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Abstract—As design of cellular automata rules using 
conventional methods is a difficult task, evolutionary 
algorithms are often utilized in this area. However, in that 
case, high computational demands need to be met. This 
problem may be partially solved by parallelization. Since 
parallel supercomputers and server clusters are expensive and 
often overburdened, this paper proposes the evolution of 
cellular automata rules on small and inexpensive graphic 
processing units. The main objective of this paper is to 
demonstrate that evolution of cellular automata rules can be 
accelerated significantly using graphics processing units. 
Several methods of speeding-up the evolution of cellular 
automata rules are proposed, evaluated and compared, some 
with very good results. Also a comparison is made between 
mid-end and high-end graphics accelerator card based on the 
results of evolution speedup. The proposed methods are 
evaluated using two benchmark problems. 

Keywords–cellular automata; parallel computing; GPU; CUDA; 
genetic alghorithm 

I.  INTRODUCTION 

The recent development of the SIMD-oriented general 
computation on Graphics Processing Units (GPUs) has 
motivated the research on new approaches to the acceleration 
of various computational models. Among others, 
accelerators of cellular automata (CA) and evolutionary 
algorithms (EA) have been proposed because of inherently 
parallel nature of these bio-inspired computing systems [1, 2, 
6, 8].  

Since their conception in 1950s [21], cellular automata 
have found many applications. These include physical 
systems modeling, road traffic simulation, random number 
generation, artificial life simulation, cracking of encryption 
standards [5, 7, 18, 20], etc. CA utilize several key features 
which make them unique computational models. Among 
these features are massive parallelism, locality of cell 
interactions, simplicity of basic building blocks and complex 
emergent behavior on a global level. 

Because of inherent complexity, design of cellular 
automata is a difficult task for a human engineer. For 
example, Langton’s self-replicating CA loops are based on 
identical cells; each of them has more than 280 transition 
rules [13]. In order to increase the efficiency when designing 
CA rules, evolutionary algorithms have been introduced to 
the field [14, 19]. By means of EA, the space of possible 
solutions to the problems of CA design may be explored 

efficiently. For example, Sipper has developed so-called 
“Cellular programming approach” [19] which allowed the 
CA rules to be evolved using a parallel cellular EA. 

CA may be evolved either directly in hardware (such as 
FPGA) or in software, using simulators. This paper deals 
with the evolution of CA rules in a software CA simulator. 
However, design by EA is very computationally demanding. 
Not only is it necessary to simulate the CA which may 
consist of thousands of cells, but whole populations of CA 
have to be simulated and each CA may have many possible 
initial configurations, which need to be evaluated in order to 
determine the quality of a candidate solution. 

One of possible ways to accelerate the CA simulation 
and, therefore, the execution of an EA is parallelization. Not 
surprisingly, there are some problems: Desktop CPUs with 
more than 6 cores are still not available (June 2010) and hi-
end servers, supercomputers or computing clusters are highly 
expensive or overburdened if accessible. Since our interest 
lies with very large CA, we need a processing power capable 
of effectively accommodating hundreds of threads in order to 
justify the parallelization effort and the increased cost. 
However, with modern GPUs one can obtain computing 
power of supercomputers for a price of a hi-end PC.  

The goal of the paper is to propose a GPU accelerator for 
evolutionary CA design. We will, in fact, propose and 
compare several architectures with the aim to identify the 
most efficient one. This paper extends our previous work [1] 
in the following aspects: (i) Models of CA and EA 
computation are presented in a greater detail. (ii) More 
experiments have been performed to evaluate the proposed 
architectures. (iii) We included another platform (9600 GT) 
for comparison. (iv) We have not investigated the speedup 
factor only; we have also measured the efficiency of the 
evolutionary algorithm using a simple benchmark problem. 

The rest of the paper is organized as follows. Section II 
introduces one-dimensional cellular automata. Relevant 
evolutionary algorithms are to be briefly surveyed in Section 
III. Section IV describes the basic concept of general 
computing on GPUs. Section V proposes several methods 
how to utilize the parallel computing power of modern GPUs 
in CA rule evolution, whereas the benchmark problems – CA 
counter and majority – is defined in Section VI. Section VII 
describes in detail the experiments for the evaluation of the 
methods described in sections V and VI. Results of the 
conducted experiments are summarized in Section VIIII.  
While Section IX discusses obtained results, Section X 
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concludes this paper and proposes several possibilities of 
further development. 

II. 1D CELLULAR AUTOMATON 

A cellular automaton is an n-dimensional grid of 
identical cells, each working as a finite state automaton [3]. 
In its synchronous version, the state of the cells is 
periodically updated using a local transition function. If all 
the cells use the same local transition function, the 
automaton is known as uniform; otherwise, it is non-
uniform. The next state of each cell is a function of its 
current state and the states of its neighboring cells. In case of 
1D CA (n = 1), the neighborhood is defined using radius of 
r. In theory, the cellular automaton model supposes that the 
number of cells is infinite. However, in the case of practical 
applications the number of cells is finite. Then, it is 
necessary to define the boundary conditions, i.e. the setting 
of the boundary cells. Boundary conditions for the cells on 
the edges of the CA are usually either cyclic or constant (i.e., 
the states are taken from the opposite edge of CA or from the 
last cell). The state of the CA in the beginning of the run is 
called the initial configuration.  

