
Adaptive Object-Models: a Research Roadmap

Hugo Sereno Ferreira
INESC Porto

Faculdade de Engenharia
Universidade do Porto

Rua Dr. Roberto Frias, s/n
4200-465 Porto, Portugal

hugo.sereno@fe.up.pt

Filipe Figueiredo Correia
Faculdade de Engenharia

Universidade do Porto
Rua Dr. Roberto Frias, s/n
4200-465 Porto, Portugal

filipe.correia@fe.up.pt

Ademar Aguiar
INESC Porto

Faculdade de Engenharia
Universidade do Porto

Rua Dr. Roberto Frias, s/n
4200-465 Porto, Portugal
ademar.aguiar@fe.up.pt

João Pascoal Faria
INESC Porto

Faculdade de Engenharia
Universidade do Porto

Rua Dr. Roberto Frias, s/n
4200-465 Porto, Portugal

jpf@fe.up.pt

Abstract—The Adaptive Object-Model (AOM) is a meta-
architectural pattern of systems that expose an high-degree
of runtime adaptability of their domain. Despite there being
a class of software projects that would directly benefit by
being built as AOMs, their usage is still very scarce. To
address this topic, a wide scope of concepts surrounding to
Adaptive Object-Models need to be understood, such as the
role of incompleteness in software, and its effects on system
variability and adaptability, as well as existing metamodeling
and metaprogramming techniques and how do they relate to
software construction. The inherent complexity, reduced litera-
ture and case-studies, lack of reusable framework components,
and fundamental issues as those regarding evolution, frequently
drive developers (and researchers) away from this topic. In this
work, we provide an extensive review of the state-of-the-art in
AOM, as well as a roadmap for empirical validation of research
in this area, which underlying principles have the potential to
alter the way software systems are perceived and designed.

Keywords-Architectural Structures and Viewpoints, Design
Patterns, Families of Programs and Frameworks.

I. INTRODUCTION

The current demand for industrialization of software de-
velopment is having a profound impact in the growth of
software complexity and time-to-market [1]. Moreover, a
lot of the effort in the development of software is repeatedly
applied to the same tasks, despite all the effort in research for
more effective reuse techniques and practices. Like in other
areas of scientific research, the reaction has been to hide the
inherent complexities of technological concerns by creating
increasingly higher levels (and layers) of abstractions with
the goal of facilitating reasoning, albeit often at the cost
of widening the already existing gap between specification
and implementation artifacts [2]. To make these abstractions
useful beyond documentation and analytical and reasoning
purposes [3], [4], higher-level models must be made exe-
cutable, by systematic transformation [5] or interpretation
[6] of problem-level abstractions into software implemen-
tations. The primary focus of model-driven engineering
(MDE) is to find ways of automatically animating such
models, often used simply to describe complex systems at
multiple levels of abstraction and perspectives and therefore

Reality

Domain

Software

Figure 1. Software may be regarded as the crystallization of an abstraction
that models a specific domain. Ideally, it would match the exact limits of
that domain. But in practice: (i) those limits are fuzzy, (ii) software often
imposes an artificial, unnaturally rigid structure, and (iii) reality itself keeps
changing.

promoting them to first-class artifacts [2].

A. Incomplete by Design

A recurrent problem in software development is the
difficulty of acquiring, inferring, capturing and formalizing
requirements, particularly when designing systems where the
process is highly-coupled with the stakeholders’ perspective
and the requirements often change faster than the imple-
mentation. This reality is well known in industrial environ-
ments, and is sometimes blamed upon incompleteness of the
stakeholders’ knowledge [7] — maintaining and evolving
software is a knowledge intensive task that represents a
significative amount of effort [8]. Consequently, once the
analysis phase is finished and the implementation progresses,
strong resistance to further change emerges, due to the mis-
match between specification and implementation artifacts.
Notwithstanding, from the stakeholder’s perspective, some
domains do rely on constant adaptation of their processes to
an evolving reality, not to mention that new knowledge is
continuously acquired, which lead to new insights of their
own business and what support they expect from software.

70

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Confronted with the above issues, some development
methodologies (particularly those coined “agile”) have in-
tensified their focus on a highly iterative and incremental
approach, accepting that change is, in fact, an invariant of
software development [9]. For example, one of the most
prominent books in agile methodologies — Kent Beck’s
“Extreme Programming Explained” [10] — use the phrase
“embrace change” as its subtitle. This stance is in clear
contrast with other practices that focus on a priori, time-
consuming, rigorous design, considering continuous change
as a luxurious (and somewhat dangerous) asset for the
productivity and quality of software development.

Although the benefits of an up-front, correct and validated
specification are undeniable — and have been particularly
praised by formal methods of development, particularly
when coping with critical systems — their approach is
often recognized as impractical, particularly in environments
characterized by continuous change. Likewise, the way
developers currently cope with change often result in a BIG
BALL OF MUD, where the systems will eventually face a
total reconstruction, invariably impacting the economy [11].
Thus, software that is target of continuous change should be
regarded as incomplete by design, or in other words, it needs
to be constantly evolving and adapting itself to a new reality,
and most attempts to freeze its requirements are probably
doomed to fail (see Figure 1).

This notion, and the adequate infrastructure to support
it, has roots that go as back as the history of Smalltalk
and object-oriented programming in the dawn of personal
computers [12]: ”Instead of at most a few thousand insti-
tutional mainframes in the world (...) and at most a few
thousand users trained for each application, there would
be millions of personal machines and users, mostly outside
of direct institutional control. Where would the applica-
tions and training come from? Why should we expect an
applications programmer to anticipate the specific needs
of a particular one of the millions of potential users? An
extensional system seemed to be called for in which the end-
users would do most of the tailoring (and even some of the
direct constructions) of their tools.”

B. Motivational Example

Figure 2 depicts small subset of the class diagram from
real-world information system for a medical healthcare
center. In summary, the medical center has Patients and
specialized Doctors. Information about a patient, such as
her personal information, Contacts and Insurances,
are required to be stored. Patients go to the center to have
Appointments with several Doctors, though they are
normally followed by just one. During an appointment,
several Pathologies may be identified, which are often
addressed through the execution of medical Procedures.

In this example, we can begin to observe the incom-
pleteness of these kind of information systems. For exam-

ple, procedures, insurances, pathologies and contacts are
depicted has having open-hierarchies (where each special-
ization may require different fields). Patients may not have
all the relevant information recorded (e.g., critical health
conditions) and foreseeing those missed formalizations, ei-
ther the designer or the customer make extensive usage
of an observations field. The system is also missing
some domain notion, such that of Auxiliary Personnel,
which would require a complete new entity. Maybe it will
be revealed as relevant to store personal information of
Doctors; actually, in the presence of this new requirements,
a designer would probable make Patients, Doctors
and Auxiliary Personnel inherits from a single ab-
straction (e.g., Persons). The healthcare center may also
require the system to prevent doctors from performing
procedures for which they are not qualified (e.g., through
a specific constraint based on their specialization). In fact,
it now seems evident that a doctor may have multiple
specializations.

These are examples of requirements that could easily
elude developers and stakeholders during the analysis pro-
cess. What may seem a reasonable, realistic and useful
system at some point, may quickly evolve beyond the orig-
inal expectations, unfortunately after analysis is considered
finished.

C. Accidental Complexity

Should the customer require the system to cope with these
incomplete definitions, the designer would have to deliber-
ately make the system extensible in appropriate points. Fig-
ure 3 shows the refactored elements of a particular solution
that only addresses open inheritances and enumerations.

Compared to the initial design, the new one reveals itself
as a much larger model. In fact, it is now more difficult to
distinguish between elements that model the domain, from
those that provide extensibility to the system. The result
is an increase of what is defined as accidental complexity
— complexity that arises in computer artifacts, or their
development process, which is non-essential to the problem
to be solved. In contract, the first model was much closer
to that of essential complexity — inherent and unavoidable.
This increase in accidental complexity was only caused by
the specific approach chosen to solve the problem — in this
case, recurrent usage of the TYPE-OBJECT pattern.

While sometimes accidental complexity can be due to
mistakes such as ineffective planning, or low priority placed
on a project, some accidental complexity always occurs
as the side effect of solving any problem. For example,
mechanisms to deal with out of memory errors are part of
the accidental complexity of most implementations, although
they occur just because one has decided to use a (von-
neumann) computer to solve the problem. Because the
minimization of accidental complexity is considered a good
practice to any architecture, design, and implementation,

71

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

National ID {unique}
Name
Birthdate
/ Age
Sex: enum
Observations

Patient

Expiration Date
Observations

Insurance

Name
Specialization

Doctor

Date
Symptom
Diagnostic
/ Total Cost

Appointment

Description
Treatment Group
Cost
Observations

Procedure

Description
Observations

Contact

Severity: enum
Observations

Pathology

Engineer
Architect
...

‹‹enumeration››
Profession

*

* doctors

*

0..1 {subsets
doctors} / procedures

*

/ doctor

1

*

Figure 2. Example of a domain diagram of an information system for a medical center. The horizontal dashed lines denote open (incomplete) inheritances.
The dots inside the enumeration also denotes incomplete knowledge which should be editable by the end-user.

excessive accidental complexity is a clear example of an
anti-pattern.

D. Designing for Incompleteness

While newer software engineering methodologies struggle
to increase the ability to adjust easily to change of both
the process and the development team, they seem to gen-
erally have a certain agnosticism regarding the form of the
produced software artifacts (probably an over-simplification
since agile methodologies, for example, recommended the
simplest design that works, which addresses form, in a
certain way). This doesn’t mean they are not aware of this
“need to change”. In fact, iterative means several cycles
going from analysis to development, and back again. Some
are also aware of the BIG BALL OF MUD pattern (or
anti-pattern, depending on the perspective); the practice of
refactoring after each iteration in order to cope with design
debt is specifically included to address that [13]. But the
problem seems to remain in the sense that the outcome —
w.r.t. form — of each iteration is mostly synthesized as if it
would be the last one (albeit knowing it isn’t).

