
Service-Oriented Integration
Using a Model-Driven Approach

Philip Hoyer, Michael Gebhart, Ingo Pansa, Aleksander Dikanski, Sebastian Abeck
Research Group Cooperation & Management

Karlsruhe Institute of Technology
Zirkel 2, 76131 Karlsruhe, Germany

{ hoyer | gebhart | pansa | a.dikanski | abeck } @ kit.edu

Abstract — Provision of processes supported by Information
Technology (IT) spreading around several different units of
one organization requires the integration of existing
distributed legacy applications. Typically the part of the
application’s functionality used in a process is offered through
proprietary interfaces, complicating the integration. A possible
solution to this issue is to construct standards-based, service-
oriented interfaces offering only the required functionality.
Existing approaches within this field mostly focus on the
technical issues of the integration using Web services and
hardly consider the integration from the perspective of the IT-
supported processes. In this article, we introduce a
development approach for modeling an IT-supported process
which is enhanced by the automatic generation of necessary
Web service artifacts. Our approach is exemplified by a
scenario at the Karlsruhe Institute of Technology (KIT) that
implements a process to visualize the study progress of a
student.

Keywords—model-driven development; service-oriented
integration; Web services; Unified Modeling Language

I. INTRODUCTION

Due to fast changing markets and emerging
requirements, an organization’s Information Technology (IT)
needs to be flexible in order to quickly provide new
functionality. Usually this flexibility is required at the high
level of rapidly changing business processes, which
necessitates the implementation of IT-supported business
processes. Several applications already exist and are in
practical use within today’s organizations, providing basic
functionality and data. Often these existing legacy
applications can hardly be replaced or enhanced with new
functionality due to high costs or the associated high
complexity. If new functionality has to be added, it should
reuse existing functionality in order to reduce costs. Thus,
the realization of new functionality requires the integration
of these existing applications. Using existing applications in
an integration scenario is complicated by the proprietary
interfaces these applications provide. Additionally not all of
the functionality of an application might be used in a new IT-
supported process. To overcome these issues, a service-
oriented architecture (SOA) is a widely accepted approach
for process-oriented integration scenarios, but still the
development of standardized interfaces is carried out by

hand, leading to high development costs as well as to long
and error-prone development cycles.

In a typical top-down integration approach, in which the
needed functionality of the legacy applications is determined
by the IT-supported process to be implemented, the process
has to be formally modeled beforehand. It describes the flow
of actions that have to be performed for the new
functionality. Each action represents a functionality provided
by one of the existing applications. The workflow that
integrates the existing applications can be formalized using
Activity Diagrams of the Unified Modeling Language
(UML) [2]. In a next step, the existing applications have to
be made accessible to reuse existing functionality. For this
purpose, adapters have to be developed to perform the
integration on a technical level. They enable the access to
existing functionality in a convenient way. Figure 1
illustrates this approach of developing new functionality by
integrating existing functionality. As technology to realize
the adapters, Web services can be used as they represent a
standardized technology that is platform and programming
language neutral. Web services are de facto standard in the
context of service-oriented architectures. To provide the
functionality using Web services, the interface description
and the data schemas have to be developed using the Web
Service Description Language (WSDL) [3] and XML
Schema (XSD) [4]. Providing the functionality as a Web
service enables a convenient usage of it within different
contexts. To decouple the Web service from the existing
applications, it is desirable to abstract from existing data
types within the existing application and to create the data
schema used within the Web service from a more conceptual
view.

Existing integration approaches mostly focus on
solutions on technical levels. That means that they focus on
the development of Web service adapters including technical
aspects such as the usage of various Web service standards.
The conceptual issues such as the modeling of an IT-sup-
ported process that can be effectively realized are subject of
further investigation. This requires the analysis of the
existing applications to avoid unnecessary data transforma-
tions when realizing the workflow that integrates the existing
applications. For example, the data types available within the
existing application can provide an indication about how to
design an appropriate IT-supported process.

304

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In this article we propose a development approach that
supports the developer in creating the IT-supported process
and helps to speed up the workflow that integrates the
existing applications by automatically generating Web
service adapters for existing applications and a Web service
for the newly developed functionality. The presented
approach in this paper extends our model-driven
development method described in [1]. To get a better
understanding of the IT-supported process, we start with
mock-ups and sketches of graphical user interfaces (GUI).
They enable the identification of required functionality. As a
complement a domain model is created, allowing the
derivation of conceptual data types that are independent of
existing applications. Afterwards, an analysis of existing
applications is performed that provide the required
functionality identified with the help of the GUI sketches.
This analysis enables the creation of the process with a
reduced set of data transformations. The process is
formalized using Activity Diagrams of the Unified Modeling
Language (UML). In a next step, the Web services and data
schemas are automatically derived from the formalized
process and the domain model using an enhanced version of
our model-driven development method [1]. The
enhancement lies in the usage of the domain model which
enables the decoupling of the Web service providing the new
functionality from existing applications by creating data
types that are independent from existing applications.

The derivation of the Web service artifacts is a two step
process, starting with a platform-independent model
representing the service interfaces and data schemas on a
conceptual level and the final platform-specific realization
using Web services. The approach targets a service-oriented
integration in which functionality is provided as a service.
The approach itself is model-driven, which means that the
required Web service interface descriptions using WSDL and
the data schemas using XML are generated automatically
from the workflow that integrates the existing applications
and the domain model. To realize our approach, existing
work in the context of developing Web service adapters is
reused. Also, existing guidelines how to derive data schemas
from a domain model are applied.

Our approach is exemplified by a university scenario at
the Karlsruhe Institute of Technology (KIT). In this scenario,
the goal is to provide a new feature that allows students to
gain insight into their current study progress, by combining
and visualizing their data from disparate sources. The
required functionality and data is shared across several
existing applications, so that an integration workflow is
necessary, which accesses these applications and combines
the collected data. In a first step, the requirements are
analyzed. The domain model for the study progress scenario
and several GUI sketches are created. Based on these
requirements, the required applications are identified and the
process is created and formalized. Afterwards, the process
and the domain model are transformed into a description of
the required services. In a last step, the necessary Web
service interfaces using WSDL and data schemas using
XML Schema are created.

The rest of the article is structured as follows: Section 2
introduces the background and gives general information
about integration issues and their solutions. In Section 3 the
concept of our approach of a service-oriented integration
using a model-driven approach is described. The practical
implications and issues of our approach are exemplified by
the aforementioned case study of a study progress
visualization in Section 4. Section 5 presents the most
relevant related work in the context of integrating existing
functionality, modeling workflow with the UML and
transformation into Web services. Section 6 concludes this
article, discusses the achieved results, and presents an
outlook as well as suggestions for future research work.