Experiments described in this paper deal only with 1D 
CA for simplicity and clarity purposes. The binary one-
dimensional non-uniform CA of finite size may be described 
formally [17] as a 7-tuple A = (Q, N, R, z, b1, b2, c0), where: 

Q = {0, 1} is a binary set of states, 
N denotes a neighborhood ( Ζ⊆N ), 
z denotes the number of cells, 
b1 and b2 are boundary values, 
c0 is an initial configuration, and 
a mapping R : S → (QN → Q) assigns to each cell of the 

grid S = {1, 2, …, z} a local transition function δ1, …, δz, 
where δi : Q

N → Q, i ∈S. 
A configuration of A is a mapping c ∈QS which assigns 

a state to each cell A. If only a single neighborhood N = {-1, 
0, 1} (i.e., r = 1) is considered, then the global transition 
function G : QS → QS is defined as: 

 
where ci denotes the CA configuration in a step i. G is used 
to define a sequence of configurations c0, c1, c2, … such that 
cj = G(cj-i), for j ≥ 1. This sequence represents the 
computation of A. 

Consider a uniform version of A, with the nearest 
neighbors neighborhood (i.e., |N| = 3) and cyclic boundary 
conditions. Each such cellular automaton is defined by a 
mapping {0, 1}N → {0, 1} uniquely. Hence there are 28 such 
cellular automata, each of which is uniquely specified by the 
following (transition) rule 

000 → a0 
001 → a1 
010 → a2 
011 → a3 
100 → a4 

101 → a5 
110 → a6 
111 → a7. 

We can speak of the cellular automaton with rule i, where i is 
an integer (0 ≤ i < 256) with the binary representation 
a7a6a5a4a3a2a1a0. For example, Figure 1 shows the behavior of 
the cellular automaton with rule 150 that starts its 
computation from the initial configuration c0 = …00100… 
(the black square represents logic 1).  

 
Figure 1.  Development of 1D CA with rule 150. 

The properties of cellular automata have been 
investigated by means of analytic as well as experimental 
methods. In general, the objectives are either to (i) find a 
method for the design of cellular automaton rules for a given 
application or (2) predict the global behavior of a given 
cellular automaton if the rules and the initial configuration 
are known. Because of the inherent complexity of cellular 
automaton, evolutionary design of CA rules has been 
adopted [19]. 

III.  EVOLUTIONARY ALGORITHMS 

Evolutionary algorithms are stochastic search methods. 
They are inspired by Darwin’s theory of biological 
evolution. Instead of working with one solution at a time (as 
random search, hill climbing and other search techniques 
do), these algorithms operate with the population of   
candidate solutions (candidate CA rules in our case). Every 
new population is formed by genetically inspired operators 
such as crossover (a part of CA rules is taken from one 
parent, the rest from another one) and mutation (inversion of 
some bits of the CA rule) and through a selection pressure, 
which guides the evolution towards better areas of the search 
space. The EAs receive this guidance by evaluating every 
candidate solution to define its fitness value. The fitness 
value calculated by the fitness function indicates how well 
the solution fulfills the problem objective.  

The most common form of EA is a genetic algorithm 
(GA) which has the following form: 

1. create randomly initialized population of  individual 
solutions 

2. evaluate the population – assign the fitness value to 
each individual  

3. select the best individuals based on their fitness 
value 

4. apply genetic operators (crossover and mutation) on 
the selected individuals and create a new population 

5. if termination criteria are met (fitness, number of 
generations), finish, otherwise continue with 2 
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In our case, a candidate solution will be encoded as a 
finite size binary string composed of substrings that define 
the transition function for every cell. 

It has been shown that EA may generate innovative 
results in many fields. However, the scalability of 
representation and scalability of fitness calculation were 
identified as major problems of the evolutionary approach 
[22]. In this work, the scalability problem is approached 
using parallelization of the CA rules evolution. 

IV.  NVIDIA  GPUS AND CUDA 

Although there are other universal computation-capable 
graphic accelerators with GPU programming interfaces such 
as ATI Stream from AMD, the most notable is nVIDIA with 
their Computer Unified Device Architecture (CUDA). 

 
Figure 2.  Performance of nVIDIA GPUs compared with Intel CPUs [15]. 

