International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http.//www.iariajournals.org/software/

294

Accelerating Cellular Automata Evolution on Graphics Processing Units

Ludek Zaloudek, Lukas Sekanina, Vaclav Simek

Faculty of Information Technology
Brno University of Technology
Brno, Czech Republic
izaloude @fit.vutbr.cz, sekanina@fit.vutbr.cz, sim@Kit.vutbr.cz

Abstract—As design of cellular automata rules using
conventional methods is a difficult task, evolutioary

algorithms are often utilized in this area. However in that

case, high computational demands need to be met. iEh
problem may be partially solved by parallelization. Since
parallel supercomputers and server clusters are exgmsive and
often overburdened, this paper proposes the evolah of
cellular automata rules on small and inexpensive @phic

processing units. The main objective of this paperis to

demonstrate that evolution of cellular automata rués can be
accelerated significantly using graphics processingunits.

Several methods of speeding-up the evolution of badbr

automata rules are proposed, evaluated and comparedome
with very good results. Also a comparison is madeébween
mid-end and high-end graphics accelerator card baskon the
results of evolution speedup. The proposed methodare

evaluated using two benchmark problems.

Keywords—cellular automata; parallel computing; GRPICUDA,;
genetic alghorithm

l. INTRODUCTION

The recent development of the SIMD-oriented gener
computation on Graphics Processing Units (GPUs) ha

motivated the research on new approaches to thebeaation
of wvarious computational models. Among
accelerators of cellular automata (CA) and evohaigy
algorithms (EA) have been proposed because of enligr
parallel nature of these bio-inspired computingeys [1, 2,
6, 8].

Since their conception in 1950s [21], cellular anddba

have found many applications. These include physicy

systems modeling, road traffic simulation, randoomber
generation, artificial life simulation, cracking ehcryption
standards [5, 7, 18, 20], etc. CA utilize sevey} keatures

which make them unique computational models. Among,

these features are massive parallelism, locality cefl
interactions, simplicity of basic building blockscacomplex
emergent behavior on a global level.

Because of inherent complexity, design of cellular

automata is a difficult task for a human engineeor
example, Langton’s self-replicating CA loops aresdzhon
identical cells; each of them has more than 28fsttian
rules [13]. In order to increase the efficiency wiiesigning
CA rules, evolutionary algorithms have been intietl to
the field [14, 19]. By means of EA, the space ofgible
solutions to the problems of CA design may be ewulo

others

efficiently. For example, Sipper has developed ated
“Cellular programming approach” [19] which alloweke
CA rules to be evolved using a parallel cellular. EA

CA may be evolved either directly in hardware (sash
FPGA) or in software, using simulators. This padeals
with the evolution of CA rules in a software CA silator.
However, design by EA is very computationally dediag.
Not only is it necessary to simulate the CA whiclaym
consist of thousands of cells, but whole populatioh CA
have to be simulated and each CA may have manybb®ss
initial configurations, which need to be evaluatedrder to
determine the quality of a candidate solution.

One of possible ways to accelerate the CA simulatio
and, therefore, the execution of an EA is paraigion. Not
surprisingly, there are some problems: Desktop CRitts
more than 6 cores are still not available (Junéd@hd hi-
end servers, supercomputers or computing clusterisighly
expensive or overburdened if accessible. Sinceirgarest
lies with very large CA, we need a processing povegrable
of effectively accommodating hundreds of threadsrder to
justify the parallelization effort and the incredseost.

agowever, with modern GPUs one can obtain computing

ower of supercomputers for a price of a hi-end PC.
The goal of the paper is to propose a GPU accelefat
evolutionary CA design. We will, in fact, proposeda

'compare several architectures with the aim to ifletie

most efficient one. This paper extends our previgosk [1]

in the following aspects: (i) Models of CA and EA
computation are presented in a greater detail. Migre
experiments have been performed to evaluate theopea
architectures. (iii) We included another platfora®@0 GT)
or comparison. (iv) We have not investigated tpeeslup
factor only; we have also measured the efficientythe
evolutionary algorithm using a simple benchmarkopem.

The rest of the paper is organized as follows. iGedt
oduces one-dimensional cellular automata. Relev
evolutionary algorithms are to be briefly surveyed®ection
lll. Section IV describes the basic concept of gahe
computing on GPUs. Section V proposes several rdstho
how to utilize the parallel computing power of mod&PUs
in CA rule evolution, whereas the benchmark prolslenCA
counter and majority — is defined in Section Victgmn VII
describes in detail the experiments for the evalnatf the
methods described in sections V and VI. Resultshef
conducted experiments are summarized in Sectiofl. VII
While Section IX discusses obtained results, Secfio

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

concludes this paper and proposes several possiilbf
further development.

II. 1DCELLULAR AUTOMATON

A cellular automaton is am-dimensional grid of
identical cells, each working as a finite stateoengton [3].
In its synchronous version, the state of the cadls
periodically updated using a local transition fumect If all
the cells use the same local transition functione t

automaton is known as uniform; otherwise, it is on

uniform. The next state of each cell is a functwhits
current state and the states of its neighborinig.del case of

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http.//www.iariajournals.org/software/

295

101 - &

110 &

111 5 &,
We can speak of the cellular automaton with rulgherei is
an integer (0< i < 256) with the binary representation
&asasaueandy. FOr example, Figure 1 shows the behavior of
the cellular automaton with rule 150 that starts it
computation from the initial configuratioy = ...00100...
(the black square represents logic 1).