II. BACKGROUND

The necessity for building integrative solutions comes
along with the evolution of the way Information Systems are
used. We thereby define an Information System (IS) as all
the components and algorithm that are necessary for
enabling IT-based computation of information. In the very
beginning of supporting business activities through IT, the
typical architecture of an IS was structured using two logical
layers – a layer representing the client side and a layer
representing the centralized business logic and data stores –

New Application

Functionality N
…

Adapter
(Web Service)

Adapter
(Web Service)

Existing Application ZExisting Application A

Functionality 1 Functionality 2

Functionality

integrates existing
functionality

Workflow Model

Workflow

Existing Application A Existing Application Z

Functionality N

inputParameter

Functionality 1

Functionality 2

outputParameter

outputParameter

inputParameter

Workflow Model

Workflow

Existing Application A Existing Application Z

Functionality N

inputParameter

Functionality 1

Functionality 2

outputParameter

outputParameter

inputParameter

1 2

3

described by

Figure 1. Integration of Existing Functionality

305

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

typically on a single tier or host. The availability of today’s
high performance networks connecting datacenters all over
the world has lead to a multi-layer and multi-tier structuring
of distributed business logic and distributed data stores.
Figure 2 shows a comparison of these two approaches (based
on [20]). It is obvious that while in the late 1960’s one
centralized datastore and computation logic served multiple
clients, we are faced not only with distributed computation
logic today but also distributed data stores that might be
connected with many-to-many relationships amongst
together.

Client

Centralized
Logic & Datastore

Distributed
Logic

Distributed
Datastores

Late 1960 Today

Client

1

*

*

*

*

*

Client

Centralized
Logic & Datastore

Distributed
Logic

Distributed
Datastores

Late 1960 Today

Client

Client

Centralized
Logic & Datastore

Distributed
Logic

Distributed
Datastores

Late 1960 Today

Client

1

*

*

*

*

*

Figure 2. Evolution of Information Systems

Although separating the business logic from the data
stores and enabling access to these components in a
distribution way has many advantages, a logically holistic
access to the information these systems contain is desired.
Furthermore, not only access to information is needed but
also an evolution of functionality is desired. Therefore
reasons for aiming for integrative solutions in order to
capture a holistic access to information are manifold:
increasing the efficiency of business-related tasks, extending
existing applications with new functionality, reusing existing
applications, saving of software investments, avoid the costs
of introducing a new software system. According to [21] the
term “application integration” describes a strategic approach
to couple different existing applications for the purpose of
simplifying business-related tasks. The benefit of integration
within these scenarios is more than just a conciliation of
existing functionality. Rather, the idea is to leverage
synergetic effects and thus to increase efficiency of IT-
supported business activities.

For the purpose of constructing software-based solution
logic, a clear distinction of the necessary development steps
is necessary. There exists several different classification
schema for describing levels and approaches for application
integration [20],[21]. A common agreement to a basic
classification scheme comprises four categories:
information-oriented application integration (IOAI), service-
oriented application integration (SOAI), business process-
oriented application integration (BPOAI) and user interface-
oriented application integration, which is also referred to as
portal-oriented application integration (POAI). For a better
understanding of the conceptual contribution of our work, at

least some basic knowledge of the fields of application of
each of the single possibilities is necessary, which is why we
briefly describe each single category and highlight the main
points of interest.

A. Information-Oriented Application Integration

Information-oriented integration is a simple approach for
integrating several existing systems by considering the
extraction of information of a source system and deciding
how to convict this information into one or many different
target systems. Almost any information system that is used
today in a typical business scenario follows an n-tier
architecture based on a database or a data store component
enabling the information-based integration to easily be
introduced. This is often the only possibility if changes to the
business logic of an existing information system cannot be
performed.

Source
Data Source

Source
Schema

Destination
Schema

Logical Mapping

Destination
Data Source

Middleware

describes

describes

Q
u

e
ry

Q
u
e

ry
re

su
lt

U
p
d

a
te

Mapping
Compiler

Source
Data Source

Source
Schema

Destination
Schema

Logical Mapping

Destination
Data Source

Middleware

describes

describes

Q
u

e
ry

Q
u
e

ry
re

su
lt

U
p
d

a
te

Mapping
Compiler

Figure 3. Concepts in Information-Oriented Application Integration

Figure 3 outlines the principles of this approach. The
different data sources are described using different schema
descriptions. These descriptions have to be logically mapped
to each other, which can either be done at runtime or in less
frequent cases, at design time.

Although the advantages of this approach are its
simplicity and often fast-to-develop solution, this approach
bares a couple of disadvantages. Often it is not clear in
advance to what extends the desired solution needs to be
based on integrated data stores. This leads to a couple of
single integrative island with a total amount A where
 connections for different data stores
ending in solutions that are hard to maintain or to evolve.

Further, this approach is not aligned with requirements
derivable from the overall business processes, making
changes at the business level hard to be propagated to the
supporting IT level.

B. Service-Oriented Application Integration

Often it is not sufficient to only consider the information
that existing applications operate on but also to enable access
to functional capabilities the existing applications offer. By
focusing the functionality in means of interface-oriented

306

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

semantics, one can think of a service a distinct application
offers, leading to a new aspect of layering the possibilities of
integration: service-oriented application integration (SOAI).

Simply speaking, SOAI allows applications to share
common business logic [21]. The idea is to identify objects
of reuse within an organization and enable access to these
reusable objects through standardized service interface.
Although the concept of reuse can hardly be assumed in
advance, in the last years a couple of technologies and
platforms to realize this vision have surfaced, namely Web
service technology with its standardized interface
descriptions and access methods using WSDL [3], XML [4]
and SOAP [22].

Service-orientation is rather a design decision than a
concrete solution to all the integration issues. Many
questions are still open, for instance, it often is not clear how
to design services in order to fulfill certain quality attributes
such as loose coupling.

C. Business Process-Oriented Application Integration

While IOAI occurs at the level of data exchange [21], the
concept of business process-oriented application integration
(BPOAI) can be seen as an advancement of the IOAI and
SOAI by focusing not only the data level of each single
application but considering the overall process that each of
the single applications participate with. Therefore, BPOAI
takes the flow of information on a more abstract level,
enabling an admission to the integration issue on a level that
is more independent of the concrete data schemas.

Having the existing applications organized using service-
oriented interfaces can be seen as a requirement for an
efficient support of the business processes. Typical
implementations of service-oriented integration scenarios are
based on Web services, thus enabling the descriptions of
interfaces and exchanged data schemas using XML. Such a
standardized approach enables the usage of models for the
descriptions of the processes and is proposed to lead to a
more formal approach to solve integration issues, as models
can easily be reused. Therefore, great efforts have been made
to introduce modeling languages that are based on formal
meta models in order to support direct transformations from
the modeled business process to a concrete architecture
supporting these modeled processes. Examples of these
languages include the UML Activity Diagrams or the
Business Process Modeling Notation (BPMN) [23] with its
upcoming release 2.0 but also approaches that are based on
mathematical formalism such as Petri nets [24] or event-
driven process chains [25].

D. User Interface-Oriented Application Integration

Focusing the user interface for solving integration issues
aims at enabling a single point of access to a multitude of
existing user interfaces the existing applications have. While
the first three approaches (IOAI, SOAI, and BPOAI)
consider the exchange of information for the purpose of
automating parts of business processes, the application
integration on the level of user interfaces takes the human
factor into account. Still many steps of business processes
cannot be fully automated today, thus the need for enabling

access to information or operations distributed applications
provide are still a requirement. One of the biggest problems
with user interface-based integration is the fact that almost
any graphical user interface (GUI) of traditional business
applications is tightly coupled with monolithic frameworks
making it all but impossible and infeasible to make the
functionality a GUI offers available to external software
artifacts.