Yet, if these systems are accepted and regarded as being
incomplete by design, it seems reasonable to assume benefits
when actively designing them for incompleteness. If we shift
the way we develop software to embrace change, it seems a
natural decision to deliberately design that same software to
best cope with change. Citing the work of Garud et al.: ”The
traditional scientific approach to design extols the virtues

of completeness. However, in environments characterized
by continual change (new solutions) highlight a pragmatic
approach to design in which incompleteness is harnessed in
a generative manner. This suggests a change in the meaning
of the word design itself – from one that separates the
process of design from its outcome, to one that considers
design as both the medium and outcome of action.” [7]

This is in particular dissonance with the current ap-
proaches to software engineering, where most processes
attempt to establish a clear line between designing and devel-
oping, specifying and implementing. Though it seems that,
should we wish to harness continual change, that distinction
no longer suits our purposes: design should become both the
medium and outcome of action. Consequently, we are thus
looking forward not just for a process to be effective and
agile, but to what form should agile software take.

E. Article Structure

The remaining of the article is divided into three main
sections. We will first present a literature survey of the
state-of-the-art regarding several concepts and techniques
used to harness the specification and construction of these
incomplete by design systems. In Section III, we’ll use return
to the motivational example and delve into the Adaptive
Object-Model meta-architectural pattern to further detail
its related concerns. Section IV aims to summarize the
current known open issues in the field, and discuss issues
on research design and empirical validation for assessing

72

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Patient

Doctor

Appointment

Procedure Type

Pathology Type

*

*

0..*

Name

Profession

Name: string

Procedure

Name = "Surgery"

Surgery: Procedure

Name: string

Pathology

Name = "Flu"

Flu: Pathology

‹‹is-instance-of››

‹‹is-instance-of››

Name = "Architect"

Architect: Profession

‹‹is-instance-of››

Insurance TypeContact Type

Name: string

Contact

Name: string

Insurance

Name = "Mobile Phone"

Mobile: Contact

Name = "SNS"

SNS: Insurance

‹‹is-instance-of››‹‹is-instance-of››

Figure 3. A refactored solution for the diagram in Figure 2, mainly depicting the elements that were changed/added for providing a mechanism to cope
with open inheritance and enumerations. This example makes extensive use of the TYPE-OBJECT pattern (see Section III).

Adaptive Object-Models. We will finish this article by
drafting some conclusions and pointing to future work.

II. STATE-OF-THE-ART

One way to design software able to cope with incom-
pleteness is to encode the system’s concepts into higher-
level representations, which could then be systematically
synthesized — desirably, in an automatic fashion — into
executable artifacts, thus reducing the overall effort (and
complexity) of changing it. An overview of the several
concepts that will be approached in this section is shown
in Figure 4.

A. Fundamentals

1) Variability: Software variability is the need of a
software system or artifact to be changed, customized or
configured for use in different contexts [14]. High variability
means that the software may be used in a broader range of
contexts (i.e., the software is more reusable). The degree of
variability of a particular system is given by its Variation
Points, or roughly the parts which support (re)configuration
and consequently tailoring the product for different contexts
or for different purposes. Variability is a well-known concept
in Software Product Lines, which will be covered later.

2) Adaptability and Self-Adaptive Systems: While vari-
ability is given by context, the capability of software systems
to react efficiently to changed circumstances is called Adapt-
ability. The main difference relies on what has changed and
what is being changed accordingly. The same software may

be reconfigured to be used in different contexts (e.g., by re-
compiling with an additional component), and this provides
Variability. The mechanisms that allow software to change
its behavior (without recompiling) is called Adaptability.
Adaptive systems may thus be defined as open systems
which are able to fit their behavior according to either (or
both) external or internal changes. The work by Andresen
et al. [15] identifies some enabling criteria for adaptability
in enterprise systems. Further work by Meso et al. [16]
provides a insight into how agile software development
practices can be used to improve adaptability.

Self-adaptation is a particular case of Adaptability, when
software systems are empowered with the ability to adjust
their own behavior themselves during run-time, in response
to both their perception of the environment and itself [17].
Despite that in self-adaptation often (i) the change agent is
the system itself in reaction to the external world, and (ii)
the scope of adaptability is well-defined a priori, there is
an extensive amount of research that still applies to systems
that need adaptation, without having to adapt themselves.

B. Incompleteness

1) The Wiki Way: Earlier in 1995, Cunningham wrote a
set of scripts that allowed collaborative editing of webpages
inside the very same browser used to view them [18],
and named this system WikiWikiWeb. He chose this word
because of the analogy between its meaning (quick) and
the underlying philosophy of its creation: a quick-web. Up
until now, wikis have gradually become a popular tool on

73

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Adaptability Variability

Adaptive
Object-Model

Software

DomainReality

IncompletenessSelf-Adaptive
Agile

Processes

Components

Software
Product Lines

MetaModeling
Technique

MDA MDE

Domain Specific
Language

xUML

MetaProgramming

Reflection

FrameworkInfrastructure

Pattern

copes-with supports

supports
provides

config points

copes

is-expressive-in

abstracts

implements

is-inherent

requires

is-property-of

is-a

contains
is-a is-a is-a

supports

requires

is-a-property-of

has

is-a

provides

often-use

Change

embrace

leads-to

may-result-from

helps

Wiki
embrace

embrace

may-be

may-use

may-provide

Generative
Programming

is

Figure 4. Concept map representing the relationship between several areas, concepts and techniques related to Adaptive Object-Models.

several domains, including that of software development
(e.g., to assist the creation of lightweight software documen-
tation [19]) — they ease collaboration, provide generalized
availability of information, and allow to combine different
types of content (e.g., text, models, code) into the same
infrastructures.

2) Characteristics: The overall success of wikis may be
due to a set of design principles drafted by Cunningham that
overall tend to embrace change and incompleteness, namely
(i) Open, (ii) Incremental, (iii) organic, (iv) Universal, (v)
Overt, (vi) Tolerant, (vii) Observable and (viii) Convergent.
Their original definition may be looked up in [20].

3) Wikis and Incomplete Systems: Likewise, we may also
regard the usage (and development) of a software systems as
a team work. The underlying design and the knowledge that
lead to it (e.g., requirements, use-cases, models) is mostly
devised and shared between developers and stakeholders.
Data is collaboratively viewed and edited among users.
Oddly, not only these circles seem to be disjoint, but
emergent knowledge from this collaboration seem to start
and end towards the artifacts themselves, despite the fact
they have (and are) built incrementally.

Incompleteness, once again, seems to be the key. Instead
of regarding it as a defect, we should embrace it as the
means through which the system evolves, thus fulfilling
its function. WikiWikiWeb seemed to have realized this
fundamental ideal, and for us it is reasonable to conjecture
about attempting the same underlying principles [20] to
other computational systems as well:

• Open. Should a resource be found to be incomplete or
poorly organized, the end-user can evolve it as they see
fit.

• Incremental. Resources can link to other resources,

including those who have not yet been brought into
existence.

• Organic. Structure and content are open to editing and
evolution. Evolution may be made more difficult if it
is mandatory for information to strictly conform to a
pre-established model.

• Universal. The same (or very similar) mechanisms for
modifying data and model should be exposed by the
system with no apparent distinction.

• Overt. End-user evolution should be made by non-
programmers. The introduction of linguistic construc-
tions (such as textual syntax) is usually required in
order to provide formalization. However, such construc-
tions may reveal unnatural, intrusive and complex to the
end-user, thus model edition should be made as readily
apparent (and transparent) as possible.

• Tolerant. Interpretable behavior is preferred to system
halt.

• Observable. Activity should be exposed and reviewed
by end-users, fomenting social collaboration.

• Convergent. Duplication is discouraged and removed
by incremental restructuring and linking to similar or
related content.

To reach expand these principles inherent to the WikiWiki-
Web to other areas of software, we need a particular degree
of adaptability — both to the developers and to the end-
users — from the infrastructure which is neither commonly
found, nor particularly easy to design.

C. Abstraction

Wikipedia [21] has several articles defining the concept of
abstraction, depending on the scientific area: ”Conceptually,
it is the process or result of generalization by reducing

74

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the information content of a concept or an observable
phenomenon, typically to retain only information which is
relevant for a particular purpose. In mathematics, it is the
process of extracting the underlying essence of a mathemati-
cal concept, removing any dependence on real world objects
with which it might originally have been connected, and
generalizing it so that it has wider applications or matching
among other abstract descriptions of equivalent phenomena.
In computer science, it is the mechanism and practice of
abstraction reduces and factors out details so that one can
focus on a few concepts at a time.”

All definitions share one factor in common, i.e., that ab-
straction involves relinquishing some property (e.g., detail)
to gain or increase another property (e.g., simplicity). For
example, a common known use of abstraction is the level
of programming language. Assembly is often called low-
level because it exposes the underlying mechanisms of the
machine with an high degree of fidelity. On the other end,
Haskell is an high-level language, struggling to hide as much
as possible the underlying details of its execution. The latter
trades execution performance in favor of cross-platform and
domain expressiveness.

In this sense, abstractions are never to be considered
win-win solutions. For example, Joel Spolsky [22] observes
a recurrent phenomena in technological abstractions called
Leaky Abstractions, which occurs when one technological
abstraction tries to completely hide the concepts of an-
other, lower-level technology, and sometimes the underlying
concepts “leak through” those supposed invisible layers,
rendering them visible. For example, an high-level language
may try to hide the fact that the program is being executed
at all by a von-neumann machine. In this sense, although
two programs may be functionally equivalent, memory
consumption and processor cycles may eventually draw a
clear separation between them. Hence, the programmer may
need to learn about the middle and lower-level components
(i.e., processor, memory, compiler, etc.) for the purpose of
designing a program that executes in a reasonable time, thus
breaking the abstraction. He goes as far as hypothesizing
that “all non-trivial abstractions, to some degree, are leaky”.
Hence, good abstractions are specifically designed to express
the exactly intended details in a specific context, while
relinquishing what is considered unimportant.

1) Metaprogramming: Metaprogramming consists on
writing programs that generate or manipulate either other
programs, or themselves, by treating code as data [23].
Historically, it is divided into two languages: (i) the meta-
language, in which the meta-program is written, and (ii)
the object language which the metaprogram produces or
manipulates. Nowadays, most programming languages use
the same language for the two functions [24], either by
being homoiconic (e.g., Lisp), dynamic (e.g., Python) or by
exposing the internals of the runtime engine through APIs
(e.g., Java and .NET). Claims about the economic benefits in

terms of development and adaptability have been studied and
published for more than twenty years [25], though its focus
is on code-level manipulation and not on domain artifacts.