1D CA (n = 1), the neighborhood is defined using radius of

r. In theory, the cellular automaton model suppdbkasthe
number of cells is infinite. However, in the caderactical
applications the number of cells is finite. Then, i$
necessary to define the boundary conditions, he.setting
of the boundary cells. Boundary conditions for tedls on
the edges of the CA are usually either cyclic arstant (i.e.,
the states are taken from the opposite edge of IGlom the
last cell). The state of the CA in the beginningit# run is
called the initial configuration.

Experiments described in this paper deal only Viith
CA for simplicity and clarity purposes. The binaoye-
dimensional non-uniform CA of finite size may besdébed
formally [17] as a 7-tuplé& = (Q, N, R, z, by, b,, ¢p), where:

Q=1{0, 1} is a binary set of states,

N denotes a neighborhoot(O 2),

z denotes the number of cells,

b, and b are boundary values,

Co is an initial configuration, and

a mappingR : S— (Q" — Q) assigns to each cell of the
grid S={1, 2, ...,z a local transition functiord, ..., &,
whered: Q" - Q,i LIS

A configuration ofA is a mapping ¢1Q® which assigns
a state to each cell. If only a single neighborhood = {-1,

Figure 1. Development of 1D CA with rule 150.

The properties of cellular automata have been
investigated by means of analytic as well as expantal
methods. In general, the objectives are eithern)tdind a
method for the design of cellular automaton rutesaf given
application or (2) predict the global behavior ofgeaen
cellular automaton if the rules and the initial figaration
are known. Because of the inherent complexity dlulze
automaton, evolutionary design of CA rules has been
adopted [19].

Evolutionary algorithms are stochastic search nuxho
They are inspired by Darwin's theory of biological
evolution. Instead of working with one solutionaatime (as
random search, hill climbing and other search tegles

EVOLUTIONARY ALGORITHMS

0, 1} (i.e.,r = 1) is considered, then the global transitiondo), these algorithms operate with the populatidn o

functionG : Q°— Q°is defined as:
Se(i-1)eli)eli+1)) i=2...z-1,
Gle(i) = {51(171,0(1),) =1,
8,(c(z-1),¢(2),5,)

wherec, denotes the CA configuration in a siefis is used
to define a sequence of configuratiagsc,, c,, ... such that
g]omputation of A.

Consider a uniform version oA, with the nearest
neighbors neighborhood (i.e., [N| = 3) and cycbardary
conditions. Each such cellular automaton is defibgda
mapping {0, 1}' ~ {0, 1} uniquely. Hence there aré 8uch
cellular automata, each of which is uniquely spediby the
following (transition) rule

000 - &

001- &

010- &

0l1- &

100 - &

i=z,

candidate solutions (candidate CA rules in our kdseery
new population is formed by genetically inspireceigtors
such as crossover (a part of CA rules is taken fooma
parent, the rest from another one) and mutatiore(sion of
some bits of the CA rule) and through a selectimsgure,
which guides the evolution towards better areab@kearch
space. The EAs receive this guidance by evaluairary
candidate solution to define its fitness value. Tieess

G(g.), for j > 1. This sequence represents thevalue calculated by the fitness function indicatesv well

the solution fulfills the problem objective.
The most common form of EA is a genetic algorithm
(GA) which has the following form:
1. create randomly initialized population of indivalu
solutions
2. evaluate the population — assign the fithess vadue
each individual
3. select the best individuals based on their fitness
value
4. apply genetic operators (crossover and mutation) on
the selected individuals and create a new populatio
5. if termination criteria are met (fitness, number of
generations), finish, otherwise continue with 2

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

296

In our case, a candidate solution will be encodedra limited opposed to local and global memory (400660
finite size binary string composed of substringat thefine clock cycles latency) [15]. Effective usage of fastched
the transition function for every cell. memory is key to high performance of the parallel

It has been shown that EA may generate innovativapplication.
results in many fields. However, the scalability of

representation and scalability of fithess calcalatiwvere Device

identified as major problems of the evolutionaryprach Multiprocessor N

[22]. In this work, the scalability problem is appched g

using parallelization of the CA rules evolution. :
‘ Multiprocessor 2

IV. NVIDIA GPUs AND CUDA

Although there are other universal computation-bégpa
graphic accelerators with GPU programming interdasigch
as ATI Stream from AMD, the most notable is nVIDih
their Computer Unified Device Architecture (CUDA).

1500

Multiprocessor 1

Instruction
Unit

GF100
~+-NMVIDIA GPU
1250 17— -#~ Intel CPU /

GT200

G80 //

=)
=}
S

Peak GFLOP/s
~
g

Ultra
0
500 G92
G71
250 G70 3.2 GHz 4.2 GHz
NV40 30 GHzZ Harpertown Gulftown
NV35 Core2 Duo
NV30 /
0 = e . :
Jan Jun Apr Jun Mar Nov May Jun Mar
2003 2004 2005 2006 2007 2008 2009 2010

Figure 3. nVIDIA GPU structure [15]

Figure 2. Performance of nVIDIA GPUs compared with Intel CHWUS].
Supposed performance [16] is provided for thedagis as there are no

official data yet (June 2010). Notable is the thread hierarchy used in CUDA protga

