
Accelerating Cellular Automata Evolution on Graphics Processing Units

Luděk Žaloudek, Lukáš Sekanina, Václav Šimek
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic

izaloude@fit.vutbr.cz, sekanina@fit.vutbr.cz, simekv@fit.vutbr.cz

Abstract—As design of cellular automata rules using
conventional methods is a difficult task, evolutionary
algorithms are often utilized in this area. However, in that
case, high computational demands need to be met. This
problem may be partially solved by parallelization. Since
parallel supercomputers and server clusters are expensive and
often overburdened, this paper proposes the evolution of
cellular automata rules on small and inexpensive graphic
processing units. The main objective of this paper is to
demonstrate that evolution of cellular automata rules can be
accelerated significantly using graphics processing units.
Several methods of speeding-up the evolution of cellular
automata rules are proposed, evaluated and compared, some
with very good results. Also a comparison is made between
mid-end and high-end graphics accelerator card based on the
results of evolution speedup. The proposed methods are
evaluated using two benchmark problems.

Keywords–cellular automata; parallel computing; GPU; CUDA;
genetic alghorithm

I. INTRODUCTION

The recent development of the SIMD-oriented general
computation on Graphics Processing Units (GPUs) has
motivated the research on new approaches to the acceleration
of various computational models. Among others,
accelerators of cellular automata (CA) and evolutionary
algorithms (EA) have been proposed because of inherently
parallel nature of these bio-inspired computing systems [1, 2,
6, 8].

Since their conception in 1950s [21], cellular automata
have found many applications. These include physical
systems modeling, road traffic simulation, random number
generation, artificial life simulation, cracking of encryption
standards [5, 7, 18, 20], etc. CA utilize several key features
which make them unique computational models. Among
these features are massive parallelism, locality of cell
interactions, simplicity of basic building blocks and complex
emergent behavior on a global level.

Because of inherent complexity, design of cellular
automata is a difficult task for a human engineer. For
example, Langton’s self-replicating CA loops are based on
identical cells; each of them has more than 280 transition
rules [13]. In order to increase the efficiency when designing
CA rules, evolutionary algorithms have been introduced to
the field [14, 19]. By means of EA, the space of possible
solutions to the problems of CA design may be explored

efficiently. For example, Sipper has developed so-called
“Cellular programming approach” [19] which allowed the
CA rules to be evolved using a parallel cellular EA.

CA may be evolved either directly in hardware (such as
FPGA) or in software, using simulators. This paper deals
with the evolution of CA rules in a software CA simulator.
However, design by EA is very computationally demanding.
Not only is it necessary to simulate the CA which may
consist of thousands of cells, but whole populations of CA
have to be simulated and each CA may have many possible
initial configurations, which need to be evaluated in order to
determine the quality of a candidate solution.

One of possible ways to accelerate the CA simulation
and, therefore, the execution of an EA is parallelization. Not
surprisingly, there are some problems: Desktop CPUs with
more than 6 cores are still not available (June 2010) and hi-
end servers, supercomputers or computing clusters are highly
expensive or overburdened if accessible. Since our interest
lies with very large CA, we need a processing power capable
of effectively accommodating hundreds of threads in order to
justify the parallelization effort and the increased cost.
However, with modern GPUs one can obtain computing
power of supercomputers for a price of a hi-end PC.

The goal of the paper is to propose a GPU accelerator for
evolutionary CA design. We will, in fact, propose and
compare several architectures with the aim to identify the
most efficient one. This paper extends our previous work [1]
in the following aspects: (i) Models of CA and EA
computation are presented in a greater detail. (ii) More
experiments have been performed to evaluate the proposed
architectures. (iii) We included another platform (9600 GT)
for comparison. (iv) We have not investigated the speedup
factor only; we have also measured the efficiency of the
evolutionary algorithm using a simple benchmark problem.

The rest of the paper is organized as follows. Section II
introduces one-dimensional cellular automata. Relevant
evolutionary algorithms are to be briefly surveyed in Section
III. Section IV describes the basic concept of general
computing on GPUs. Section V proposes several methods
how to utilize the parallel computing power of modern GPUs
in CA rule evolution, whereas the benchmark problems – CA
counter and majority – is defined in Section VI. Section VII
describes in detail the experiments for the evaluation of the
methods described in sections V and VI. Results of the
conducted experiments are summarized in Section VIIII.
While Section IX discusses obtained results, Section X

294

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

concludes this paper and proposes several possibilities of
further development.

II. 1D CELLULAR AUTOMATON

A cellular automaton is an n-dimensional grid of
identical cells, each working as a finite state automaton [3].
In its synchronous version, the state of the cells is
periodically updated using a local transition function. If all
the cells use the same local transition function, the
automaton is known as uniform; otherwise, it is non-
uniform. The next state of each cell is a function of its
current state and the states of its neighboring cells. In case of
1D CA (n = 1), the neighborhood is defined using radius of
r. In theory, the cellular automaton model supposes that the
number of cells is infinite. However, in the case of practical
applications the number of cells is finite. Then, it is
necessary to define the boundary conditions, i.e. the setting
of the boundary cells. Boundary conditions for the cells on
the edges of the CA are usually either cyclic or constant (i.e.,
the states are taken from the opposite edge of CA or from the
last cell). The state of the CA in the beginning of the run is
called the initial configuration.

