
depth). An example for a Picture instance p would be:

model ViewWithValues
from UIComponents import ImageLabel,
 Panel, TextLabel, vertical
create Panel {
 children := {
 create ImageLabel {image:=p.docHandle},
 create TextLabel {text :=p.title} }
 orientation := vertical }
This way of linking content to UI components allows

explicitly choosing the presentation for an asset instance, but
it requires a complete definition of one instance per content
type and desired visualization, without code reuse through
classes. Compared to conventional implementations this is

typical for simple manually programmed GUIs or such
created with the help of interface design tools.

Some reuse can be achieved by defining UI classes for
specific content (types) that are instantiated for a matching
content instance. This is what typical template languages do.

A higher degree of reuse can be achieved by defining
rules for the linkage of content to UIs.

The basis for such user-based visualization descriptions
is a fourth basic model that defines class-based relationships:

model AssetUI
from AssetMetaModel
 import AssetClass, Member
from UIComponents import UIComponent
class AssetView {
 concept relationship type :AssetClass
 relationship view :UIComponent }
class MemberView {
 concept relationship member :Member
 relationship view :UIComponent }
The asset class Member is defined in the ADL’s meta

model like the metaclass AssetClass is.
Such a basic model can be used for definitions like the

views shown in Figure 8. and the relationships shown in
Figure 9. according to the graphical sketch in Figure 6.

The example shows a small excerpt of a model that
defines a GUI like that from Figure 7. It consists of a tree
showing the Subject hierarchy, the Extent list of one
Subject, and a panel with the selected Extent.

Standard components are used for the tree and for the list
in the example. These are configured with one component to
render tree nodes and list items, respectively.

model ViewWithLinksToModel
from DomainModel import Movie, Picture, Subject
from AssetUI import AssetView, MemberView
create AssetView {
 type := Subject view := classifierTree }
create MemberView {
 member := Subject.term view :=classifierTree.nodeRenderer }
create AssetView {
 type := Extent* view := extentList }
create MemberView {
 member := Document.name view := extentList.itemRenderer }
create AssetView {
 type := Picture view := picturePanel }
create MemberView {
 member:=Picture.docHandle view := picturePanel.iconPanel.field }
create MemberView {
 member := Picture.title view := picturePanel.titlePanel.field }
create MemberView {
 member := Picture.painter view := picturePanel.painterPanel.field }
create AssetView {
 type := Movie view := moviePanel }
create MemberView {
 member := Movie.docHandle view := moviePanel.iconPanel.field }
create MemberView {
 member := Movie.title view := moviePanel.directorPanel.field }

276

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For the Extent assets one Panel per type is defined (the
example of Figure 8. shows just excerpts of the panels for
Movie and Picture instances). To be able to correctly set
the horizontal orientation of, e.g., labels and text fields, and
the vertical orientations of the components for the attributes,
a helper class LabelAndField is defined. It allows to
define orientations at the class level.

As sketched in Section IV.D, view components have to
be related to domain model elements. Using the AssetUI
model sketched above, the instantiations of AssetView
and MemberView prescribe the rendering of all assets of a
user-defined type. In the example of Figure 9. Picture
(and subtypes) instances are defined to be rendered by a
picture view, and values of their title attributes are rendered
in a text field. (Expressions like Picture.title return
the Member instance describing the named member.)

As can be seen in the example, a dedicated Panel class
for Picture instances is defined. It is important to note
that a relationship between the class Picture – not a
Picture instance – and the instance picturePanel
with its child components is established.

Whenever an asset is to be visualized, a suitable UI
component can be found depending on its type as shown in
Section IV.D. The component implementation instance is
used in two ways: the first use is by a UI generator that uses
it as a pattern for the generation of code that creates a
component implementation at runtime. Examples are Java
code that produces a rich Swing client or a JSP page that
incorporates HTML fragments.

The second use is the running code itself that adapts a UI
to a new or changed asset instance that is to be visualized by
it. To this end, the information from the layout model and the
links to the domain model are included in the generated
code.

B. An Alternative Asset Language for Web Presentations
As indicated in Section II.D the CCM compiler

framework allows using custom parsers for specific syntactic
forms of model definitions. We currently investigate the use
of HTML for layout definitions with embedded tags for the
relationship to domain assets.