Supposed performance [16] is provided for the last chips as there are no 
official data yet (June 2010). 

nVIDIA graphic accelerators contain GPUs with 
manycore streaming multiprocessors (MP) capable of 
outperforming general-purpose CPUs in some tasks 
(Figure 2). Each of these accelerators has from 4 to 30 
multiprocessors with 8 scalar processor cores, two special 
units for transcendentals, a multithreaded instruction unit and 
on-chip shared memory (Figure 3). The multiprocessor 
creates, manages and executes concurrent threads in 
hardware with zero scheduling overhead [15]. 

Up until recently, direct programming for this hardware 
was not possible and indirect practices using OpenGL or 
DirectX had to be employed [11]. That changes with CUDA, 
which is a direct GPU programming interface.  

CUDA works as a C language extension providing 
abstractions of thread groups, shared memories and barrier 
synchronization. This renders fine-grained data and thread 
level parallelism. 

The code is separated into two classes: Host code which 
is executed on the CPU and device code which is executed 
on the GPU. Memory is differentiated in similar way, 
although it is possible to access device memory from host 
and vice versa trough the CUDA runtime library. 

There are several types of device memory: Constant, 
shared, global, local and texture. Constant, texture and 
shared memory space is cached (4 clock cycles latency) but 

limited opposed to local and global memory (400 to 600 
clock cycles latency) [15]. Effective usage of fast cached 
memory is key to high performance of the parallel 
application. 

 
Figure 3.  nVIDIA GPU structure [15] 

Notable is the thread hierarchy used in CUDA programs: 
Threads may be arranged into blocks, where each block runs 
on one multiprocessor. It is possible to have more blocks 
than multiprocessors and more threads per block than cores. 
Shared memory may be accessible only within the block and 
thread synchronization is possible also only within the block. 
This is a possible drawback in some applications. 

In recent years, CA have been implemented in GPUs, for 
example in [8]. As mentioned before, previous 
implementations of CA used Open GL or similar “shading” 
languages which brought several disadvantages: General 
purpose programming with Open GL or DirectX is overly 
complicated due to their specialization to computer graphics 
and also it does not enable direct control over the GPU’s 
parameters, possibly rendering the computations ineffective. 

V. PROPOSED METHODS OF PARALLELIZATION  

In order to parallelize a GA, a computational complexity 
of its components must be considered. In the case of 
evolutionary design of CA rules, the evaluation of candidate 
rules (fitness) is surely the most demanding part. CA 
consisting of possibly thousands of cells must be simulated 
for a pre-specified number of simulation steps. Furthermore, 
many possible initial CA configurations have to be 
evaluated. 

When determining the quality of CA, e.g. in the majority 
task [19] (a benchmark task for a 2-state CA which 
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determines whether the initial configuration contains more 1s 
then 0s by filling all the cells with the prevalent state after a 
number of steps), a 1D CA with 64 cells has 264 possible 
initial configurations. This problem is dealt with by 
evaluating only several thousand randomly generated 
training vectors and measuring the success rate. 

In GA, each generation has a population of possibly 
hundreds of individuals which further multiplies the number 
of calls to the fitness function. 

Three possible approaches to parallelization will be 
proposed in following subsections.  

A. The Level of Cells 

First approach executes parallel lookup of transition rules 
in cells. There are as many threads as there are cells within 
the CA. The cell states are kept in the shared memory so the 
threads have to be synchronized after each step in order to 
guarantee the proper sequence of simulation steps. 

The algorithm follows: 
 
/*host part*/ 
Generate the initial CA configuration 
Load the configuration into device 
shared memory; 
Load the CA transition rules into 
device shared memory; 
 
/*device part*/ 
For each thread do 
  Repeat for S steps 

Compute transition function for           
one cell and update the cell; 
Synchronize the shared memory; 

 
/*host part*/ 
Load the final CA configuration into 
host memory;  
 
This limits the algorithm only to one MP due to lack of 

synchronization between blocks. Graphical representation of 
the algorithm is shown in Figure 4. 

  

 
Figure 4.  Simulation of CA with parallelization on the level of cells. 

Here, S denotes the number of CA simulation steps 

B. The Level of Training Vectors 

Second approach utilizes parallelization on the level of 
training vectors. There are as many threads as there are 
training vectors. Because there is no dependency between 
two same automata running two different simulations, it is 
possible to use more parallel blocks (i.e. multiprocessors) 
than one.  

The algorithm ensues: 
 
/*host part*/ 
Generate V initial configurations; 
Load the CA configurations into device 
global memory; 
Load the CA transition rules into 
device shared memory; 
 
/*device part*/ 
For each thread do 

Load one CA configuration into 
registers/local memory; 
Simulate the CA for S steps; 
Calculate the fitness function; 
Update the fitness result into 
device global memory; 
 

/*host part*/ 
Load the fitness results from device 
global memory into host memory; 
Calculate fitness for the individual; 
 
Graphical representation of the main part of the 

algorithm is depicted in Figure 5. 
 

 
Figure 5.  Parallelization of CA simulation on the level of training vectors. 