Experiments described in this paper deal only with 1D
CA for simplicity and clarity purposes. The binary one-
dimensional non-uniform CA of finite size may be described
formally [17] as a 7-tuple A = (Q, N, R, z, b1, b2, c0), where:

Q = {0, 1} is a binary set of states,
N denotes a neighborhood (Ζ⊆N),
z denotes the number of cells,
b1 and b2 are boundary values,
c0 is an initial configuration, and
a mapping R : S → (QN → Q) assigns to each cell of the

grid S = {1, 2, …, z} a local transition function δ1, …, δz,
where δi : Q

N → Q, i ∈S.
A configuration of A is a mapping c ∈QS which assigns

a state to each cell A. If only a single neighborhood N = {-1,
0, 1} (i.e., r = 1) is considered, then the global transition
function G : QS → QS is defined as:

where ci denotes the CA configuration in a step i. G is used
to define a sequence of configurations c0, c1, c2, … such that
cj = G(cj-i), for j ≥ 1. This sequence represents the
computation of A.

Consider a uniform version of A, with the nearest
neighbors neighborhood (i.e., |N| = 3) and cyclic boundary
conditions. Each such cellular automaton is defined by a
mapping {0, 1}N → {0, 1} uniquely. Hence there are 28 such
cellular automata, each of which is uniquely specified by the
following (transition) rule

000 → a0
001 → a1
010 → a2
011 → a3
100 → a4

101 → a5
110 → a6
111 → a7.

We can speak of the cellular automaton with rule i, where i is
an integer (0 ≤ i < 256) with the binary representation
a7a6a5a4a3a2a1a0. For example, Figure 1 shows the behavior of
the cellular automaton with rule 150 that starts its
computation from the initial configuration c0 = …00100…
(the black square represents logic 1).

Figure 1. Development of 1D CA with rule 150.

The properties of cellular automata have been
investigated by means of analytic as well as experimental
methods. In general, the objectives are either to (i) find a
method for the design of cellular automaton rules for a given
application or (2) predict the global behavior of a given
cellular automaton if the rules and the initial configuration
are known. Because of the inherent complexity of cellular
automaton, evolutionary design of CA rules has been
adopted [19].

III. EVOLUTIONARY ALGORITHMS

Evolutionary algorithms are stochastic search methods.
They are inspired by Darwin’s theory of biological
evolution. Instead of working with one solution at a time (as
random search, hill climbing and other search techniques
do), these algorithms operate with the population of
candidate solutions (candidate CA rules in our case). Every
new population is formed by genetically inspired operators
such as crossover (a part of CA rules is taken from one
parent, the rest from another one) and mutation (inversion of
some bits of the CA rule) and through a selection pressure,
which guides the evolution towards better areas of the search
space. The EAs receive this guidance by evaluating every
candidate solution to define its fitness value. The fitness
value calculated by the fitness function indicates how well
the solution fulfills the problem objective.

The most common form of EA is a genetic algorithm
(GA) which has the following form:

1. create randomly initialized population of individual
solutions

2. evaluate the population – assign the fitness value to
each individual

3. select the best individuals based on their fitness
value

4. apply genetic operators (crossover and mutation) on
the selected individuals and create a new population

5. if termination criteria are met (fitness, number of
generations), finish, otherwise continue with 2

295

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In our case, a candidate solution will be encoded as a
finite size binary string composed of substrings that define
the transition function for every cell.

It has been shown that EA may generate innovative
results in many fields. However, the scalability of
representation and scalability of fitness calculation were
identified as major problems of the evolutionary approach
[22]. In this work, the scalability problem is approached
using parallelization of the CA rules evolution.

IV. NVIDIA GPUS AND CUDA

Although there are other universal computation-capable
graphic accelerators with GPU programming interfaces such
as ATI Stream from AMD, the most notable is nVIDIA with
their Computer Unified Device Architecture (CUDA).

Figure 2. Performance of nVIDIA GPUs compared with Intel CPUs [15].

Supposed performance [16] is provided for the last chips as there are no
official data yet (June 2010).

nVIDIA graphic accelerators contain GPUs with
manycore streaming multiprocessors (MP) capable of
outperforming general-purpose CPUs in some tasks
(Figure 2). Each of these accelerators has from 4 to 30
multiprocessors with 8 scalar processor cores, two special
units for transcendentals, a multithreaded instruction unit and
on-chip shared memory (Figure 3). The multiprocessor
creates, manages and executes concurrent threads in
hardware with zero scheduling overhead [15].

Up until recently, direct programming for this hardware
was not possible and indirect practices using OpenGL or
DirectX had to be employed [11]. That changes with CUDA,
which is a direct GPU programming interface.

CUDA works as a C language extension providing
abstractions of thread groups, shared memories and barrier
synchronization. This renders fine-grained data and thread
level parallelism.

The code is separated into two classes: Host code which
is executed on the CPU and device code which is executed
on the GPU. Memory is differentiated in similar way,
although it is possible to access device memory from host
and vice versa trough the CUDA runtime library.

There are several types of device memory: Constant,
shared, global, local and texture. Constant, texture and
shared memory space is cached (4 clock cycles latency) but

limited opposed to local and global memory (400 to 600
clock cycles latency) [15]. Effective usage of fast cached
memory is key to high performance of the parallel
application.