In the recent yeas, the concept of portals evolved for
Web-based applications. User interface-oriented application
integration therefore is often called portal-oriented
application integration (POAI). A portal thereby is a Web
browser-based approach for constructing a distributed
architecture consisting of a portal server, a framework for
generating and operating pluggable parts (portlets) of the
user interface and a couple of connectors to access the
existing applications.

E. Discussion

We currently observe a shift from simple information-
based approaches to service-oriented approaches because of
the several advantages of SOAI and because of the
disadvantages of the other approaches pointed out in the
previous descriptions. Although IOAI can be the solution to
choose in small scenarios, SOAI proposes to have a better
acceptance due to the enablement of business process-
oriented aspects. A clear separation of IOAI and SOAI can
be given by arguing that IOAI solely focuses the exchange of
information, while SOAI considers not only the information
but also the methods that operate on the information. As a
major goal of the integration project we applied our
development approach on was to create a solution that is
accepted by a wide range of students having different skills
in using Web-based information systems, the integration of
the existing applications should lead to a single user interface
that can be extended with further functionality on demand.
Figure 4 relates the different aspects of integration of our
approach, showing the flow of information across all
elements of the architecture to be integrated.

Study Portal

Web Service Web Service

Account Data Examination Data

Web Browser

Study Data

Web Service

POAI

SOAI /
BPOAI

Existing
Applications

Study Portal

Web Service Web Service

Account Data Examination Data

Web Browser

Study Data

Web Service

POAI

SOAI /
BPOAI

Existing
Applications

Figure 4. Different Aspects of Integration in our Approach

Our development approach therefore focuses the
construction of service-interfaces for supporting both a
flexible realization of business processes and usage of portal
technology. For the purpose of simplifying the development
method, we equivalently use the term “business process” and
“workflow” as we focus on the technical representation of a
business process which we consider to be a workflow [36].

307

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This is not a constraint in our opinion as we argue that a
technical representation of a business process can be found
and the relevant automatable steps can be identified. For
increasing the quality of the engineered solution, we use
models and model transformations to omit unnecessary
manual steps in code generation. Figure 5 outlines the steps
in our development process that are based on model
transformations and shows which of the development steps
have to be performed using manual model transitions.

III. SERVICE-ORIENTED INTEGRATION USING A

MODEL-DRIVEN APPROACH

In this chapter we describe our model-driven software
development approach for a service-oriented integration of
legacy applications using the Unified Modeling Language
(UML). The overall goal of the development process is to
develop a new high-level service by integrating legacy
applications via service adapters (low-level services) and
specify a workflow to compose those low-level services in
such a way that they create the high-level service. Since
existing applications used in the composition might be
substituted in the future by newer applications, which
provide new or better functionalities, the final solution must
consider the adaption to a changing IT-landscape with
reasonable time and effort.

The proposed development process contains six steps but
does not cover the whole software lifecycle. For example,
the test and deployment step is omitted as it does not
significantly differ from other software development
processes. Furthermore our solution should be adapted to the
requirements of the integration project, adding new steps or
leaving out steps described here.

Our development process starts with the definition of the
requirements (Figure 5: A). Due to our experience we
suggest the development of a prototype of the graphical user
interface, but other methods can also be used. After
capturing the requirements the next step is to develop a
domain model (Figure 5: B). It contains the entities derived
from the requirements. The domain model is of conceptual
nature and independent from concrete applications. Having
completed the domain model, the development process
continues with the design of the workflow according to the
defined requirements (Figure 5: C). In this step we regard the
available legacy applications but also use the entities from
the domain model created in the previous step. This allows
us to avoid dealing with data transformation issues, since in
the legacy systems the entities might be represented as
different data types. Afterwards, model-driven transforma-
tion techniques are applied, generating formal interface
descriptions and executable workflow definitions by
transforming the workflow model and the domain model into
a service model (Figure 5: D). All created and generated
models so far are independent from a concrete technology. A
final transformation step generates the necessary Web
service artifacts – WSDL for service interfaces, XML
Schema for data types and BPEL for workflow definition
from the service model (Figure 5: E). Note that we use Web
service technologies for the integration solution since it is
most common, yet the transformations can be rewritten to

generate artifacts based on other technologies than Web
services using the same models (as suggested by the concept
of Model-Driven Architecture). At last the Web service
adapters are implemented based on the generated WSDL
interfaces, which is still done by manual work (Figure 5: F).
The adapter can either accesses a database used by the legacy
application or uses a native interface provided by the legacy
application.

Figure 5. Model-Driven Development Process Overview

In the following the development process is described in
detail.

A. Capturing the Requirements

The requirements needed for designing the integration
solution can be captured using manifold techniques. All
techniques for requirement analysis have in common that
there is a close collaboration between the customer and the
architect or similar roles, since only the customer knows
what he expects from the final software solution, but cannot
express it in an unambiguously and well-formed way.

Some traditional techniques for requirement elicitation
are introspection, questionnaires, interviews or brainstorming
[11]. Representation-based techniques use descriptions of
scenarios or use cases. Our development approach does not
prescribe a concrete technique but rather allows the
developer to choose one that fits best to the project. Since we
propose an approach for integration scenarios, an important
part after the requirement elicitation is to analyze existing
applications and systems, which are required to fulfill the
functional requirements.

308

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A common approach that works well in our experience is
the prototyping of the graphical user interface, since it gives
the customer a “look-and-feel” of what the final solution
might look like. The requirements can than be deduced from
that prototype.

B. Creating the Domain Model

Based on the defined requirements, the next step is to
create a domain model. A domain model is a static model
that contains relevant entities of that domain and their
relations [26]. It does not contain dynamic issues, like
sequences or information flows. Consequently we use UML
class diagrams so that each entity in the domain model is
formalized as an UML Class with typed Properties.
Furthermore we use Associations and Generalizations (note
that all UML meta classes are written in italic) to specify
relations between entities. All Properties should be typed as
primitive data types (like string, integers, boolean values
etc.). Relations between entities are formalized by modeling
Associations between the corresponding Classes. Packages
can be used to classify entities into logical groups.

In contrast to the approach described in [1] this approach
propose to design the entities rather abstract by under-
standing the domain the integration project is settled in and
not derive them from the existing legacy applications. Nouns
and noun phrases in the requirements specified in the
previous step can help to identify relevant entities. Although
this seems to be a rather complex and time-consuming task
than deriving the entities directly from the legacy
applications, the effort put into the domain model will pay
off later when new or changing requirements have to be
implemented or new applications substituting the legacy
applications have to be integrated into the existing solution.
We also recommend using or building upon existing
standardized domain models, such as ebXML in the domain
of electronic business [35], complementing our use of open
standards for describing the service interfaces and data types.
Using such standardized domain models simplifies the
integration of functionality of third party services as well as
it provides the ability to offer the service to third parties.