2) Meta-modeling: Supporting the use of models dur-
ing runtime is an answer to high-variability systems [6],
where the large semantic mismatch between specification
and implementation artifacts in traditional systems can be
reduced by the use of models, meta-models, and metadata
in general. Metamodeling is thus the analysis, construction
and development of the frames, rules, constraints, models
and theories applicable and useful for modeling a predefined
class of problems [26] (i.e., a model to specify models).

3) Reflection: Reflection is the property of a system that
allows to observe and alter its own structure or behavior
during its own execution. This is normally achieved through
the usage and manipulation of (meta-)data representing the
state of the program/system. There are two aspects of such
manipulation: (i) introspection, i.e., to observe and reason
about its own state, and (ii) intercession, i.e., to modify its
own execution state (structure) or alter its own interpretation
or meaning (semantics) [24]. Due to this properties, reflec-
tion is a key property for metaprogramming.

4) Domain Specific Languages: A domain-specific lan-
guage (DSL) is a programming or specification language
specifically designed to suit a particular problem domain,
representation technique, and/or solution technique. They
can be either visual diagramming languages, such as UML,
programatic abstractions, such as the Eclipse Modeling
Framework, or textual languages, such as SQL. The benefits
of creating a DSL (along with the necessary infrastruc-
ture to support its interpretation or execution) may reveal
considerable whenever the language allows a more clear
expression of a particular type of problems or solutions than
pre-existing languages would, and the type of problem in
question reappears sufficiently often (i.e., recurrent, either
in a specific project, like extensive usage of mathematical
formulae, or global-wise, such as database querying).

The creation of a DSL can be supported by tools such
as AntLR [27] or YACC [28], which take a formalized
grammar (e.g., defined in a meta-syntax such as BNF),
and generate parsers in a supported target language (e.g.,
Java). Recently, the term DSL has also been used to coin
a particular type of syntactic construction within a general
purpose language which tends to more naturally resemble a
particular problem domain, but without actually extending or
creating a new grammar. The Ruby community, for example,
has been enthusiastic in applying this term to such syntactic
sugar [29].

Domain-specific languages share common design goals
that contrast with those of general-purpose languages, in the
sense they are (i) less comprehensive, (ii) more expressive
in their domain, and (iii) exhibit minimum redundancy.
Language Oriented Programming [30] considers the creation
of special-purpose languages for expressing problems as a

75

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

standard methodology of the problem solving process.
5) Meta-Architectures: We have already seen several

techniques used to address systems with high-variability
needs. There is, nonetheless, differences between them. For
example, some do not parse or interpret the system definition
(meta-data) while it is running: Generative Programming
and Metamodeling rely on code generation done at compile
time. Reflection is more of a property than a technique by
itself, and the level at which it is typically available (i.e.,
programming language) is inconvenient to deal with domain-
level changes. Domain Specific Languages are programming
(or specification) languages created for a specific purpose.
They are not generally tailored to deal with change (though
they could), and they do require a specific infrastructure in
order to be executed.

Meta-architectures, or reflective-architectures, are archi-
tectures that strongly rely on reflective properties, and may
even dynamically adapt to new user requirement during
runtime. Pure OO environments, and MOF-based systems
are examples of such architectures, as they make use of
meta-data to create different levels that sequentially comply
to each other. The lowest level in this chain is called the
data level, and all the levels above the meta-data levels, but
the line that separates them is frequently blurred as both are
data.

D. Approaches

1) Software Product Lines: A software product line
(SPL) is a set of software systems which share a common,
managed set of features that satisfy the specific needs of a
particular market segment or mission and that are developed
from a common set of core assets in a prescribed way [31].
Software product line development, encompasses software
engineering methods, tools and techniques for supporting
such approach. A characteristic that distinguishes SPL from
previous efforts is predictive versus opportunistic software
reuse. Rather than put general software components into a
library in the hope that opportunities for reuse will arise,
software product lines only call for software artifacts to be
created when reuse is predicted in one or more products in
a well defined product line.

2) Naked Objects: Naked Objects takes the automatic
generation of graphical user interfaces for domain models
to the extreme. This software architectural pattern, first
described in Richard Pawson’s PhD thesis [32] which work
includes a thorough investigation on prior known uses and
variants of this pattern, is defined by three principles:

1) All business logic should be encapsulated onto the
domain objects, which directly reflect the principle of
encapsulation common to object-oriented design.

2) The user interface should be a direct representation
of the domain objects, where all user actions are
essentially creation, retrieval and message send (or
method invokation) of domain objects. It has been

argued that this principle is a particular interpretation
of an object-oriented user-interface (OOUI).

3) The user interface should be completely generated
solely from the definition of the domain objects, by
using several different technologies (e.g., source code
generation or reflection).

The work of Pawson further contains some controversial
information, namely a foreword by Trygve Reenskaug, who
first formulated the model-view-controller (MVC) pattern,
suggesting that Naked Objects is closer to the original MVC
intent than many subsequent interpretations and implemen-
tations.

3) Domain-Driven Design: Domain-driven design
(DDD) was coined by Eric Evans in his books of the same
title [33]. It is an approach to developing software for
complex needs by deeply connecting the implementation
to an evolving model of the core business concepts, which
encompasses a set of practices and terminology for making
design decisions that focus and accelerate software projects
dealing with complicated domains. The premise of domain-
driven design is the following: (i) placing the project’s
primary focus on the core domain and domain logic, (ii)
basing complex designs on a model, and (iii) initiating a
creative collaboration between technical and domain experts
to iteratively cut ever closer to the conceptual heart of the
problem.

4) Model-Driven Engineering: Model-Driven Engineer-
ing (MDE) is a metamodeling technique that strives to close
the gap between specification artifacts which are based upon
high-level models, and concrete implementations. A conser-
vative statement claims that MDE tries to reduce the effort of
shortening (not completely closing) that gap by generating
code, producing artifacts or otherwise interpreting models
such that they become executable [2].

Proponents of MDE claim several advantages over tra-
ditional approaches: (i) shorter time-to-market, since users
model the domain instead of implementing it, focusing on
analysis instead of implementation details; (ii) increased
reuse, because the inner workings are hidden from the user,
avoiding to deal with the intricate details of frameworks or
system components; (iii) fewer bugs, because once one is
detected and corrected, it immediately affects all the system
leading to increased coherence; (iv) easier-to-understand
systems and up-to-date documentation, because the design
is the implementation so they never fall out of sync [6].
One can argue if these advantages are exclusive of MDE or
just a consequence of “raising the level of abstraction” (see
Domain Specific Languages).

Downsides in typical generative MDE approaches in-
clude the delay between model change and model instance
execution due to code generation, debugging difficulties,
compilation, system restart, installation and configuration of
the new system, which can take a substantial time and must
take place within the development environment [6]. Once

76

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

again, it doesn’t seem a particular downside of MDE, but
a general property of normal deployment and evolution of
typical systems.

More interesting counter-points to MDE adoption will be
addressed in Section IV. It seems worthwhile to note that
the prefix Model-driven seems to be currently serving as a
kind of umbrella definition for several techniques.

5) Model-Driven Architecture: Model-driven architecture
(MDA) in an approach to MDE proposed by the OMG,
for the development of software systems [34]. It provides
a set of guidelines to the conception and use of model-
based specifications and may be regarded as a type of
domain engineering. It bases itself on the Meta Object
Facility (MOF) [35], which main purpose is to define a strict,
closed metamodeling architecture for MOF-based systems
and UML itself, provides four modeling levels (M3, M2,
M1 and M0), each conforming to the upper one (M3 is in
conformance to itself).

M2

M1

M0

ClassAttribute

‹‹instanceOf››‹‹instanceOf››

M3 Class

Instance

‹‹instanceOf››‹‹instanceOf››‹‹instanceOf››

classifier

 +title: string

Video

title = "Matrix"

:aVideo‹‹snapshot››

‹‹instanceOf››

Matrix

‹‹instanceOf››

Figure 5. Layers of Abstraction in the Meta-Object Facility (MOF). Each
level is in direct conformance to the upper level. The classes named Class,
from both level 2 and 3, represent the same concept.

Like most of the MDE practices, MDA thrives within a
complex ecosystem with specialized tools for performing
specific actions. Moreover, MDA is typically oriented for
generative approaches, using systematic offline transforma-
tion of high-level models into executable artifacts. for exam-
ple, trying to answer MDA’s objective of covering the entire
gap between specification and implementation, xUML was
developed. It is a UML profile which allows the graphical
representation of a system, and takes an approach in which
platform specific implementations are created automatically
from platform-independent models, with the use of model
compilers.

While some complex parts of MDA allow runtime adap-
tivity, developers seldom acquire enough knowledge and
proficiency of the overall technologies to make them cost
(and time) effective in medium-sized applications. Runtime
adaptivity may be approached in different ways, including

the use of reflection, and the interpretation of models at
runtime [6], covering the concept of Adaptive Object-Model
(see section II-E3).

E. Infrastructures

1) Frameworks: Object-oriented frameworks are reusable
designs of all or part of a software system described by
a set of abstract artifacts and the way they collaborate
[36]. They aim to provide both an infrastructure, through
a COMPONENT LIBRARY and pre-defined interconnections
among them, which may all be (re-)configured and extended
to address different problems in a given domain. Good
frameworks are able to reduce the cost of development by
an order of magnitude. It should be stressed that software
frameworks are more than just a collection of reusable
components (also known as LIBRARY); a framework usually
makes use of the Hollywood Principle1 to promote high
cohesion and low coupling in object-oriented designs, by
ensuring a THREAD OF CONTROL.

2) Generative Programming: One common approach to
address variability and adaptability is the use of Generative
Programming (GP) methods, which transform a description
of a system (model) based in primitive structures [37], into
either executable code or code skeleton. This code can then
be further modified and/or refined and linked to other com-
ponents [38]. Generative Programming deals with a wide
range of possibilities including those from Aspect Oriented
Programming [39], [40] and Intentional Programming [41].

Because GP approaches focus on the automatic generation
of systems from high-level (or, at least, higher-level) descrip-
tions, it is arguable whether those act like a meta-model
of the generated system. Still, the resulting functionality is
not directly produced by programmers but specified using
domain-related constructs. In summary, GP works as an off-
line code-producer and not as a run-time adaptive system
[42].