Figure 3. nVIDIA GPU structure [15]

Notable is the thread hierarchy used in CUDA programs:
Threads may be arranged into blocks, where each block runs
on one multiprocessor. It is possible to have more blocks
than multiprocessors and more threads per block than cores.
Shared memory may be accessible only within the block and
thread synchronization is possible also only within the block.
This is a possible drawback in some applications.

In recent years, CA have been implemented in GPUs, for
example in [8]. As mentioned before, previous
implementations of CA used Open GL or similar “shading”
languages which brought several disadvantages: General
purpose programming with Open GL or DirectX is overly
complicated due to their specialization to computer graphics
and also it does not enable direct control over the GPU’s
parameters, possibly rendering the computations ineffective.

V. PROPOSED METHODS OF PARALLELIZATION

In order to parallelize a GA, a computational complexity
of its components must be considered. In the case of
evolutionary design of CA rules, the evaluation of candidate
rules (fitness) is surely the most demanding part. CA
consisting of possibly thousands of cells must be simulated
for a pre-specified number of simulation steps. Furthermore,
many possible initial CA configurations have to be
evaluated.

When determining the quality of CA, e.g. in the majority
task [19] (a benchmark task for a 2-state CA which

296

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

determines whether the initial configuration contains more 1s
then 0s by filling all the cells with the prevalent state after a
number of steps), a 1D CA with 64 cells has 264 possible
initial configurations. This problem is dealt with by
evaluating only several thousand randomly generated
training vectors and measuring the success rate.

In GA, each generation has a population of possibly
hundreds of individuals which further multiplies the number
of calls to the fitness function.

Three possible approaches to parallelization will be
proposed in following subsections.

A. The Level of Cells

First approach executes parallel lookup of transition rules
in cells. There are as many threads as there are cells within
the CA. The cell states are kept in the shared memory so the
threads have to be synchronized after each step in order to
guarantee the proper sequence of simulation steps.

The algorithm follows:

/*host part*/
Generate the initial CA configuration
Load the configuration into device
shared memory;
Load the CA transition rules into
device shared memory;

/*device part*/
For each thread do
 Repeat for S steps

Compute transition function for
one cell and update the cell;
Synchronize the shared memory;

/*host part*/
Load the final CA configuration into
host memory;

This limits the algorithm only to one MP due to lack of

synchronization between blocks. Graphical representation of
the algorithm is shown in Figure 4.

Figure 4. Simulation of CA with parallelization on the level of cells.

Here, S denotes the number of CA simulation steps

B. The Level of Training Vectors

Second approach utilizes parallelization on the level of
training vectors. There are as many threads as there are
training vectors. Because there is no dependency between
two same automata running two different simulations, it is
possible to use more parallel blocks (i.e. multiprocessors)
than one.

The algorithm ensues:

/*host part*/
Generate V initial configurations;
Load the CA configurations into device
global memory;
Load the CA transition rules into
device shared memory;

/*device part*/
For each thread do

Load one CA configuration into
registers/local memory;
Simulate the CA for S steps;
Calculate the fitness function;
Update the fitness result into
device global memory;

/*host part*/
Load the fitness results from device
global memory into host memory;
Calculate fitness for the individual;

Graphical representation of the main part of the

algorithm is depicted in Figure 5.

Figure 5. Parallelization of CA simulation on the level of training vectors.

Here V denotes the number of training vectors per individual CA and S
denotes the number of CA simulation steps

C. The Level of Individual Solutions

The last approach is to evaluate one individual per
thread. There are as many threads as there are individuals
within the GA population.

297

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

However, this approach is the most memory consuming,
because we need to hold not only multiple CA configurations
but also multiple transition rules.

The algorithm follows:

/*host part*/
Load the CA transition rules into
device global memory;

/*device part*/
For each thread do

Load the CA transition rules into
local memory;
Generate training vectors;
For each training vector do
Simulate the CA for S steps;
Update the fitness into device
global shared memory;

/*host part*/
Load the fitness results from device
global memory into host memory;

Graphical representation of the algorithm is shown in

Figure 6.

Figure 6. Parallelization of CA simulation on the level of individuals. I

denotes the number of individuals and threads.

D. Problems Without Training Vectors

Previous subsections proposed parallelization approaches
for problems which require evaluation with sets of training
vectors. However, there are also problems which do not
require such measures because the initial configuration of the
CA is known. Such problems include applications as
counters or random number generators, which were not
mentioned in [1].

VI. BENCHMARK PROBLEMS

A. 4-bit Counter

A counter is a device (in this case implemented by means
of CA), which is able to generate a certain sequence of

numbers or in this case a certain sequence of CA
configurations. For example a 4-bit counter seeded by the
value of 5 has to generate a sequence seq(5) = 5-6-7-8-9-10-
11-12-13-14-15-0-1-2-3-4. The sequence is encoded in four
cells, each with 2 possible states (0, 1).

The goal will be to evolve a simple 1D non-uniform CA
which will generate the desired sequence. The CA will have
a simple neighborhood with radius r = 1. The non-uniform
CA was selected because non-uniform cellular automata
enable us to perform more complex tasks than with uniform
CA of the same number of cells [19]. Generating a certain
sequence is not a simple task in this context.

