
Understanding Frameworks Collaboratively : Tool Requirements

Nuno Flores
Departamento de Engenharia Informática

Faculdade de Engenharia da Universidade do Porto
Porto, Portugal

e-mail: nuno.flores@fe.up.pt

Ademar Aguiar
INESC Porto, DEI

Faculdade de Engenharia da Universidade do Porto
Porto, Portugal

e-mail: ademar.aguiar@fe.up.pt

Abstract — Software development is a social activity. Teams of
developers join together to coordinate their efforts to produce
software systems. This effort encompasses the development of
a shared understanding surrounding multiple artifacts
throughout the process. Frameworks are a powerful technique
for large-scale reuse, but their complexity often makes them
hard to understand and learn how to use. Developers resort to
their colleagues for help and insight, at the expense of time and
intrusion, as documentation is often outdated and incomplete.
This paper presents a study on the state-of-the art on program
comprehension, framework understanding and collaborative
software environments, proposing a set of requirements for
developing tools to improve the understanding of frameworks
in a collaborative way.

Keywords- Frameworks; Understanding; Collaborative;
Tools; Requirements

I. INTRODUCTION
As software systems evolve in size and complexity,

frameworks are becoming increasingly more important in
many kinds of applications, in different technologies (object-
orientation and recently aspect-orientation too), in new
domains, and in different contexts: industry, academia, and
single organizations.

Frameworks are a powerful technique for large-scale
reuse that helps developers to improve quality and to reduce
costs and time-to-market. However, before being able to
reuse a framework effectively, developers have to invest
considerable effort on understanding it. Especially for first
time users, frameworks can become difficult to learn, mainly
because its design is often very complex and hard to
communicate, due to its abstractness, incompleteness,
superfluous flexibility, and obscurity.

Understanding a piece of software is an important
activity of software development, with a big social emphasis.
Advances in global software development are leading to
teams continuously becoming more and more distributed. A
software development project requires people to collaborate.
Trends toward distributed development, extensible IDEs, and
social software influence makers of development tools to

consider how to better assist the social aspects of
development.

Learning how to use a framework deals with
understanding its components, from its purpose and high-
level architecture to its source code. Understanding
framework means understanding software. The program
comprehension community addresses this, in a broad sense.
The social aspects of software development encompass the
concerns of the collaborative software development research
areas.

This paper outlines a set of requirements that should be
tackled in order to develop tools to improve framework
understanding using a collaborative approach.

Sections II to IV present a state-of-the art survey on the
main domain areas dealt by this paper, namely Program
Comprehension, Framework Understanding and
Collaborative Software Development Environments. Section
V points out open issues in those domains, converging to the
key research questions in section VI. Section VII presents the
solution approach and lists the set of requirements proposed
by the authors. The paper concludes in section VIII.

These findings are part of an on-going research work [1].

II. PROGRAM COMPREHENSION
Program comprehension research can be characterized by

both the theories that provide rich explanations about how
programmers comprehend software as well as the tools that
are used to assist in comprehension tasks.

Since the time of the first software engineering workshop
[99], challenges in understanding programs became too
familiar. As such, the field of program comprehension as a
research discipline has evolved considerably. The main goal
of the community is to build an understanding of these
challenges, with the ultimate objective of developing more
effective tools and methods that supports them [129].

This research has been rich and diversified, with various
shifts in paradigms and research cultures during the last
decades.

114

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A multitude of differences in program characteristics,
programmer ability and software tasks have led to many
diverse theories, research methods and tools.

Consequently, there is a wide variety of theories that
provide rich explanations of how programmers understand
programs and can provide advice on how program
comprehension tools and methods may be improved.

In this section, an overview of existing comprehension
theories, models and methods is presented, as an attempt to
create a landscape of program comprehension research and
possibly trends for future work directions. An overall
depiction of the main topics can be seen in Figure 1.

A. Cognitive theories and models
At first, experiments were done without theoretical

frameworks to guide the evaluations, and thus it was neither
possible to understand nor to explain to others why one
approach might be superior to other approaches [32].

As a lack of theories was being recognized as
problematic, methods and theories were borrowed from other
areas of research, such as text comprehension, problem
solving and education. These theoretical underpinnings led to
the development of cognitive theories about how
programmers understand programs and ways of building
supporting tools. These theories brought rich explanations of
behaviors that would lead to more efficient processes and
methods as well as improved education procedures [64].

1) Concepts
A mental model describes a developer’s mental

representation of the program to be understood whereas a
cognitive model describes the cognitive processes and
temporary information structures in the programmer’s head
that are used to form the mental model. Cognitive support
assists cognitive tasks such as thinking or reasoning [145].

Programming plans are generic fragments of code that
represent typical scenarios in programming. For example, a
sorting program will contain a loop, which compares two
numbers in each iteration, or visiting a structure will have a
loop going through all its elements [128].

Beacons are recognizable, familiar features in the code
that act as cues to the presence of certain structures [21].
Rules of programming discourse capture the conventions of

programming, such as coding standards and algorithm
implementations [128].

Then there are strategies and behaviors. Behaviors are
ways of changing from one strategy to another.

2) Top-down comprehension strategy
Two main theories emerged that support a top-down

comprehension strategy. Brooks [21] suggested that
programmers understand a completed program in a top-down
way where the comprehension process relies on
reconstructing knowledge about the application domain and
mapping that to the source code. The process starts with a
hypothesis about the general nature of the program. This
initial hypothesis is then refined in a hierarchical fashion by
forming secondary hypothesis. These are then refined and
evaluated in a depth-first manner, whose verification (or
rejection) depends heavily on the absence or presence of
beacons.

Soloway and Ehrlich [128] observed that top-down
understanding is used when the code or type of code is
familiar. They observed that expert programmers use
beacons, programming plans and rules of programming
discourse to decompose goals and plans into lower-level
plans. They noted that delocalized plans complicate program
comprehension.

3) Bottom-up comprehension strategy
The bottom-up theory of program comprehension

proposed by Shneiderman and Mayer [119] assumes that
programmers first read code statements and then mentally
chunk or group these statements into higher levels
abstractions. These abstractions (chunks) are aggregated
further until a high-level understanding of the program is
attained. The authors differentiate between syntactic and
semantic knowledge of programs: syntactic knowledge is
language dependent and concerns the statements and basic
units in a program; semantic knowledge is language
independent and is built in progressive layers until a mental
model is formed, which describes the application domain.

Similarly, Pennington [102] also observed programmers
using a bottom-up strategy initially gathering statement and
control-flow information. These micro-structures
(statements, control constructs and relationships) were
chunked and cross-referenced by macro-structures (text
structure abstractions) to form a program model. A
subsequent situation model was formed, also bottom-up,
using application-domain knowledge to produce a hierarchy
of data-flow and functional abstractions (the program goal
hierarchy).

4) Knowledge-based strategies
Littman et al [84] observed that programmers use either a

systematic approach, reading the code in detail and tracing
through control and data-flow, or they use an “as-needed
approach, focusing only on the code related to the task at
hand. Subjects using a systematic strategy acquired both
static knowledge (information about the structure of the
program) and causal knowledge (interactions between
components in the program when it is executed). This
enabled them to form a mental model of the program,
however, those using the as-needed approach only acquired

Figure 1 - Program Comprehension topics

115

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

static knowledge resulting in a weaker mental model of how
the program worked. More errors occurred since the
programmers failed to recognize casual interactions between
components in the program.

Soloway et al. [127] combined these two theories as
macro-strategies aimed at understanding the software at a
more global level. In the systematic macro-strategy, the
programmer traces the flow of the whole program and
performs simulations as all of the code and documentation is
read. However, this strategy is less feasible for large
programs. In the more commonly used as-needed macro-
strategy, the programmer looks at only what they think is
relevant. However, more mistakes could occur since
important interactions might be overlooked.

5) Integrated strategies
Von Mayrhauser and Vans [88] combined the top-down,

bottom-up, and knowledge-based approaches into a single
metamodel. In their experiments, they observed that some
programmers frequently switched between all three
strategies. They formulated an integrated metamodel where
understanding is built concurrently at several levels of
abstractions by freely switching between the three types of
comprehension strategies.

The model consists of four major components. The first
three components describe the comprehension processes
used to create mental representations at various levels of
abstraction and the fourth component describes the
knowledge base needed to perform a comprehension process:

• The top-down (domain) model is usually invoked
and developed using an as-needed strategy, when the
programming language or code is familiar. It
incorporates domain knowledge as a starting point
for formulating hypotheses.

• The program model may be invoked when the code
and application is completely unfamiliar. The
program model is a control-flow abstraction.

• The situation model describes data-flow and
functional abstraction in the program. It may be
developed after partial program model is formed
using systematic or opportunistic strategies.

• The knowledge base consists of information needed
to build these three cognitive models. It represents
the programmer’s current knowledge and is used to
store new and inferred knowledge.

6) Factors affecting comprehension strategies
The general opinion most researchers realize is that

certain factors will influence the comprehension strategy
adopted by a programmer [130] [140]. These factors also
explain the apparently wide variation in the comprehension
strategies discussed above. The variations are primarily due
to:

• Differences among programs,
• Aspects of the task at hand, and
• Varied characteristics of programmers.
To evaluate how programmers understand programs,

these factors must be considered [130]. These are further
explored in section 2.1.1.

With experience, programmers “know” which strategy is
the most effective for the given program and task. A change

of strategy may be needed because of some anomaly of the
program or the requested task. Program understanding tools
should enhance or ease the programmer’s preferred
strategies, rather impose a fixed strategy may not always be
suitable.

B. Program and programmers trends
Both program and programmer influence a

comprehension strategy choice by their inherent and varied
characteristics. Additionally, this choice also depends of the
task at hand. This section debates these issues giving an
insight on the subject, available studies and trends for future
research.

1) Program characteristics
Programs that are carefully designed and well

documented will be easier to understand change or reuse in
the future. Pennington’s experiments showed that the choice
of language as an effect on comprehension processes
[102[104]. For instance, COBOL programmers consistently
fared better at answering question related to data-flow than
FORTRAN programmers, while these would fare better at
control-flow questions than their counterparts.

Object-oriented (OO) programs are often seen as a more
natural fit to problems in real world because of “is-a” and
“is-part-of” relationships in a class hierarchy and structure,
but others argue that objects do not always map easily to real
world problems [32]. In OO programs, abstractions are
achieved through encapsulation and polymorphism. Message
passing is used for communication between class methods
and hence programming plans are dispersed (i.e., scattered)
throughout classes.