With the domain model, our integration solution use data
types that are independent from the concrete legacy
applications. The workflow only operates with data objects
from the domain model and therefore does not have to cope
with transformations of different data types representing the
same entity that otherwise would be necessary to implement
in the workflow. At runtime the data transformations
between the legacy applications and the workflow are carried
out in the service adapters. Hence the service adapter
transforms native data objects from the legacy application
into data objects as defined in the domain model and vice
versa. The legacy applications can be replaced by new
applications at the cost of rewriting the relevant service
adapters, but the workflow does not have to be adapted, since
the interface of the service adapter remains the same.

C. Designing the Workflow Model

After the completion of the domain model, the next step
is to design the workflow model in a bottom-up way. During

the execution of the workflow, the legacy applications are
invoked and provide required data or execute actions. In
contrast to the domain model, the workflow model is a
dynamic model. The workflow model makes use of the
entities defined in the domain model though. In the model
the workflow itself is represented by an UML Activity (c.f.
Figure 8: Source model, Activity “Wf”).

Many workflows require some initial data transferred
from the invoking application before the workflow can be
executed. Also after the completion of most workflows some
data is returned to the application that has called the
workflow. To specify those data objects, the activity can
have ActivityParameterNodes attached to it (Figure 8:
“wfIn”, “wfOut”). An ActivityParameterNode always has a
reference to a Parameter. The Parameter is either typed with
a primitive type or a concrete Class from the domain model.
Furthermore the Parameter requires a direction type that
indicates if the value of the Parameter is passed into the
workflow or from the workflow.

To represent the legacy applications in the workflow
model that are invoked at runtime ActivityPartitions are used
(Figure 8: “AppX”). ActivityPartitions are usually used to
group Actions in an Activity that share some common
characteristics, e.g., belonging to the same organization unit.
The Activity representing the workflow must contain at least
one ActivityPartition, because otherwise there would be no
legacy application to call.

To call a legacy application, CallOperationActions are
modeled (Figure 8: “OpX”). CallOperationActions are more
specialized Actions, which have a reference to an Operation.
As a minor restriction, it is not possible to invoke more than
one application within one invocation. Therefore, each
CallOperationAction must be contained in exactly one
ActivityPartition. However, since one application can be
invoked in many ways to retrieve different data sets, an
ActivityPartition can contain several different Call-
OperationActions.

The activity diagram is refined by specifying the type of
data sent to or retrieved from the invoked applications. The
type of data sent to an application by one invocation is
modeled by adding InputPins and/or ValuePins to the Call-
OperationAction (Figure 8: “xIn”). In contrast, OutputPins
represent the data returned from an application (Figure 8:
“xOut”). According to the UML meta model [1], a Pin is
derived from the TypedElement and the MultiplicityElement
meta class by Generalization. The former enables the user to
type a Pin with a PrimitiveType (such as String, Integer, etc.)
or one of the data objects modeled earlier as a Class. The
later allows the collection of complex data structures in one
invocation. The same applies for the ActivityParameter-
Nodes.

To represent the data flow between the invocations, we
add ObjectFlows between InputPins and OutputPins. The
ObjectFlows also specify in which order the invocations
must be executed. Additionally, if a typed InputPin does not
have a matching incoming ObjectFlow, the required data has
to be collected by an additional invocation. In such a case,
we need to model new CallOperationActions, which return
the required data and provide an OutputPin for that. Of

309

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

course, the appropriate application which holds the data must
be known in advance. Thus the application has to be added
as an ActivityPartition, if not present yet.

The model containing the Activity formalizes the
workflow and the legacy applications to be invoked. Due to
the ObjectFlows it is further specified how data is processed
in the workflow and in which order the invocations occur.

D. Transformation to Service Model

To generate standardized Web service-based interface
descriptions and data types, the next step is to generate a new
model by using model-driven transformation techniques.
From the domain model and the workflow model a
transformation specification generates a service model [7],
which, among other details, specifies the interfaces for each
legacy application and the study progress workflow itself.

Since the transformation to the service model generates a
new model from existing models, the transformation rules
are formalized in the transformation language “Queries,
Views, Transformations” (QVT) [12], a standard specified
by the Object Management Group (OMG). Several QVT
implementation exists, e.g. in Borland Together [27], but
also as plug-ins for the Eclipse IDE (mediniQVT [28],
smartQVT [29]). Simply speaking, the transformation rules
are described by mapping the elements of the source meta
model to elements of the target meta model. Since the source
meta model and target meta model is the UML
Superstructure [2] the transformation itself is independent
from a concrete platform or technology and thus can be
reused for other integration projects of the same kind.

The transformation uses the created Activity and the
containing model elements as the source model and
generates a target model according to a set of transformation
rules. Since each ActivityPartition represents an application,
which will be invoked during the execution of the workflow,
each ActivityPartition is transformed into an Interface
(stereotyped as “ServiceInterface”) and a Component
(stereotyped as “ServiceComponent”) with a Realization
relationship between (c.f. Figure 8: Target model,
“AppXService” and “AppX”). Each CallOperationAction
contained in an ActivityPartition results in an Operation of
the created Interface (Figure 8: “+opX()”). Figure 6 shows
this transformation in the graphical notation of QVT.

CallOperationActionToOperation

when

ActivityPartitionToService(ap,wf,si,sc)

ap:ActivityPartition

coa:CallOperationAction

wf:Activity

<<domain>>

op:Operation

name=opName

sOp:Operation

si:ServiceInterface

implements

sc:ServiceComponent

<<domain>>

name=opName

wf:Workflow

C

s:Service

E

CallOperationActionToOperation

when

ActivityPartitionToService(ap,wf,si,sc)

ap:ActivityPartition

coa:CallOperationAction

wf:Activity

<<domain>>

op:Operation

name=opName

sOp:Operation

si:ServiceInterface

implements

sc:ServiceComponent

<<domain>>

name=opName

wf:Workflow

C

s:Service

E

Figure 6. QVT Transformation of CallOperationAction

Finally, InputPins and OutputPins of the
CallOperationActions are converted into Parameters of the
Operation (Figure 8: “wfIn” and “wfOut”). The direction
property of each Parameter is set to “in” if it is an InputPin
and no corresponding OutputPin of the same type and name
is attached to the same CallOperationAction (Figure 7). An
OutputPin results in the direction “out”. If a
CallOperationAction has an InputPin and an OutputPin with
the same name, the same type and the same multiplicity, the
direction property of the Parameter is set to “inout” and the
OutputPin is ignored.

CallOperationActionToOperation(coa,op)

xIn:InputPin

id=xInName
type=xInType

coa:CallOperationAction

<<domain>>
p:Parameter

op:Operation

name=xInName
direction=ParameterDirectionKind.in
type=xInType

<<domain>>

InputPinToOperationParameter

when

wf:Workflow

C

s:Service

E

CallOperationActionToOperation(coa,op)

xIn:InputPin

id=xInName
type=xInType

coa:CallOperationAction

<<domain>>
p:Parameter

op:Operation

name=xInName
direction=ParameterDirectionKind.in
type=xInType

<<domain>>

InputPinToOperationParameter

when

wf:Workflow

C

s:Service

E

Figure 7. QVT Transformation of InputPin

In order to invoke the workflow itself an additional
Interface and Component are generated from the Activity
(Figure 8: “WfService” and “Wf”). The Interface contains
exactly one Operation named “execute<ActivityName>”
(Figure 8: “+executeWf()”). The Parameters for this
Operation are generated according to the
ActivityParameterPins attached to the Activity (Figure 8:
“wfIn” and “wfOut”). In total, n + 1 Interfaces are generated,
whereby n correlates to the number of invoked applications
(or ActivityPartitions). Finally, the generated Component has
Uses relationship to all other Interfaces generated from the
ActivityPartitions.