Since training vectors aren’t used, the proposed approach
will be different from the scenarios assumed in Section V.
The evaluation of the candidate solution works in the
following way: The CA is simulated for 16 steps (because
we have 16 numbers in the sequence) and in each step, the
configuration is compared with a desired number. So for
example, the second step configuration is compared with the
value 6, the third step configuration with the value 7 etc. In
the end, all 16 configurations should correspond with the 16
desired numbers. Each match is awarded with a point to the
fitness value, so the maximum fitness is 16 and minimum is
1 (the initial configuration is counted automatically).

It is needed to keep as many rules as there are cells,
because a non-uniform CA is used. A non-uniform CA does
not need to have necessarily the same number of rules as the
number of cells (some rules may apply for more than one
cell) but in this case, the encoding is simple and keeping
references to rules and interpreting them may prove
unnecessary and too complex. Also there are no training
vectors, so it is not possible to parallelize a single individual
with the same set of transition rules which are placed in the
shared memory within the same block. So either the cell
parallelization approach has to be used (Section V.A) or an
approach similar to the parallelization on the level of
individuals mentioned in Section V.C. The latter approach
seems more promising, so we will use it. Fitting more
transition rules into the GPU memory several times could
prove to be challenging but the CA has a simple
neighborhood and 2 possible states, so in this case, it is not a
serious problem.

B. Majority

The second benchmark problem is the majority task
defined in Section V. A 2-state CA computing the majority
task has to determine whether the initial configuration
contains more 1s then 0s by filling all the cells with the
prevalent state after a number of steps. Usually, the number
of steps equals double the number of cells in the automaton
and the quality of the solution is determined by randomly
generating certain number of training vectors and measuring
the proportion of successful CA runs [19].

VII. THE EXPERIMENTS

A. The Evolution of CA Rules for the Majority Problem

Several experiments were conducted in order to evaluate
the speedup of proposed parallelization methods. Two

298

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

different computers were used: (i) A laptop with Intel Core 2
Duo processor at 1.83 GHz with 667 MHz FSB and low-end
nVIDIA GeForce 8600M GS graphic accelerator with 4
multiprocessors; (ii) A workstation with Intel Core 2 Duo
processor at 3.33 GHz with 1333 MHz FSB and hi-end
nVIDIA GeForce FX 285 (iia) graphic accelerator with 30
multiprocessors or a mid-end nVIDIA GeForce 9600 GT
(iib) graphic accelerator with 8 multiprocessors, however
(iib) was used only in later experiments described in
Subsection B.

The programs were compiled with MS Visual C++ 9.0
compiler (serial versions) and with CUDA 2.3 SDK (parallel
versions).

Each parallelization approach was tested on both
computers and the execution times were compared with
those of serial versions of the programs. This means the
serial versions were run on a single CPU core without the
use of GPU. The whole program execution time was
measured.

The 1D 2-state uniform CA with 64 cells, r=3 (7 cell
neighborhood) and cyclic edge conditions was used for the
experiments. Each simulation lasted 128 synchronization
steps. The CA rule is represented as string of 128 integers.

First approach (Section V.A) was tested both only on a
number of CA simulations without the GA (and without
fitness evaluation!) and with the GA, which was a standard
algorithm with 10 generations, crossover rate of 70% and
mutation rate of 1%. The crossover was one-point and the
mutation probability is meant for a single gene (i.e. bit).
Two-step tournament selection was used. Population size
was 100 and 240 training vectors were used. Note that 10
generations are not sufficient to find a good solution,
however we are interested in the speedup analysis only.

The rest of the experiments (based on Section V.B and
V.C) were executed with the same GA. The size of the
population and the number of training vectors varied for the
last experiments (240 vectors and 100 individuals for the
training vector approach and vice versa) but the number of
fitness evaluations was proportionally the same. The number
240 was conveniently selected because the number of
processing cores within the GTX 285 accelerator.

Additionally, several more experiments were conducted
focusing on the scalability of the proposed algorithms. The
same parameters were used except for the number of training
vectors or individuals within the population. Sizes of the
problems were increased up to hundredfold relative to the
original problem sizes.

The fitness function of the GA consists of V simulation
runs of the individual CA each for S simulation steps, where
V is the number of training vectors and S is equivalent to
double the width of the CA. At the end of each simulation
run, the success of the run is evaluated based on the majority
task (selected for demonstration purposes): All cells of the
CA should be in the state prevalent at the initial
configuration.

B. Further Experiments With Majority

Based on the results of previous experiments (see Section
V), the best approach was selected and more detailed results

were obtained. The focus of these experiments was to
determine best block-size setting policy and to make a more
detailed comparison between two accelerators on the same
machine (iia and iib).

Different problem sizes (namely 240, 480, 1200, 2400,
4800. 9600 and 24000 training vectors) and block sizes were
evaluated (8, 10, 15, 20, 40, 80, 120, 160, 240 and 320
threads per block). Not all the results could be obtained for
some tasks because the number of threads per block must be
an integer.