2) Program trends
As new techniques and programming paradigms emerge

and evolve, the comprehension process must shift to embrace
these changes. New characteristics on both program and
programming approaches seem to produce new trends for
comprehension research. A few follow [129]:

a) Distributed applications.
Along with web-based applications, both are becoming

more prevalent with technologies such as .NET, J2EE and
web services. One programming challenge that is occurring
now and is likely to increase is the combination of different
paradigms in distributed applications, e.g., a client side script
sends XML to a server application (which currently evolved
to the AJAX [51] technology).

b) Higher levels of abstraction.
 Visual composition languages for business applications

are also on the increase. As the level of abstraction increases,
comprehension challenges are shifting from code
understanding to more abstract concepts.

c) Aspect-oriented programming.
 The introduction of aspects [76] as a construct to

manage scattered concerns (delocalized plans) in a program
has created new excitement in the software engineering
community. Aspects have been shown to be effective for
managing many programming concerns, such as logging and
security. However, it is not clear how aspects written by

116

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

others will improve program understanding, especially in the
long term. More empirical work is needed to validate the
assumed benefits of aspects.

d) Improved software engineering practices.
 The more informed processes that are used for

developing software today will hopefully lead to software
that is easier to comprehend in the future. Component-based
software systems are currently being designed using familiar
design patterns [49][25] and other conventions. Future
software may have traceability links to requirements and
improved documentation such as formal program
specifications. Also, future software may have autonomic
properties, where the software self-heals and adapts as its
environment changes – thus in some cases reducing time
spent on maintenance.

e) Diverse sources of information.
 The program comprehension community, until quite

recently, mostly focused on how static and dynamic analyses
of source code, in conjunction with documentation, could
facilitate program comprehension. Modern software
integrated development environments, such as the Eclipse
Java development environment [36], NetBeans or Visual
Studio [93], also manage other kinds of information such as
bug tracking, test cases and version control. This
information, combined with human activity information such
as emails and instant messages, will be more readily
available to support analysis in program comprehension.
Domain information should also be more accessible due to
model driven development and the semantic web.

3) Programmer individual characteristics
There are many individual characteristics that will impact

how a programmer tackles a comprehension task. These
differences also impact the requirements for a supporting
tool. There is a huge disparity in programmer ability and
creativity, which cannot be measured simply by their
experience.

In her work [143], Vessey presents an exploratory study
to investigate expert and novice’s debugging processes. She
classified programmers as expert or novice based on their
ability to chunk effectively. She notes that experts used
breadth-first approaches and at the same time were able to
adopt a system view of the problem area, whereas novices
used breadth-first and depth-first approaches but were unable
to think in system terms.

Détienne [32] also notes that experts make more use of
external devices as memory aids. Experts tend to reason
about programs according to both functional and object-
oriented relationships and consider the algorithm, whereas
novices tend to focus on objects.

4) Programmer trends
As with everything else, programmers also adapt and

evolve, trying to accompany the paradigm shifts and new
trends in their development environment. Relevant issues are
[129]:

a) Program comprehension everywhere.
 The need to use computers and software intersects every

walk of life. Programming, and hence program

comprehension, is no longer a niche activity. Scientists and
knowledge workers in many walks of life have to use and
customize software to help them do science or other work.
Scientists from diverse fields, such as forestry, astronomy or
medical science, are using and developing sophisticated
software without a formal education in computer science.
Consequently, there is a need for techniques to assist in non-
expert and end-user program comprehension. Fortunately,
there is much work on this area (especially at conferences
such as Visual Languages and the PPIG group, where they
investigate how comprehension can be improved through
tool support for spreadsheet and other end user applications.

b) Sophisticated users.
 Currently, advanced visual interfaces are not often used

in development environments. A large concern by many tool
designers is that these advanced visual interfaces require
complex user interactions. However, tomorrow’s
programmers will be more familiar with game software and
other media that displays information rapidly and requires
sophisticated user controls. Consequently, the next
generation of users will have more skill at interpreting
information presented visually and at manipulating and
learning how to use complex controls.

c) Globally distributed teams.
 Advances in communication technologies have enabled

globally distributed collaborations in software development.
Distributed open source development is having an impact on
industry. Some notable examples are Linux and Eclipse.
Some research has been conducted studying collaborative
processes in open-source projects [94] [58] [52], but more
research is needed to study how distributed collaborations
impact comprehension.

C. Tools for Program Comprehension
Understanding a software program is often a difficult

process because of missing, inconsistent, or even too much
information. The source code often becomes the sole arbiter
of how the system works. The field of program
comprehension research has resulted in many diverse tools to
assist in program comprehension. When developing such
tools, experts bring knowledge from other fields of research
as Software Visualization and Reverse Engineering as means
to answer the researched requirements. This section provides
insight over the studies made to improve tool development to
assist on program comprehension.

1) Tool requirements studies
Which features should an ideal tool have to efficiently

support program comprehension? Needless to say that these
tools will only play a supporting role to other software
engineer tasks, such as design, development, maintenance,
and (re) documentation.

There are mainly two ways of conducting studies to
discover effective features to support program
comprehension: an empirical approach by observing
programmers trying to understand programs and an approach
based on personal experience and intuition. Given the
variability in comprehension settings, both approaches
contribute to answering this complex question.

117

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As such, several studies already conducted by several
authors revealed a number of tool requirements, as follows.

Biggerstaff [15] notes that one of the main difficulties in
understanding comes from mapping what is in the code to
the software requirements – he terms this the concept
assignment problem. Although automated techniques can
help locate programming concepts and features, it is
challenging to automatically detect human oriented concepts.
The user may need to indicate a starting point and then use
slicing techniques to find a related code. It may also be
possible for an intelligent agent (that has domain knowledge)
to scan the code and search for candidate start points. From
his research prototypes he found that queries, graphical
views and hypertext were important tool features.

Von Mayrhauser and Vans [89], from their research on
the Integrated Metamodel, make an explicit recommendation
for tool support for reverse engineering. They determined
basic information needs according to cognitive tasks and
suggested the following tool capabilities to meet those needs:

• Top-down model: online documents with keyword
search across documents; pruning of call tree based
on specific categories; smart differencing features;
history of browsed locations; and entity fan-in.

• Situation model: provide a complete list of domain
sources including non-code related sources; and
visual representation of major domain function.

• Program model: Pop-up declarations; online cross-
reference reports and function count.

Singer and Lethbridge [123] also observed the work
practices of software engineers. They explored the activities
of a single engineer, a group of engineers, and considered
company-wide tool usage statistics. Their study led to the
requirements for a tool that was implemented and
successfully adopted by the company. Specifically they
suggested tool features to support “just-in-time
comprehension of source-code”. They noted that engineers
after working on a specific part of the program quickly forget
details when they move to a new location. This forces them
to rediscover information at a later time. They suggest that
tools need the following features to support rediscovery:

• Search capabilities so that the user can search for
code artifacts by name or by pattern matching.

• Capabilities to display all relevant attributes of the
items retrieved as well as relationships among items.

• Features to keep track of searches and problem-
solving sessions, to support the navigation of a
persistent history.

Erdös and Sneed [41] designed a tool to support
maintenance following many years of experience in the
maintenance and reengineering industry. They proposed that
the following seven questions needed to be answered for a
programmer to maintain a program that is only partially
understood:

• Where is a particular subroutine/procedure invoked?
• What are the arguments and results of a function?
• How does control flow reach a particular location?
• Where is a particular variable set, used or queried?
• Where is a particular variable declared?
• Where is a particular data object accessed?

• What are the inputs and outputs of a module?
Other attempts to capture tool requirements were made

that involved observation of programmers performing
different tasks.

Murray and Lethbridge [98] observed software
professionals using a mixed approach combining elements
from specific methods used in software engineering
empirical research and a sociological qualitative research
called “ground theory”. From this approach, they were able
to develop the basis for a theory of the ways people think
when explaining and comprehending software, which they
called “cognitive patterns”. These patterns can then be
applied to further empirical observatory studies as a roadmap
to capture programmer behaviour.

Zayour [150] proposes a methodology for assessing
cognitive requirements and adoption success for reverse
engineering tools, from which he concludes five main rules
of thumb: (1) A clear and realistic definition of the problem
space to be targeted is a must; (2) direct observation of the
targeted user is required to form a realistic perception of
users problems and tasks; (3) Tool designers should
document their perception of the user’s problems and tasks;
(4) When determining the success of a tool, cognitive load is
a more important indicator to measure than elapsed time
(because it affects adoptability more) and (5) design should
be aimed at satisfying cognitive requirements and thus
should be guided by cognitive principles.

Work by other authors included recall tests to evaluate
the ability to answer questions regarding a piece of code
programmers studied for a limited period of time [102].
Subjective ratings [120] have been used recently to measure
different levels of comprehension. Additionally, other studies
may ask subjects to label or group different code members
based on the similarity of their functionalities [113].
Soloway and Erlich [128] asked programmers to fill blank
lines and complete unfinished programs on paper in an
unfamiliar source code without providing specifications
about the program’s use or functionality. Similarly, Bertholf
et al. [14] asked novice developers to complete incomplete
literal programs on paper. Additional techniques to measure
program comprehension involved completing incomplete
call graphs, modifying existing code, report a bug, or
separate source code from two different algorithms [121].

From this research and derived from cognitive theories,
Storey [129] extracts and synthesizes several tool
requirements:

a) Browsing support.
 The top-down process requires browsing from high-level

abstractions or concepts to lower-level details, taking
advantage of beacons in the code; bottom-up comprehension
requires following control-flow and data-flow links, both
novices and experts can benefit from tools that support
breadth-first and depth-first browsing; and the Integrated
Metamodel suggests that switching between top-down and
bottom-up browsing should be supported. Flexible browsing
support also will help to offset the challenges from
delocalized plans.

b) Searching.

118

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Tool support is needed when looking for code snippets
by analogy and for iterative searching. Also inquiry episodes
should be supported by allowing the programmer to query on
the role of a variable, function, etc.

c) Multiple views.
 Programming environments should provide different

ways of visualizing programs. One view could show the
message call graph providing insight into the programming
plans, while another view could show a representation of the
classes and relationship between the to show an object-
centric or data-centric view of the program. These
orthogonal views, if easily accessible, can facilitate
comprehension, especially when combined.

d) Context-drive views.
 The size of the program and another program metrics

will influence which view is the preferred one to show a
programmer browsing the code for the first time. For
example, in an object-oriented program, it is usually
preferable to show the inheritance hierarchy as the initial
view. However, if the inheritance hierarchy is flat, it may be
more appropriate to show a call graph as the default view.

e) Additional cognitive support.
 Experts need external devices and scratchpads to support

their cognitive tasks, whereas novices need pedagogical
support to help them access information about the
programming language and the corresponding domain.

2) Tool development
Programming comprehension tools can be roughly

grouped into three categories [139]:
• Extraction tools include parsers and data gathering

tools.
• Analysis tools do static and dynamic analysis to

support activities such as clustering, concept
assignment, feature identification, transformations,
domain analysis, slicing and metrics calculation.

• Presentation tools include code editors, browsers,
hypertext and visualizations. They are strongly
linked to research in software visualization.