Figure 8. Transformation to the Service Model

It is not required to transform the entities from the
domain model. Still, the specified data types are needed in
the target model. Therefore the Classes from the source
model, which represent the data types can either be imported
in the target model or copied to the target model. The same
applies for the Activity and the containing Actions. The
property “operation” of the CallOperationActions can now
be associated with the generated Operations of the
Interfaces.

310

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

E. Transformation into Web Service Artifacts

As the final modeling step, we transform the three UML
models into concrete XML artifacts. The transformation
converts the domain model into XML Schema definitions
[4], the service model into WSDL documents [3], and the
workflow model into a BPEL process [17, 30]. As far as we
know the relatively new “MOF Model to Text
Transformation Language 1.0” [31] specified by the OMG is
currently not implemented in common UML tools. As we
also prefer a more established Model-to-Text transformation
language, we decided to use Xpand [32], a templated-based
approach from the openArchitectureWare toolkit, which is
now part of the Eclipse IDE.

TABLE I. DOMAIN MODEL TO XML SCHEMA

UML XML Schema

Package p <xsd:schema>

target namespace is derived from p and its parents

Class c <xsd:complexType>

name of complex type is name of c

<xsd:sequence>

model group for elements

Attribute a <xsd:element>

name of element is name of a, type of element is
used from a (Primitive types are matched to similar
build-in XSD types), minOccurs and maxOccurs of
element is cardinality of a

Association s <xsd:element>

name is set to name of s, type of element is complex
type of Class at AssociationEnd, minOccurs and
maxOccurs of element is cardinality of s

Enumeration e <xsd:simpleType>

name is set to name of e

<xsd:restriction>

base type of restriction is set to “string”

<xsd:enumeration>

for each EnumerationLiteral el, value is
name of the el

Generalization g <xsd:complexContent>

as child for complex type of specialized Class

<xsd:extension>

base type is set to complex type of generalized
Class

The entities defined in the domain model and specified as
UML Classes are transformed into XML Schema definitions
(XSD) [3]. Most transformation rules are mainly
straightforward (Table I). The name of the model and the
structure of UML Packages (if present) are used to generate
the target namespace of the XSD. UML Classes are
transformed into XSD complex types with a sequence model
group and all Properties of Classes into XSD elements of the
generated model group. These XSD elements are typed
depending on the kind of the UML Property: If it is an
Attribute with a primitive type, a build-in XSD data type is
used. If the Attribute uses a custom UML Enumeration, an
additional XSD simple type with a restriction of base type set

to “string”. For each literal of the Enumeration an
enumeration with the value set to the name of the literal is
generated. If an Association is used, the XSD element is
typed with the corresponding XML complex type of the
associated Class. Furthermore the cardinalities of Properties
are considered by using the “minOccurs” and “maxOccurs”
attributes in the XSD element definition. UML
Generalizations are also supported by complex content and
extensions in XSD, using the complex type of the
generalizing Class as “base” attribute of the “extension”
element.

TABLE II. SERVICE MODEL TO WSDL

UML Web Service Description Language (WSDL)

Component c <wsdl:definition>

name of definition is name of c

Interface i <wsdl:portType>

name of port type is name of i appended with
“PortType”

Operation o <wsdl:operation>

name of operation is name of o

<wsdl:input> and <wsdl:ouput>

name of message is name of o appended with
“Request” or “Response”

<wsdl:message>

name of message is name of o appended with
“Request” or “Response”

<wsdl:part>

name is “parameters” and element is
corresponding XSD element name

<xsd:element>

name of element is name of o, appended with
“Response” once

<xsd:complexType>

<xsd:sequence>

model group for Parameters

Parameter p <xsd:element>

name of element is name of p, containing model
group of element depends on p.direction (“in” or
“out”/“reply”), type of element is type of p (either a
build-in XSD type or a complex type)

The WSDL documents are generated from the service
model (Table II). Each UML Interface is transformed into a
WSDL document, importing the generated XSD files in the
“types” section of the WSDL document. Each interface is
transformed into an abstract part of a WSDL file with one
port type. The port type contains the operations as the UML
Interface specifies. The generation of the messages for the
input and output messages of the Web service depends on
the WSDL style. Since it is most common and recommended
by WS-I [13], we use the style “document/literal-wrapped”
[14]. For this style, each message element in the WSDL
document must contain exactly one part, even if multiple
UML Parameters are specified as input or output. To
distinguish between the Parameters, XML Schema is used to
build an RPC-like XML structure, using the operation name
as the top XML element and an embedded complex type

311

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

defining a sequence of child elements, which represent
Parameters. To generate the concrete parts of the WSDL file,
the proposed service model uses UML Components and
attached Ports, as in [6], [9]. A Port acts as a WSDL
binding, specifying a name and location information about
the service. It refers to the Interface as provided interface.

The workflow model is implemented in the Business
Process Execution Language (BPEL) [30] and is provided as
a Web service. The BPEL code is generated from the UML
Activity Diagram, which is already handled in some works
[17], [18]. The Activity and each ActivityPartition of the
workflow are defined as partner links in the BPEL process
and partner link types in the WSDL document of the BPEL
process. The defined ActivityParameterNodes of the Activity
transforms to the initial “receive” and the final “reply” action
in the BPEL process. In addition corresponding variables for
are generated. Each CallOperationAction is transformed to
an “invoke” action, using the partner link derived from the
ActivityPartition the CallOperationAction is placed in.
Corresponding variables in BPEL for the input and output
message of the “invoke” action are generated. ObjectFlows
in the Activity are transformed into “assign” actions, which
copy the content of the output variable of one invocation to
the input variable of a following invocation. The sequence in
which the BPEL actions occur is mainly determined by the
ObjectFlows. However, since UML Activity Diagrams are
based on graphs, whereas BPEL is structured in blocks, the
generation of the BPEL processes has certain limitations [33]
that we are aware of.

F. Implementing the Web Services Artifacts

To finalize the integration, the required Web services
have to be implemented. The generated WSDL and XML
Schema files are used to create skeletons for the adapter
logic implementation of the Web service. For this purpose,
existing approaches are applied that are part of several
development tools (like WSDL2Java from the Apache Axis2
framework [15]). The choice of the programming language
and the framework for generating and implementing the web
service adapters should be depend on the legacy application,
so that existing interfaces of the legacy application can be
used if possible. In addition the Web service adapter must
also provide the transformation into the data objects
specified in the domain model. To deploy the generated
BPEL process usually a deployment descriptor has to be
created, which is specific to the selected BPEL engine.