Threads may be arranged into blocks, where eadak pl;ms

nVIDIA graphic accelerators contain GPUs with ON one multiprocessor. It is possible to have mioeks
manycore streaming multiprocessors (MP) capable ofhan multiprocessors and more threads per bloak ¢bzes.
outperforming general-purpose CPUs in some taskShared memory may be accessible only within thekiimd
(Figure 2). Each of these accelerators has frono 8a thr_ea_d synchrpnlzauon is po_SS|bIe also only _Nllﬂhla block.
multiprocessors with 8 scalar processor cores, $pecial 1 NiS is & possible drawback in some applications.
units for transcendentals, a multithreaded insoatnit and In recent years, CA have been implemented in GRS,
on-chip shared memory (Figure 3). The multiprocesso€xample in [8]. As mentioned before, previous
creates, manages and executes concurrent threads iffPlementations of CA used Open GL or similar “shgti
hardware with zero scheduling overhead [15]. languages which brought several disadvantages: réene
Up until recently, direct programming for this hamte PuUrpose programming with Open GL or DirectX is dyer
was not possible and indirect practices using Open6 Complicated due to their specialization to compgtephics
DirectX had to be employed [11]. That changes \@tDA, and also it does.not enabl_e direct control over (H’RUS
which is a direct GPU programming interface. parameters, possibly rendering the computatiorféecteve.
CUDA works as a C language extension providing
abstractions of thread groups, shared memoriesbarrier
synchronization. This renders fine-grained data tmdad In order to parallelize a GA, a computational coemjtly
level parallelism. of its components must be considered. In the cdse o
The code is separated into two classes: Host ctiiighw evolutionary design of CA rules, the evaluatiorcahdidate
is executed on the CPU and device code which iswged rules (fitness) is surely the most demanding p&
on the GPU. Memory is differentiated in similar way consisting of possibly thousands of cells must ibaulsited
although it is possible to access device memorgnfrmst for a pre-specified number of simulation stepsttemmore,

V. PROPOSEDMETHODS OFPARALLELIZATION

and vice versa trough the CUDA runtime library. many possible initial CA configurations have to be
There are several types of device memory: Constangvaluated. o _ _ N
shared, global, local and texture. Constant, textand When determining the quality of CA, e.g. in the andy

shared memory space is cached (4 clock cycleschgtdnut task [19] (a benchmark task for a 2-state CA which

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http.//www.iariajournals.org/software/

297

determines whether the initial configuration congainore 1s B. The Level of Training Vectors
then Os by filling all the cells with the prevalesiaite after a Second approach utilizes parallelization on theellef

number of steps), a 1D CA with 64 cells h&8 [ossible
initial configurations. This problem is dealt withy

evaluating only several thousand randomly generate

training vectors and measuring the success rate.

training vectors. There are as many threads a® thes
training vectors. Because there is no dependentyeka

0 same automata running two different simulatidhss
possible to use more parallel blocks (i.e. mulii@ssors)

In GA, each generation has a population of possiblypan one.

hundreds of individuals which further multipliesesthumber
of calls to the fithess function.

Three possible approaches to parallelization wi#l b

proposed in following subsections.

A. TheLevel of Cells

First approach executes parallel lookup of tramsitules
in cells. There are as many threads as there dsewdthin
the CA. The cell states are kept in the shared mgsmthe
threads have to be synchronized after each stepdir to
guarantee the proper sequence of simulation steps.

The algorithm follows:

/*host part*/

CGenerate the initial CA configuration
Load the <configuration into device
shared nenory;

Load the CA transition rules into
devi ce shared nenory;

/*device part*/
For each thread do
Repeat for S steps
Conpute transition function for
one cell and update the cell;
Synchroni ze the shared nenory;

/*host part*/
Load the final CA configuration into
host nenory;

This limits the algorithm only to one MP due toHaaf

synchronization between blocks. Graphical represiemt of
the algorithm is shown in Figure 4.

The Neighborhood: j—l—D—m

theca [T T T T T[T T[]~ []
1D CA l \\ j
N cells
Neighborhood
roill(iis:?: > :I III ITI :I
R| |R| |R R
S CA steps Z i E i
D| |D| |D D
1] [2] |3 N

Figure 4. Simulation of CA with parallelization on the lew cells.
Here,Sdenotes the number of CA simulation steps

The algorithm ensues:

/*host part*/

Generate Vinitial configurations;

Load the CA configurations into device
gl obal nenory;

Load the CA transition rules into
devi ce shared nenory;

[*devi ce part*/

For each thread do
Load one CA configuration into
regi sters/local nenory;
Sinulate the CA for S steps;
Cal cul ate the fitness function;
Update the fitness result into
devi ce gl obal menory;

/[*host part*/

Load the fitness results from device
gl obal nenory into host menory;

Cal cul ate fitness for the individual;

Graphical representation of the main part of the
algorithm is depicted in Figure 5.

The CA: N cells, V training vectors

lr;’;”tg}% ViV Vg Vg vy — | THREAD 1
Training

vector 2 Vi Vo Vi Vg e v, — | THREAD 2
lfé?ggv Vi Vo V3V e v, — | THREAD YV

Figure 5. Parallelization of CA simulation on the level dditting vectors.
HereV denotes the number of training vectors per indigldcCA andS
denotes the number of CA simulation steps

C. TheLeve of Individual Solutions

The last approach is to evaluate one individual per
thread. There are as many threads as there anadinalis
within the GA population.

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http.//www.iariajournals.org/software/

298

However, this approach is the most memory consuminghumbers or in this case a certain sequence of CA
because we need to hold not only multiple CA camfigions configurations. For example a 4-bit counter seedgdhe

but also multiple transition rules. value of 5 has to generate a sequenc€’ sef-6-7-8-9-10-
The algorithm follows: 11-12-13-14-15-0-1-2-3-4. The sequence is encodddur
cells, each with 2 possible states (0, 1).
/*host part*/ The goal will be to evolve a simple 1D non-unifo@A
Load the CA transition rules into which will generate the desired sequence. The ORhaive
devi ce gl obal menory; a simple neighborhood with radius r = 1. The noifeun
CA was selected because non-uniform cellular autama
/ *device part*/ enable us to perform more complex tasks than wiiform
For each thread do CA of the same number of cells [19]. Generatingeetain
Load the CA transition rules into sequence is nota simple task in this context.
| ocal nemory; Since training vectors aren't used, the proposeudcgth
Generate training vectors; will be different from the scenarios assumed int®acV.
For each training vector do The evaluation of the candidate solution works fwe t
Simulate the CA for S steps; . following way: The CA is simulated for 16 steps ¢hase
Update the fitness into device e have 16 numbers in the sequence) and in eaghtbte
gl obal shared menory; configuration is compared with a desired number. f&o
example, the second step configuration is compartdthe
/*host part*/ , value 6, the third step configuration with the \ell etc. In
Load the fitness results from device {he end, all 16 configurations should corresporith e 16
gl obal menmory into host menory; desired numbers. Each match is awarded with a poitite