Here V denotes the number of training vectors per individual CA and S 
denotes the number of CA simulation steps 

C. The Level of Individual Solutions 

The last approach is to evaluate one individual per 
thread. There are as many threads as there are individuals 
within the GA population. 
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However, this approach is the most memory consuming, 
because we need to hold not only multiple CA configurations 
but also multiple transition rules. 

The algorithm follows: 
 
/*host part*/ 
Load the CA transition rules into 
device global memory; 
 
/*device part*/ 
For each thread do 

Load the CA transition rules into 
local memory; 
Generate training vectors; 
For each training vector do 
Simulate the CA for S steps; 
Update the fitness into device 
global shared memory; 
 

/*host part*/ 
Load the fitness results from device 
global memory into host memory; 

 
Graphical representation of the algorithm is shown in 

Figure 6. 

  
Figure 6.  Parallelization of CA simulation on the level of individuals. I 

denotes the number of individuals and threads. 

D. Problems Without Training Vectors 

Previous subsections proposed parallelization approaches 
for problems which require evaluation with sets of training 
vectors. However, there are also problems which do not 
require such measures because the initial configuration of the 
CA is known. Such problems include applications as 
counters or random number generators, which were not 
mentioned in [1]. 

VI.  BENCHMARK PROBLEMS 

A. 4-bit Counter 

A counter is a device (in this case implemented by means 
of CA), which is able to generate a certain sequence of 

numbers or in this case a certain sequence of CA 
configurations. For example a 4-bit counter seeded by the 
value of 5 has to generate a sequence seq(5) = 5-6-7-8-9-10-
11-12-13-14-15-0-1-2-3-4. The sequence is encoded in four 
cells, each with 2 possible states (0, 1). 

The goal will be to evolve a simple 1D non-uniform CA 
which will generate the desired sequence. The CA will have 
a simple neighborhood with radius r = 1. The non-uniform 
CA was selected because non-uniform cellular automata 
enable us to perform more complex tasks than with uniform 
CA of the same number of cells [19]. Generating a certain 
sequence is not a simple task in this context.  

Since training vectors aren’t used, the proposed approach 
will be different from the scenarios assumed in Section V. 
The evaluation of the candidate solution works in the 
following way: The CA is simulated for 16 steps (because 
we have 16 numbers in the sequence) and in each step, the 
configuration is compared with a desired number. So for 
example, the second step configuration is compared with the 
value 6, the third step configuration with the value 7 etc. In 
the end, all 16 configurations should correspond with the 16 
desired numbers. Each match is awarded with a point to the 
fitness value, so the maximum fitness is 16 and minimum is 
1 (the initial configuration is counted automatically). 

It is needed to keep as many rules as there are cells, 
because a non-uniform CA is used. A non-uniform CA does 
not need to have necessarily the same number of rules as the 
number of cells (some rules may apply for more than one 
cell) but in this case, the encoding is simple and keeping 
references to rules and interpreting them may prove 
unnecessary and too complex. Also there are no training 
vectors, so it is not possible to parallelize a single individual 
with the same set of transition rules which are placed in the 
shared memory within the same block. So either the cell 
parallelization approach has to be used (Section V.A) or an 
approach similar to the parallelization on the level of 
individuals mentioned in Section V.C. The latter approach 
seems more promising, so we will use it. Fitting more 
transition rules into the GPU memory several times could 
prove to be challenging but the CA has a simple 
neighborhood and 2 possible states, so in this case, it is not a 
serious problem. 

B. Majority 

The second benchmark problem is the majority task 
defined in Section V. A 2-state CA computing the majority 
task has to determine whether the initial configuration 
contains more 1s then 0s by filling all the cells with the 
prevalent state after a number of steps. Usually, the number 
of steps equals double the number of cells in the automaton 
and the quality of the solution is determined by randomly 
generating certain number of training vectors and measuring 
the proportion of successful CA runs [19].  

VII.  THE EXPERIMENTS 

A. The Evolution of CA Rules for the Majority Problem 

Several experiments were conducted in order to evaluate 
the speedup of proposed parallelization methods. Two 
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different computers were used: (i) A laptop with Intel Core 2 
Duo processor at 1.83 GHz with 667 MHz FSB and low-end 
nVIDIA GeForce 8600M GS graphic accelerator with 4 
multiprocessors; (ii) A workstation with Intel Core 2 Duo 
processor at 3.33 GHz with 1333 MHz FSB and hi-end 
nVIDIA GeForce FX 285 (iia) graphic accelerator with 30 
multiprocessors or a mid-end nVIDIA GeForce 9600 GT 
(iib) graphic accelerator with 8 multiprocessors, however 
(iib) was used only in later experiments described in 
Subsection B.  

The programs were compiled with MS Visual C++ 9.0 
compiler (serial versions) and with CUDA 2.3 SDK (parallel 
versions). 

Each parallelization approach was tested on both 
computers and the execution times were compared with 
those of serial versions of the programs. This means the 
serial versions were run on a single CPU core without the 
use of GPU. The whole program execution time was 
measured.  