Integrated software development and reverse engineering
environments will usually have some features form each
category. The set of features they support is usually
determined by the purpose for the resulting tool or by the
focus of the research. As such, two majors areas that relate to
this issue are Software Visualization and Reverse
Engineering.

a) Software Visualization
Software visualization tools and browsing tools provide

information that is useful for program understanding.
These tools use graphical and textual representations for

the navigation, analysis and presentation of software
information to increase understanding. Mixed results have
been reported through the literature on the role of text and
graphics for program comprehension. While Green and Petre
[53] observed that text was faster than graphics for
experimental program comprehension tasks, Scanlan [117]
reported an improvement using graphical visualizations
when comparing textual algorithms and structured

flowcharts. Petre [104] attributes the difficulty in
understanding program visualizations to the fact that
graphical representations have fewer navigational cues,
namely secondary notations, when compared to program
text: source code implies a serial inspection strategy.
Moreover, she observed that experienced readers tend to use
parallel textual and graphical information whenever available
to assist their comprehension process: they use text as a main
source to guide their understanding of graphical
representation.

Several software visualization tools show animations to
teach widely used algorithms and data structures [22] [125]
[131]. Another class of tools shows dynamic execution of
programs for debugging, profiling and for understanding
run-time behavior [68] [115]. Other software visualization
tools mainly focus on showing textual representations, some
of which may be pretty printed to increase understanding [9]
[63] or use hypertext in an effort to improve the navigability
of the software [104]. Typography plays a significant role in
the usefulness of these textual visualizations.

Many tools present relevant information in the form of a
graph where nodes represent software objects and arcs show
the relations between the objects. This method is used by
PECAN [102], Rigi [96], VIFOR [107], Whorf [19], CARE
[83], Hy+ [91] and Imagix 4D [67]. Other tools use
additional pretty printing techniques or other diagrams to
show structures or information about the software. For
example, the GRASP tool uses a control structure diagram to
display control constructs, control paths and the overall
structure of programming units [130].

b) Reverse Engineering
Reverse Engineering concerns how to extract relevant

knowledge from source code and present it in a way that
facilitates comprehension. Several studies conducted in the
past have proposed solutions on how to overcome caveats in
the program comprehension process. Maryhauser and Vans
[89], Singer and Lethbridge [123] and Zayour [150] have
given their insight on how to address tool development for
reverse engineering of useful information to assist on
program understanding (seen on section 2.1). K.Wong also
discusses reverse engineering tool features [149]. He
specifically mentions the benefits of using a “notebook” to
support ongoing comprehension.

Usually, the reverse engineering tools and techniques
associated to program comprehension are bundled into
broader development environments where other types of
tools also co-exist.

It is possible to examine each of these environments and
to recover the motivation for the features they provide by
tracing back to the cognitive theories. For example, the Rigi
system [96] has support for multiple views, cross-referencing
and queries to support bottom-up comprehension. The
Reflection tool [97] has support for the top-down approach
through hypothesis generation and verification. The Bauhaus
tool [38] has features to support clustering (identification of
components) and concept analysis. The SHriMP tool [132]
provides navigation support for the Integrated Metamodel,
i.e, frequent switching between strategies. And the

119

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Codecrawler tool [79] uses visualization of metrics to
support understanding of an unfamiliar system and to
identify bottlenecks and other architectural features.

All these tools combine reverse engineering tasks with
software visualization techniques to improve program
comprehension on different levels of abstraction, gathering
information recovered or simply mined together into user-
friendly viewed chunks of valuable data for the programmer.

3) Tool trends
The forthcoming breakthroughs in tool technology seem

promising as research and evaluation methods and theories
become more relevant to end-users doing programming-like
tasks. Therefore, directions in tool evolution appear to follow
several guidelines presented next [129].

a) Faster tool innovations.
 The use of frameworks as an underlying technology for

software tools is leading to faster tool innovations, as less
time needs to be spent reinventing the wheel. A prime
example of how frameworks can improve tool development
is the Eclipse platform [36]. Eclipse was specifically
designed with the goal of creating reusable components,
which would be shared across different tools. The research
community benefits from this approach in several ways.
Firstly, they are able to spend more time writing new and
innovative features as they can reuse the core underlying
features offered by Eclipse and its plug-ins; and secondly,
researchers can evaluate their prototypes in more
ecologically valid ways as they can compare their new
features against existing industrial tools.

b) Mix ‘n match tools.
 Given a suite of tools that all plug in to the same

framework, together with a standard exchange format (such
as GXL), researchers will be able to more easily try different
combinations of tools to meet their research needs. This
should result in increased collaborations and more relevant
research results. Such integrations will also lead to improved
accessibility to repositories of information related to the
software including code, documentation, analysis results,
domain information and human activity information.
Integrated tools will also lead to fewer disruptions for
programmers.

c) Recommenders and search.
 Software engineering tools, especially those developed

in research, are increasingly leveraging advances in
intelligent user interfaces (e.g., tools with some domain or
user knowledge). Recommender systems are being proposed
to guide navigation in software spaces. Examples of such
systems include Mylar [74] and NavTracks [124]. Mylar,
(now called MyLyn) uses a degree of interest model to filter
non-relevant files from the file explorer and other views in
Eclipse. NavTracks provides recommendations of which
files are related to the currently selected files. Deline et al.
also discuss a system to improve navigation [31]. The FEAT
tool suggests using concern graphs (explicitly created by the
programmer) to improve navigation efficiency and enhance
comprehension [114]. Search technologies, such as Google,
show much promise at improving search for relevant

components, code snippets and related code. The Hipikat
tool [30] recommends relevant software artifacts based on
the developer’s current project context and development
history. The Prospector system recommends relevant code
snippets [86]. It combines a search engine with the content
assist in Eclipse to help programmers use complex APIs.
Although new, this work shows much promise and it is
expected to improve navigation in large systems while
reducing the barriers to reuse components from large
libraries.

d) Adaptive interfaces.
 Software tools typically have many features, which may

be overwhelming not only for novice users, but also for
expert users. This information overload could be reduced
through the use of adaptive interfaces. The idea is that the
user interface can be tailored automatically, i.e., will self-
adapt, to suit different kind of users and tasks. Adaptive
interfaces are now common in Windows applications such as
Word. Eclipse has several novice views (such as Gild [132]
and Penumbra) and Visual Studio has the Express
configuration for new users. However, neither of these
mainstream tools currently have the ability to adapt nor even
to be easily manually adapted to the continuum of novice to
expert users.

e) Visualizations.
 These have been subject of much research over the past

ten to twenty years. Many visualizations, and in particular
graph-based visualizations, have been proposed to support
comprehensions tasks, some of then already referred in
section 2.2.2. Other examples include Seesoft [11], Bloom
[111], Landscape views [103], and sv3D [87]. Graph
visualization is used in many advanced commercial tools
such as Klocwork, Imagix4D and Together. UML Diagrams
are also commonplace in mainstream development tools.
One challenge with visualizing software is scale and
knowing at what level of abstraction details should be
shown, as well as selecting which view to show. More
details about the user’s task combined with metrics
describing the program’s characteristics (such as inheritance
depth) will improve how visualizations are currently
presented to the user. A recommender system could suggest
relevant views as a starting point. Bull proposes the notion of
model-driven visualization [24]. He suggests creating a tool
for tool designers and expert users that recommends useful
views based on characteristics of the model and the data.

f) Collaborative support.
 As software teams increase in size and become more

distributed, collaborative tools to support distributed
software development activities are more crucial. In
research, there are several collaborative software engineering
tools being developed such as Jazz and Augur [66] [47].
There are also some collaborative software engineering tools
deployed in industry, such as CollabNet, but they tend to
have simple tool features to support communication and
collaboration, such as version control, email and instant
messaging. Current industrial tools lack more advanced
collaborative features such as shared editors, and research
falls short on providing empirical work to improve these

120

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tools. Another area for research that may prove useful is the
use of large screen displays to support co-located
comprehension. O’Reilly et al. [101] propose a war room
command console to share visualizations for team
coordination. There are other research ideas in the CSCW
(computer supported collaborative work) field that could be
applied to program comprehension.

g) Domain and pedagogical support.
 The need to support domain experts that lack formal

computer science training will necessarily result in more
domain-specific languages and tools. Non-experts will also
need more cognitive scaffolding to help them learn new
tools, languages and domains more rapidly. Pedagogical
support, such as providing examples by analogy, will likely
be an integral part of the future software tools. The work
discussed above on recommending code examples is also
suggested at helping novices and software immigrants (i.e.,
programmers to a new project). Results from the empirical
work also suggest that there is a need for tools to help
programmers learn a new language. Technologies such as
TXL [29] can play a role in helping a user see examples of
how code constructs in one language would appear in a new
language.

III. FRAMEWORK UNDERSTANDING
Program comprehension covers a wide range of sub-areas
when it comes to comprehend programs. When we say
programs, we mean software artefacts: constructs built upon
source-code. A framework can be considered one of such
artefacts and, due to its importance and growing adherence
by the software community, spawned and research area of its
own. Framework understanding deals with understanding
and learning about a framework for usage, implementation,
and evolution.

Object-oriented frameworks are a powerful form of reuse
but they can be difficult to understand and reuse correctly.
They are promoted as having the potential to provide the
benefits of large-scale reuse [49] [25] [43]. While practical
evidence does suggest that framework usage can increase
reusability and decrease development effort [95], experience
has identified a number of issues that complicate framework
application and limit potential benefits [18]. One of the
major challenges is effective framework understanding – a
specialized kind of program comprehension.
Over the past decade a large range of candidate
documentation techniques has been proposed to support
framework understanding, including design patterns [29],
pattern languages [70], example-based learning [118],
cookbooks [78], hooks [48] and exemplars [50].

However, the lack of investigation of these techniques
and their impact in framework understanding, together with

the lack of insight into problems that limit the
comprehension and reuse of software frameworks, spurred a
few studies, which identified some concerns and bases for
future research in the field. The next section will briefly
address some of these studies, and, afterwards, a brief review
of some existing tools and approaches to aid in framework
understanding and reuse. An overall depiction of the main
ideas behind framework understanding is shown in Figure 2.

A. Reuse and comprehension issues
There is a considerable quantity of literature into

framework domain, but little of it deals with the
identification of reuse problems or evaluation of strategies to
support the framework developer as a whole. There are tools
that address topics under the realm of framework building,
design recovery and documentation, but none clearly
emphasizes or studies the overall symptoms behind
ineffective framework reuse, and thus hindering a
framework’s main goal.

Fayad and Schmidt [43] claimed that different
alternatives could improve framework understandability:

• Refining the framework’s internal design.
• Using methods that can ensure a successful

development and usage of frameworks.
• Adhering to standards for framework development,

adaptation, and integration.
• Producing comprehensible framework

documentation.
These guidelines are mainly preventive and don’t focus

on the issue of reusability, being general advices.
Nevertheless, they can be relevant as rules of thumb for
framework development and maintenance.