This technique typically assumes that (i) changes are
always introduced by developers (change agents), (ii) within
the development environment, and (iii) that a full transfor-
mation (and most likely, compilation) cycle is affordable
(i.e., no run-time reconfiguration). When these premises fail
to hold, generative approaches are easily overwhelmed [6].

3) Adaptive Object-Models: In search for flexibility and
run-time adaptability, many developers had systematically
applied code and design reuse of particular domains, ef-
fectively constructing higher-levels representations (or ab-
stractions). For example, some implementations have their
data structure and domain rules extracted from the code and
stored externally as modifiable parameters of well-known
structures, or statements of a DSL. This strategy gradually
transforms some components of the underlying system into

1A well-known cliché response given to amateurs auditioning in Holly-
wood: “Don’t call us, we’ll call you”.

77

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

an Interpreter or Virtual Machine whose run-time behavior
is defined by the particular instantiation of the defined
model. Changing this model data thus results on the system
following a different business domain model. Whenever we
apply these techniques based upon object-oriented principles
and design, we are using an architectural style, known as an
Adaptive Object-Model [43].

Shortly, it is (i) a class of systems’ architectures, (ii)
heavily based on Metamodeling and Object-Oriented design,
(iii) which often uses a Domain Specific Language, (iv)
usually have the property of being Reflective, and (v) with
the intent of exposing its configuration to the end-user.
Because we are abstracting a set of systems and techniques
into a common underlying architecture heavily based on
object-oriented metaprogramming/metamodelling, we cate-
gorize the AOM as a meta-architecture.

The evolution of the core aspects of an AOM can be
observed by the broad nomenclature used in the literature in
the past couple of decades (e.g., Type Instance, User Defined
Product Architecture, Active Object-Models and Dynamic
Object Models). The concept of Adaptive Object-Model is
inherently coupled with that of an architectural pattern, as
it is an effective, documented, and prescriptive solution to a
recurrent problem.

It should therefore be noted that most AOMs emerge from
a bottom-up process [43], resulting in systems that will likely
use only a subset of these concepts and properties, and only
when and where they are needed. This is in absolute contrast
with top-down efforts of specific meta-modeling techniques
(e.g., Model-Driven Architecture) where the whole infras-
tructure is specifically designed to be as generic as possible
(if possible, to completely abstract the underlying level).

The concepts of End-User Programming and Confined
Variability — the capability of allowing the system’s users
to introduce changes and thus control either part, or the
entire system’s behavior — are significative consequences
of the AOM architecture which aren’t easily reconcilable
with other techniques such as Generative Programming.

III. ARCHITECTURE AND DESIGN OF ADAPTIVE
OBJECT-MODELS

The basic architecture of an Adaptive Object-Model is
divided into three parts, or levels, that roughly correspond
to the levels presented by MOF: M0 is the operational level,
where system data is stored, M1 is the knowledge level
where information that defines the system (i.e., the model) is
stored, and M2 is the design of our supporting infrastructure.
M0 and M1 are variants of our system. M2, the meta-model,
is usually invariant — should it need to change, we would
have to transform M0 and M1 to be compliant with the new
definition.

A. Making the Structure Agile
In Section I, we have shown a refactored example which

made use of a small set of patterns to introduce the desired

adaptability into the original system. As always, one key
to good software design is two-fold: (i) recognize the things
that will often change in a predictable way, and (ii) recognize
what it rarely does not; it is the search for patterns and
invariants.

B. The Type-Object Pattern

In the context Object-Oriented Programming and Anal-
ysis, the Type of an object is defined as a Class, and its
Instance as an Object which conforms to its class. A typical
implementation of our example system would hardcode
into the program structure (i.e., source-code) every modeled
entity (e.g., Patient). Would the system needed to be changed
(e.g., to support a new entity) the source-code would have
to be modified.

However, if one anticipate this change, objects can be
generalized and their variation described as parameters, just
like one can make a function that sums any two given
numbers, regardless of their actual value. The TYPE OBJECT
pattern, depicted in Figure 7, identifies the practice of
splitting such a class in two: a Type called EntityType, and
its Instances, called Entity.

Identifier {unique}

Entity

Identifier {unique}
Name: string
Abtract: bool

Entity Type

Identifier = 001
Name = "Patient"
Abstract = False

Patient

Identifier = 001

John Doe

is-instance-of

is-instance-of

model-level

data-level

parent

0..1

0..*

Figure 7. The TYPE-OBJECT pattern.

Using this pattern, Patients, Doctors, Appointments, etc.
all become instances of Entity Types, therefore meta-data.
The actual system data, such as a the patient John Doe, are
now represented as instances of Entity. Because data and
meta-data are values beyond the program structure, they can
be changed during run-time.

We’ll often extend and customize the original design
of patterns to further enhance the model semantics. For
example, by supporting the notion of inheritance through an
optional relation between EntityTypes, which do incidentally
solve the problem of open-inheritance. Provided sufficient
mechanisms exists to allow the end-user customization of the
model-level, new specializations (e.g., Procedures, Patholo-
gies, etc.) can be added without modifying the source-code.

C. The Property Pattern

Similarly to the TYPE-OBJECT pattern, we face a similar
problem with the attributes of an object, such as the Name
and Age of a Patient, which are usually stored as values
of fields of an object, which have been defined in its

78

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Type Square

Dynamic
Hooks

Strategy

Type Cube

Rule Object

Rule Engine

Interpreter

Builder

Editor / Visual
Language

AOM Builder

Dependency
Injection

Dynamic
Factory

Bootstrapping

Type Object

PropertiesAccountability

Null Object Value Object

Smart
Variables

Entity View
Property
Renderer

Dynamic
Views

GUI
Workflow

History of
Operations

System
Memento

Migrations

manages

may-use may-use

coordinates

uses

usesuses

supports

supports

renders

extends

manages

or extends

manages

extends

extends

Domain Specific
Languagesupports

extends

uses

uses

supports supports

uses

uses

may-use

may-use

instrument

uses

controls

instrument

Figure 6. Pattern map of design patterns and concepts related to Adaptive Object-Models. Adapted from [44].

appropriate classes. Once again, anticipation of this change
leads to the PROPERTY pattern; a similar bi-section between
the definition of a property and its corresponding value as
depicted in Figure 8.

Using this pattern, the Name, Age, Birthday, Profession,
and several attributes of the domain’s entities become in-
stances of Property Types, and their particular values in-
stances of Property. Again, this technique solves the problem
of adding (or removing) more information to existing entities
beyond those originally designed.

D. The Type-Square Pattern

The two previous patterns, type-object and property, are
usually used in conjunction, resulting in what is known
as the TYPE-SQUARE pattern, which poses the core of an
AOM. If we add the instantiations of these classes, we get
the diagram depicted in Figure 9.

In this picture, the objects represent both the systems’ data
and model, while the classes represent our static, abstract
infrastructure. The ability to represent an increasing number
of different — and useful — systems is directly dependent
on the power of the underlying infrastructure.

Identifier {unique}
Value

Property

Identifier {unique}
Name: string

Property Type

Identifier = 001
Name = 'Age'

: Property Type

Identifier = 001
Value = 23

: Property

is-instance-of

is-instance-of

model-level

data-level

Figure 8. The PROPERTY pattern, which separates the definition of an
object’s property and its corresponding value.

E. Revisiting the PROPERTY Pattern

Literature in AOM used to describe a form to capture
relationship between different objects by using the AC-
COUNTABILITY pattern [45]. But what exactly is a field,
a relation or a property? Object fields, in OOP, are used to
store either values of native types (such as int or float in
Java) or references to other objects. They can also be either
scalars or collections. Some OO languages (e.g., smalltalk)
treat everything as an object, and as such do not make any
difference from native types to references. Some also discard
scalar values and instead use singleton sets. We may borrow
these notions to extend the PROPERTY pattern in order to
support associations between entities, provided we are able
to state properties such as cardinality, navigability, role, etc.
The actual differentiation between what is a scalar property
and a relation, becomes an implementation detail. Figure 10
depicts such design.

One hook introduced between the abstraction and the
underlying language is the use of the Native Type property in
Entity Type, to allow any custom Entity Type to be directly
mapped into a native type of the underlying language (such

Property

Property Type

Entity

Entity Type

Age

23

Patient

John Doe

Figure 9. The TYPE-SQUARE pattern, which is a composition of the TYPE
OBJECT and PROPERTY patterns.

79

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Entity Property

Lower-bound: int
Upper-bound: int

Cardinality

Association
Aggregation
Composition

‹‹enumeration››
Role

isNavigable: bool

Property Type

Native Type: Type [0..1]

Entity Type

target

value

Figure 10. An extension of the TYPE-SQUARE pattern, using a variant of
the ACCOUNTABILITY pattern.

as integers and strings).
There are also several logical restrictions related to the

semantics of this design. For example, the lower and up-
per bound in cardinality should restrain the number of
associations from a single Property to Entities. Likewise,
Properties should only link to Entities which are of the same
Entity Type as that defined in Property Type. The complete
formalization of the semantics of the presented models is
outside of the scope of this work.

F. Self-compliance

If our meta-model has enough expressivity, one can reach
the point where the model can be represented inside itself.
MOF is an example of such self-compliance by making
M3 a self-describing level. There are several reasons to
make that design choice: (i) it makes a strict meta-modeling
architecture, since every model element on every level is
strictly in correspondence with a model element of above
level, and (ii) the same mechanisms used to view, modify
and evolve data can be reused for meta-data. A way to
accomplish this is by introducing the notion of a Thing, that
abstracts elements at any level. A Thing is thus an instance of
another Thing, including of itself, such as depicted in Figure
11. This implies that during bootstrapping, the system would
first need to load its own meta-model. When applicable,
Entity Types are actually M2 Entities, thus requiring a
mechanism to inherently convert between them.

‹‹serializable››
State

Entity Type Entity

Identifier {unique}

Thing 1..*

has

‹‹instanceOf››

Figure 11. The THING pattern, which decouples the Identity of an object
from its State.

G. Versioning

As is also shown by Figure 11, the identity of each
instance is maintained as Things, while the respective details

are maintained as States. The decoupling of these two con-
cepts may be leveraged to provide auditability capabilities,
thus answering a common request when building informa-
tion systems. Auditability may be reached by allowing users
to access past versions of an instance, and thus to understand
how such instance has evolved.