Specifying user interfaces by HTML with embedded tags
allows using web design tools (as long as they leave the
custom tags intact). Though this violates the idea of
dynamics to some extent, it is important in projects where
web designers create visualizations for users of a domain.

There are two custom tags that allow to express the
AssetView and MemberView relationships. The
semantics of the <assetview> tag is the following: if the
asset currently to be displayed is of the type given by the
type attribute, then the content of that tag is rendered;
otherwise, it is excluded from the page.

The <memberview> tag is evaluated to the asset’s
member given by the name attribute. Following the example
of the JavaServer Pages Standard Tag Library (JSTL) it
optionally allows to define a variable. Then the tag is not
expanded to the member’s value, but instead the named
variable is initialized with it. Later on the variable can be

referenced by using the Expression Language (EL) of
JavaServer Pages.

A page definition using this language might look like in
the following example:

<html>
 …
 <ccmui:assetview type="Document"><table>
 <tr>
 <th>Icon</th>
 <td><ccmui:memberview
 var="icnsrc"
 name="docHandle"
 format="url"
 /></td>
 </tr>
 <ccmui:assetview type="Picture"><tr>
 <th>Title</th>
 <td><ccmui:memberview name="title"
 /></td>
 </tr></ccmui:assetview>
 </table></ccmui:assetview>
 …
</html>
In this example a table is rendered for Document

instances. If the current asset is actually a Picture, then
the table has two rows, one for the image (in this example,
docHandle is supposed to always refer to an image file)
and one for the title. For all other document instances
(e.g., movies) the table contains only the row with the image
content.

Of course, users can still alter such enriched HTML
layouts since they are processed by a CCM compiler. But
this requires users to have knowledge on HTML as well as
on the custom tags.

C. View Controllers
There are interactive view elements that update other

views, in particular by navigating from one asset to another.
View updates can be formulated using the ADL by defining
constraints on the view assets.

The following definitions establish synchronization
between the subject tree and the extent list in the sample
client shown in Figure 7.

class TreeListSynchronizer {
 concept
 relationship tree :TreeView
 relationship list :ListView
 constraint listInSyncWithTree
 (tree.selection=na and list.model=na)
 or (tree.selection # na
 and tree.selection.extent
 = list.model)
 onviolation modify list {
 model := tree.selection.extent } }
create TreeListSynchronizer {
 tree := classifierTree
 list := extentList }
In this example we use a constraint on the subject tree

and the extent list. We define a class for the pair of them and
create an instance so that the constraint is active. A
TreeView has a selection relationship holding the
currently selected tree node. If no node is selected (na as the

277

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

null value for no asset) then the list should be empty,
meaning its model does not refer to an asset set. Otherwise,
we require the model of the extent list to be equal to the
extent of the selected subject.

When this constraint is violated the repair code in the
onviolation clause assigns the list model according to
the definition. Note that in case of an empty selection the
expression in the modify statement results to na, and the
list model is thus correctly cleared.

D. Controllers to Manipulate Models
Since both the domain model and the view model are

formulated using the ADL, no specific technology is
required to alter domain assets from within a user interface.
The usual asset manipulation language commands can be
used to modify assets from the domain model, and the CCM
model compiler will create suitable target code from these
commands.

To trigger commands on the domain model these can be
wrapped in Action assets. Action is a predefined user
interface class that has one relationship perform. This
relationship can be defined with a constraint to form a kind
of function. Instances are used at runtime by interactive
components: these can be assigned an Action asset, and
generated code will use the relationship perform to trigger
the defined command that can, as a side-effect, modify assets
from the domain model.

The following class definition gives an example for an
action to store the modifications applied to a Document
currently visible in the document panel. Let docPanel be a
reference to the currently used document panel in the client,
e.g., picturePanel in the case of a Picture:

class CommitAction refines Action {
 concept
 relationship perform :Asset*
 = modify docPanel.model {
 title := titlePanel.field.text
 …
 } }
When the Action from the example is related to an

interactive UI component, e.g., a menu item, the modify
statement on the docPanel’s model will be executed when
interaction takes place (by dereferencing the Actions’s
perform relationship). It updates the currently bound asset
in that way that it assigns the updated values from the input
fields to the asset’s attributes.

An interactive UI component can be a standard
component, e.g., a menu item or a button as well as a
complex component [25]. E.g., a document panel as sketched
above may trigger actions if any of the enclosed text fields
has its value changed.