C. The Evolution of Binary Counters

The other proposed approach mentioned in Section VI
was also evaluated. The 4-bit counter design was selected as
a benchmark since is not complicated in terms of search
space, so the best solution is well known due to experiments
with brute force search [17]. The problem has best solution
with fitness 10 which means that the CA can approximate
only 10 numbers from the sequence.

The initial configuration of 5 was chosen deliberately,
because the CA has the best results with this. For example,
the seq(0) has best fitness of 8 and seq(2) has best fitness of 9.
Best result for seq(5) generates the sequence 5-2-7-4-9-14-11-
12-13-6-15-0-1-2-7-4. The incorrect numbers are in bold
[16].

The experiment was designed as follows: The CA was
1D non-uniform 4-cell with r=1 (3-cell neighborhood) and
static boundary conditions. Each CA simulation lasted 16
steps.

The evolution of the desired CA was performed with the
standard GA. The population was set to 32 individuals,
crossover rate of 70% and mutation rate of 18%. The
crossover was one-point and the mutation probability is
meant for a single gene (i.e. bit). Two-step tournament
selection was used. The GA parameters match the
experiment conducted in [17] to maintain the best possible
quality of solutions and comparability to previous result.

The termination was set to the achievement of the
maximum fitness and several hundred runs were conducted
with the serial version and several dozen with the parallel
version. The machine for the parallel version was the same
workstation as in previous experiments (ii), fitted either with
GeForce 9600 GT or with GeForce GTX 285. The serial
experiments were conducted on several dozen of blade
servers comparable with the workstation (Intel Xeon 2.8-3.2
GHz processors with 1 GHz FSB). The goal was to measure
the average generation needed to find the best solution
(fitness 10). Also, the time was measured for the serial and
for the parallel versions.

VIII. RESULTS

The objective of this paper was to evaluate the
performance of several parallel algorithms incorporated into
an EA. The majority problem was selected only to
conveniently pose as the EA’s goal in the first series of
experiments and so we are not interested in the quality of
evolved solutions. The only relevant information is the
achieved speedup compared to serial implementations.

299

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The results for the laptop are shown in Table I while the
results for the workstation are shown in Table II. The values
in the tables are averages of 10 runs.

Fitness evaluation means the simulation of one CA with
one training vector (e.g. 100 individuals with 240 training
vectors each and over 10 generations means 24000 fitness
evaluations).

TABLE I. RESULTS FOR LAPTOP WITH 8600M GS

Approach Fitness
evaluations

Serial time Parallel
time

Speedup

Simulation
of CA only

50000 347.39 0.56 621.68

Parallelization of GA

CA cells 240000 1787.23 2597.60 0.69

Training
vectors

240000 1787.74 251.20 7.12

Individuals 240000 1784.26 821.04 2.17

TABLE II. RESULTS FOR WORKSTATION WITH GTX 285

Approach Fitness
evaluations

Serial time Parallel
time

Speedup

Simulation
of CA only

50000 187.33 0.38 489.75

Parallelization of GA

CA cells 240000 981.34 1597.60 0.61

Training
vectors

240000 980.38 72.18 13.58

Individuals 240000 980.95 105.21 9.32

The scaling properties of the three proposed algorithms

are summarized in Table III. Only the best results from both
testing computers are shown. The result for 24000k fitness
evaluations with the cell level parallelization is not shown
because the computation did not terminate before 10 hours
reserved for parallel computation.

TABLE III. SCALING PROPERTIES OF PROPOSED PARALLEL
ALGORITHMS

Fitness
evaluations

240k 2400k 24000k

Approach Speedup

CA cells 0.69 0.69 N/A

Training
vectors

14.36 127.16 417.36

Individuals 9.32 28.41 192.88

After this, several extremely long runs (more than 240k

fitness evaluations) were computed with the training vector
approach and the best results approached a speedup of 420.

The other series of experiments shows results of
comparison between serial version, workstation with 9600
GT (iib) and workstation with GTX 285 (iia). Note that the
original contribution [1] included result with GTX 280. In
this article the accelerator was replaced with its more modern
version GTX 285. The difference between GTX 280 and 285
is in higher core and memory operating frequencies, other
characteristics remain the same. More details on the
accelerators may be found in [4].

As mentioned in Section V.B, several variations of the
task were evaluated. Table IV. shows the best results for
different problem sizes (number of training vectors) and
different thread-per-block setup. The results are average
speedup over several runs with respect to serial run described
in Section VII. The best results for each accelerator are
highlighted.