Figure 12 depicts an example of this mechanism. Two dis-
tinct values exist for the same Property Type, corresponding
to two different changes the instance has been through over
time.

Name: Property Type

Value = "Michael Doe"

S1: State

Value = "John Doe"

S2: State

Patient: Entity Type

Figure 12. S1 and S2 are two different states — or snapshots — of
the property name. Although a typical system usually stores only the most
recent snapshot, some techniques rely on having the history of an object.

H. Making the Behavior Agile

In addition to structure, such as Entities, Properties and
Associations, systems usefulness also relies on the ability
to support rules and automatic behavior. Some examples of
these include, but are not limited to, (i) Constraints, such
as relationship cardinality, navigability, type redefinition,
default values, pre-conditions, etc. (ii) Functional Rules,
which include reactive logic such as triggers, events and
actions, and (iii) Workflows.

During the instantiation of the object-model, after all types
of objects and their respective attributes are created, there
are some operations that can be applied to them. Some of
these operations are simple Strategies, relatively immutable
or otherwise parameterized, which can be easily described
in the metadata as the method to be invoked along with the
appropriate Strategy.

When the desired behavior reaches a certain level of com-
plexity and dynamism, then a domain specific language can
be designed using RULE-OBJECTS [46]. In this case, prim-
itive rules are defined and composed together with logical
objects, parsed into a tree structure to be interpreted during
runtime. The use of patterns like SMART VARIABLES [47]
and TABLE LOOKUP reveal useful for triggering automatic
updates and validations of property values. More complex
systems can make use of StateMachines and Workflows both
for data and human-computer interaction.

A common problem that arises with the abstraction of
rules, is that the developer may fall in the trap of creating
(and then maintaining) a general-purpose programming lan-
guage, which may result in increased complexity regarding
the implementation and maintenance of the target applica-
tion, far beyond what would be expected if those rules were

80

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

hardcoded [42]. It should be kept in mind that the goal is
not to implement the whole application in a new language;
just what changes.

I. Rules

Figure 13 depicts a design extending the RULE OBJECT
pattern and presented in [48], which allows the definition
of: (i) Entity Type invariants, which are predicates that must
always hold, (ii) derivation rules for Property Types and
Views, (iii) the body of Methods, (iv) guard-conditions of
Operations, etc. Even some structural enforcement, such
as the Cardinality and Uniqueness of a Property Type
may be unified into conditions. Methods, which are used-
defined Batches of Operations, may be invoked manually,
or triggered by Events, thus providing enough expressivity
to specify STATE MACHINES. This design ensures the ca-
pability of the system to enforce semantic integrity during
normal usage and assisting model evolution.

J. Views

In the design presented so far, Views are regarded as
Entity Types which have a derivation rule that returns a
collection, and every property have a second derivation
rule (often manipulating each item of that collection). They
allow the existence of virtual Entity Types where their
information is not stored by inferred, similar the querying
mechanisms of relational databases (SQL). For example, we
could consider a requirement for the system presented in
Figure 2, that specifies a list of items composed by every
doctor in the medical center, along with the number of
high-risk procedures and their total cost. This would be
represented by a new Entity Type (“High-Risk Treatments
Income by Doctor”) that iterates over Doctors and their
Procedures. Since the latter is also a derived property, it
should be specified as a rule of Doctor and so on.

K. Evolution

Has already discussed, structural integrity of the run-time
model is asserted through rules stated in the meta-model. For
example, Entities should conform to their specified Entity
Type (e.g., they should only hold Properties to which its
Property Type belong to the same Entity). Nonetheless,
evolving the model may corrupt structural integrity. For
example, when moving a mandatory Property Type to its
superclass, if it doesn’t have a default value, it can render
some Entities structurally inconsistent. Some of these issues
can be coped with, by foreseeing integrity violations and
applying prior steps to avoid them (e.g., one could first
introduce a default value before moving the Property Type
to its superclass). Through careful annotation of model-
level operations (e.g., by reducing the applicability scope
through pre-conditions so that a well-formalized semantics is
established), one can increase the confidence on maintaining
structural integrity.

Another issue arrises when parts of a composite evolution
violate model integrity, although the global result would be
valid. For example if a Property Type is mandatory, one
cannot delete its Properties without deleting itself and vice-
versa. This problem is solved by the use of transactions or
change-sets, and by suspending integrity check until the end.

Semantic Integrity of a particular evolution, on the other
hand, is much harder to ensure since it is not encoded as
rules in the meta-model. State-based comparison of models
have already shown this problem, because it is not always
possible to just compare the results of an arbitrary evolution
and accurately infer the performed operations. In our exam-
ple, consider the scenario where a patient’s age was being
stored directly, but we now realize that having the birthdate
is far less problematic. For that, the following modifications
to the model are made: (i) rename Age to Date of Birth, (ii)
reverse calculate it according to the current date, and (iii)
move it to a the superclass Person.

Patient: Entity Type

before

after

Value = 32

Age: Property Type

Person: Entity Type
Value = 8/1/1978

Date of Birth: Property Type

Patient: Entity Type

Figure 14. A model evolution example, where a property is both changed
w.r.t. its semantics, and moved to the superclass.

Would we rely on the direct comparison of the initial and
final models, a possible solution would be to delete the Age
in Patient and create Date Of Birth in Person. Clearly, the
original meaning of the intended evolution (e.g., that we
wanted to transform ages to birth-dates) would be missed,
and every data lost. Operation-based evolution solves this
problem, and we can make use of the MIGRATION pat-
tern [49] which express these changes through sequences
of model-level operations that cascade into instance-level
changes, as we’ll see next.

L. (Co-)Evolution

Allowing (potentially collaborative) co-evolution of model
and data by the end-user introduces a new set of concerns
not usually found in classic systems. They are (i) how to
preserve model and data integrity, (ii) how to reproduce
previously introduced changes, (iii) how to access the state
of the system at any arbitrary point in the past, and (iv)
how to allow concurrent changes. All these concerns are
directly related to traceability, reproducibility, auditability,
disagreement and safety, and are commonly found, and
coped with, on version-control systems.

81

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Property Type

Entity Type

Method Rule

invariant

body

1..*

derived by

0..*
Operation

guard
Condition

1..* 0..1

Create
Update
Delete
User-Activated

‹‹enumeration››
Event

Figure 13. The dynamic core of an Adaptive Object-Model framework. This particular design supports method definition, guard conditions, class invariants,
derived rules and event triggers.

Typically, Evolution is understood as the introduction
of changes to the model. Yet, the presented design so
far doesn’t establish a difference between changing data
or meta-data; both are regarded as evolutions of Things,
expressed as Operations over their States, and performed by
the same underlying mechanisms as depicted in Figure 15.
To provide enough expressivity such that semantic integrity
can be preserved during co-evolution, model-level Batches
operate simultaneously over data and meta-data.

Sequences of Operations may be encapsulated as Change-
Sets, following the HISTORY OF OPERATIONS pattern [49],
along with meta-information such as user, date and time,
base version, textual observations, and data-hashes, etc.
Whenever the system validates or commits a ChangeSet, the
Controller uses the merge mechanism depicted in Figure 15
(similarly to the SYSTEM MEMENTO pattern [49]) by (i)
orderly applying each Operation to create a new State, (ii)
dynamically overlaying the new States onto the base version,
(iii) evaluating and ensuring behavioral rules, and finally (iv)
producing a new version.

ChangeSet Operation

State

Version

base

provides

has

1..*

1..*

Merged
Container

<<interface>>
IContainer

1..*

background

overlay

Merge
spawn

base

changes

1..*

Figure 15. The merging mechanism of an AOM framework, which
overlays a changeset to provide a merged view (i.e., a snapshot) of a system.

M. Enduser (Co-)Evolution

In order for the end-user to perform arbitrary model evo-
lutions, a sufficiently large library of (probably composable)
operations should be provided. If the sequences of operations
over data and meta-data are preserved, it becomes possible to
recover past states of the system. It also opens way to solve
concurrent changes to the model, by allowing the existence

of multiple branches of evolution, and provide disagreement
and reconciliation mechanisms [48].

N. Warehousing

So far we have been incrementally empowering an in-
frastructure — or meta-model — to describe most of our
example application. One issue remains though: how should
this metadata be represented, accessed, and stored?

We should have in mind that, by describing both the struc-
ture and behavior of the system, it is to be interpreted in three
distinct phases: (i) during system initialization, a process
also known as bootstrapping, (ii) during the construction of
objects, a phase typically known as “instantiating the object-
model”, and (iii) during the assessment and execution of
rules.

Warehousing thus aim to hide the details of persistency
from the rest of the system, exposing and consuming data
and meta-data (i.e., Things), and managing versioning (i.e.,
through Versions and States). Its behavior can be extended
and modified through inheritance and composition, as by
the DECORATOR pattern. Transient memory-only, direct
data-base access, lazy and journaling strategies (e.g., using
CACHES) are just a few examples of existing (and sometimes
simultaneous) configurations.

O. Representation

We already discussed that because this information will
be readily available for runtime manipulation (e.g., in a
database or other external storage mechanism), and not
hardcoded, it allows the business model to be updated and
immediately reflected in the applications.

Options for storage and manipulation of meta-data include
relational and object-oriented databases, Domain Specific
Languages, custom XML vocabularies, etc. Direct serializa-
tion of the model — e.g., using native language primitives
— may simplify system initialization. Domain Specific
Languages and XML vocabularies may need the usage of
the INTERPRETER and BUILDER patterns.

However, one of the most powerful abilities of an AOM is
to allow the end-user himself to introduce (confined) changes
to the model at runtime. This raises a number of concerns
which the AOM literature does not commonly address, and
that may require more elaborate strategies to deal with the

82

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

evolution of data and meta-data, and which will be discussed
in Section IV.

P. Persistency

The use of object-oriented databases (OODB) simpli-
fies persistency in AOM-based systems, due to the object-
oriented nature of the meta-model. Other techniques include
model-to-model transformations for relational models, use
of the filesystem for storing serialized objects, or BLOBs in
databases.

Still, persistency based on static-scheming, such as au-
tomatic generation of DDL code for specifying relational
databases schema and subsequent DML code for manip-
ulating data, which attempts a semantic correspondence
between both models, significantly increases the implemen-
tation complexity, particularly when dealing with model co-
evolution [49]. This has been long known as object-relational
impedance mismatch [50], and evidence of such issues may
be observed in the way Object-Relational Mapping (ORM)
frameworks attempt to deal with these issues, often requiring
knowledge of both representations and manual specification
of their correspondence (e.g., Migrations in RoR).