)]))) fitness value, so the maximum fitness is 16 andmim is
Graphical representation of the algorithm is shawn 1 (the initial configuration is counted automatigpl

Figure 6. It is needed to keep as many rules as there als, cel

lindividuals (CAs — each is a set of trans. rules) because a non-uniform CA is used. A non-uniform dd&s
not need to have necessarily the same numberex ad the
CA 1 CA 2 CA | number of cells (some rules may apply for more tbaa
--------- cell) but in this case, the encoding is simple &eédping

Training | | Training Training references to rules and interpreting them may prove
vectors | | vectors vectors unnecessary and too complex. Also there are nairggi
vectors, so it is not possible to parallelize akrndividual
-------- with the same set of transition rules which aregdain the

shared memory within the same block. So either abié
parallelization approach has to be used (Secti@) @r an
approach similar to the parallelization on the lewé
individuals mentioned in Section V.C. The lattepragach
seems more promising, so we will use it. Fitting reno
transition rules into the GPU memory several tinesld
prove to be challenging but the CA has a simple
neighborhood and 2 possible states, so in this dasenot a
serious problem.

- OPm=>oI-
N OP>m=aI —
Z UO>»m= I

Figure 6. Parallelization of CA simulation on the level oflimiduals. |

denotes the number of individuals and threads. B. Majority

o The second benchmark problem is the majority task

D. ProblemsWithout Training Vectors defined in Section V. A 2-state CA computing thejarity

Previous subsections proposed parallelization @uies task has to determine whether the initial configiara
for problems which require evaluation with setstrafning contains more 1s then Os by filling all the cellghwthe
vectors. However, there are also problems whichndb prevalent state after a number of steps. Usudlly,number
require such measures because the initial configuraf the of steps equals double the number of cells in thieraaton
CA is known. Such problems include applications asand the quality of the solution is determined bpd@mly
counters or random number generators, which werte n@enerating certain number of training vectors amésuring

mentioned in [1]. the proportion of successful CA runs [19].
VI. BENCHMARK PROBLEMS VII. THE EXPERIMENTS
A. 4-bit Counter A. The Evolution of CA Rules for the Majority Problem
A counter is a device (in this case implementednegans Several experiments were conducted in order touatal

of CA), which is able to generate a certain seqeeot the speedup of proposed parallelization methodso Tw

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http.//www.iariajournals.org/software/

299

different computers were used: (i) A laptop wittelrlCore 2 were obtained. The focus of these experiments was t
Duo processor at 1.83 GHz with 667 MHz FSB and éowl- determine best block-size setting policy and to enakmore
nVIDIA GeForce 8600M GS graphic accelerator with 4detailed comparison between two accelerators orsanee
multiprocessors; (i) A workstation with Intel Co2 Duo machine (iia and iib).

processor at 3.33 GHz with 1333 MHz FSB and hi-end Different problem sizes (namely 240, 480, 1200,®40
nVIDIA GeForce FX 285 (iia) graphic accelerator w80 4800. 9600 and 24000 training vectors) and bloz&ssivere
multiprocessors or a mid-end nVIDIA GeForce 9600 GTevaluated (8, 10, 15, 20, 40, 80, 120, 160, 240 320
(iib) graphic accelerator with 8 multiprocessorewbver threads per block). Not all the results could btaivied for
(iib) was used only in later experiments descriied some tasks because the number of threads per ioskbe
Subsection B. an integer.

The programs were compiled with MS Visual C++ 9.0 . .
compiler (serial versions) and with CUDA 2.3 SDKafallel ~ - The Evolution of Binary Counters
versions). The other proposed approach mentioned in Section VI

Each parallelization approach was tested on bothas also evaluated. The 4-bit counter design wiastse as
computers and the execution times were compared wita benchmark since is not complicated in terms aircse
those of serial versions of the programs. This methie Space, so the best solution is well known due feements
serial versions were run on a single CPU core withbe With brute force search [17]. The problem has Ise#ition
use of GPU. The whole program execution time wavith fitness 10 which means that the CA can appnaxe
measured. only 10 numbers from the sequence.

The 1D 2-state uniform CA with 64 cells, r=3 (7 Icel The initial configuration of 5 was chosen delibehat
neighborhood) and cyclic edge conditions was usedHe because the CA has the best results with this.ekample,
experiments. Each simulation lasted 128 synchrtioiza the se has best fitness of 8 and $has best fitness of 9.
steps. The CA rule is represented as string ofirit2gers. Best result for s€g generates the sequencg-3-4-9-14-11-

First approach (Section V.A) was tested both omyao 12-136-15-0-1-27-4. The incorrect numbers are in bold
number of CA simulations without the GA (and withou [16].
fitness evaluation!) and with the GA, which wastandard The experiment was designed as follows: The CA was
algorithm with 10 generations, crossover rate o¥%7and 1D non-uniform 4-cell with r=1 (3-cell neighborhgodnd
mutation rate of 1%. The crossover was one-poidt the static boundary conditions. Each CA simulation delsiL6
mutation probability is meant for a single gene.(bit). steps.