VI. OUTLOOK
The first research direction that needs attention is a

higher level of abstraction for the view component model.
The initial design was targeted at fat clients and web pages.
For these kinds of user interface approaches the presented
view model is suitable. But new platforms arise, the most

important one being mobile devices, but also interactive
whiteboards, tables, etc. For some of these platforms there is
no one-to-one mapping from logical view components to
component implementations. Instead, some components are
realized in a completely different way as they are on
conventional graphical user interfaces.

To target such devices more abstract view models are
required, and an additional processing step has to create a
concrete view for a specific device. Only then the simple
construction algorithm based on prototypes as presented in
this paper can be applied.

The additional processing step can be realized by model-
to-model transformations [26] that generate target asset
models from source asset models. The CCM compiler
framework can be used for such a model-driven software
development approach. Generators that realize device-
specific presentation patterns can process source models with
more abstract view definitions and create more concrete
view models for, e.g., device-specific layouts.

A second major research topic is that of UIs
incorporating more than one technology. In practice, such
hybrid definitions are regularly used, e.g., web presentations
often use a mixture of layout descriptions and program code,
like HMTL embedding Java that in turn embeds SQL, or the
current trend to enrich web pages with flash animations and
JavaScript code, eventually forming AJAX or Flex clients.
Yet, a theoretic foundation for such hybrid language
approaches is largely missing.

The aim of the CCM approach is to enable domain
experts to create models on their own regardless of software
development constraints. Currently they do so by using the
ADL to formally define their information needs. But for
many users the presentation level is the means to argue about
models. One goal is to allow users to change presentations in
order to express the demand for domain model changes or
personalization, and to analyze the changes in order to derive
the appropriate domain model changes. Though this should
be undecidable for general changes, it might be tractable to
recognize certain patterns. This approach would lead to some
kind of agile user-centric design approach.

ACKNOWLEDGMENT
The author thanks Joachim W. Schmidt for countless

discussions on the topic CCM and the seemingly never-
ending energy still going into it. Furthermore we appreciate
the cooperation with numerous project partners. In particular,
we want to thank our colleagues from art history for sharing
their insights into the description and management of
multimedia artifacts with us. Finally, the author thanks his
employer, the T-Systems Multimedia Solutions GmbH, for
the opportunity to follow his scientific ambitions.

REFERENCES
[1] Hans-Werner Sehring, “Adaptive Content Visualization in

Concept-oriented Content Management Systems,”
Proceedings of the First International Conference on Creative
Content Technologies, Athens, Greece, 2009.

[2] Gerd Kamp, “Multichannel publishing,” OBJEKTspektrum,
2001.

278

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[3] Gustavo Rossi, Daniel Schwabe, and Robson Guimarães,
“Designing personalized web applications,” Proc. World
Wide Web 2001, ACM Press, 2001, pp. 275-284

[4] Hans-Werner Sehring and Joachim W. Schmidt, “Beyond
Databases: An Asset Language for Conceptual Content
Management,” Proceedings of the 8th East European
Conference on Advances in Databases and Information
Systems, LNCS, vol. 3255, Springer-Verlag, 2004, pp. 99-112

[5] Ernst Cassirer, Language, Mythical Thought, and The
Phenomenology of Knowledge. Vol. 1-3, The Philosophy of
Symbolic Forms, Yale University Press, 1965.

[6] C.S. Peirce, Collected Papers of Charles Sanders Peirce.
Harvard University Press, Cambridge, 1931.

[7] Johan Brichau, “Integrative Composition of Program
Generators,” PhD thesis, Vakgroep Informatica, Vrije
Universiteit Brussel, 2005

[8] Gopal Gupta, “A Language-centric Approach to Software
Engineering: Domain Specific Languages Meet Software
Components,” Electronic Proceedings of the CoLogNet Area
Workshop Series on Component-based Software
Development and Implementation Technology for
Computational Logic Systems, 2002

[9] Uwe Assmann, “Meta-programming Composers In Second-
Generation Component Systems,” J. Bishop and N. Horspool,
Systems Implementation 2000 – Working Conference IFIP
WG 2.4, Chapman and Hall, 1998

[10] Yannis Smaragdakis and Don Batory, “Scoping Constructs
for Program Generators,” technical report, no. CS-TR-96-37,
University of Texas at Austin, 1996