TABLE IV. SPEEDUP FOR 9600 GT AND GTX 285

Problem size [training vectors] Block
size 240 600 1200 2400 4800 9600 24000

 9600 GT

8 13.95 26.14 22.66 26.72 26.77 28.09 28.39

10 14.14 27.08 33.02 33.28 33.29 35.29 34.99

15 14.36 27.86 34.30 44.65 52.33 52.51 52.64

20 13.99 27.42 59.38 61.26 61.18 61.42 64.13

40 13.97 27.27 62.54 92.90 97.37 98.59 97.96

80 13.84 27.50 64.47 106.06 108.02 110.00 109.64

120 13.65 27.09 60.92 97.18 98.68 118.61 121.03

160 N/A 26.71 N/A 108.56 101.22 120.32 126.34

240 12.69 25.15 61.00 83.97 98.44 123.19 121.02

320 N/A N/A N/A N/A 109.68 110.49 111.10

 GTX 285

8 13.58 27.00 64.21 64.00 83.28 97.20 94.61

10 13.57 27.02 65.27 117.72 118.85 122.58 120.79

15 13.58 27.04 66.08 126.68 124.73 161.32 170.53

20 13.22 26.68 65.27 125.01 215.24 218.03 218.67

40 13.25 26.49 65.45 125.99 222.77 286.31 272.57

80 13.14 26.32 64.82 127.16 232.85 350.96 329.73

120 12.96 25.92 64.21 125.87 222.62 351.56 387.20

160 N/A 25.55 N/A 124.10 236.04 370.48 417.36

240 12.08 24.10 59.75 117.43 224.61 302.47 387.37

320 N/A N/A N/A N/A 208.42 371.04 377.95

Figure 7 shows best results for different accelerators and

problem sizes only for the optimal block size settings. The
results are average execution time obtained from several
runs. Figure 7 indicates the difference in performance
growing with the problem size.

The last series of experiments measured the speed of
evolution designing the solution for the 4-bit counter
problem.

The average generation needed to achieve the maximum
fitness was 14509 and the average time to achieve it was
5.25 seconds.

300

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

With the 9600 GT accelerator (iib), the average
generation was 14591 and the time needed 8.5 seconds.

For the GTX 285 accelerator (iia), the average results
were 14374 generations and 8.77 seconds.

0

100

200

300

400

500

600

700

800

0 5000 10000 15000 20000 25000

Problem size [training vectors]

T
im

e
[s

]

9600 GT GTX 285

Figure 7. Execution time for different problem sizes and best block size

settings for GeForce 9600 GT and GTX 280

It can be seen that no actual improvement of the GA was
achieved. However, this was to be anticipated. Moreover, not
even a speedup of computation was achieved but on the
contrary, the result was slower than serial computation. The
reason for this is too small population of the used GA. The
overhead required to start the parallel computation on the
GPU is larger than the speedup. The result is summarized in
Table V.

TABLE V. SPEEDUP OF EVOLUTION WITH POPULATION OF 32

GPU Avg. generation Time [s] Speedup
Serial 14509 5.25 N/A

9600 GT 14591 8.50 0.62
GTX 285 14374 8.77 0.60

In order to prove that accelerating the GA has any sense,

another experiment was conducted. This time the population
was increased tenfold to 320 individuals. An unsolvable
fitness condition was set and the computation was terminated
at generation 15000. This had to be done in order to actually
measure something, because otherwise the GA would end
too soon. This time the experiment proved the conclusion of
the previous one: The new problem was large enough, that
the parallelization could pay off with a speedup of 38.66 for
(iib) and 38.11 for (iia). Results may be found in Table VI.

TABLE VI. SPEEDUP OF EVOLUTION WITH POPULATION OF 320

GPU Avg. generation Time [s] Speedup
Serial 15000 54.12 N/A

9600 GT 15000 1.40 38.66
GTX 285 15000 1.42 38.11

IX. DISCUSSION

A. Speedup vs. Cost

As can be seen in Tables I and II, the parallelization of
the CA simulation on the level of CA cells shows massive
speedup. More surprisingly, those results were obtained with
only one multiprocessor in the GPU due to the inter-block
synchronization problem mentioned in Section IV. The
possible explanation is the effective use of the device shared
memory which is much faster than ordinary memory. The
results from the laptop GPU are better, because they were
compared with much slower processor in the laptop opposed
to the hi-end processor in the workstation.

However, when the simulator was inserted into a GA, the
speedup declined due to more memory accesses and fitness
evaluation. The one-block approach utilizing only one
multiprocessor shows its weaknesses and the overall result is
even worse than the serial approach.

The results for the parallel GA (the approach from
Section V.B) with threads executing individual training
vectors are the best of the experiments. The maximum
speedup for the workstation is 417.36 and the speedup for
the laptop is only 31.34 for the largest problem. As opposed
to the cell parallelization approach from Section V.A, this
algorithm has to upload large quantities of data to and from
the device memory but it has more processor cores and the
data don’t conflict with each other.

As seen in Table III, there was no speedup drop with
larger problems (2400 and 24000 training vectors) and the
performance was even better than for the smaller problem
(240 training vectors).

The individual-per-thread approach (Section V.C)
showed smaller speedup than training vector-per-thread
approach. The lower performance is probably caused by
more memory transfers (several sets of CA rules per block
opposed to only one set of CA rules per block).

There are also some problems with graphic accelerator
cards used as primary display adapters due to graphic driver
timeouts caused by long thread execution times so this
approach may not be suitable for this reason. This problem
may be solved by using second graphics adapter as the
primary display adapter at the expense of increased cost in
hardware.

The scaling capabilities of the last approach are also good
as seen in Table III. The conclusion for the experiments is
that parallelization on the level of evaluation of training
vectors is the most effective due to utilization of all
multiprocessors in the GPU and quick and small parallel
kernel (code for the GPU - as opposed to parallelization on
the level of individuals where the kernel lasts longer).