Therefore, though persistency may seem a solved issue,
the highly-dynamic nature of AOMs and their inherent mis-
match with relational-models suggest that new alternatives
need to be investigated and tested, specially when dealing
with multiple versions and migrations of data and metadata
[49].

Q. Thread of Control

In Figure 6, the AOM BUILDER serves as a Controller
for the system, and its key responsibility is to orchestrate the
several other components in the framework by establishing
a thread of control. It bootstraps the system by loading
the meta-model, and the necessary versions of the domain-
model from the Warehouse. It manages data requests by
interacting with the Warehouse. It also provides several
HOOKS to the framework through CHAINS OF RESPON-
SIBILITY and PLUGINS (e.g., interoperability with third-
party systems by allowing subscribers to intercept requests).
It is the AOM BUILDER that establishes the THREAD OF
CONTROL for an AOM-based system.

R. User-Interface

Adaptive Graphical User-Interfaces (GUI) for AOMs
work through inspection and interpretation of the model and
by using a set of pre-defined heuristics and patterns [51].
The work in [48] describes an example of a minimalistic
workflow for an automated GUI, based on: (i) a set of
grouped entry-points declared in the model, and further
presented to the user grouped by Packages, (ii) list of the
instances by Entity Type or View, which show several details
in distinct columns, inferred from special annotations made
in the model, (iii) pre-defined automated views inferred

by model inspection (edition and visualization) based on
heuristics that consider the cardinality, navigability and role
of properties, (iv) generic search mechanisms, (v) generic
undo and redo mechanisms, (vi) support of custom panels
for special types (e.g., dates) or model-chunks (e.g., user
administration), through PLUGINS, etc.

This reactive user-interface also resembles a type of
offline mode, similar to using version-control systems. User
changes, instead of being immediately applied, are stored
into the user Changeset, and sent to the main Controller
(which would subsequently assert the resulting integrity
of applying changes, and provide feedback on behavioral
rules). The user can commit its work to the system when
she wants to save it, review the list of Operations she has
made, and additionally submit a descriptive text about her
work.

Awareness of the system also makes use of several feed-
back techniques such as (i) graphics showing the history of
changes, (ii) alerts for simultaneous pendent changes in the
same subjects from other users, (iii) reconciliation wizards
whenever conflicts are detected due to concurrent changes,
etc.

S. Towards a Pattern Language

When building systems, there are recurrent problems
which have proven, recurrent solutions, and as such are
known as patterns. These patterns are presented as a three-
part rule, which expresses a relation between a certain
context, a problem, and a solution. A software design pattern
addresses specific design problems specified in terms of
interactions between elements of object-oriented design,
such as classes, relations and objects [52]. They aren’t meant
to be applied as-is; rather, they provide a generic template
to be instantiated in a concrete situation.

1) Categorization: The growing collection of AOM-
related patterns which is forming a domain pattern language
[49], [44], [53], is currently divided into six categories (i)
Core, which defines the basis of a system, (ii) Creational,
used for creating runtime instances, (iii) Behavioral, (iv)
GUI, for providing human-machine interaction, (v) Process,
to assist the creation of a AOM, and (vi) Instrumental, which
helps the instrumentation:

• Core. This set of patterns constitutes the basis for
an AOM-supported system. The patterns included in
this category are Type Square, Type Object, Properties,
Accountability, Value Object, Null Object and Smart
Variables.

• Creational. These patterns are the ones used for creat-
ing runtime instances of AOMs: Builder, AOM Builder,
Dynamic Factory, Bootstrapping, Dependency Injection
and Editor / Visual Language.

• Behavioral. Behavioral patterns are used for adding
and removing behavior of AOMs in a dynamic way.

83

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

They are Dynamic Hooks, Strategy, Rule Object, Rule
Engine, Type Cube and Interpreter.

• GUI. User-interface rendering patterns have already
been mentioned: Property Renderer, Entity View, and
Dynamic View. Related to UI there’s to add the GUI
Workflow pattern.

• Process. Includes the patterns used in the process of
creating AOMs. An AOM has usually much of a frame-
work in it. The following patterns are good practices
when building a framework as well as when building
an AOM: Domain Specific Abstraction, Simple System,
Three Examples, White Box Framework, Black Box
Framework, Component Library, Hot Spots, Pluggable
Objects, Fine-Grained Objects, Visual Builder and Lan-
guage Tools.

• Instrumental. Patterns that help on the instrumentation
of AOMs, namely, Context Object, Versioning, History
and Caching.

2) Core Patterns:

• Type Object. As described in [54] and [55], a TypeOb-
ject decouples instances from their classes so that those
classes can be implemented as instances of a class. Type
Object allows new “classes” to be created dynamically
at runtime, lets a system provide its own type-checking
rules, and can lead to simpler, smaller systems.

• Property. The Property pattern gives a different so-
lution to class attributes. Instead of being directly
created as several class variables, attributes are kept in
a collection, and stored as a single class variable. This
makes it possible for different instances, of the same
class, to have different attributes [45].

• Type Square. The combined application of the Type-
Object and Property patterns result in the TypeSquare
pattern [45]. Its name comes from the resulting layout
when represented in class diagram, with the classes
Entity, EntityType, Attribute and AttributeType.

• Accountability. Is used to represent different relations
between parties, as described in [45] and [46], using
an AccountabilityType to distinguish between different
kinds of relation.

• Composite. This pattern consists of a way of repre-
senting part-hole hierarchies, by using the Rule and
CompositeRule classes [54].

• Strategy. Strategies are a way to encapsulate behavior,
so that it is independent of the client that uses it.
Rules are Strategies, as they define behavior that can
be attached to a given EntityType [54].

• Rule Object. This pattern results from the applica-
tion of the Composite and Strategy patterns, for the
representation of business rules by combining simpler
elementary constraints [44].

• Interpreter. An AOM consists of a runtime inter-
pretation of a model. The Interpreter pattern is used

to extract meaning from a previously defined user
representation of the model [54].

• Builder. A model used to feed an AOM-based system is
interpreted from its user representation and a runtime
representation of it is created. The Builder pattern is
used in order to separate a model’s interpretation from
its runtime representation construction [54].

3) Graphical User Interface Patterns: The patterns in
[53] focus specifically on User Interface (UI) generation
issues when dealing with AOMs. In traditional systems,
data presented in User Interfaces is usually obtained from
business domain objects, which are thus mapped to UI
elements in some way. In AOMs business objects exist
under an additional level of indirection, which has to be
considered. In fact, it can be taken into our advantage, as
the existing meta-information, used to achieve adaptivity,
can be used for the same purpose regarding user interfaces.
User interfaces can this way be adaptive to the domain model
in use.

• Property Renderer. Describes the handling of user-
interface rendering for different types of properties.

• Entity View. Explains how to deal with the rendering
of EntityTypes, and how PropertyRenderers can be
coordinated for that purpose.

• Dynamic View. Approaches the rendering of a set of
entities considering layout issues and the possibility of
coordinating EntityViews and PropertyRenderers in that
regard.

IV. RESEARCHING ADAPTIVE OBJECT-MODELS

The Adaptive Object-Model and its ecosystem is com-
posed of architectural and design patterns that provide
domain adaptability to Object-Oriented based systems. As
patterns, they’ve been recurrently seen in the wild and
systematically documented. However, we may argue there
isn’t enough scientific evidence of any specific benefits due
to the lack of rigorous empirical validation. In this sec-
tion, we raise several research questions about the benefits
of AOMs, argue what metrics should be used to support
common claims, point to what should be the baseline for
such experiments, and underline the need to design them as
repeatable packages for independent validation.

A. Epistemology

In order to understand the way software engineers build
and maintain complex and evolving software systems, re-
search needs to focus beyond the tools and methodologies.
Researchers need to delve into the social and their surround-
ing cognitive processes vis-a-vis individuals, teams, and
organizations. Therefore, research in software engineering
may be regarded as inherently coupled with human activity,
where the value of generated knowledge is directly depen-
dent on the methods by which it was obtained.

84

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Because the application of reductionism to assess the prac-
tice of software engineering, particularly in field research,
is very complex (if not unsuitable), we claim that further
research should be aligned with a pragmatistic view of truth,
valuing acquired practical knowledge. That is, it should
be used whatever methods will seem more appropriate to
prove — or at least improve our knowledge about — the
questions here raised, but mostly through the use of mixed
methods, such as (i) (Quasi-)Experiments to primarily assess
exploratory questions, which are suitable for an academic
environment, and (ii) industrial Case-Studies, as both a con-
duit to harvest practical requirements, as to provide a tight
feedback and application over the conducted investigation.

B. Fundamental Challenges

There are some fundamental questions directly inherited
from the current research trends and challenges in the area
of Model-Driven Engineering (MDE). A recent research
roadmap by France et al. [2] states three driving issues:
(i) what forms should runtime models take; (ii) how can
the fidelity of the models be maintained; and (iii) what
role should the models play in validation of the runtime
behavior? Another survey by Teppola et al. [56] synthesize
several obstacles related to wide adoption of MDE:

1) Understanding and managing the interrelations among
artifacts: Multiple artifacts such as models, code and docu-
mentation, as well as multiple types of the same artifact (e.g.,
class, activity, state diagrams) are often used to represent
different views or different levels of abstraction. Subsets
of these overlap in the sense that they represent the same
concepts. Often because they are manually created and
maintained without any kind of connection, consistency
poses a problem.

2) Evolving, comparing and merging different versions of
models: The tools we currently have to visualize differences
among code artifacts are suitable because they essentially
deal with text. Models often don’t have a textual representa-
tion, and when they do, it may not be the most appropriate
to understand the differences and to make decisions, partic-
ularly if these are to be carried by the end-user.

3) Model transformations and causal connections: Mod-
els are often used to either (i) reflect a particular system, or
(ii) dictate the system’s behavior. The relationships between
the system and its model, or between different models that
represent different views of the same system, are called
causal connections. Maintaining their consistency when ar-
tifacts evolve is a complex issue, often carried manually.

4) Model-level debugging: If the model is being used
to dictate a system’s behavior, enough causal connections
must be kept in order to understand and debug a running
application at the model-level.