IV. CASE STUDY “STUDY PROGRESS”

The KIT offers its students the KIT-Portal [18], where
each student can access his/her personal data and perform
actions (e.g., to register for an examination) in a simple and
intuitive way. In this chapter, we apply our model-driven
software integration development process presented in the
previous chapter to the development of a service-oriented
application to visualize a student’s progress in his/her studies
for the KIT-Portal.

The KIT-Portal integrates several existing applications in
a service-oriented manner using Web technologies and Web
standards. At the KIT, several applications are available,

each storing and providing individual data for students.
However, none of the applications provides interoperable
interfaces, hence preventing an easy and straightforward
service-oriented integration. An important step towards
service-orientation is the development of standardized and
technology-neutral interfaces for accessing and manipulating
the data provided by existing legacy applications [9]. These
interfaces and the corresponding adapter logic have to be
developed to allow the integration of existing applications.

A. Analysing the Requirements for the “Study Progess”

One feature of the KIT-Portal to be developed is to
facilitate a student’s overview of his/her passed, failed or
outstanding examinations in a graphical and easily
understandable manner. Hence, several GUI sketches and
prototypes were created prior to starting the development
process, to get the look-and-feel for an adequate
visualization form of the study progress. A modified version
of a tree map provided the most promising results. It
visualizes all the learning modules of a study course by
rectangles using an equal width, but different height,
depending on the amount of credit points (c.f. European
Credit Transfer System, ECTS) of the module. The same
applies for the examinations allocated to a module. In
addition, each examination is color-coded depending on the
current state or result with regard to the student.

The required data for generating the study progress
visualization are persisted in two legacy systems: The study
system stores the degree programs and its structures, whereas
the examination system holds the data for the offered
examinations and the examination results for each student.

B. Creating the Domain Model “Study Progress”

Having defined the requirements, we model the domain
and needed data objects for the study progress tree map, such
as examination results or information about the student. We
create a UML model and model the entities as Classes. We
also add the data structure which is needed to generate the
study progress tree map (Figure 9: B).

C. Designing the Workflow “Study Progress”

Next we design the workflow bottom-up. The workflow
for visualizing the study progress is represented by a UML
Activity “StudyProgress” (Figure 9: C). To specify the data
types the workflow is called with respectively returns, the
Activity has two ActivityParameterNodes attached to it. The
KIT-Portal invokes the study progress workflow by passing
the login name from the KIT-Portal (student’s university e-
mail address) as initial input data (ActivityParameterNode
“loginEmail”) of type string. The workflow completes by
returning the output type of the workflow is the tree map
data type (ActivityParameterNode “studyProgress”). The
study system and the examination system are modeled as
ActivityPartitions (“Study” and “Examination”). The
invocation to one of the systems is modeled as a
CallOperationAction in the corresponding ActivityPartition
and in addition the type of data transferred to or from a
system on each invocation is added as Pins.

312

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For example in order to receive the student’s base data
from the study system we model the CallOperationAction
“GetStudentBaseData” in the ActivtyPartition “Study” and
add the OutputPin “student” of the type “Student” (the
classes modeled before). The call to the study system
requires the matriculation number and the current term, so
we model those by adding the two InputPins
“matricNumber” and “term”. Since the portal system only

knows the student’s university e-mail address, which has to
be entered during the KIT-Portal login, we add an
ActivityPartition for the accounting system and model the
CallOperationAction “GetMatricNumber” inside. It accesses
the accounting system, maps the student’s email address to
his/her matriculation number and returns the number
(OutputPin “matricNumber”). The current term can be
retrieved from the examination system. Thus, we add the

Figure 9. Model-Driven Development Process of the “Study Progress”

313

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CallOperationAction “GetCurrentTerm” in the
ActivtyPartition “Examination” with only one OutputPin
“term” containing the current term as an integer value.

To represent the data flow between the invocations, we
add ObjectFlows between InputPins and OutputPins that
have the same type. The ObjectFlows specify how data
objects flows from the outcome of a previous invocation to
the input of a following invocation during the execution of
the workflow. Thus the order in which invocations occur can
be derived from the ObjectFlows.

We have formalized which applications are invoked and
how the data is processed. Figure 9 shows the final workflow
model as an UML Activity Diagram labeled as “Study
Progress” in part C.

D. Transformation to the Service Model

Taking the activity diagram as a source model, we use a
QVT-based model-to-model transformation to generate
service interfaces using the QVT transformation rules
described above. The transformation generates a service
interface for each invoked application. In order to invoke the
workflow itself from the KIT-Portal, another service
interface “StudyProgressService” that contains the Operation
“executeStudyProgess” is generated. The Parameters for this
Operation are generated according to the
ActivityParameterPins.

Part D of Figure 9 shows the resulting Interfaces,
Components and the relations for each ActivityPartition and
the Activity itself.

E. Transformation into Web Service Artifacts

The model-to-text transformation creates an XML
Schema file [4] (“StudyProgressTypes.xsd”) from the

Classes in the domain model, four WSDL files [3] (one for
each service interface) from the Interfaces and Components
in the service model and a BPEL file (“StudyProgress.bpel”)
from the workflow model. To facilitate the reusability of the
XML Schema definitions the StudyProgressTypes.xsd file is
imported into the “types” section of each WSDL file. Also
all WSDL files are imported into the BPEL process file in
order to act as partner links.

Figure 9 illustrates the generated artifacts and the import
of the central XML Schema definition at the bottom. Part of
the WSDL document for the StudyService is also shown in
detail.

F. Implementing the Web Service Adapters

Finally, the generated WSDL documents are used to
create skeletons. We implement the adapter logic of the
required Web services using Java. We further use an XSL
transformation to generate XHTML from the tree map data
structure defined in the domain model. Figure 10 gives the
result of the engineered solution, showing a late prototype of
the study process.

V. RELATED WORK

As our approach targets a wide area of different artifacts
supporting a model-driven development approach (service
model, WSDL and Web services), there are several related
studies.

The idea of visualizing hierarchically structured
information in terms of tree maps initially was published by
Johnson and Shneiderman [37]. Based on their concepts,
Allerding, Buck et al. present an approach using tree map
concepts and focusing the requirements of students
managing their studies [38]. Adapting their idea of

Figure 10. Screenshot of the "Study Progress"

314

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

visualizing the study progress of a student, we used an early
sketch of a tree map as input for a model-driven
development approach. The execution of integration projects
following a model-driven development approach based on
Web service technologies is discussed in scientific and
commercial communities alike.

Considering the overall development approach, starting
with formal requirements and leading to a set of executable
code, Meijler, Kruithof et al. illuminate the advantages of
model-driven integration aligned with service-oriented
principles [5]. An integrated approach combining both top-
down (requirements to software components) and bottom-up
(existing tool assets) approaches is proposed. Therefore, we
decided not to strictly follow a top-down development
approach that would hinder the integration of existing
applications, but to follow a combined middle-out approach
enabling the description of existing applications early in the
transformation process.