The comparison of graphic accelerators showed partly
interesting results. A GeForce 9600 GT with 8
multiprocessors showed a nice speedup not falling so far
behind the GTX 285 with 30 multiprocessors in some cases.
The mid-end card was even faster in some of the smallest
tasks. This could be influenced by slightly larger scheduling
overhead with the more complex GPU. This opposes the
manufacturer’s claim about the zero scheduling overhead
[15]. No other explanation seems to fit and since precise

301

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

details about GPU hardware are obfuscated by the
manufacturers, we may only guess the real reason.

Of course, when the problem size increased sufficiently,
GTX 285 manifested its higher number of processors which
could be used to full capacity and the speedup was
significantly higher. The interesting part is, that 9600 GT
costs about 80 Euro and the GTX 285 about 370 Euro (Jan
2010, retail price for the Czech Republic). The low-end card
shows no promise for scientific computation for two main
reasons: It is mounted in a laptop and the memory bus is too
slow.

B. Other Tasks for GPU

It seems that the mid-end card is the most cost-effective
for small and medium-sized tasks. However, the results may
be different with other parallelization tasks. It is important to
note the two laws for parallel computation. First is the
Amdahl’s law [12] which states:

S(P) = P / (1 + α (P – 1)),

where S(P) is the speedup, P is the number of processors and
α is the sequential part of the task. The equation clearly
shows that a fixed task speedup is severely limited by the
sequential part, no matter how many processors are used.

The second law is attributed to Gustafson [12]:

S(P) = P – α (P – 1)

and it may be applied to a class of problems, where the non -
sequential part of the task is limited by the number of
processors and when a new processor is added, we may
assign it the same amount of work as to the other processors.

This class of problems includes evolutionary design of
CA rules which need to be evaluated by high number of
training vectors. More training vectors means more accurate
results and more fine-grained fitness function which may
contribute to better evolution results.

There is also another class of evolutionary design
problems which is limited by the first law. This class
includes CA design, which needs to evaluate a small fixed
number of steps or possibilities and is not suitable for
parallelization. These problems may be also limited by the
number of individuals within the GA population, as was the
case with the 4-bit counter evolution, where the best
population size is 32 [17]. Some of these problems may drift
to the area where the task size could be expanded and so
Gustafson’s law may be applied. Thankfully, many CA
design tasks by means of EA fall in this category like our
example with the majority benchmark. The 4-bit counter is
only a simple demonstration and evolution of larger non-
uniform CA will probably need larger populations.

The last conclusion obtained from the results is the fact
that block size settings greatly impacts the GPU’s
performance. Table IV. shows that the optimal settings
changes with the size of the problem. The reason for the
need to tailor the settings for a certain task is the way the
GPU dispatches threads within the blocks.

The GPU programming model uses several levels of
data- and thread-parallelism which enable the simultaneous
execution of data-independent threads [15]. This concept
works in concert with the hardware which offers scheduling
consistent with multi-threading concept. This enables the
threads within one block to be scheduled as the need arises.

The threads are executed on groups called “warps” which
are 16 threads wide and which work in a SIMD concept.
That means that each thread within the warp has to execute
the same instruction, of course on different data. If the blocks
are not large enough, significant parts of the warp may be
wasted. Also, the warps are scheduled depending on their
availability. If one warp waits for a memory access, several
more warps may be executed, even from different blocks.
Figure 8 illustrates simultaneous execution of warps on three
different multiprocessors.

Figure 8. Warps executing on three different multiprocessors (MP): Each
warp contains 16 threads and each is executing the same instruction. Warps

are scheduled according to readiness for execution.

X. CONCLUSION

The experiments have shown that evolution on GPUs has
several limitations. The most significant one is the fact, that
the amount of device shared memory and registers is limited
thus restricting the size of evolved CA, the number of
training vectors or the size of the EA population.

Dealing with this problem may be the objective of further
research and development. Possible solutions include
partitioning the computation and serializing the parts in order
to save memory. Another solution may be using device
global memory instead of shared memory and local memory
instead of registers. However, both of these approaches

302

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

would result in slower performance. Future accelerators may
possess larger shared memory [16].

Another possibility for development is testing
combinations of the three proposed approaches. E.g. it would
be possible to evaluate several individuals of the GA
population each in one block while running parallel lookup
of cell transition rules in that block.

Further improvement of methods mentioned in this paper
could lead into fast parallel version of Sipper’s Cellular
programming approach [19].

Cellular programming is a methodology developed to
design non-uniform CA systems capable of computing
complex tasks such as synchronization, majority or sorting.
Speeding up the evolution of CA systems may prove to be
appropriate step in perfecting such systems via simulation
and implementing them in hardware.

The most recent language contribution to the field of
GPGPU (General Purpose GPU computing) is OpenCL
(Open Computing Language). OpenCL is a C language
extension similar in use to CUDA but there is one significant
improvement: It supports many different GPU or CPU
architectures, being almost universal. OpenCL uses
abstractions independent of manufacturers which can be
automatically transformed into efficient code for any
supported architecture by means of compilation. With Open
CL, it is possible to run the same program on nVIDIA and
ATI. The language and its tools started to become available
only recently, so this article deals only with CUDA. Future
plans include transferring current and prospective work to
this new language.

Generally the future of GPGPU looks bright.
Manufacturers like nVIDIA and ATI compete with each
other in GPU performance pushing the development further.
Right now more advanced GPU are being planned and
developed. Example of this new generation may be nVIDIA
Fermi which will include 512 cores (64 MPs) and such
technologies as simultaneous kernel execution, shared cache
memory for the entire GPU or ECC (error checking and
correction) [16].