The 1D 2-state uniform CA with 64 cells, r=3 (7 cell 
neighborhood) and cyclic edge conditions was used for the 
experiments. Each simulation lasted 128 synchronization 
steps. The CA rule is represented as string of 128 integers. 

First approach (Section V.A) was tested both only on a 
number of CA simulations without the GA (and without 
fitness evaluation!) and with the GA, which was a standard 
algorithm with 10 generations, crossover rate of 70% and 
mutation rate of 1%. The crossover was one-point and the 
mutation probability is meant for a single gene (i.e. bit). 
Two-step tournament selection was used. Population size 
was 100 and 240 training vectors were used. Note that 10 
generations are not sufficient to find a good solution, 
however we are interested in the speedup analysis only. 

The rest of the experiments (based on Section V.B and 
V.C) were executed with the same GA. The size of the 
population and the number of training vectors varied for the 
last experiments (240 vectors and 100 individuals for the 
training vector approach and vice versa) but the number of 
fitness evaluations was proportionally the same. The number 
240 was conveniently selected because the number of 
processing cores within the GTX 285 accelerator. 

Additionally, several more experiments were conducted 
focusing on the scalability of the proposed algorithms. The 
same parameters were used except for the number of training 
vectors or individuals within the population. Sizes of the 
problems were increased up to hundredfold relative to the 
original problem sizes. 

The fitness function of the GA consists of V simulation 
runs of the individual CA each for S simulation steps, where 
V is the number of training vectors and S is equivalent to 
double the width of the CA. At the end of each simulation 
run, the success of the run is evaluated based on the majority 
task (selected for demonstration purposes): All cells of the 
CA should be in the state prevalent at the initial 
configuration. 

B. Further Experiments With Majority 

Based on the results of previous experiments (see Section 
V), the best approach was selected and more detailed results 

were obtained. The focus of these experiments was to 
determine best block-size setting policy and to make a more 
detailed comparison between two accelerators on the same 
machine (iia and iib).  

Different problem sizes (namely 240, 480, 1200, 2400, 
4800. 9600 and 24000 training vectors) and block sizes were 
evaluated (8, 10, 15, 20, 40, 80, 120, 160, 240 and 320 
threads per block). Not all the results could be obtained for 
some tasks because the number of threads per block must be 
an integer.   

C. The Evolution of Binary Counters 

The other proposed approach mentioned in Section VI 
was also evaluated. The 4-bit counter design was selected as 
a benchmark since is not complicated in terms of search 
space, so the best solution is well known due to experiments 
with brute force search [17]. The problem has best solution 
with fitness 10 which means that the CA can approximate 
only 10 numbers from the sequence.  

The initial configuration of 5 was chosen deliberately, 
because the CA has the best results with this. For example, 
the seq(0) has best fitness of 8 and seq(2) has best fitness of 9. 
Best result for seq(5) generates the sequence 5-2-7-4-9-14-11-
12-13-6-15-0-1-2-7-4. The incorrect numbers are in bold 
[16]. 

The experiment was designed as follows: The CA was 
1D non-uniform 4-cell with r=1 (3-cell neighborhood) and 
static boundary conditions. Each CA simulation lasted 16 
steps. 

The evolution of the desired CA was performed with the 
standard GA. The population was set to 32 individuals, 
crossover rate of 70% and mutation rate of 18%. The 
crossover was one-point and the mutation probability is 
meant for a single gene (i.e. bit). Two-step tournament 
selection was used. The GA parameters match the 
experiment conducted in [17] to maintain the best possible 
quality of solutions and comparability to previous result. 

The termination was set to the achievement of the 
maximum fitness and several hundred runs were conducted 
with the serial version and several dozen with the parallel 
version. The machine for the parallel version was the same 
workstation as in previous experiments (ii), fitted either with 
GeForce 9600 GT or with GeForce GTX 285. The serial 
experiments were conducted on several dozen of blade 
servers comparable with the workstation (Intel Xeon 2.8-3.2 
GHz processors with 1 GHz FSB). The goal was to measure 
the average generation needed to find the best solution 
(fitness 10). Also, the time was measured for the serial and 
for the parallel versions. 

VIII.  RESULTS 

The objective of this paper was to evaluate the 
performance of several parallel algorithms incorporated into 
an EA. The majority problem was selected only to 
conveniently pose as the EA’s goal in the first series of 
experiments and so we are not interested in the quality of 
evolved solutions. The only relevant information is the 
achieved speedup compared to serial implementations. 
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The results for the laptop are shown in Table I while the 
results for the workstation are shown in Table II. The values 
in the tables are averages of 10 runs. 

Fitness evaluation means the simulation of one CA with 
one training vector (e.g. 100 individuals with 240 training 
vectors each and over 10 generations means 24000 fitness 
evaluations). 