Butler, Keller and Milli [26] describe a taxonomy of
framework documentation primitives that appear to address
reusability issues. They describe six primitives, which
emphasize the need for information about class interfaces
and communication protocols between classes.

Johnson [70] identifies three important areas for
framework documentation to address – purpose, how to use
and design. He argues that the purpose of the framework and
its constituent parts should be communicated so that
developers may select the correct parts for a task. While
knowledge of how those parts are expected to operate allows
them to be employed correctly and a description of the
underlying design provides developers with an
understanding of how to adapt and extend the framework in
a manner consistent with existing structure.

121

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Shull et al. [118] presents an evaluation of the role that
examples play in framework reuse. Their study compared
two approaches to framework reading and eventual
documentation, and example-based approach and a
hierarchical-based approach. Their results suggested that
examples are an effective learning strategy, especially for
those beginning to learn a framework. They also identify
potential problems with an example-based approach: finding
the small pieces of required functionality in larger examples,
inconsistent organization and structure of examples and lack
of design choice rationale in example documentation. They
also discuss the possibility that developers become too
reliant on examples and do not understand the system at a
sufficient level of detail to implement effectively from
scratch when necessary.

Kirk et al. [75] conducted a research, through observation
of both novice and experienced re-users, where they
identified four fundamental problems of framework reuse:

• Mapping identifies the problem on translating an
abstract, conceptual solution into a concrete
implementation, which reuses the existing structures
within the framework. Such problems were often
expressed as “what should I use to represent…?” or
“How do I express…?”

• Understanding functionality describes problems
understanding what specific parts of the framework
actually do. Manifestations of this problem included
“How does … work?”, “Where … does happen?” or
“Where is … defined/created/called?”

• Understanding interactions focuses on problems
concerning the communication between classes in
the framework (“What happen if …?” or “Where
should I put …?”). Such problems are significant
because of hidden or subtle dependencies within the
framework that may cause failures to occur
elsewhere as the result of a wrongly positioned
modification.

• Understanding the framework architecture is the
problem of making modifications without giving
appropriate consideration to the high-level
architectural qualities of the framework. Such

alterations might have no short-term effects but
ultimately lead to the framework losing its
flexibility.

From these problems, the authors experimented applying
two known solutions they deemed the most suited to address
these issues: pattern languages and micro-architectures.
Their results showed that the pattern language provided
some support for mapping problems, particularly for those
with no experience of the framework, by introducing key
framework concepts and providing examples of framework
use. However, it was clear that previous experience
dominated the explicit use of the pattern language, as well as
being an inhibitor to other forms of documentation as its
immediacy often precludes consideration of alternative
solutions.

Although the micro-architectures, used to help develop
and understanding of the key interactions within the
framework, seemed relatively ineffective, it is the authors’
belief that documentation of this kind is necessary to address
these problems in particular.

B. Tools to assist framework understanding
As for program comprehension tools, the same line of

thinking applies for framework understanding tools. Both
subjects share the same problems and trends, yet some
framework specific issues may be addressed when devising
aids to framework learning and understanding.

The past and present research in the field focus on topics
that range from uncovering design artifacts to representing
processes and behaviors that might help using the
framework. Mostly, the proposals converge to producing and
enhancing existing documentation with adequate information
that can be mined and represented using different formats
(recipes, cookbooks), languages (patterns, beacons, idioms)
and notations (textual, graphical, UML, formal languages,
etc.). Next, a brief summary of these proposals is presented.
The categorization used emerged from its most relevant
technique, yet several use mixed approaches combining
several techniques to optimize their results.

1) Cookbooks
Confronting the challenge of communicating how to use

the Model-View-Controller framework in Smalltalk-80,
Krasner and Pope [78] built an 18-page cookbook that
explained the purpose, structure, and implementation of the
MVC framework. This cookbook was designed to be read
from beginning to end by programmers and could also be
used as a reference but every recipe did not follow a
consistent structure nor was it suitable for parsing by
automatic tools.

The Framework EDitor / JavaFrames project [59] [60]
[61] has developed a language for modelling design patterns
and tools that act as smarter cookbooks, guiding
programmers step-by-step to use a framework. With the 2.0
release of JavaFrames, many of these tools work within the
Eclipse IDE. Their language allows expression of structural
constraints and the tool can check conformance with the
structural constraints. Code can be generated that conforms
to the patterns definition, optionally including default
implementations of method bodies. Specific patterns can be

Figure 2 - Framework Understanding topics

122

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

related to general patterns; for example a specific use of the
Observer pattern in a particular framework can be connected
to a general definition of the Observer pattern.

2) Design Artifacts
Ralph Johnson seems to be the first to suggest

documenting frameworks using patterns [70]. He notes that
the typical user of framework documentation wants to use
the framework to solve typical problems, but also that
cookbooks do not help the most advanced users [71].
Patterns can be used both to describe a framework’s design
as well as how it is commonly used. He argues that the
framework documentation should describe the purpose of the
framework, how to use the framework, and the detailed
design of the framework. After presenting some graduate
student with his initial set of patterns for HotDraw [20], he
realized that a pattern isolated from examples is hard to
comprehend.

Froelich et al.’s hooks [48] focus on documenting the
way a framework is used, not the design of the framework.
They are similar in intent to cookbook recipes but are more
structured in their natural language. The elements listed are:
name, requirement, type, area, uses, participants, changes,
constraints, and comments. The instructions for framework
users (the changes section) read a bit like pseudo code but
are natural languages and do not appear to be parsable by
tools.

Design patterns themselves can be decomposed into
more primitive elements [106]. Pree calls these primitive
elements metapatterns and catalogues several of them with
example usage. He proposes a simple process for developing
frameworks where identified points of variabilility are
implemented with an appropriate metapattern, enabling the
framework user to provide an appropriate implementation.

From the declarative metaprogramming group from Vrije
University, Tourwé and Mens [141] [142] use Pree’s
metapatterns to document framework hotspots and define
transformations for each framework and design patterns.
Framework instances (plug-ins) can be evolved (or created)
by application of the transformations. The tool uses SOUL, a
prolog-like logic language. The validation was done on the
HotDraw framework by specifying the metapatterns, patterns
and transformations needed. The validation uncovered
design flaws in HotDraw, despite its widespread use, along
with some false positives. The declarative metaprogramming
approach to modeling framework hotspots appears to have
significant up-front investment before payoff in order to
provide its guarantees about correct use of the framework. It
may additionally assume a higher level of accuracy or
correctness in frameworks than will commonly be found in
practice. The authors comment that their approach
specifically avoids design patterns in favor of metapatterns
because there could be many design patterns. While this
makes their technique generally applicable and composable,
it will be difficult to add pattern-specific semantics and
behavior checking to their approach.

JFREEDOM [44] is a design recovery tool that discovers
metapatterns in a framework or software system. It relies on
Tourwé’s formal definition of metapatterns and uses JQuery,
a logic inference-engine, to search the code for instances of

these metapatterns. It then recommends possible GoF [49]
design pattern instances based on its found metapatterns.
Other design pattern recovery tools exist and a brief review
of each one can be found in [44]. Design pattern recovery is,
by itself, a research field where a community recently
formed to combine efforts.

Bruch et al. [23] propose the use of data mining
techniques to extract reuse patterns from existing framework
instantiations. Based on these patterns, suggestions about
other relevant parts of the framework are presented to novice
users in a context-dependent manner. They built FrUiT, an
Eclipse plug-in that implements the approach and, yet at an
early stage, already presents several benefits: relying on
expert-written framework instantiations, there is no need to
create special artifacts such as documentation or code
snippets; using data mining, significant reuse rules are
extracted, only concerning how to use the framework; and
the tool makes automatic context search relieving developers
from searching for rules explicitly.

Fairbanks et al. [42] present a pattern language based on
the notion of design fragment. A design fragment is a pattern
that encodes a conventional solution to how a programmer
interacts with a framework to accomplish a certain goal. It
provides the programmer with a “smart flashlight” to help
him/her understand the framework, illuminating only those
parts of the framework he/she needs to understand for the
task at hand. They use XML to express these patterns, so that
automation tools are a step away. They have analyzed the 20
Java applets provided by Sun and came up with a catalogue
of design fragments, which evaluated against other 36
applets from the internet proved that those design fragments
were common and recurrent. Design fragments gives
programmers immediate benefit through tool-based
conformance and long-term benefit through expression of
design intent.

Zdun and Avgeriou [151] propose to remedy the problem
of modeling architectural patterns through identifying and
representing a number of architectural primitives that can act
as the participants in the solution that patterns convey.
According to the authors, these “primitives” are the
fundamental modeling elements in representing a pattern and
also they are the smallest units that make sense at the
architectural level of abstraction (e.g., specialized
components, connectors, ports, interfaces). Their approach
relies on the assumption that architectural patterns contain a
number of architectural primitives that are recurring
participants in several other patterns. They chose UML as the
preferred notation to represent the primitives and pretend to
formalize the definitions using OCL.

3) Notations and formal languages
A UML profile is a restricted set of UML markup along

with new notations and semantics [46]. Fontoura et al.
present the UML-F profile that provides UML stereotypes
and tags for annotating UML diagrams to encode framework
constraints. Methods and attributes in both framework and
user code can be marked up with boxes (grey, white, half-
and-half, and a diagonal slash) that indicate the
method/attribute’s participation in superclass-defined
template patterns. A grey-box indicates newly defined or

123

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

completely overridden superclass method. A white box
indicate inherited and not redefined, a half-and-half indicates
refined but call to super(), and a slashed box indicates an
abstract superclass method.

The Fixed, Adapt-static, and Adapt-dyn tags annotate the
framework and constrain how users can subclass. Template
and Hook tags annotate framework and user code to
document template methods. Stereotypes for Pree’s
metapatterns (like unification and separation variants) are
present, as are predefined tags for the GoF patterns. Recipes
for framework use are present in a format very similar to that
of design patterns but there is no explicit representation of
the solution versus the framework. The recipe encodes a list
of steps for programmer to perform.

The Framework Constraint Language (FCL) [65] applies
the ideas from Richard Helms object oriented contracts [62]
to frameworks. Much like Riehle’s role models [112], FCLs
specify the interface between the framework and the user
code such that the specification describes all legal uses of the
framework. The researchers raise the metaphor of FCL as
framework-specific typing rules and validate their approach
by applying it to Microsoft Foundation Classes, historically
one of the most widely used frameworks. The language has a
number of built-in predicates and logical operators and is
designed to operate on the parse tree of the user’s code.

C. Trends
Not as developed as program comprehension, framework

understanding research still has room for expansion, and
future work is needed to address existing open issues. It
shares the same trends as program comprehension, yet it has
its own issues. Reuse problems must be better addressed by
documentation or tool support if frameworks are to be
widely adopted. There are still significant and stimulant
challenges:

1) Pattern languages.
 While developing pattern languages for framework

documentation, some issues have to be addressed such as
identifying the expertise necessary to create effective pattern
languages, how to identify the framework domain problems
that should be the basis of patterns in the pattern language,
how to best describe patterns, and what inter-pattern
relationships should be included.