Two-step tournament selection was used. Populatine The evolution of the desired CA was performed wiité
was 100 and 240 training vectors were used. Naie 18 standard GA. The population was set to 32 indiM&lua
generations are not sufficient to find a good sohyt crossover rate of 70% and mutation rate of 18%. The
however we are interested in the speedup analgbis o crossover was one-point and the mutation probgbitt

The rest of the experiments (based on Section Wi8 a meant for a single gene (i.e. bit). Two-step tooveat
V.C) were executed with the same GA. The size ef thselection was used. The GA parameters match the
population and the number of training vectors whf@ the experiment conducted in [17] to maintain the besdsible
last experiments (240 vectors and 100 individualsthe quality of solutions and comparability to previgesult.
training vector approach and vice versa) but thaber of The termination was set to the achievement of the
fitness evaluations was proportionally the sames filimber ~ maximum fitness and several hundred runs were aedu
240 was conveniently selected because the number fith the serial version and several dozen with pheallel
processing cores within the GTX 285 accelerator. version. The machine for the parallel version wes same

Additionally, several more experiments were conedct Workstation as in previous experiments (ii), fitesither with
focusing on the scalability of the proposed algong. The GeForce 9600 GT or with GeForce GTX 285. The serial
same parameters were used except for the numbeaimihg ~ experiments were conducted on several dozen ofeblad
vectors or individuals within the population. Sizekthe servers comparable with the workstation (Intel X@d+3.2
problems were increased up to hundredfold relativéhe =~ GHz processors with 1 GHz FSB). The goal was tosuea
original problem sizes. the average generation needed to find the besti@olu

The fitness function of the GA consists Wfsimulation ~ (fitness 10). Also, the time was measured for #wgakand
runs of the individual CA each f& simulation steps, where for the parallel versions.

V is the number of training vectors afds equivalent to
double the width of the CA. At the end of each datian VL. ResuLTs
run, the success of the run is evaluated basedeomajority The objective of this paper was to evaluate the
task (selected for demonstration purposes): Allscef the performance of several parallel algorithms incoaped into
CA should be in the state prevalent at the initialan EA. The majority problem was selected only to
configuration. conveniently pose as the EA’s goal in the firstieserof

. . experiments and so we are not interested in thétyud
B. Further Experiments With Majority evglved solutions. The only relevant informatior?qtrm

Based on the results of previous experiments (ee&d® achieved speedup compared to serial implementations
V), the best approach was selected and more ditairilts

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http.//www.iariajournals.org/software/

300

The results for the laptop are shown in Table llevttie The other series of experiments shows results of
results for the workstation are shown in TabléThe values comparison between serial version, workstation @@00
in the tables are averages of 10 runs. GT (iib) and workstation with GTX 285 (iia). Nothat the

Fitness evaluation means the simulation of one @A w original contribution [1] included result with GTX80. In
one training vector (e.g. 100 individuals with 2#8ining this article the accelerator was replaced witimitse modern
vectors each and over 10 generations means 240@&di version GTX 285. The difference between GTX 280 288

evaluations). is in higher core and memory operating frequenaci#iser
characteristics remain the same. More details oa th
TABLE . RESULTS FORLAPTOP WITH8600MGS accelerators may be found in [4].
: As mentioned in Section V.B, several variationstha#
Approach ev';'ltl;‘aetisgns Serial time P?i[;‘ge' Speedup task were evaluated. Table IV. shows the best tesaf
different problem sizes (number of training vectoamd
, _ different thread-per-block setup. The results average
Simulation : : ;
of CA only 50000 347.39 0.56 621.68 speedup over several runs with respect to semaflescribed
in Section VII. The best results for each acceteratre
Parallelization of GA highlighted.
CAcells | 240000 1787.23 2597.60 0.69 TABLE IV. SPEEDUP FORO600GT AND GTX 285
Trainin
vectorsg 240000 1787.74 251.20 7.12 Block Problem size [training vectors]
size
Individuals | 240000 178426 | 821.04 217 240 | 600 | 1200| 2400| 4800 | 9600 | 2400p
9600 GT
TABLE 1. RESULTS FORWORKSTATION WITH GTX 285 8 13.95| 26.14| 22.66 | 26.72| 26.77 28.09 28.39
m 10 14.14/ 27.08| 33.02 | 33.28| 33.29 | 35.29 | 34.99
Fitness I Paralle
Approach evaluations Serial time time Speedup 15 14.36| 27.86| 34.30 | 44.65| 52.33 52.51 52.64
20 13.99| 27.42| 59.38 | 61.26 | 61.18 61.42 | 64.13
i i 40 13.97| 27.27| 62.54 | 92.90| 97.37 98.59 | 97.96
Simulation 1 555 187.33 0.38 489.75
of CA only 80 13.84| 27.50| 64.47 | 106.06/ 108.02 | 110.00 | 109.64
— 120 13.65 27.09| 60.92 | 97.18| 98.68 118.61| 121.08
Parallelization of GA
160 N/A | 26.71 N/A | 108.56|101.22 |120.32 | 126.34
CAcells | 240000 981.34 159760 | 061 240 | 12.69 25.15/61.00 | 83.97| 98.44 | 123.19] 121.0p
I;iltglrnsg 240000 980.38 72.18 13.58 320 N/A| N/A| N/A | NA |109.68 |[110.49 | 111.10
GTX 285
Individuals | 240000 980.95 105.21 9.32
8 13.58| 27.00| 64.21 | 64.00| 83.28 97.20 | 94.61
The scaling properties of the three proposed dlyns 10 1357127.0265.27] 117.73118.85 | 122.58 | 120.79
are summarized in Table IIl. Only the best resfutism1 both [15 13.58) 27.04| 66.08 | 126.68) 124.73 | 161.32 | 170.5
testing computers are shown. The result for 240i6kss 20 13.22) 26.68| 65.27 | 125.01215.24 | 218.03 | 218.67
evaluations with the cell level parallelizationrist shown 40 13.25 26.49| 65.45 | 125.99 222.77 | 286.31 | 272.57
because the computation did not terminate beforbdifs [gg 13.14] 26.32| 64.82 | 127 16| 232.85 | 350.96 | 329.73
reserved for parallel computation. 120 | 12.96 25.92| 64.21| 125.87222.62 | 351.56 | 387.24
TABLE Il SCALING PROPERTIES OFPROPOSEDPARALLEL 160 N/A | 25.59 N/A | 124.10) 236.04 | 370.48 | 417.39
ALGORITHMS 240 12.08 24.10(59.75 | 117.43224.61 | 302.47 | 387.37
- 320 N/A| N/A| N/A | NA | 208.42 | 371.04| 377.9f
eSS 1 240k 2400k 24000k
evaluations])
A - p—— Figure 7 shows best results for different accetesaand
pproac peedup problem sizes only for the optimal block size sefsi. The
CA cells 0.69 0.69 N/A results are average execution time obtained frouweraé
Training runs. Figure 7 indicates the difference in perforom
14.36 127.16 417.36 ; ; ;
vectors growing with the problem size.
— The last series of experiments measured the spked o
Individuals | 9.32 2841 192.88 evolution designing the solution for the 4-bit ctem
) problem.
_ After this, several extremely long runs (more tizei®k The average generation needed to achieve the maximu
fitness evaluations) were computed with the trajniector fitness was 14509 and the average time to achieves
approach and the best results approached a spetdRf. 5.25 seconds.