Moreover with the introduction of OpenCL the
programming of competitor’s hardware will be unified,
further improving the programmer’s experience. The
architecture is also designed as scalable from the start
enabling to connect several GPUs together or to migrate old
programs to newer versions just by adjusting the problem
size and block settings. More cores and higher operating
frequency means more computing power for problems which
can be enlarged in accordance with Gustafson’s law.

ACKNOWLEDGMENT

This work was partially supported by the grant Natural
Computing on Unconventional Platforms GP103/10/1517,
the FIT grant FIT-10-S-1 and the research plan Security-
Oriented Research in Information Technology,
MSM0021630528.

REFERENCES
[1] Žaloudek, L., Sekanina, L., Šimek, V.: “GPU Accelerators for

Evolvable Cellular Automata”, Computation World: Future

Computing, Service Computation, Adaptive, Content, Cognitive,
Patterns, Athens, GR, IEEE, 2009, pp. 533-537.

[2] Chitty, D.M.: “A data parallel approach to genetic programming
using programmable graphics hardware”, GECCO ’07: Proceedings
of the 9th annual conference on Genetic and evolutionary
computation, Volume 2., London, ACM Press, 2007, pp. 1566–1573.

[3] Codd, E., Cellular Automata, Academic Press, 1968.

[4] CUDA-Enabled GPU products - NVIDIA
URL: <http://www.nvidia.com/object/cuda_learn_products.html>
[cit. 29.1.2010]

[5] Durbeck, L. and Macias, N., “The Cell Matrix: An Architecture for
Nanocomputing”, Nanotechnology 12, IOP Publishing 2001, pp.
217–230.

[6] Fok, K.L., Wong, T.T., Wong, M.L.: “Evolutionary computing on
consumer graphics hardware”, IEEE Intelligent Systems, Vol. 22,
No. 2, IEEE, 2007, pp. 69–78.

[7] Gardner, M., “Mathematical games: The fantastic combinations of
John Conway’s new solitaire game ‘Life’”, Scientific American 223,
Oct 1970, pp. 120-123.

[8] Gobron, S., Devillard F., Heit B., “Retina simulation using cellular
automaton and GPU programming”, Machine Vision and
Applications Journal 66, Springer, 2007, pp. 331–342.

[9] Harding, S.: “Evolution of Image Filters on Graphics Processor Units
Using Cartesian Genetic Programming”, 2008 IEEE World Congress
on Computational Intelligence, Hong Kong: IEEE CIS, 2008, pp.
1921–1928.

[10] Harding, S. and Banzhaf, W.: “Fast genetic programming on GPUs”,
Proceedings of the 10th European Conference on Genetic
Programming, LNCS 4445, Springer, 2007, pp. 90–101.

[11] Harris, M.: “Mapping computational concepts to GPUs”, ACM
SIGGRAPH 2005, ACM, New York, NY, 2005.

[12] Henessy, J. and Patterson, D.:Computer Architecture A Quantitative
Approach, The Morgan Kaufmann Series in Computer Architecture
and Design, Morgan Kaufmann Publishers, 2003.

[13] Langton, C.G., “Self-Reproduction in Cellular Automata”, Physica D:
Nonlinear Phenomena 10(1-2), Elsevier, 1984, pp. 135-144.

[14] Lohn, J.D., and Reggia, J.A., “Automatic discovery of self-replicating
structures in cellular automata”, IEEE Transactions on Evolutionary
Computation, vol.1, no. 3, IEEE CS, 1997, pp. 165-18.

[15] nVIDA CUDA Programming Guide, Version 3.0
URL: <http://developer.nvidia.com/object/
cuda_3_0_downloads.html.>
[cit. 14.6.2010]

[16] Next Generation CUDA Architecture, Code Named Fermi
URL: <http://www.nvidia.com/object/fermi_architecture.html>
[cit. 31.1.2010]

[17] Sekanina, L.: Evolvable Components: From Theory to Hardware
Implementations, Natural Computing Series, Springer-Verlag, Berlin
Heidelberg, DE, 2004.

[18] Šimek, V., Dvořák, R., Zbořil, F., V., Kunovský, J. “Towards
Accelerated Computation of Atmospheric Equations using CUDA”,
Proceedings of Eleventh International Conference on Computer
Modelling and Simulation, Cambridge, GB, IEEE CS, 2009, pp. 449-
454.

[19] Sipper, M., Evolution of Parallel Cellular Machines: The Cellular
Programming Approach, Springer Verlag, Heidelberg, 1997.

[20] Tomassini, M., Sipper, M., Perrenoud, M., "On the generation of
high-quality random numbers by two-dimensional cellular automata,"
Computers, IEEE Transactions on , vol.49, no.10, Oct 2000, pp.1146-
1151.

[21] Wolfram, S.: A New Kind of Science, Wolfram Media Inc.,
Champaign, IL, 2002.

[22] Yao, X. and Higuchi, T., “Promises and Challenges of Evolvable
Hardware”, IEEE Transactions on Systems, Man, and Cybernetics
29(1), IEEE, 1999, pp. 87–97.

303

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