2) Widen context domain research.
 There is a clear need to investigate the prevalence of

framework understanding problems in industrial context
frameworks. Industry and academia have to join efforts to
ascertain the impact frameworks learning problems have in
large-scale software development environments, so that
adequate solution may be searched for.

3) Integrated environments.
 With the advent of pluggable and extensible software

development environments (like, Eclipse), tools for assisting
on framework understanding tend to be integrated into these
self-sustainable platforms, producing solutions that are
multi-faceted and present different and varied approaches to
accommodate different user needs. The combination and
personalization of these tools, offer flexibility to adjust the

environments to the specific needs of particular users in
particular tasks.

IV. COLLABORATIVE SOFTWARE ENVIRONMENTS
Software projects usually involve a team or multiple

teams that have to work together. For some time now, there
has been a concern on how to coordinate these teams of
developers to be able to efficiently work together. Research
areas such as Groupware and Computer-Supported
Collaborative Work rose to address collaboration supported
by software. The Collaborative Software Engineering
domain deals with collaboration within the software
development process. The next sections address these
research areas in further detail.

A. Groupware and CSCW
Many credit Peter and Trudy Johnson-Lenz for coining

the term “groupware” in 1978. They defined it as:
“intentional group processes plus software to support them”.
This definition, however, was not widely accepted as it has
narrowed the scope of group work to a set of processes.

Another attempt to provide a definition came from
Johansen [69]: “Groupware… a generic term for specialized
computer aids that are designed for the use of collaborative
work groups. Typically, these groups are small project-
oriented teams that have important task and tight deadlines.
Groupware can involve software hardware, services, and/or
group process support”. This definition also didn’t take, as it
would exclude categories of products that were not designed
specifically for supporting work groups, like email or shared
databases. Besides that, it also focuses on small teams, which
is also restrictive.

To broaden the scope, Ellis et al. [39] proposed to define
groupware as: “computer-based systems that support groups
of people engaged in a common task (or goal) and that
provide an interface to a shared environment”. Although less
restrictive, this definition was considered too broad. Despite
excluding multi-user systems (such as time-sharing systems
where users don’t share the same goal), it would include
shared database systems. Many argue that these systems
cannot be considered groupware because they provide the
illusion that every user has independent access, alas, they are
not “group-aware.”

In general, as Grudin points out in [57] groupware means
different things to different people. According to Nunamaker
et al. [100], groupware is defined as “any technology
specifically used to make a group more productive”.
Coleman states [28], “Groupware is an umbrella term for the
technologies that support person-to-person collaboration;
groupware can be anything from email to electronic meeting
systems to workflow”. These definitions although quite
broad capture almost all the products and projects that are
identified as groupware.

The common denominator in all the above definitions is
the notion of group work. Groupware is designed to support
teams of people working together. As such, groupware
provides a new focus in software technology from human –
computer to human – human interaction. Human interactions
have three key elements: communication, collaboration and

124

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

coordination. The goal of groupware is to assist groups in
communicating, in collaborating and in coordinating their
activities [39], and has been focusing on these issues for
years.

The fact that most groupware tools failed to be widely
adopted made clear the need for a better understanding of
how groups of people work together. A new research area
emerged called: “Computer-Supported Collaborative Work
(CSCW)”.

Iren Greif of MIT and Paul Cashman of Digital
Equipment Corporation, who organized a workshop in 1984
for people interested in how groups work, coined the term
CSCW. Since then, this new field attracted a lot of interest.
Amongst the various definitions, Wilson’s seems to have
captured the scope of CSCW [148]: “CSCW [is] a generic
term, which combines the understanding of the way people
work in groups with the enabling technologies of computer
networking, and associated hardware, software, services and
techniques.” Greenberg [54] adds: “CSCW is the scientific
discipline that motivates and validates groupware design. It
is the study and theory of how people work together, and
how computer and related technologies affect group
behavior.”

CSCW collects researchers from a variety of
specializations – computer science, cognitive science,
psychology, sociology, anthropology, ethnography,
management, and information systems – each contributing a
different perspective and methodology for acquiring
knowledge of groups and for suggesting how the group’s
work could be supported.

CSCW led to a better understanding of groups and made
clear that group relationships are not based only on
communication, collaboration and co-ordination. As pointed
out by Kling [77]: “In practice, many working relationships
can be multivalent with and mix elements of co-operation,
conflict, conviviality, competition, collaboration,
commitment, caution, control, coercion, co-ordination and
combat.”

CSCW researchers that design and build systems try to
address core concepts in novel ways. These concepts have
largely been derived through the analysis of systems

designed by researchers in the CSCW community, or
through studies of existing systems and the most addressed
are:

• Awareness. Individuals working together need to be
able to gain some level of shared knowledge about
each other's activities [33].

• Articulation work. Cooperating individuals must
somehow be able to partition work into units, divide
it amongst themselves and, after the work is
performed, reintegrate it [126].

• Appropriation (or tailorability). How an individual
or group adapts a technology to their own particular
situation; the technology may appropriate in a
manner completely unintended by the designers [34].

However, the complexity of the domain makes it difficult
to produce conclusive results. The success of CSCW systems
is often so contingent on the peculiarities of the social
context that it is hard to generalize. Consequently, CSCW
systems that are based on the design of successful ones may
fail to be appropriated in other seemingly similar contexts for
a variety of reasons that are nearly impossible to identify a
priori [56].

In [2], Ackerman describe CSCW’s main intellectual
contribution has the effort to close the social-technical gap
between what we know we must support socially and what
we can support technically. He states that systems lack
nuance, flexibility and ambiguity, clearly properties inherent
to Human activity. Therefore, the social aspects must be
taken into account when designing systems for these to be
increasingly effective.

In [109], Weber et al. contributed with a taxonomy that
defines and describes criteria for identifying CSCW systems
and serves as a basis for defining CSCW system
requirements. The criteria are divided into three major
groups:

• Application. From an application viewpoint, certain
tasks are generically present in many scenarios, from
general-purpose tasks such as brainstorming, note
taking and shared agenda features to more dedicated
domains where there is the need for tailored tools.
To the user, a CSCW system appears complete only
when specialized and generic tools are integrated.

• Functional. A CSCW system relates functional
features with the social aspects of teamwork. Each
functionality has an impact on the work behavior
and efficiency of the entire group using the system.
Issues such as interaction, coordination, distribution,
user-specific reactions, visualization and data hiding
must be taken into consideration. However, the
psychological, social, and cultural processes active
within groups of collaborators are the real keys to
the acceptance and success of CSCW Systems.

• Technical. This criteria comprises hardware,
software and network support. It divides the
architecture of a CSCW system into four classes of
classes or features: (1) input, (2) output, (3)
application, and (4) data. Each can be centralized or
replicated.

Figure 3 - Groupware Matrix (extracted from [69][10])

125

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For all of these groups, concerns such as flexibility,
transparency, collaboration and sharing are addressed and
guidelines for supporting them are presented.

Another approach to conceptualizing groupware and a
CSCW system, states that its context can be considered
along two dimensions: first, whether collaboration is co-
located or geographically distributed, and second, whether
individuals collaborate synchronously (same time) or
asynchronously (not depending on others to be around at the
same time). This approach can be seen in Figure 3 and was
first introduced by Johansen [69] in 1988, also appearing in
[10].

As the research continues, both groupware and CSCW
fields still face challenges. The current trends evolve mostly
in the following directions:

1) Mobile technologies.
 With the emergence of new mobile technologies and the

increasing connectivity users enjoy, the importance of having
light, easy-to-use and accessible groupware features is
growing.

2) Web 2.0.
 With the advent of concepts of the so-called second-

generation web or “Web 2.0”, collaboration and contextual-
connectivity become even more present in our day-to-day
activities. From blogs to wikis, social software is booming
and its capabilities should be harnessed to improve group
work.

3) Strong commercial interest.
 Major commercial competitors such as Microsoft,

Google, IBM, amongst others, are releasing solutions into
the market at an increasing rate. This must come as an
incentive to continue researching into these ever-increasing
fields of interest.

4) Delocalization of groups.
 Teams and groups are becoming more and more

delocalized. Work stops at one side of the planet and starts
contiguously on the other side. Communication and
synchronism become critical for a adequate and effective
flow of work.

B. Collaborative Software Engineering
Software engineering projects are inherently cooperative,

requiring many software engineers to coordinate their efforts
to produce a large software system [146]. As such, this effort
encompasses the development of a shared understanding
surrounding multiple artefacts, each embodying its own
model, over the entire development process. Figure 4 depicts
that effective communication and awareness are crosscutting
concerns across, not only the phases of software
development but its models, process and infrastructure.

Collaboration techniques in software engineering have
evolved to address our limitations: humans are slow and
error-prone, especially when working at high-levels of
abstraction; our natural language is expressive but
ambiguous; our memory skips the details of large projects
and we can’t keep track of what everyone is doing.

Software engineering collaboration has multiple goals
spanning the entire lifecycle of development:

a) Establish the scope and capabilities of a project.
 Engineers must work with the users and stakeholders of

a software project to describe what it should do at both a
high level, and at the level of detailed requirements. How
this collaboration takes place can have profound impact on a
project, ranging from the up-front negotiation of the
waterfall model, to the iterative style of evolutionary
prototyping [90].

b) Converge towards a final architecture and design.
 System architects and designers must negotiate, create

alliances, and engage domain experts to ensure convergence
on a single system architecture and design [55].

c) Manage dependencies among activities, artefacts,
and organizations.

 This encompasses a wide range of collaborative
activities, including typical management of subdividing work
into tasks, ordering them, monitoring, assessing, and
controlling the plan of activities [85].

d) Reduce dependencies amongst engineers.
 An important mechanism for managing dependencies is

to reduce them where possible, thereby reducing the need for
collaboration. Defining per-developer workspaces helps
reducing dependencies in development time.

e) Identify, record and resolve errors.
 Errors and ambiguities exist in all software artefacts, and

many approaches have been developed to find and record
them. Collaborative techniques such as inspections, reviews,
beta testing and bug tracking assist on mitigating these
problems and tracking the quality of the software.

f) Record organizational memory.
 In any long running collaborative project, people may

join and leave. Part of the work of collaboration is recording
what people know, so that project participants can learn this
knowledge now, and in the future [3]. SCM change logs are
one form of organizational memory in software projects, as
are project repositories of documentation. Process models
also record organizational memory, describing best practices
for how to develop software.