TABLE I.  RESULTS FOR LAPTOP WITH 8600M GS 

Approach Fitness 
evaluations 

Serial time Parallel 
time 

Speedup 

Simulation 
of CA only 

50000 347.39 0.56 621.68 

Parallelization of GA 

CA cells 240000 1787.23 2597.60 0.69 

Training 
vectors 

240000 1787.74 251.20 7.12 

Individuals 240000 1784.26 821.04 2.17 

TABLE II.  RESULTS FOR WORKSTATION WITH GTX 285 

Approach Fitness 
evaluations 

Serial time Parallel 
time 

Speedup 

Simulation 
of CA only 

50000 187.33 0.38 489.75 

Parallelization of GA 

CA cells 240000 981.34 1597.60 0.61 

Training 
vectors 

240000 980.38 72.18 13.58  

Individuals 240000 980.95 105.21 9.32  

 
The scaling properties of the three proposed algorithms 

are summarized in Table III. Only the best results from both 
testing computers are shown. The result for 24000k fitness 
evaluations with the cell level parallelization is not shown 
because the computation did not terminate before 10 hours 
reserved for parallel computation.  

TABLE III.  SCALING PROPERTIES OF PROPOSED PARALLEL 
ALGORITHMS 

Fitness 
evaluations 

240k 2400k 24000k 

Approach Speedup 

CA cells 0.69 0.69 N/A 

Training 
vectors 

14.36 127.16 417.36 

Individuals 9.32 28.41 192.88 

 
After this, several extremely long runs (more than 240k 

fitness evaluations) were computed with the training vector 
approach and the best results approached a speedup of 420. 

The other series of experiments shows results of 
comparison between serial version, workstation with 9600 
GT (iib) and workstation with GTX 285 (iia). Note that the 
original contribution [1] included result with GTX 280. In 
this article the accelerator was replaced with its more modern 
version GTX 285. The difference between GTX 280 and 285 
is in higher core and memory operating frequencies, other 
characteristics remain the same. More details on the 
accelerators may be found in [4]. 

As mentioned in Section V.B, several variations of the 
task were evaluated. Table IV. shows the best results for 
different problem sizes (number of training vectors) and 
different thread-per-block setup. The results are average 
speedup over several runs with respect to serial run described 
in Section VII. The best results for each accelerator are 
highlighted.  

TABLE IV.  SPEEDUP FOR 9600 GT AND GTX 285 

Problem size [training vectors] Block 
size 240 600 1200 2400 4800 9600 24000 

  9600 GT 

8 13.95 26.14 22.66 26.72 26.77 28.09 28.39 

10 14.14 27.08 33.02 33.28 33.29 35.29 34.99 

15 14.36 27.86 34.30 44.65 52.33 52.51 52.64 

20 13.99 27.42 59.38 61.26 61.18 61.42 64.13 

40 13.97 27.27 62.54 92.90 97.37 98.59 97.96 

80 13.84 27.50 64.47 106.06 108.02 110.00 109.64 

120 13.65 27.09 60.92 97.18 98.68 118.61 121.03 

160  N/A 26.71 N/A 108.56 101.22 120.32 126.34 

240 12.69 25.15 61.00 83.97 98.44 123.19 121.02 

320  N/A  N/A  N/A  N/A 109.68 110.49 111.10 

  GTX 285 

8 13.58 27.00 64.21 64.00 83.28 97.20 94.61 

10 13.57 27.02 65.27 117.72 118.85 122.58 120.79 

15 13.58 27.04 66.08 126.68 124.73 161.32 170.53 

20 13.22 26.68 65.27 125.01 215.24 218.03 218.67 

40 13.25 26.49 65.45 125.99 222.77 286.31 272.57 

80 13.14 26.32 64.82 127.16 232.85 350.96 329.73 

120 12.96 25.92 64.21 125.87 222.62 351.56 387.20 

160  N/A 25.55  N/A 124.10 236.04 370.48 417.36 

240 12.08 24.10 59.75 117.43 224.61 302.47 387.37 

320  N/A  N/A  N/A  N/A 208.42 371.04 377.95 

 
Figure 7 shows best results for different accelerators and 

problem sizes only for the optimal block size settings. The 
results are average execution time obtained from several 
runs. Figure 7 indicates the difference in performance 
growing with the problem size. 

The last series of experiments measured the speed of 
evolution designing the solution for the 4-bit counter 
problem.  

The average generation needed to achieve the maximum 
fitness was 14509 and the average time to achieve it was 
5.25 seconds. 
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With the 9600 GT accelerator (iib), the average 
generation was 14591 and the time needed 8.5 seconds. 

For the GTX 285 accelerator (iia), the average results 
were 14374 generations and 8.77 seconds. 
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Figure 7.  Execution time for different problem sizes and best block size 

settings for GeForce 9600 GT and GTX 280 

It can be seen that no actual improvement of the GA was 
achieved. However, this was to be anticipated. Moreover, not 
even a speedup of computation was achieved but on the 
contrary, the result was slower than serial computation. The 
reason for this is too small population of the used GA. The 
overhead required to start the parallel computation on the 
GPU is larger than the speedup. The result is summarized in 
Table V. 