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http.//www.iariajournals.org/software/

With the 9600 GT accelerator (iib),
generation was 14591 and the time needed 8.5 second

301

the average IX. DiscussIioN

For the GTX 285 accelerator (iia), the average ltesu A. Speedup vs. Cost
were 14374 generations and 8.77 seconds.

|— -9600 GT — GTX 285

Problem size [training vectors]

e
7~
/
7~
~
7
7~
7~
P
e
~

—
100 +—=—=

;

0 5000 10000 15000 20000 25000

Figure 7. Execution time for different problem sizes and li#stk size

settings for GeForce 9600 GT and GTX 280

It can be seen that no actual improvement of thew@a
achieved. However, this was to be anticipated. dozg not

As can be seen in Tables | and Il, the parallétimadf
the CA simulation on the level of CA cells showsssige
speedup. More surprisingly, those results wereimbdawith
only one multiprocessor in the GPU due to the ibteck
synchronization problem mentioned in Section IV.eTh
possible explanation is the effective use of théadeshared
memory which is much faster than ordinary memorfge T
results from the laptop GPU are better, becausg wexe
compared with much slower processor in the lapigmosed
to the hi-end processor in the workstation.

However, when the simulator was inserted into a A,
speedup declined due to more memory accesses tapdsfi
evaluation. The one-block approach utilizing onlypeo
multiprocessor shows its weaknesses and the ovesallt is
even worse than the serial approach.

The results for the parallel GA (the approach from
Section V.B) with threads executing individual miag
vectors are the best of the experiments. The maximu
speedup for the workstation is 417.36 and the spedor
the laptop is only 31.34 for the largest problers.opposed

even a speedup of computation was achieved buthen tto the cell parallelization approach from SectiorAVthis

contrary, the result was slower than serial contrtaThe
reason for this is too small population of the u&Hd The
overhead required to start the parallel computatianthe
GPU is larger than the speedup. The result is suinethin

Table V.
TABLE V. SPEEDUP OFEVOLUTION WITH POPULATION OF32
GPU Avg. generation | Time [s] Speedup
Serial 14509 5.25 N/A
9600 GT | 14591 8.50 0.62
GTX 285 | 14374 8.77 0.60

In order to prove that accelerating the GA has semnse,
another experiment was conducted. This time theilatipn
was increased tenfold to 320 individuals. An unable
fitness condition was set and the computation easihated
at generation 15000. This had to be done in omactually

algorithm has to upload large quantities of datarid from
the device memory but it has more processor candstlze
data don't conflict with each other.

As seen in Table lll, there was no speedup drof wit
larger problems (2400 and 24000 training vectors) the
performance was even better than for the smalleblem
(240 training vectors).

The individual-per-thread approach (Section V.C)
showed smaller speedup than training vector-peathr
approach. The lower performance is probably caused
more memory transfers (several sets of CA rulesbjerk
opposed to only one set of CA rules per block).

There are also some problems with graphic accelerat
cards used as primary display adapters due to igrapifrer
timeouts caused by long thread execution times hé® t
approach may not be suitable for this reason. prodlem
may be solved by using second graphics adapteheas t

measure something, because otherwise the GA wadd e Primary display adapter at the expense of increasstl in

too soon. This time the experiment proved the agmich of
the previous one: The new problem was large enotigit,
the parallelization could pay off with a speeduB88f66 for

(iib) and 38.11 for (iia). Results may be foundrable VI.

TABLE VI. SPEEDUP OFEVOLUTION WITH POPULATION OF320
GPU Avg. generation | Time [s] Speedup
Serial 15000 54.12 N/A

9600 GT | 15000 1.40 38.66
GTX 285 | 15000 1.42 38.11

hardware.

The scaling capabilities of the last approach &e good
as seen in Table Ill. The conclusion for the experits is
that parallelization on the level of evaluation toéining
vectors is the most effective due to utilization afl
multiprocessors in the GPU and quick and small llgdra
kernel (code for the GPU - as opposed to paraditin on
the level of individuals where the kernel lastsger).