5) Combination of graphical and forms-based syntaxes
with text views: Developers and end-users have different

preferences concerning textual syntaxes and graphical edi-
tors to view and edit models. To this extend, a complete
correspondence between each strategy is currently not well
supported.

6) Moving complexity rather than reducing it: Model-
Driven Engineering is not a “silver-bullet” [57] and as such
its benefits must be carefully weighted in context to assess
whether the approach will actually reduce complexity, or
simply move it elsewhere in the development process.

7) Level of expertise required: It is not clear if the
interrelationships among multiple artifacts (which may have
different formalisms), combined with the necessary (mul-
tiple) levels of abstraction to express a system’s behavior
actually eases the task of any given stakeholder to understand
the impact and carry out a particular change, and to which
extent current training in CS/SE courses is adequate.

C. Viewpoints

When researching Adaptive Object-Models, there are al-
ways two distinct viewpoints from where we can measure
the benefits: (i) the developer viewpoint, which is actively
trying to build a system for a specific use-case profile, and
(ii) the end-user, which, when provided, will be evolving
the system once delivered. The existence of an end-user as
a change-agent, although always cited as a benefit of the use
of AOMs, should not be taken lightly. What may seem as
an excellent way to improve adaptivity to the well-trained
developer, it may may reveal as an encumbrance to the end-
user, or at worst, a designer’s worst nightmare.

We thus suggest that some questions regarding end-user
development should be: (i) either specifically researched in
the area of AOMs, or (ii) borrowed from other fields of
research:

1) End-user perception of the model: The way end-users
see their systems is different from the abstraction the devel-
oper are used to. Understanding the differences between this
two perspectives is essential to provide mechanisms in the
user-interface that are suitable, and avoids an higher-level
BIG BALL OF MUD.

2) Visual metaphors: We shouldn’t expect the common
end-user to actually type in a Domain Specific Language to
express some new rules they want to insert in the system.
Other kinds of visual metaphors should be considered as
a proxy for the underlying rule engine. A more detailed
discussion can be found in [58].

3) Evolving the model: A tentative, failed, evolution may
be disastrous regarding the meaning of data. Mechanisms
to recover from mistakes, though already useful to the
developer, are paramount to the end-user.

D. Specific Challenges

Although the research in Adaptive Object-Models is a
subset of the research in MDE, we think the following
questions should be careful assessed and their answers would

85

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

contribute to the body of knowledge, particularly when
choosing to use (or not) this pattern. Though the authors
believe in the capability of Adaptive Object-Models to
efficiently cope with several of the stated issues in software
development, and this belief has been substantiated both by
research on the wider area of MDE, as well as through the
studies by the pattern community, we believe that we have
much to gain if we could prove that an AOM, despite a
pattern, is not an anti-pattern (i.e., an obvious, apparently
good solution, but with unforeseen and eventually disastrous
consequences):

1) Fitness for purpose: When is an AOM adequate to
use? When should the use of an AOM be considered over-
engineering. What metrics should we base our judgment for
applicability?

2) Target audience: What type of developers are best
suited for AOMs? Are current developers lacking in specific
formation that hinders the usage and construction of AOMs?
What about end-users? Are there specific profiles that could
point to a more suitable audience?

3) Development speed indicator(s): What is the impact
on the usage of AOMs during the several phases of the
process? Do developers increase their ability to produce
systems? How long is their start-up time?

4) Extensibility indicator(s): How easy is to extend an
AOM-based system? How long does it take to HOOK a
particular customization into the base architecture? Is this
dependent on a specific implementation?

5) Quality indicator(s)?: What is the impact on software
quality metrics when using AOMs? How does it affect Per-
formance? How does it ensure Correctness? Is Consistency
a major factor? What about the Usability of automatically-
generated interfaces? How can we improve them?

E. Research Design

It is necessary to adequately define the experimental
protocols which assess these claims in a rigorous and sound
way. This includes a precise definition of the processes to
be followed in industry case studies, as well as in the family
of quasi-experiments to be performed in academic contexts.
The design of experimental protocols for the industrial case
studies, should attempt to cover the whole experimental
process, i.e, from the requirements definition for each exper-
iment, planning, data collection and analysis, to the results
packaging. Discussion on guidelines for performing and
reporting empirical studies have been recently going by the
works of Shull et al. [59] and Kitchenham et al. [60]. The
typical tasks and deliverables of a common experimental
software engineering process can be found in [61].

F. (Quasi-)Experiments

(Quasi-)experiments conducted in an academic context
should be randomized, multiple-group, comparison designs,
which may be implemented as part of graduate student teams

lab work. One scenario would involve splitting the students
into three groups. One group would act as a baseline and
use any traditional development methodology and tools to
construct and evolve a particular system. The second group
would be mandated to develop an AOM-based solution. The
third group would have direct access to a framework which
already provides a specific infrastructure to build AOM-
based systems.

There should be an evaluation of the base skills for
every member. For example, was their academic track the
same, or did they take courses that could influence the
experiments outcome? In this case, it should be taken into
consideration subjects such as Software Specification, Agile
Methodologies, Formal Methods, Design Patterns, Object-
Oriented Programming, Model-Driven Engineering, to men-
tion a few, which could pose a direct influence. In order
to guarantee that there is no significant statistical deviation
on their base skills, researchers should also use of a subset
of computer science related GRE (or similar) questions
prior to conducting the selection. There’s also the need to
ensure that all groups share common skills with respect to
metamodeling, compilers, interpreters, and architectural and
design patterns, the AOM and its ecosystem, thus specific
training them should be taken into consideration.

A (quasi-)experiment may assess several distinct claims,
which could match into different phases. For example, re-
searchers could make (quasi-)experiments aligned with two
different phases: development and maintenance. In the first
phase, a Requirements Specification Report, which would
include detailed user stories and UML diagrams (or similar
artifacts) that could semi-formalize a particular small system
(e.g., around 50 model elements), would be given to all
groups. Their task would be to implement a full system using
their given technique and restrictions. The time available
for pursuing the implementation should be based in effort
estimations made by software-engineer professionals. Here,
several metrics should be collected and assessed.

The second phase would be pursued after all the systems
are finished. A series of small changes (e.g., 10 model
elements each) would be separately handled to each group,
thus accounting for a change in 50% (this number here is
being used rather arbitrarily; the rationale is that it should
reflect real-world profiles of high-variable systems). The
implementation of each of these series should occur in a
more strict laboratory environment (compared to the first
phase), with the supervision of researchers and lecturers. For
each series relevant data should be collected and assessed.

In order to improve confidence in the results, there should
be a repetition of this experiment where the groups would
(randomly) switch positions — e.g., the group which was
working with the framework-based solution would switch
to the baseline approach — for a second round.

86

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

G. Data Collection

We propose the usage of metrics such as time, correctness
and complexity of the produced artifacts, but it remains the
specification of tools and methods to collect the data during
experimentation that reveal non-intrusive for practitioners.
A possible technical solution to those using the framework
would be to instrument it in order collect as much significant
data as possible, including all steps of model evolution. The
instrumentation of Integrated Development Environments
(IDE) is also a possibility.

H. Independent Validation

The independent experimental validation of claims is not
as common in Software Engineering as in other, more mature
sciences. Hence, we stress the need to build reusable exper-
imental packages that support the experimental validation
of each claim by independent groups. The family of (quasi-
)experiments should be performed in different locations, and
lead by different researchers, but based on the same experi-
mental package, in order to enhance the ability to integrate
the results obtained in each of the quasi-experiments, and
allow further meta-analysis on them.

V. CONCLUSION AND FUTURE WORK

Software development face an increasing difficulty in
acquiring, inferring, capturing and formalizing requirements,
particularly in domains that rely on constant adaptation of
their processes to an evolving reality, and thus what support
they expect from software. This type of software is said
to be incomplete by design and thus require a design for
incompleteness approach. Agile processes have intensified
their focus on a highly iterative and incremental approach,
accepting and embracing the relevance of efficiently coping
with change.

While methodologies struggle to make the process and the
development team more suitable, we are looking forward to
what form should agile software take. One example of such
software is the WikiWikiWeb, which embrace incompleteness,
by relying on fundamental principles such as organic, overt,
tolerant and observable. We conjecture about attempting
the same principles in other systems, and those based on
Adaptive Object-Models reveal a good candidate.

The Adaptive Object-Model and its ecosystem is com-
posed of architectural and design patterns that provide
adaptability to systems based on object-oriented domain
models. AOMs, Software Product Lines, Model-Driven En-
gineering, and Frameworks are all solutions for a common
set of problems, such as increase software reuse and reduce
time-to-market. But AOMs, by leveraging the concept of
adaptability outside the development team, empower end-
users to introduce (confined) changes to the model during
run-time, and thus control themselves the evolution of their
own tool.

As patterns, they’ve been recurrently seen and docu-
mented. However, this fact doesn’t seem enough to provide
sufficient scientific evidence of their benefits, both to the
developer and to the end-user. This may be due to the
lack of sufficient empirical validation published upon the
use of AOMs, such as detailed case-studies and (quasi-
)experiments. In this work, we have raised several research
questions that address the benefits of AOMs. We have
argued what metrics should be used to support these claims,
and we have pointed to what should be the baseline for
such experiments, including designing them as repeatable
packages for independent validation.

ACKNOWLEDGMENT

This work has been partially founded by the Portuguese
Foundation for Science and Technology and ParadigmaXis,
S.A., through the doctorate scholarship grant SFRH / BDE
/ 33298 / 2008. We would also like to acknowledge the
support of Joseph Yoder, which is currently cooperating in
the supervision of the lead author’s PhD in this area.

REFERENCES

[1] H. S. Ferreira, A. Aguiar, and J. P. Faria, “Adaptive object-
modelling: Patterns, tools and applications,” Software Engi-
neering Advances, International Conference on, vol. 0, pp.
530–535, 2009.

[2] R. France and B. Rumpe, “Model-driven development of
complex software: A research roadmap,” in FOSE ’07: 2007
Future of Software Engineering. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 37–54.

[3] J. Arlow, W. Emmerich, and J. Quinn, “Literate modelling
— capturing business knowledge with the uml,” in UML’98:
Selected papers from the First International Workshop on The
Unified Modeling Language. London, UK: Springer-Verlag,
1999, pp. 189–199.