TABLE V.  SPEEDUP OF EVOLUTION  WITH POPULATION OF 32 

GPU Avg. generation Time [s] Speedup 
Serial 14509  5.25  N/A 

9600 GT 14591  8.50  0.62 
GTX 285 14374  8.77  0.60 

  
In order to prove that accelerating the GA has any sense, 

another experiment was conducted. This time the population 
was increased tenfold to 320 individuals. An unsolvable 
fitness condition was set and the computation was terminated 
at generation 15000. This had to be done in order to actually 
measure something, because otherwise the GA would end 
too soon. This time the experiment proved the conclusion of 
the previous one: The new problem was large enough, that 
the parallelization could pay off with a speedup of 38.66 for 
(iib) and 38.11 for (iia). Results may be found in Table VI.  

TABLE VI.  SPEEDUP OF EVOLUTION WITH POPULATION OF 320 

GPU Avg. generation Time [s] Speedup 
Serial 15000  54.12  N/A 

9600 GT 15000  1.40  38.66 
GTX 285 15000  1.42  38.11 

    

IX.  DISCUSSION 

A. Speedup vs. Cost 

As can be seen in Tables I and II, the parallelization of 
the CA simulation on the level of CA cells shows massive 
speedup. More surprisingly, those results were obtained with 
only one multiprocessor in the GPU due to the inter-block 
synchronization problem mentioned in Section IV. The 
possible explanation is the effective use of the device shared 
memory which is much faster than ordinary memory. The 
results from the laptop GPU are better, because they were 
compared with much slower processor in the laptop opposed 
to the hi-end processor in the workstation. 

However, when the simulator was inserted into a GA, the 
speedup declined due to more memory accesses and fitness 
evaluation. The one-block approach utilizing only one 
multiprocessor shows its weaknesses and the overall result is 
even worse than the serial approach. 

The results for the parallel GA (the approach from 
Section V.B) with threads executing individual training 
vectors are the best of the experiments. The maximum 
speedup for the workstation is 417.36 and the speedup for 
the laptop is only 31.34 for the largest problem. As opposed 
to the cell parallelization approach from Section V.A, this 
algorithm has to upload large quantities of data to and from 
the device memory but it has more processor cores and the 
data don’t conflict with each other. 

As seen in Table III, there was no speedup drop with 
larger problems (2400 and 24000 training vectors) and the 
performance was even better than for the smaller problem 
(240 training vectors). 

The individual-per-thread approach (Section V.C) 
showed smaller speedup than training vector-per-thread 
approach. The lower performance is probably caused by 
more memory transfers (several sets of CA rules per block 
opposed to only one set of CA rules per block). 

There are also some problems with graphic accelerator 
cards used as primary display adapters due to graphic driver 
timeouts caused by long thread execution times so this 
approach may not be suitable for this reason. This problem 
may be solved by using second graphics adapter as the 
primary display adapter at the expense of increased cost in 
hardware. 

The scaling capabilities of the last approach are also good 
as seen in Table III. The conclusion for the experiments is 
that parallelization on the level of evaluation of training 
vectors is the most effective due to utilization of all 
multiprocessors in the GPU and quick and small parallel 
kernel (code for the GPU - as opposed to parallelization on 
the level of individuals where the kernel lasts longer). 

The comparison of graphic accelerators showed partly 
interesting results. A GeForce 9600 GT with 8  
multiprocessors showed a nice speedup not falling so far 
behind the GTX 285 with 30 multiprocessors in some cases. 
The mid-end card was even faster in some of the smallest 
tasks. This could be influenced by slightly larger scheduling 
overhead with the more complex GPU. This opposes the 
manufacturer’s claim about the zero scheduling overhead 
[15]. No other explanation seems to fit and since precise 
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details about GPU hardware are obfuscated by the 
manufacturers, we may only guess the real reason.  

Of course, when the problem size increased sufficiently, 
GTX 285 manifested its higher number of processors which 
could be used to full capacity and the speedup was 
significantly higher. The interesting part is, that 9600 GT 
costs about 80 Euro and the GTX 285 about 370 Euro (Jan 
2010, retail price for the Czech Republic). The low-end card 
shows no promise for scientific computation for two main 
reasons: It is mounted in a laptop and the memory bus is too 
slow. 

B. Other Tasks for GPU 

It seems that the mid-end card is the most cost-effective 
for small and medium-sized tasks. However, the results may 
be different with other parallelization tasks. It is important to 
note the two laws for parallel computation. First is the 
Amdahl’s law [12] which states: 

 
S(P) = P / (1 + α  (P – 1)), 
 

where S(P) is the speedup, P is the number of processors and 
α is the sequential part of the task. The equation clearly 
shows that a fixed task speedup is severely limited by the 
sequential part, no matter how many processors are used. 