Figure 4 - Collaborative Software Engineering Model

126

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Collaboration in software engineering can be
unstructured, where occasional and sporadic informal
conversations occur concerning a piece of software
anywhere in the project’s lifecycle. It can also be structured,
where the focus goes to various formal and semi-formal
artefacts (requirement specifications, architecture diagrams,
UML diagrams, source-code, bug reports, etc.) Software
engineering collaboration can thus be understood as artefact-
based, or model-based collaboration, where the focus of
activity is on the production of new models, the creation of
shared meaning around the models, and elimination of error
and ambiguity within the models. Without the structure and
semantics provided by the model, it would be more difficult
to recognize differences in understanding among
collaborators.

This focus on model-oriented collaboration embedded
within a larger process is what distinguishes collaboration
research in software engineering from broader collaboration
research, which tends to address artefact-neutral coordination
technologies and toolkits.

Software engineers have developed a wide range of
model-oriented technologies to support collaborative work
on their projects. These technologies span the entire
lifecycle, including collaborative requirements tools
[16][136], collaborative UML diagram creation, software
configuration management systems and bug tracking systems
[137].

Process modelling and enactment systems have been
created to help manage the entire lifecycle, supporting
managers and developers in assignment of work, monitoring
current progress, and improving processes [17] [81]. In the
commercial sphere, there are many examples of project
management software, including Microsoft Project [92] and
Rational Method Composer [108]. Several efforts have
created standard interfaces or repositories for software
project artefacts, including WebDAV/DeltaV [35][147] and
PCTE [144]. Web-based integrated development
environments serve to integrate a range of model-based
(SCM, bug tracking systems) and unstructured (discussion
list, web pages) collaboration technologies.

1) Tools, environments and infrastructure
Tool support developed specifically for collaboration in

software engineering falls into four broad categories:
a) Model-based collaboration tools.

 Software engineering involves the creation of multiple
artifacts. These range from the end product and the source
code to all the models, diagrams and specifications that cover
all the phases of the software development process. Each
artifact has its own semantics, with a variable degree of
formality, and creating them is an inherently collaborative
activity. Systems designed to support the collaborative
creation and editing of specific artifacts are really supporting
the creation of specific models, and hence support the model-
based collaboration. Collaboration tools exist to suppose the
creation of every kind of model found in typical software
engineering practice.

b) Process centred collaboration.

 A software process model structures steps, roles and
artifacts to create during software development. Typically,
engineers reduce the amount of overhead coordination to
initiate the project, tackling more quickly with the project at
hand, rather than negotiating the entire project structure.
Overtime, as experience grows, the net effect is to reduce the
amount of coordination work required within a project by
regularizing points of collaboration, as well as to increase
predictability of future activity. Process centered software
development environments have facilities for writing
software process models in a process modeling language,
then executing these models in the context of the
environment. For example, the environment can manage the
assignment of tasks to engineers, monitor their completion,
and automatically invoke appropriate tools. Some examples
of such systems are Arcadia [72], Oz [12], Marvel [13],
ConversationBuilder [73], and Endeavours [17].

c) Collaboration awareness.
 Software engineering is a human-driven and human-

intensive activity. Most medium- to large-scale projects
involve multiple software developers that may or may not be
co-located. In recent years, there has been much work in
developing collaborative development environments that
provide support for coordination and communication during
software development [66]. A key issue in any collaborative
is awareness, or “knowing what is going on” [40]. More
precisely, awareness is “an understanding of the activities of
others, which provides a context for [one’s] own activity”
[33]. Awareness encompasses knowing who else is working
on the project, what they are doing, which artifacts they are
or were manipulating, and how their work may impact other
work. In distributed collaborative work, maintaining
awareness is considerably more difficult. Research areas
ranging from software visualization to reverse engineering
have been developing tools and techniques to provide
awareness during software development. Seesoft [37],
Palantir [116], Lighthouse [122] and Jazz [66] are but a few.
A more extensive survey and comparison study can be found
at [134].

d) Collaboration infrastructure.
 Various infrastructure technologies make it possible for

engineers to work collaboratively. Software tool integration
technologies make it possible for software tools to coordinate
their work. Major forms of tool integration include data
integration (ensuring that tools can exchange data), control
integration (ensuring that tools are aware of activities of
other tools and can take action based on that knowledge). For
example, nowadays, most IDEs know when a source-file is
saved after editing and store it on a central repository (data
integration) or SCM, then automatically call the proper
compiler (control integration). Tools like Eclipse, Visual
Studio, Marvel and WebDAV already implement these
behaviors. Whether through calling other external tools
based on the context of the task or coordinating between
integrated tools, these environments already bring a
sustainable collaboration between engineers and theirs
development tasks.

2) Trends and future research directions

127

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

There are still several areas to be addressed for
improving collaboration in software engineering, which may
reveal the future trends on this domain of expertise.

a) Integrating web and desktop environments.
 The migration of development tools to the web is

increasing, now that the user interface is becoming more
sophisticated (thanks to AJAX and its overall adoption) and
the processing power of browsers is higher. UML and source
code editing are no longer relegated only to desktop
applications, whereas in the past, the web could not support
such features. Despite this trend, there is a longstanding
practice surrounding the use of integrated development
environments (Visual Studio, Eclipse, JBuilder, etc.), which
are not going to be displaced by completely web-based
environments. Instead, future projects are likely to adopt a
mixture of web-based and desktop tools, for which
interfacing open standards between the desktop IDE’s and
the web-based services should be created. Although not an
easy task, these open standards would allow a more seamless
interaction with the complex information a software project
creates.

b) Broader participation in design.
 Currently, software customers are engaged in the

development process during requirements elicitation, but
then become not so engaged for the requirements analysis,
design and coding phases, only to reconnect again for the
final phase of testing. Broadened participation by customers
in the requirements analysis, design, coding and early testing
phases would keep them engaged during these middle stages,
allowing a more actively assurance that their direct needs are
met. By increasing the participation of the direct end users,
software engineers can reduce the risk that the final product
does not meet the needs of customer organizations. Surely, a
balance between completely open-sourced projects and a
fine-grained proprietary closed-source model available for
the customer to refine has to be made. Nevertheless, a
participatory development model would allow customers a
better tailoring of the software to their needs. The trend
toward providing support for distributed development teams
in a wide range of development tools makes a broader
engagement possible. Open source SCM tools like
Subversion, as well as web-based requirements tools and
problem tracking tools make it possible to coordinate
globally distributed teams.

c) Capturing rationale argumentation.
 One of the strongest design criteria used in software

engineering is design for change, which inherently involves
making predictions about the future. As a result, the design
process is not just and engineer making rational decisions
from a set of facts, but instead is a predictive process in
which multiple engineers argue over current facts and future
potentials. Architecture and design are argumentative
processes in which engineers resolve differences of
prediction and interpretation to develop models of a software
system’s structure. Since only one vision will prevail, the
process of architecture and design is simultaneously
cooperative and competitive. Providing collaborative tools to
support engineers in the recording and visualization of

architecture and design argumentation structures would do a
better job of capturing the nuances and tradeoffs involved in
creating large systems. They would also better convey the
assumptions that went into a particular decision, making it
easier for succeeding engineers to know when they can
safely change a system’s design.

d) Using novel communication and presence
technologies.

 Software engineers have a long track record of
integrating new communication technologies into their
development processes. Email, instant messaging and web-
based applications are very commonly used in today’s
projects to coordinate work and be aware of whether other
developers are currently active (present). As a result,
engineers would be expected to adopt emerging
communication and presence technologies if they offer
advantages over current tools. For instance, networked
collaborative 3d game worlds are such an emerging
technology that spawned “software immersion
environments”. Second Life is an example of using such a
3D world to develop software, as their team uses its own
platform to do so. There is a range of research issues inherent
to the use of 3D virtual environments as a collaboration
infrastructure, for example, how to synchronize physical and
virtual worlds. Ultimately, the utility of adopting a 3D virtual
world needs careful examination, as the benefits of the
technology need to clearly exceed the costs. It is currently
very unclear that this is true.

e) Improved assessment of collaboration technology.
 Assessing the impact of the introduction of new

technology into a project is difficult, and usually subjective.
Estimation in software development is a difficult task, which
hinders the objective assessment of collaboration technology.
Without the uncovering of the pros and cons of specific
collaboration tools, forward progress in the field of software
collaboration support tools is hard to measure. There is a
lack of studies how already introduced tools (instant
messaging, Internet-aware SCM tools, email, bug tracking
systems, etc.) that quantify the benefits received from using
these collaboration tools. Developing improved methods for
assessing the impact of collaboration tools would boost
research in these areas by increasing confidence in positive
results, and making it easier to convince teams to adopt new
technologies.

V. OPEN ISSUES
Program Comprehension deals with understanding

programs and software artefacts. Framework Understanding
focuses on a specific kind of software artefact: a framework.
This understanding is often made resorting only to
information on the artefact itself and accompanying
documentation. More and more, software is developed
collaboratively. Can this “collaboration” help in framework
understanding?

From the state-of-the-art review, a number of open
research issues arise. An insight of the most relevant ones
follows, as a means to focus the reader to the intended scope:

a) Frameworks are often hard to understand and use.

128

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 The difficulty of understanding frameworks is a serious
inhibitor of effective framework reuse. This is mainly due to
framework designs being usually very complex, and thus
hard to communicate. The framework design is: (1) very
abstract, to factor out commonality; (2) incomplete, requiring
additional classes to create a working application; (3) more
flexible than needed by the application at hand; (4) obscure,
in the sense that it usually hides existing dependencies and
interactions between classes. The learning curve becomes
steep, requiring a considerable amount of effort to
understand and learn how to use a framework.

b) Framework documentation is often outdated and
inaccurate.

 Good documentation significantly improves the process
of learning and understanding new frameworks. By guiding
users on the customization process and by explicitly showing
the framework design principles and details, effective
documentation contributes to make frameworks easy to
reuse. Despite these reasons, framework documentation is
still regarded as of low importance within the framework
development process. Most commonly during maintenance
or evolution phases, documentation is used to assist on these
tasks but its update is often discarded or neglected.
Moreover, it is still hard, costly and tiresome to define and
write good quality documentation for a framework. Good
documentation should be easy to use, support different
audiences and provides multiple views through different
types of documents and notations. The difficulty of
producing contents for these requirements may hinder its
applicability and demotes its importance within the
development process.

c) Programmers (both experts and novices) recurrently
tackle with understanding problems.

 Every time a software developer needs to re-use a piece
of code, whether it’s a snippet, class, library or framework,
she goes over the entire cognitive process of analyzing,
understanding and capturing the relevant information she
needs. Depending on the purpose of the task at hand
(learning, teaching, communicating, using), the format
(quality, clarity, structure, abstraction level, etc.) of the code,
and the experience of the programmer (expert or novice) the
understanding process may go through various approaches
(top-down, bottom-up, etc.), not always leading to the
desired outcome in a straight forward manner. Choosing the
adequate understanding process should not be difficult, and
changing from one to another should be feasible without
much overhead.

d) The process of understanding a framework is not
properly dealt with.