[11] Yannis Smaragdakis, Shan Shan Huang, and David Zook,
“Program generators and the tools to make them,” PEPM~'04:
Proceedings of the 2004 ACM SIGPLAN Symposium on
Partial Evaluation and Semantics-based Program
Manipulation, ACM Press, 2004, pp. 92-100

[12] Hans-Werner Sehring, Sebastian Bossung, and Joachim W.
Schmidt, “Content is capricious: a case for dynamic system
generation,” Proceedings of the 10th East European
Conference on Advances in Databases and Information
Systems, LNCS, vol. 4152, Springer-Verlag, 2006, pp. 430-
445

[13] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman,
“Compilers: Principles, Techniques, and Tools,” Addison-
Wesley, 1986

[14] G. Wiederhold, “Mediators in the architecture of future
information systems,” IEEE Comp., vol. 25, 1992, pp. 38-49

[15] Mira Mezini, Linda Seiter, and Karl Lieberherr, “Component
integration with pluggable composite adapters,” Software
Architectures and Component Technology, Kluwer, 2000

[16] German Shegalov, Michael Gillmann, and Gerhard Weikum,
“XML-enabled work-flow management for e-services across
heterogeneous platforms,” VLDB Journal, vol. 10, no. 1,
2001, pp. 91-103

[17] Hans-Werner Sehring, “Konzeptorientiertes Content
Management: Modell, Systemarchitektur und Prototypen,”
dissertation (in German), Hamburg University of Science and
Technology (TUHH), 2004

[18] Pedro J. Molina, “A Review to Model-Based User Interface
Development Technology,” Hallvard Trætteberg, Pedro J.
Molina, and Nuno Jardim Nunes, "MBUI 2004, Making
model-based user interface design practical: usable and open
methods and tools, Proceedings of the First International
Workshop on Making model-based user interface design
practical: usable and open methods and tools, CEUR
Workshop Proceedings, volume 103, 2004

[19] Paulo Pinheiro Da Silva, “User Interface Declarative Models
and Development Environments: A Survey,” Proceedings of
DSV-IS2000, LNCS, vol. 1946, Springer-Verlag, 2000,
pp. 207-226

[20] Jürgen Falb, Roman Popp, Thomas Röck, Helmut Jelinek,
Edin Arnautovic, and Hermann Kaindl, “Fully-automatic
generation of user interfaces for multiple devices from a high-
level model based on communicative acts,” HICSS '07:
Proceedings of the 40th Annual Hawaii International
Conference on System Sciences, IEEE Computer Society,
2007

[21] Jacob Eisenstein, Jean Vanderdonckt, and Angel Puerta,
“Applying Model-Based Techniques to the Development of
UIs for Mobile Computers,” Proceedings of the 6th
international conference on Intelligent user interfaces, Santa
Fe, New Mexico, United States, ACM, New York, NY, USA,
2001, pp. 69-76

[22] Steffen Lohmann, J. Wolfgang Kaltz, and Jürgen Ziegler,
“Model-driven dynamic generation of context-adaptive web
user interfaces,” Models in Software Engineering, LNCS,
vol. 4364, 2007, pp. 116-125

[23] Mittapally Kumara Swamy and Polepalli Krishna Reddy, “An
Efficient Context-Based User Interface by Exploiting
Temporality of Attributes,” APSEC '09: Proceedings of the
2009 16th Asia-Pacific Software Engineering Conference,
IEEE Computer Society, 2009, pp. 205-212

[24] Windson Viana and Rossana M. C. Andrade, “XMobile: A
MB-UID environment for semi-automatic generation of
adaptive applications for mobile devices,” Journal of Systems
and Software, vol. 81, no. 3, Elsevier Science Inc., 2008, pp.
382-394

[25] Sébastien Romitti, Charles Santoni, and Philippe François, “A
design methodology and a prototyping tool dedicated to
adaptive interface generation,” Proceedings of the 3rd ERCIM
Workshop, 1997

[26] Tom Mens, Krzysztof Czarnecki, and Pieter Van Gorp, “A
Taxonomy of Model Transformations,” Jean Bezivin and
Reiko Heckel, Language Engineering for Model-Driven
Software Development, Dagstuhl Seminar Proceedings, no.
04101, Internationales Begegnungs- und Forschungszentrum
für Informatik (IBFI), Schloss Dagstuhl, Germany, 2005

279

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