Model-driven development of Web services has already
been discussed in several previous works, for instance in [6],
[7], [8]. Based on these approaches, we focused on capturing
business requirements with models and mapping these
models to existing distributed legacy applications.
Considering the integration of legacy applications using Web
services, a generic model for application integration is
presented in [9]. Since different legacy applications often use
different formats and standards for describing their data
schemas, a mapping of these different data schemas has to be
realized additionally. The proposed approach in [9] focuses
on the integration of several different data schemas by
implementing adapter components realized with Web
services. Within the special requirements of our scenario, not
only the integration of existing data schemas but also the
integration of existing business logic is needed; thus our
approach considers the aspect of integration from a system-
oriented direction.

Finally, the presented intermediate model for service
descriptions (c.f. chapter 3) is based on the work of Emig,
Krutz et al. [7]. While the approach presented in [7] targets
towards a holistic and technology-independent possibility for
describing service interfaces of service-oriented components,
we improved the proposed development approach by the
integration aspect of existing software assets. Similar to [7],
Johnson demonstrates the use of a technology-independent
approach for describing service-oriented software
components [10]. An UML 2.0 Profile [2] as an extension to
existing modeling tools is proposed, although specific
modeling elements are introduced regarding the very special
needs of the appointed vendor-specific tool chain.

VI. CONCLUSION

In this paper, we outlined a development approach for
integrating existing applications in a service-oriented manner
by using a model-driven approach in order to create new
functionality. In a first step GUI sketches help eliciting the
requirements of the new functionality. Additionally a domain
model is created statically describing the main concepts and
their relationship of the domain. Afterwards, the necessary
workflow, which determines the integration of the existing

functionality from existing legacy applications, is modeled
using UML Activity Diagrams. The workflow and the
domain model are used to automatically generate artifacts
which help in implementing the workflow. Such artifacts
include adapters for accessing only required functionality of
existing applications, relevant data types and an executable
workflow for which we used Web service adapters using
WSDL, data schemas described with XSD and BPEL
process definitions respectively. Due to the usage of the
domain model as source for the data types, the resulting
services abstract from existing applications and their specific
data types. This enables a wider usage of the created Web
services without knowledge about platform specific details.

To exemplify our approach, we demonstrated our
approach by realizing a study progress visualization at the
Karlsruhe Institute of Technology (KIT). In this scenario, the
goal was to provide a new feature that allows students to
gain insight into their current study progress, by combining
and visualizing their data from disparate sources. The
required functionality and data is shared across several
existing applications, so that they need to be integrated.

Even though a complete role model of an integration
process is not in the focus of our work we are certain that our
approach is helpful to all participants of an integration
project. Our approach helps IT architects with the
development of new functionality that requires the
integration of existing applications. Domain experts are
supported by visually describing the required functionality
and integration experts can use the workflow to map the
requested functionality to existing applications. Additionally
the workflow is used to derive implementation artifacts by
using automatic transformations, which helps in avoiding
transformation errors due to human interpretations. As the
approach started by gathering user requirements by means of
a GUI sketch, we consider our solution user-aligned and a
promising enhancement of existing integration approaches.

Although the application of model-driven approaches has
several advantages, such as the convenient transformation of
Web service adapters, data types and running BPEL
processes from formalized design models, the usage of this
modern technology is hampered by lack of a complete tool
support. The application of UML Activity Diagrams enables
the usage of several existing UML modeling tools and allows
a formalized and visual description of the workflow. While
there exist mature tools in the context of UML modeling, the
development of transformations is still a complex task.
The choice of using service-oriented architecture as the
integration platform proved to be the right choice for our
approach, as reusing the existing business logic of the
legacy applications can now achieved at a level of higher
abstraction. Yet, the full potential of service-orientation
such as the design of services to achieve certain design
characteristics, the security of data within the workflow, the
interaction with human users and the management of the
services were not considered within our approach so far.
These aspects are motivation for further work within this
context and are part of our outlook.

315

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VII. OUTLOOK

Based on our latest research results presented before,
there are several topics we want to investigate in more detail.
Firstly all functional components are provided as services via
Web service interfaces. Therefore these services have to
follow design principles to allow for loose coupling or to
achieve a certain granularity etc. So far our model-driven
approach does not take these design principles into account
during the transformation from workflow model to service
model. Focusing on service design principles, different
variations of transformation rules could be applied to achieve
a set of services with different attributes like granularity etc.
suitable for different scenarios [43].

Secondly human users have to interact within a process
by, e.g. inserting some data or making a decision. Hence user
interfaces have to be developed to enable theses human tasks
(c.f. [44]). Since the information which is to be passed along
by the human user is directly correlated to the domain model
[45], an automated generation of user interfaces can be
achieved. In the same manner it could be possible to
automatically generate several adapters like e.g. database
adapters which are commonly used among several processes.

As a third perspective one should think about the whole
application itself. As it consists of several services being
provided by likely different providers, the users like students
need to have a centralized way to report errors and to start a
problem solving process like e.g. ISO 20000’s Incident
Management Process [34]. Therefore the development
process also has to take management information and
management processes into account to allow for a
manageable and sustainable service-oriented application
[46].

Another important aspect of any service-oriented
integration scenario is the consideration of security aspects.
So far no information about the security requirements of the
newly composed services is incorporated into the
development approach. Even though the existing
applications might be secured in the sense of e.g., a secure
connection, the proposed approach would reduce it to a
secure point-to-point communication between the service
adapter and the application instead of providing a secure
end-to-end communication. A solution to this would be to
add additional information concerning security requirements
into the modeled process. Furthermore it can be seen from
the case study, that a user might have different identifiers to
access different applications and services in an organization
again using different authentication mechanisms. In the
current version of our approach this leads to a significant
amount of operation invocation to map the initial identifier to
every necessary identifier. A better approach would be to use
a global identifier at the service level and enhance the model-
to-text transformation presented to generate necessary
mapping code directly into the Web service adapters.

We have already presented some initial results on these
topics in [39, 40, 41, 42] and will now focus on integrating
our findings to our model-driven approach.

REFERENCES

[1] Hoyer P., Gebhart M., Pansa I., Link S., Dikanski A., Abeck S.: A
Model-Driven Development Approach for Service-Oriented
Integration Scenarios. First International Conferences on Advanced
Service Computing (SERVICE COMPUTATION), Athens, Greece,
November 2009.

[2] Object Management Group (OMG): Unified Modeling Language
(UML), Superstructure Version 2.2. http://www.omg.org/cgi-
bin/doc?formal/09-02-02

[3] World Wide Web Consortium (W3C): Web Services Description
Language (WSDL) Version 2.0 Part 1: Core Language.
http://www.w3.org/TR/wsdl20/

[4] World Wide Web Consortium (W3C): XML Schema Definition
Language (XSD) 1.1 Part 1: Structures.
http://www.w3.org/TR/xmlschema11-1/

[5] Meijler T.D., Kruithof G., Beest N.: Top Down Versus Bottom Up in
Service-Oriented Integration: An MDA-Based Solution for
Minimizing Technology Coupling, LNCS Volume 4294/2006.

[6] Marcos E., Castro V., Vela B.: Representing Web Services with
UML: A Case Study. 1st International Conference on Service-
Oriented Computing (ICSOC), Trento, Italy, December 2003.