The comparison of graphic accelerators showed ypartl
interesting results. A GeForce 9600 GT with 8
multiprocessors showed a nice speedup not fallmdgas
behind the GTX 285 with 30 multiprocessors in sarases.
The mid-end card was even faster in some of thdlesha
tasks. This could be influenced by slightly largeheduling
overhead with the more complex GPU. This opposes th
manufacturer's claim about the zero scheduling lwad
[15]. No other explanation seems to fit and sincecige

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http.//www.iariajournals.org/software/

302

details about GPU hardware are obfuscated by the The GPU programming model uses several levels of
manufacturers, we may only guess the real reason. data- and thread-parallelism which enable the $anebus
Of course, when the problem size increased sufiisie execution of data-independent threads [15]. Thiscept
GTX 285 manifested its higher number of processdrieh works in concert with the hardware which offersestiiing
could be used to full capacity and the speedup wasonsistent with multi-threading concept. This erabthe
significantly higher. The interesting part is, tf#800 GT threads within one block to be scheduled as thd agses.
costs about 80 Euro and the GTX 285 about 370 Elao The threads are executed on groups called “warp&hw
2010, retail price for the Czech Republic). The-lemd card are 16 threads wide and which work in a SIMD cohcep
shows no promise for scientific computation for twain That means that each thread within the warp ha&xécute
reasons: It is mounted in a laptop and the memosyidtoo the same instruction, of course on different didtine blocks
slow. are not large enough, significant parts of the wagy be
wasted. Also, the warps are scheduled dependinthein
B. Other Tasks for GPU availability. If one warp waits for a memory accessveral
It seems that the mid-end card is the most costi#e more warps may be executed, even from differentksio
for small and medium-sized tasks. However, thelt®soay Figure 8 illustrates simultaneous execution of warp three
be different with other parallelization tasks.dtimportantto different multiprocessors.
note the two laws for parallel computation. First the
Amdahl’'s law [12] which states:

MP 1 MP 2 MP 3

warp 1instr4 warp 8 instr 7 warp 14 instr 2

SP)=P/(1 & (P-1)),

where S(P) is the speedup, P is the number of gsoce and
a is the sequential part of the task. The equatiearly
shows that a fixed task speedup is severely limitgdhe
sequential part, no matter how many processorasee. warp 2instr9 warp 15 instr8 warp 4 instr 21|
The second law is attributed to Gustafson [12]:

S(P)=P-a (P-1)

and it may be applied to a class of problems, wiiezaon - warp 6 instr 1 warp 8 instr8 warp 14 instr 3
sequential part of the task is limited by the numbé

processors and when a new processor is added, we m

assign it the same amount of work as to the ottwrgssors.

This class of problems includes evolutionary desifin
CA rules which need to be evaluated by high nunifer
training vectors. More training vectors means nareurate
results and more fine-grained fitness function Wwhioay
contribute to better evolution results.

There is also another class of evolutionary desigt
pr0b|ems which is limited by the first law. Thisask = = — s s e
includes CA design, which needs to evaluate a sfixatl]]])
number of steps or possibilites and is not suitafor Figure 8. Warps executing on three_ dlfferent_ multlprpceswr_e): Each

o . warp contains 16 threads and each is executingaime instruction. Warps
para”dlzat'_on'_ These proplems may be alsp |Imﬂ§'dthe are scheduled according to readiness for execution.
number of individuals within the GA population, was the
case with the 4-bit counter evolution, where thestbe
population size is 32 [17]. Some of these problemy drift X. CONCLUSION

to the area where the task size could be expandédsa The experiments have shown that evolution on GRiss h
Gustafson's law may be applied. Thankfully, many CAgeyera| fimitations. The most significant one is fact, that

design tasks by means of EA fall in this categdkg bur o amount of device shared memory and registdimited
example with the majority benchmark. The 4-bit deons s restricting the size of evolved CA, the numioér
only a simple demonstration and evolution of largen- training vectors or the size of the EA population.

uniform CA will probably need larger populations. Dealing with this problem may be the objective wttier
The last conclusion obtained from the results &fiCt ragearch and development. Possible solutions iaclud
that block size settings greatly impacts the GPU'§yaritioning the computation and serializing thetpin order
performance. Table IV. shows that the optimal se8li i, save memory. Another solution may be using devic
changes with the size of the problem. The reasortle g 0ha| memory instead of shared memory and locahamg

need to tailor the settings for a certain taskhis way the jstead of reqisters. However. both of these ambres
GPU dispatches threads within the blocks. g ' ’

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

would result in slower performance. Future accébesamay
possess larger shared memory [16].

Another possibility for development is testing [2]
combinations of the three proposed approachesitivguld
be possible to evaluate several individuals of tAA
population each in one block while running paraléelkup

of cell transition rules in that block. E&
Further improvement of methods mentioned in thizepa

could lead into fast parallel version of Sipper'&liGar

programming approach [19]. [5]

Cellular programming is a methodology developed to
design non-uniform CA systems capable of computin%
complex tasks such as synchronization, majoritgasting. 6]
Speeding up the evolution of CA systems may pravee
appropriate step in perfecting such systems viaulgition
and implementing them in hardware.

The most recent language contribution to the field
GPGPU (General Purpose GPU computing) is OpenCig)
(Open Computing Language). OpenCL is a C language
extension similar in use to CUDA but there is ommificant
improvement: It supports many different GPU or CPUIS]
architectures, being almost universal. OpenCL uses
abstractions independent of manufacturers which lgan
automatically transformed into efficient code fonya
supported architecture by means of compilation hV@pen
CL, it is possible to run the same program on n\Aind
ATI. The language and its tools started to becowzlable
only recently, so this article deals only with CUDRuture
plans include transferring current and prospectivgk to
this new language.