The second law is attributed to Gustafson [12]: 
 
S(P) = P – α (P – 1) 
 

and it may be applied to a class of problems, where the non -
sequential part of the task is limited by the number of 
processors and when a new processor is added, we may 
assign it the same amount of work as to the other processors. 

This class of problems includes evolutionary design of 
CA rules which need to be evaluated by high number of 
training vectors. More training vectors means more accurate 
results and more fine-grained fitness function which may 
contribute to better evolution results. 

There is also another class of evolutionary design 
problems which is limited by the first law. This class 
includes CA design, which needs to evaluate a small fixed 
number of steps or possibilities and is not suitable for 
parallelization. These problems may be also limited by the 
number of individuals within the GA population, as was the 
case with the 4-bit counter evolution, where the best 
population size is 32 [17]. Some of these problems may drift 
to the area where the task size could be expanded and so 
Gustafson’s law may be applied. Thankfully, many CA 
design tasks by means of EA fall in this category like our 
example with the majority benchmark. The 4-bit counter is 
only a simple demonstration and evolution of larger non-
uniform CA will probably need larger populations. 

The last conclusion obtained from the results is the fact 
that block size settings greatly impacts the GPU’s 
performance. Table IV. shows that the optimal settings 
changes with the size of the problem.  The reason for the 
need to tailor the settings for a certain task is the way the 
GPU dispatches threads within the blocks. 

The GPU programming model uses several levels of 
data- and thread-parallelism which enable the simultaneous 
execution of data-independent threads [15]. This concept 
works in concert with the hardware which offers scheduling 
consistent with multi-threading concept. This enables the 
threads within one block to be scheduled as the need arises. 

The threads are executed on groups called “warps” which 
are 16 threads wide and which work in a SIMD concept. 
That means that each thread within the warp has to execute 
the same instruction, of course on different data. If the blocks 
are not large enough, significant parts of the warp may be 
wasted. Also, the warps are scheduled depending on their 
availability. If one warp waits for a memory access, several 
more warps may be executed, even from different blocks. 
Figure 8 illustrates simultaneous execution of warps on three 
different multiprocessors. 

 

 
Figure 8.  Warps executing on three different multiprocessors (MP): Each 
warp contains 16 threads and each is executing the same instruction. Warps 

are scheduled according to readiness for execution. 

X. CONCLUSION 

The experiments have shown that evolution on GPUs has 
several limitations. The most significant one is the fact, that 
the amount of device shared memory and registers is limited 
thus restricting the size of evolved CA, the number of 
training vectors or the size of the EA population. 

Dealing with this problem may be the objective of further 
research and development. Possible solutions include 
partitioning the computation and serializing the parts in order 
to save memory. Another solution may be using device 
global memory instead of shared memory and local memory 
instead of registers. However, both of these approaches 
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would result in slower performance. Future accelerators may 
possess larger shared memory [16]. 

Another possibility for development is testing 
combinations of the three proposed approaches. E.g. it would 
be possible to evaluate several individuals of the GA 
population each in one block while running parallel lookup 
of cell transition rules in that block. 

Further improvement of methods mentioned in this paper 
could lead into fast parallel version of Sipper’s Cellular 
programming approach [19]. 

Cellular programming is a methodology developed to 
design non-uniform CA systems capable of computing 
complex tasks such as synchronization, majority or sorting. 
Speeding up the evolution of CA systems may prove to be 
appropriate step in perfecting such systems via simulation 
and implementing them in hardware. 

The most recent language contribution to the field of 
GPGPU (General Purpose GPU computing) is OpenCL 
(Open Computing Language). OpenCL is a C language 
extension similar in use to CUDA but there is one significant 
improvement: It supports many different GPU or CPU 
architectures, being almost universal. OpenCL uses 
abstractions independent of manufacturers which can be 
automatically transformed into efficient code for any 
supported architecture by means of compilation. With Open 
CL, it is possible to run the same program on nVIDIA and 
ATI. The language and its tools started to become available 
only recently, so this article deals only with CUDA. Future 
plans include transferring current and prospective work to 
this new language. 

Generally the future of GPGPU looks bright. 
Manufacturers like nVIDIA and ATI compete with each 
other in GPU performance pushing the development further. 
Right now more advanced GPU are being planned and 
developed. Example of this new generation may be nVIDIA 
Fermi which will include 512 cores (64 MPs) and such 
technologies as simultaneous kernel execution, shared cache 
memory for the entire GPU or ECC (error checking and 
correction) [16].  

Moreover with the introduction of OpenCL the 
programming of competitor’s hardware will be unified, 
further improving the programmer’s experience. The 
architecture is also designed as scalable from the start 
enabling to connect several GPUs together or to migrate old 
programs to newer versions just by adjusting the problem 
size and block settings. More cores and higher operating 
frequency means more computing power for problems which 
can be enlarged in accordance with Gustafson’s law.    
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