[7] Emig C., Krutz K., Link S., Momm C, Abeck S..: Model-Driven
Development of SOA Services, Cooperation & Management,
Universität Karlsruhe (TH), Internal Research Report, 2008.

[8] Gronmo R., Skogan D., Solheim I., Oldevik J.: Model-driven Web
Service Development. International Journal of Web Services
Research, Volume 1, Number 4.

[9] Harikumar A., Lee R, Yang H., Kim H., Kang B.: A Model for
Application Integration using Web Services, Proceedings of the
Fourth Annual ACIS International Conference on Computer and
Information Science, July 2005.

[10] Johnston S.: UML 2.0 Profile for Software Services, IBM
developerWorks
http://www.ibm.com/developerworks/rational/library/05/419_soa/,
April 2005.

[11] Hay D.: Requirement Analysis – From Business Views to
Architecture. Prentice Hall, 2003.

[12] Object Management Group (OMG): Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification Version 1.0.
http://www.omg.org/spec/QVT/1.0

[13] Web Services Interoperability Organization: Basic Profile Version
1.2. http://www.ws-i.org/Profiles/BasicProfile-1_2(WGAD).html

[14] Butek R.: Which style of WSDL should I Use, IBM developerWorks,
2003. http://www.ibm.com/developerworks/webservices/library/ws-
whichwsdl/

[15] The Apache Software Foundation: Code Generator Wizard - eclipse
Plug-in, http://ws.apache.org/axis2/tools/1_0/eclipse/wsdl2java-
plugin.html

[16] Organization for the Advancement of Structured Information
Standards (OASIS): Web Services Business Process Execution
Language Version 2.0. http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[17] Mantell K.: From UML to BPEL. IBM developerWorks, 2005.
https://www.ibm.com/developerworks/library/ws-uml2bpel/

[18] Skogan D., Groemno R., Solheim I.: Web service compositions in
UML. Proceedings of Eudth International Enterprise Distributed
Object Computing Conference, September 2004.

[19] Karlsruhe Institute of Technology (KIT): The KIT study portal,
http://studium.kit.edu

[20] Conrad S., Haselbring W., Koschel A., Tritsch R.: Enterprise
Application Integration: Grundlagen – Konzepte - Entwurfsmuster –
Praxisbeispiele, Spektrum Akademischer Verlag, 2005, ISBN
3827415721.

[21] Linthicum D.: Next Generation Application Integration, Addison-
Wesley Information Technology Series, 2004, ISBN 02018445667

316

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[22] World Wide Web Consortium (W3C): SOAP Version 1.2,
http://www.w3.org/TR/soap/

[23] The Object Management Group (OMG): Business Process Model and
Notation (BPMN) 2.0 Beta 1, http://www.omg.org/cgi-
bin/doc?dtc/09-08-14.pdf

[24] Valk R., Girault C.: Petri Nets for Systems Engineering – A Guide to
Modeling, Verification, and Applications, Springer, 2001. ISBN 978-
3540412175.

[25] Keller G., Nüttgens M., Scheer A.-W.: Semantische
Prozessmodellierung auf der Grundlage „Ereignisgesteuerter
Prozeßketten (EPK)“. Veröffentlichungen des Instituts für
Wirtschaftsinformatik (IWi), Universität des Saarlandes, Heft 89,
Januar 1992.

[26] S. Johnston, “Rational UML Profile for business modeling”, IBM
Developer Works, http://www.ibm.com/developerworks/rational/
library/5167.html, 2004.

[27] Borland, Borland Together,
http://www.borland.com/de/products/together/index.html

[28] ikv++ technologies ag: medini QVT,
http://www.ikv.de/index.php?option=com_content&task=view&id=7
5&Itemid=77&lang=en

[29] SmartQVT, http://smartqvt.elibel.tm.fr/index.html.

[30] Organization for the Advancement of Structured Information
Standards (OASIS): Web Services Business Process Execution
Language Version 2.0, http://docs.oasis-
open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.pdf

[31] The Object Management Group (OMG): MOF Models to Text
Transformation Language V1.0,
http://www.omg.org/spec/MOFM2T/1.0/PDF

[32] Eclipse Foundation: Xpand, http://wiki.eclipse.org/Xpand.

[33] Ouyang C., Dumas M., Breutel S., Hofstede A.: Translating Standard
Process Models to BPEL, Advanced Information Systems
Engineering, 18th International Conference, CAiSE 2006,
Luxembourg, Luxembourg, June 5-9, 2006, Proceedings 2006.

[34] ISO/IEC, ISO/IEC 20000-1:2005: Information Technology – Service
Management, www.iso.org, 2005.

[35] Organization for the Advancement of Structured Information
Standards (OASIS): ebXML Technical Architecture Specification
v1.04, http://www.ebxml.org/specs/#technical_specifications.

[36] The Workflow Management Coalition Specification: Workflow
Management Coalition Terminology and Glossary (WFMC-TC-
1011),http://www.wfmc.org/standards/docs/TC011_term_glossary_v
3.pdf, 1999.

[37] Johnson B., Shneiderman B: Tree-Maps: A Space-Filling Approach
to the Visualization of Hierarchical Information Structures, IEEE
Computer Society Press, http://hcil.cs.umd.edu/trs/91-06/91-06.html,
October 1991.

[38] Allerding F., Buck J., Freudenstein P., Klosek B., Höllrigl T., Juling
W., Keuter B., Link S., Majer F., Maurer A., Nussbaumer M., Ried
D., Schell F.: Integriertes Service-Portal zur Studienassistenz,
Proceedings of the 38th GI Conference - Lecture Notes in
Informatics, München, Germany, Munich, 2008.

[39] Gebhart M., Abeck S.: Rule-Based Service Modeling, The
Fourth International Conference on Software Engineering Advances,
ICSEA 2009, 20-25 September 2009, Porto, Portugal 2009.

[40] Link S., Hoyer P., Kopp T., Abeck S.: A Model-Driven Development
Approach Focusing Human Interaction, Second International
Conference on Advances in Computer-Human Interaction, ACHI
2009, February 1-7, 2009, Cancun, Mexico 2009.

[41] Scheibenberger K., Pansa I.: Modelling dependencies of IT
Infrastructure elements, Proceedings of BDIM 2008, 3rd IEEE/IFIP
International Workshop on Business-Driven IT Management, April 7,
2008, Salvador, Brazil 2008.

[42] Klarl H., Wolff C., Emig C.: Identity Management in Business
Process Modelling: A model-driven approach, Business Services:
Konzepte, Technologien, Anwendungen. 9. Internationale Tagung
Wirtschaftsinformatik 25.-27. Februar 2009, Wien 2009.

[43] T. Erl, “SOA – Principles of Service Design”, Prentice Hall, 2007.
ISBN 978-0-13-234482-1.

[44] IBM: WS-BPEL Extenstion for People (BPEL4PEOPLE), 2007,
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
bpel4people/BPEL4People_v1.pdf

[45] Link S.: Benutzerinteraktion in dienstorientierten Architekturen,
Dissertation, 2009, http://digbib.ubka.uni-
karlsruhe.de/volltexte/1000012354

317

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