Generally the future of GPGPU looks bright.
Manufacturers like nVIDIA and ATl compete with each [13]
other in GPU performance pushing the developmettihédu
Right now more advanced GPU are being planned andg™
developed. Example of this new generation may bV
Fermi which will include 512 cores (64 MPs) and fsuc ;5
technologies as simultaneous kernel executiongdhazache
memory for the entire GPU or ECC (error checking an
correction) [16].

Moreover with the introduction of OpenCL the [16]
programming of competitor's hardware will be unifie
further improving the programmer’'s experience. The[17]
architecture is also designed as scalable from staet
enabling to connect several GPUs together or toategld
programs to newer versions just by adjusting thablpm
size and block settings. More cores and higher atimgy
frequency means more computing power for probleimistw
can be enlarged in accordance with Gustafson’s law.

(7]

(20]

(11]

(12]

(18]

ACKNOWLEDGMENT (19]

This work was partially supported by the grafgtural
Computing on Unconventional PlatformsGP103/10/1517,
the FIT grant FIT-10-S-1 and the research phmcturity-
Oriented Research in Information Technology
MSM0021630528.

(20]

[21]

REFERENCES [22]

Zaloudek, L., Sekanina, L., Simek, V.: “GPU Accalers for
Evolvable Cellular Automata”, Computation World: tGre

(1

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http.//www.iariajournals.org/software/

303

Computing, Service Computation, Adaptive, ConteBbgnitive,
Patterns, Athens, GR, IEEE, 2009, pp. 533-537.

Chitty, D.M.: “A data parallel approach to geneficogramming
using programmable graphics hardware”, GECCO 'Qdcéedings
of the 9th annual conference on Genetic and ewrlaty
computation, Volume 2., London, ACM Press, 2007,15656—1573.

Codd, E., Cellular Automat&cademic Press, 1968.

CUDA-Enabled GPU products - NVIDIA
URL: <http://www.nvidia.com/object/cuda_learn_pratiihtm|>
[cit. 29.1.2010]

Durbeck, L. and Macias, N., “The Cell Matrix: An dhitecture for
Nanocomputing”, Nanotechnology 12, IOP Publishin@02, pp.
217-230.

Fok, K.L., Wong, T.T., Wong, M.L.: “Evolutionary egputing on
consumer graphics hardware”, IEEE Intelligent SysteVol. 22,
No. 2, IEEE, 2007, pp. 69-78.

Gardner, M., “Mathematical games: The fantastic lmo@tions of
John Conway'’s new solitaire game ‘Life™, SciertifAmerican 223,
Oct 1970, pp. 120-123.

Gobron, S., Devillard F., Heit B., “Retina simutati using cellular
automaton and GPU programming”, Machine Vision and
Applications Journal 66, Springer, 2007, pp. 332-34

Harding, S.: “Evolution of Image Filters on Graphierocessor Units
Using Cartesian Genetic Programming”, 2008 IEEE l&/@ongress
on Computational Intelligence, Hong Kong: IEEE CEX)08, pp.
1921-1928.

Harding, S. and Banzhaf, W.: “Fast genetic programynon GPUS”,
Proceedings of the 10th European Conference on ti@ene
Programming, LNCS 4445, Springer, 2007, pp. 90-101.

Harris, M.: “Mapping computational concepts to GRUACM
SIGGRAPH 2005, ACM, New York, NY, 2005.

Henessy, J. and Patterson, D.:Computer Architeciu€@uantitative
Approach, The Morgan Kaufmann Series in ComputathAecture
and Design, Morgan Kaufmann Publishers, 2003.

Langton, C.G., “Self-Reproduction in Cellular Autata”, Physica D:
Nonlinear Phenomena 10(1-2), Elsevier, 1984, pp-1481.

Lohn, J.D., and Reggia, J.A., “Automatic discovefelf-replicating
structures in cellular automata”, IEEE TransactionsEvolutionary
Computation, vol.1, no. 3, IEEE CS, 1997, pp. 1685-1

nVIDA CUDA Programming Guide, Version 3.0
URL: <http://developer.nvidia.com/object/
cuda_3 0_downloads.html.>

[cit. 14.6.2010]

Next Generation CUDA Architecture, Code Named Fermi
URL: <http://www.nvidia.com/object/fermi_architec&uhtm|>
[cit. 31.1.2010]

Sekanina, L.: Evolvable Components: From Theorjaodware
Implementations, Natural Computing Series, Springentag, Berlin
Heidelberg, DE, 2004.

Simek, V., Dvéiak, R., Zbéil, F., V., Kunovsky, J. “Towards
Accelerated Computation of Atmospheric Equatiorisgi€UDA”,
Proceedings of Eleventh International Conferenc€omputer
Modelling and Simulation, Cambridge, GB, IEEE C802, pp. 449-
454,

Sipper, M., Evolution of Parallel Cellular Machinebhe Cellular
Programming Approach, Springer Verlag, Heidelb&897.

Tomassini, M., Sipper, M., Perrenoud, M., "On theneration of
high-quality random numbers by two-dimensionaludel automata,"
Computers, IEEE Transactions on , vol.49, no.1@,2000, pp.1146-
1151.

Wolfram, S.: A New Kind of Science, Wolfram Mediancl,
Champaign, IL, 2002.
Yao, X. and Higuchi, T., “Promises and ChallengésEwolvable

Hardware”, |IEEE Transactions on Systems, Man, agbe@etics
29(1), IEEE, 1999, pp. 87-97.

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