 The palette of tools available to the framework learner
scarcely deals with specific aspects of framework
understanding. Without questioning its local and highly
focused solutions, each tool aids in a specific aspect, whether
capturing high-level design artifacts, browsing the code for
hot-spots, or helping on producing sustainable output
formats. Alas, the framework user has to navigate through a

plethora of tools trying to figure out where the relevant
information might be.

e) Different tools provide sparse results with variable
quality.

 By itself, each tool has its own problems and limitations,
thus producing quality-questionable results. For instance,
many of the problems design recovery (reverse engineering)
tools have, tend to converge to selection of results
(elimination of false positives) and semantic overlapping
(same result can have several meanings). With such
discrepancy amongst results, it becomes difficult to ascertain
tool efficiency and compare results regarding precision and
recall.

f) Collective knowledge of the development team is
often not harnessed at its best.

 Software development is a highly social process. It has
been perceived that, when trying to understand a piece of
code, developers turn first to the code itself and, when that
fails, to their social network, that is, the team. This behavior,
not only happens during code understanding, but also
throughout the whole understanding process. Nevertheless, it
is not easy to go for the team. Firstly, it is not clear who to
address for clarification, for there is a lack of awareness of
what other members of the team are doing or how do they
relate to the work done. Secondly, the fields of expertise are
not clear or stated, leading to wasteful interruptions of the
wrong people. Thirdly and most often, the team or the
experts are not available for consulting or rebuke their fellow
colleagues due to interruption. Interrupted developers lose
track of parts of their mental model, resulting in laborious
reconstruction or bugs and discouraging more frequent
interruptions.

g) Implicit developers’ knowledge is not captured and
shared as effectively as it could be if well supported.

 Developers go to great lengths to create and maintain
rich mental models of design and code that are rarely
permanently recorded. Very often, developers, without
referencing written material, can talk in detail about their
product’s architecture, how the architecture is implemented,
who owns what parts, the history of the code, to-dos, wish-
lists, and meta-information about the code. For the most part
this knowledge is never written down, except in transient
forms such as sketches on a whiteboard. The bottom-line
problem here is that “Lots of [useful] information is kept in
peoples’ heads” [80].

VI. KEY RESEARCH QUESTIONS
From the open issues presented before, a few research

questions revolve around a major question that is considered
central to this research work:

1) How to improve framework understanding?
a) What kind of information do developers try to

capture first? What makes them decide?
b) What are the actual goals of the framework learner?

129

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

c) Are there any typical and repeated behaviours
developers apply when trying to learn how to use a
framework?

d) How can tools assist the learning process?
e) What kind of information is presented to framework

learners that they mostly look for? What do they look for
that isn’t there?

f) What is missing from existing development
environments to assist on framework understanding?

In this paper, the authors address mainly questions d) and
f), and believe that to improve framework understanding,
tools should be collaborative and specific knowledge should
be captured and presented to the developers. The next section
will address how they intend to pursue that.

VII. IMPROVING THROUGH COLLABORATION
Teams collaborate to develop software. But not all of the

relevant knowledge is recorded for later use. Developers
tackle recurrently with understanding and learning issues,
especially if teams rotate their members often. Team
members take tacit knowledge with them that decays with
time and that proves useful later on. That knowledge, if
permanent and available, could save time when dealing again
with the system. What if that knowledge could be shared
with other developers, novice or expert? The idea is to make
that knowledge available within the development
environment. Therefore, (re) learning about the system
(frameworks, in this case) should benefit from knowing how
its was learnt in the first place.

A. Supporting the learning process
Learning how to use a framework is not a trivial task.

The learner is usually engaged in a process composed of a
series of activities. This process has best practices that can
be followed to improve its outcome. These practices could
be actively applied and improved having tools to support
them. These three levels are detailed next and depicted in
Figure 6.

1) Process
In this particular domain, there is range of activities that

may characterize the developer’s behavior while trying to
understand a framework. These activities may fall into three
categories:

a) Code

 “Where is all that we need to know”(?) The problem is
that what we need to know is not explicitly in front of us.
Furthermore, frameworks make it particularly difficult to
find what we need to know. As an example, recovering
design knowledge implicit in the code is a recurring practice
to help clarify the framework’s structure and purpose. The
questions reside on what kind of design artifacts, to what
kind of audience, and how to store and present the results so
that they are useful.

b) Documentation.
 When the developer wants to learn how to use a

framework (or any reusable software artifact, for that
matter), she goes for the documentation, if it exists. But, is
there always documentation? And is that documentation
clear, well suited and complete? Does it have all the
answers? There are known ways of producing good
documentation for frameworks [6][7][8]. The issue is
nurturing the developers to easily produce and access that
documentation, even during the learning process.

c) Social network.
 When all else fails, the developer loses her self-

sufficiency as a learner and resorts to her “contacts”, that is,
strong candidates to bear knowledge that might help her. Call
it team, peers, social network, buddies or any other term,
there is knowledge that one can’t find anywhere else but on
people’s minds. It is called intrinsic knowledge. Getting this
knowledge is intrusive. There should be ways of harnessing
this knowledge without such intrusiveness.

Putting it short, a framework learner looks at the code,
reads the documentation, visualizes information and asks her
colleagues for help, as going through a learning process of
understanding how to use the framework. Figure 5 (extracted
from [5]) depicts this scenario.

2) Best Practices
Associated with the learning process, there is a series of

good practices on how to deal with each stage of the learning
process. These are presented in [45]. A learning environment
should support and nurture these practices.

3) Supporting Tools
Depending on several factors (learner’s experience,

existing artifacts, learning goal, etc.) the learning process to
undertake may resort to different practices and paths. What
works for some, might not work for others, and may even
vary between frameworks. Novices and experts will take
different paths.

Yet, in a truly collaborative environment, where, at first,
there is no distinction between who is expert and who is

Figure 6 - Framework learning environment

Figure 5 - Learning environment support levels

130

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

novice, sharing experiences and advising the global
community proves useful [135]. The importance given to an
advice or counsel is measured by its actual applicability. You
became experienced and expert by giving valid and helpful
feedback into the community.

By supporting this sharing of knowledge, the learners
may benefit from their collective intelligence, thus
improving their own learning processes. Therefore, the
supporting tools should be prepared to capture this
knowledge, share it and assist other learners in their tasks.

B. Tool requirements
Teams turn into communities mainly due to high member

rotation, high project preemption and the widely spread of
frameworks. The strength of this community relies mainly on
its ability to withhold valuable knowledge, filtering out what
its not important. The issue is providing an effective
infrastructure to share this information amongst its members
without too much effort and to allow a “natural” selection of
what is actually valuable.

Providing such an environment would have the following
requirements:

a) Seamless integration into a IDE.
 Tools and features to support the learning process should

be available within the development environment as a means
to enforce usage, without disrupting the normal way a
developer works. When presented with possible solutions, it
should be straightforward how to proceed within the IDE to
apply those solutions.

b) Non-intrusive / non-interruptive.
 Ideally, capturing the developer’s intrinsic knowledge

should be implicit. That is, the developer should not be asked
to explicitly provide any information regarding that
knowledge to the system. In practice, a satisfactory solution
would be to notify the system we are trying to learn how to
do some task and signal reaching that goal. Bottom-line, it
should be as non-intrusive as possible.

c) Context-aware.
 The tools should be aware of the context where the

developer is learning and provide information that makes
sense within that context.

d) Web-aware.
 Not only should the environment seek knowledge within

its own boundaries (its knowledge-base), it should also be
prepared to go to the web in a contextual manner.

e) Descriptive, not prescriptive.
 The system should not tell the developer how to proceed,

but instead should give possible directions on how to solve
the task at hand.

f) Shared knowledge-base.
 The environment should store and share all the relevant

knowledge that helps the framework learning process. Not
only the documentation artifacts and source-code, but the
captured knowledge that helps guiding the developer
throughout the process.

g) Learning Path
Different developers learn in different ways. The

environment should be able to deal with the learning profile
of its users, considering aspects such as visualization of
information and easy personalization of contents.

The learning process would be supported relying on a
four-step cycle shown in Figure 7. The purpose would be to
capture the learning steps taken by the learner. Whether she
looks at the code first, goes for documentation, explores
certain artifacts, and recovers others, until she reaches a
satisfying conclusion. This path would then be recorded,
stored and shared. “Sharing” means that other learners may
reuse it or get assistance through it to guide them on their
own learning path. If the shared knowledge really helped
them, then they should rank it or improve it. As the collected
knowledge keeps improving (through sharing, usage and
ranking), the best learning strategies will be recommended to
recurrent learners and thus improving their learning process.

Candidate existing environments are Eclipse, Jazz Team
Concert and Visual Studio due to their extensible nature and
pluggable architecture. These environments have a notion of
context or process-awareness, yet they miss the learning
context. The idea would be to insert the notion of a learning
process and provide tools to assist in that process, supporting
the steps depicted in Figure 7. The tools should be built as
plug-ins to the collaborative environment, introducing a
learning context and accompanying the learner throughout
the process.

VIII. CONCLUSION
Frameworks are good software artifacts for reuse.

Nevertheless they are complex, thus hard to learn. Most of
the tools that may help in this task don’t encompass the
social nature of software development. In distress, learners
tend to look for help at their colleagues, often disrupting
their work. Supporting the social side of software
development by raising awareness and capturing intrinsic
knowledge helps improving the learning of software,
namely, frameworks.

A set of requirements for tools to harness framework
learning knowledge and assisting in the process of learning
should: allow for seamless integration into an IDE; be non
intrusive or interruptive; be context and web aware; be

Figure 7 - Supporting steps to improve the learning
process

131

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

descriptive instead of prescriptive; share a common
knowledge base of evolving learning knowledge and capture
the learning path taken by developers.

Providing a collaborative environment where learning
knowledge can be captured, shared, ranked and
recommended to recurrent learners, both expert and novice,
in a non-intrusive way, aims at improving framework
understanding.

REFERENCES
[1] N.Flores, “Patterns and Tools for improving Framework

Understanding: a Collaborative Approach”, SEDES Doctoral
Symposium, ICSEA - The Fourth International Conference on
Software Engineering Advances, Porto, Portugal, September 2009.

[2] M. Ackerman, (2000). "The Intellectual Challenge of CSCW: The
gap between social requirements and technical feasibility". Human-
Computer Interaction 15: 179–203

[3] M. S. Ackerman and D. W. McDonald (2000), "Collaborative
Support for Informal Information in Collective Memory Systems", in
Information Systems Frontiers, vol. 2, o. 3/4, pp. 333-347, 2000.

[4] Adoption-Centric Software Engineering Project site. Computer
Science Department at University of Victoria, Canada
URL:http://www.acse.cs.uvic.ca/index.html. Accessed at 30-06-2010

[5] A.Aguiar, “Framework Documentation – A Minimalist Approach”,
PhD Thesis, FEUP September 2003.