[4] J. Krogstie, A. L. Opdahl, and G. Sindre, Eds., Advanced
Information Systems Engineering, 19th International Confer-
ence, CAiSE 2007, Trondheim, Norway, June 11-15, 2007,
Proceedings, ser. Lecture Notes in Computer Science, vol.
4495. Springer, 2007.

[5] M. Voelter, “A catalog of patterns for program generation,” in
Proceedings of the Eighth European Conference on Pattern
Languages of Programs, Jun 2003.

[6] D. Riehle, S. Fraleigh, D. Bucka-Lassen, and N. Omorogbe,
“The architecture of a uml virtual machine,” in OOPSLA
’01: Proceedings of the 16th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and
applications. New York, NY, USA: ACM, 2001, pp. 327–
341.

[7] R. Garud, S. Jain, and P. Tuertscher, “Incomplete by design
and designing for incompleteness,” in Organization studies as
a science of design, Marianne and G. Romme, Eds., 2007.

87

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[8] N. Anquetil, K. M. de Oliveira, K. D. de Sousa, and M. G.
Batista Dias, “Software maintenance seen as a knowledge
management issue,” Inf. Softw. Technol., vol. 49, no. 5, pp.
515–529, 2007.

[9] L. Williams and A. Cockburn, “Guest editors’ introduction:
Agile software development: It’s about feedback and change,”
Computer, vol. 36, pp. 39–43, 2003.

[10] K. Beck and C. Andres, Extreme Programming Explained:
Embrace Change (2nd Edition). Addison-Wesley Profes-
sional, 2004.

[11] B. Foote and J. Yoder, “Big ball of mud,” in Pattern Lan-
guages of Program Design. Addison-Wesley, 1997, pp. 653–
692.

[12] A. Kay, “The early history of smalltalk,” ACM SIGPLAN
Notices, Jan 1993.

[13] C. J. Neill and P. A. Laplante, “Paying down design debt with
strategic refactoring,” Computer, vol. 39, pp. 131–134, 2006.

[14] G. Jilles Van, J. Bosch, and M. Svahnberg, “On the notion
of variability in software product lines,” in WICSA ’01:
Proceedings of the Working IEEE/IFIP Conference on Soft-
ware Architecture. Washington, DC, USA: IEEE Computer
Society, 2001, p. 45.

[15] K. Andresen and N. Gronau, “An approach to increase
adaptability in erp systems,” in Proceedings of the 2005 In-
formation Recources Management Association International
Conference. Idea Group Publishing, May 2005, pp. 883–885.

[16] P. Meso and R. Jain, “Agile software development: Adap-
tive systems principles and best practices,” IS Management,
vol. 23, no. 3, pp. 19–30, 2006.

[17] B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, and
J. Magee, Eds., Software Engineering for Self-Adaptive Sys-
tems. Berlin, Heidelberg: Springer-Verlag, 2009.

[18] W. Cunningham, “WikiWiki,” 1995. [Online]. Available:
http://c2.com/cgi/wiki

[19] A. Aguiar, “A minimalist approach to framework docu-
mentation,” Ph.D. dissertation, Faculdade de Engenharia da
Universidade do Porto, Sep. 2003.

[20] W. Cunningham, “Wiki design principles.” [Online].
Available: http://c2.com/cgi/wiki$?WikiDesignPrinciples

[21] Wikipedia, “Abstraction,” July 2010. [Online]. Available:
http://en.wikipedia.org/wiki/Abstraction

[22] J. Spolsky, “The law of leaky abstractions,” Nov 2002.
[Online]. Available: http://www.joelonsoftware.com/articles/
LeakyAbstractions.html

[23] R. CAMERON and M. ITO, “Grammar-based definition of
metaprogramming systems,” ACM Transactions on Program-
ming Languages and Systems, Jan 1984.

[24] W. Cazzola, “Evaluation of object-oriented reflective mod-
els,” Proceedings of ECOOP Workshop on Reflective Object-
Oriented Programming and Systems (EWROOPS’98), in
12th European Conference on Object-Oriented Programming
(ECOOP’98), Jan 1998.

[25] L. Levy, “A metaprogramming method and its economic
justification,” IEEE Transactions on Software Engineering,
Jan 1986.

[26] T. Stahl and M. Völter, “Model-driven software development:
Technology, engineering, management,” 2006.

[27] T. Parr and R. Quong, “ANTLR: A Predicated-LL(k) parser
generator,” Journal of Software Practice and Experience,,
vol. 25, no. 7, pp. 789–810, July 1995.

[28] S. C. Johnson, “Yacc: Yet another compiler-compiler,” Bell
Laboratories, Tech. Rep., 1978.

[29] W. Schuster, “What’s a ruby dsl and what isn’t?” Jun
2007. [Online]. Available: http://www.infoq.com/news/2007/
06/dsl-or-not

[30] M. P. Ward, “Language-oriented programming,” Software —
Concepts and Tools, vol. 15, no. 4, pp. 147–161, 1994.

[31] Software product lines: practices and patterns. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2001.

[32] R. Pawson, “Naked objects,” Ph.D. dissertation, University of
Dublin, Trinity College, Jun 2004.

[33] E. Evans, Domain-Driven Design: Tackling Complexity in the
Heart of Software. Addison-Wesley Professional, Aug 2003.

[34] OMG – MDA, “Model driven architecture.” [Online].
Available: http://www.omg.org/mda/

[35] OMG – MOF, “MetaObject Facility.” [Online]. Available:
http://www.omg.org/mof/

[36] D. Roberts and R. Johnson, “Evolving frameworks: A pattern
language for developing object-oriented frameworks,” in Pro-
ceedings of the Third Conference on Pattern Languages and
Programming, vol. 3, 1996.

[37] G. Roy, J. Kelso, and C. Standing, “Towards a visual program-
ming environment for software development,” Proceedings on
Software Engineering: Education & Practice, Jan 1998.

[38] K. Czarnecki, “Overview of generative software develop-
ment,” Unconventional Programming Paradigms (UPP), Jan
2004.

[39] G. Kiczales and E. Hilsdale, “Aspect-oriented programming,”
in ESEC/FSE-9: Proceedings of the 8th European software
engineering conference held jointly with 9th ACM SIGSOFT
international symposium on Foundations of software engi-
neering. New York, NY, USA: ACM, 2001, p. 313.

[40] A. Dantas, J. Yoder, P. Borba, and R. Johnson, “Using aspects
to make adaptive object-models adaptable,” Research Reports
on Mathematical and Computing Sciences.

88

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[41] K. Czarnecki and U. Eisenecker, “Generative programming:
Methods, tools, and applications,” p. 832, Jan 2000.

[42] J. Yoder, F. Balaguer, and R. Johnson, “Adaptive object-
models for implementing business rules,” Urbana, 2001.

[43] J. W. Yoder, F. Balaguer, and R. Johnson, “Architecture and
design of adaptive object-models,” ACM SIG-PLAN Notices,
vol. 36, pp. 50–60, Dec. 2001.

[44] L. Welicki, J. W. Yoder, R. Wirfs-Brock, and R. E. Johnson,
“Towards a pattern language for adaptive object models,”
in OOPSLA ’07: Companion to the 22nd ACM SIGPLAN
conference on Object-oriented programming systems and ap-
plications companion. New York, NY, USA: ACM, 2007,
pp. 787–788.

[45] M. Fowler, “Analysis patterns: Reusable object models,”
1997.

[46] A. Arsanjani, “Rule object: A pattern language for adaptive
and scalable business rule construction,” Proceeding of PLoP,
2000.

[47] J. Yoder, B. Foote, D. Riehle, and M. Tilman, “Metadata
and active object models,” Conference on Object-Oriented
Programming, 1998.

[48] H. S. Ferreira, F. F. Correia, and A. Aguiar, “Design for
an adaptive object-model framework: An overview,” in Pro-
ceedings of the 4th Workshop on Modelsrun.time, held at the
ACM/IEEE 12th International Conference on Model Driven
Engineering Languages and Systems (MoDELS’09), October
2009.

[49] H. S. Ferreira, F. F. Correia, and L. Welicki, “Patterns
for data and metadata evolution in adaptive object-models,”
Proceedings of the Pattern Languages of Programs, 2008.

[50] S. Ambler, Agile Database Techniques: Effective Strategies
for the Agile Software Developer. New York, NY, USA:
John Wiley & Sons, Inc., 2003.

[51] L. Welicki, J. W. Yoder, and R. Wirfs-Brock, “A pattern lan-
guage for adaptive object models: Part i - rendering patterns,”
in PLoP 2007, Monticello, Illinois, 2007.

[52] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design
patterns: Elements of reusable object-oriented software,” p.
395, Jan 1995.

[53] L. Welicki, J. Yoder, and R. Wirfs-Brock, “A pattern lan-
guage for adaptive object models: Part i-rendering patterns,”
hillside.net, 2007.

[54] R. Johnson and B. Woolf, “Type object,” Addison-Wesley
Software Pattern Series, Jan 1997.

[55] J. Yoder, F. Balaguer, and R. Johnson, “Architecture and
design of adaptive object-models,” ACM SIGPLAN Notices,
Jan 2001.

[56] S. Teppola, P. Parviainen, and J. Takalo, “Challenges in
deployment of model driven development,” Software Engi-
neering Advances, International Conference on, vol. 0, pp.
15–20, 2009.

[57] J. B. F.P., “No silver bullet essence and accidents of software
engineering,” Computer, vol. 20, pp. 10–19, 1987.

[58] B. A. Nardi, A Small Matter of Programming: Perspectives
on End User Computing. Cambridge, MA, USA: MIT Press,
1993.

[59] F. Shull, J. Singer, and D. I. Sjøberg, Guide to Advanced Em-
pirical Software Engineering. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2007.

[60] B. Kitchenham, H. Al-Khilidar, M. A. Babar, M. Berry,
K. Cox, J. Keung, F. Kurniawati, M. Staples, H. Zhang,
and L. Zhu, “Evaluating guidelines for reporting empirical
software engineering studies,” Empirical Softw. Eng., vol. 13,
no. 1, pp. 97–121, 2008.

[61] M. Goulao and F. B. Abreu, “Modeling the experimental
software engineering process,” in QUATIC ’07: Proceedings
of the 6th International Conference on Quality of Information
and Communications Technology. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 77–90.

89

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