[6] A.Aguiar and G.David, “Patterns for Documenting Frameworks –
Part III”, PLoP’2006, Portland, Oregon, USA, October 2006.

[7] A.Aguiar and G.David, “Patterns for Documenting Frameworks –
Part II”, EuroPLoP’2006, Irsee, Germany, July 2006.

[8] A.Aguiar and G.David, “Patterns for Documenting Frameworks –
Part I”, VikingPLoP’2005, Helsinki, Finland, September 2005.

[9] R.Baecker and A.Marcus, “Human Factors and Typography for More
Readable Programs”. ACM Press, Addison-Wesley Publishing
Company, 1990

[10] R.M. Baecker et al., (1995). “Readings in human-computer
interaction: toward the year 2000”. Morgan Kaufmann Publishers.

[11] T. Ball and S.G. Eick, “Software visualization in the large”, IEEE
Computer, 29, 4, pp.33-43, 1996

[12] I. Z. Ben-Shaul (1994), "Oz: A Decentralized Process Centered
Environment (PhD Thesis)," in Department of Computer Science:
Columbia University, Dec 1994.

[13] I. Z. Ben-Shaul, G. E. Kaiser, and G. T. Heineman (1992), "An
Architecture for Multi-user Software Development Environments," in
ACM SIGSOFT 92: 5th Symposium on Software Development
Environments, Tyson's Corner, Virginia, 1992, pp. 149-158.

[14] C.F. Bertholf and J.Scholtz, “Program Comprehension of Literate
Programs by Novice Programmers”, Empirical Studies of
Programmers: 5th Workshop, 1993

[15] T.J.Biggerstaff, B.W Mitbander, and D.Webster, “The concept
assignment problem in program understanding”, Proceedings of the
15th International conference on Software Engineering, pp.482-498,
1993.

[16] B. Boehm and A. Egyed (1998), “Software Requirements
Negotiation: Some Lessons Learned”, in the 20th International
Conference on Software Engineering (ICSE’98), Japan, 1998,
pp.503-507

[17] G. A. Bolcer and R. N. Taylor (1996), "Endeavors: a Process System
Integration Infrastructure," in 4th International Conference on the
Software Process (ICSP'96), Brighton, UK, 1996, pp. 76-89.

[18] J.Bosch, P.Molin, M.Mattsson, and P.O. Bengtsson, “Framework –
Problems and Experiences” Building Application Frameworks,
M.Fayad, D.Schmidt, R.Johnson, Wiley, 1999.

[19] M.S.K.Brade, M.Guzdial, and E.Soloway, “Whorf: A visualization
tool for software maintenance”. Proceedings 1992 IEEE Workshop
on Visual Languages, pp.148-154, 1992

[20] J.M.Brant, “HOTDRAW”, MsC Thesis, University of Illinois, 1995
[21] R. Brooks, “Towards a theory of the comprehension of computer

programs”, International Journal of Man-Machine Studies, pp. 543-
554, vol.18, 1983.

[22] M.H.Brown and R.Brooks, “ZEUS: A system for algorithm animation
and multi-view editing”. Proceedings of the IEEE 1991 Workshop on
Visual Languages, pp.4-9, 1991

[23] M.Bruch, T.Schäfer, and M.Mezini, “FrUiT: IDE Support for
Framework Understanding”, OOPSLA Eclipse Technology
Exchange, 2006

[24] R.I.Bull and M-A. Storey, “Towards Visualization Support for the
Eclipse Modeling Framework”, A Research-Industry Technology
Exchange at EclipseCon, 2005.

[25] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
“Pattern oriented software architecture - a system of patterns”. John
Wiley and Sons, 1996.

[26] G.Butler, R.Keller, and H.Milli, “A Framework for Framework
Documentation”, Computing Surveys, special Symposium Issue on
Object-Oriented .Application Framework, ACM, 2000.

[27] T.Cheng, S.Hupfer, S.Ross, and J.Patterson (2007). “Social Software
Development Environments”, Dr.Dobb’s Journal. Janury 11th , 2007.

[28] K. Coleman (1995), “Groupware technology and Applications”,
Prentice Hall PTR 1995

[29] J.R. Cordy, T.R. Dean, A.J.Malton, and K.A. Schneider, “Source
Transformation in Software Engineering using the TXL
Transformation System”, Journal of Information and Software
Technology, vol(44)13, pp. 827-837, 2002.

[30] D.Cubranic, G.C. Murphy, J.Singer, and K.S.Booth, “ Hipikat: A
project memory for software development”, IEEE Transactions on
Software Engineering 31, 6 (Jun. 2005), pp. 446-465.

[31] R. DeLine, A.Khella, M.Czerwinski, and G.Robertson, “Towards
Understanding Programs through Wear-based Filtering”, Softvis,
2005

[32] F. Détienne, “Software Design – Cognitive Aspects”, Springer
Practitioner Series 2001.

[33] P. Dourish and V. Bellotti, (1992). "Awareness and coordination in
shared workspaces". Proceedings of the 1992 ACM conference on
Computer-supported cooperative work: 107-114, ACM Press New
York, NY, USA.

[34] P. Dourish, (2003). "The Appropriation of Interactive Technologies:
Some Lessons from Placeless Documents". Computer Supported
Cooperative Work 12: 465–490. Kluwer Academic Publishers.

[35] L. Dusseault (2003), WebDAV: Next-Generation Collaborative Web
Authoring, Prentice Hall PTR, 2003.

[36] Eclipse project site. URL: http://www.eclipse.org. Accessed at 30-06-
2010.

[37] S. G. Eick, J. L. Steffen and, E. E. Sumner Jr. (1992) “SeeSoft – a
tool for visualizing line oriented software statistics.” IEEE
Transactions on Software Engineering 28, 4, 396-412.

[38] T.Eisenbarth, R. Koschke, and D. Simon, “Aiding Program
Comprehension by Static and Dynamic Feature Analysis”,
Proceedings of the IEEE International Conference on Software
Maintenance, 2001

[39] C. A. Ellis, S. J. Gibbs, and G. L. Rein (1993), “Groupware some
issues and experiences”. In: Baecker, Ronald M. Readings in
groupware and computer-supported cooperative work. San Francisco:
Morgan Kaufmann, 1993. p. 9-28.

[40] M. Endsley (1995), “Toward a theory of situation awareness in
dynamic systems”. Human Factors 37, 1, 32-64.

[41] K. Erdös, and H.M. Sneed, “Partial Comprehension of Complex
Programs (enough to perform maintenance)”, Proceedings of the 6th

132

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Workshop on Program Comprehension, pp. 98-105,
1998.

[42] G.Fairbanks, D.Garlan and W. Scherlis, “Design Fragments Make
Using Frameworks Easier”, OOPSLA 2006 .

[43] M.Fayad, D.Schimdt, and R.Johnson, “Building Application
Frameworks”, Wiley 1999.

[44] N.Flores and A.Aguiar, “JFREEDOM: a Reverse Engineering Tool to
Recover Framework Design”, Proceedings of the 1st International
Workshop on Object-Oriented Reengineering, ECOOP’05, 2005.

[45] N. Flores and A.Aguiar, (2008) “Patterns for Framework
Understanding”, in Proc. of th 15th Pattern Languages of
Programming Conference (PLoP’08).

[46] M.Fontoura, W.Pree, and B.Rumpe, “The UML Profile for
Framework Architectures”, Addison-Wesley Professional 2001.

[47] J. Froehlich and P. Dourich, “Unifying artifacts and activities in a
visual tool for distributed software development teams”, Proceedings
of the 26th International Conference on Software Engineering, pp.
387-396, 2004.

[48] G. Froehlich, H.Hoover, L.Lui, and P.Sorenson, “Hooking into
Object-Oriented Application Frameworks”, Proceedings of the 19th
International Conference on Software Engineering, pp.491-501, 1997

[49] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. “Design Patterns
— Elements of reusable object-oriented software”. Addison-Wesley,
1995.

[50] D.Gangopadhyay and S.Mitra, “Understanding Frameworks by
Exploration of Exemplars”, Proceedings of CASE-95, IEEE
Computer Society, pp. 90-99, 1995

[51] J.J.Garrett. “Ajax: A New Approach to Web Applications”. Adaptive
Path, February 18th 2005. URL:
http://www.adaptivepath.com/publications/essays/archives/000385.ph
p. Accessed at 30-06-2010.

[52] D. M. German, “Decentralized open source global software
development, the GNOME experience,” Journal of Software Process:
Improvement and Practice, vol. 8,no. 4, pp. 201–215, 2004.

[53] T.R.G. Green and M. Petre, “When Visual Programs are Harder to
Read than Textual Programs”, Human-Computer Interaction: Tasks
and Organization, Proceedings (ECCE)-6 (6th European Conference
Cognitive Ergonomics), 1992

[54] S. Greenberg (1991), “Computer-supported Co-operative Work and
Groupware”, Academic Press Ltd., London, 1991.

[55] R. Grinter, (1999), "Systems Architecture: Product Designing and
Social Engineering," in ACM Conference on Work Activities
Coordination and Collaboration (WACC'99), San Francisco,
California, 1999, pp. 11-18.

[56] J. Grudin, (1988). "Why CSCW applications fail: problems in the
design and evaluation of organization of organizational interfaces".
Proceedings of the 1988 ACM conference on Computer-supported
cooperative work: 85-93, ACM Press New York, NY, USA.

[57] J. Grudin, (1994), “Computer-Supported Co-operative Work: History
and Focus”, Computer, Vol. 27, No. 5, May 1994

[58] C. Gutwim, R.Penner, and K. Schneider, “Group Awareness in
Distributed Software Development”, ACM CSCW, pp. 72 – 81, 2004

[59] M.Hakala, J. Hautamäki, K.Koskimies, J.Paakki, A.Viljamaa, and
J.Viljamaa, “Annotating reusable software architectures with
specialization patterns”, Proceedings of the Working
IEEE/IFIPConference on Software Architecture (WICSA’01), pp.
171, 2001

[60] I.Hammouda and K.Koskimies, “A pattern-based j2ee application
development environment”, Nordic Journal of Computing 9(3), pp.
248-260, 2002

[61] J.Hannemann and G. Kiczales, “Design pattern implementation in
java and aspectj”, Proceedings of the 17th ACM SIGPLAN
conference on Object-oriented programming, systems, languages and
applications, pp.161-173, 2002.

 [62] R.Helm, I.Holland, and D.Gangopadhyay, “Contracts: specifying
behavioral compositions in object-oriented systems”, Proceedings of

the European conference on object-oriented programming
(ECOOP’90), pp. 169-180, 1990

[63] T. Hendrix, J.H. Cross II, L. Barowski, and K.Mathias. “Tool support
for reverse engineering multi-lingual software”. Proceedings of the
4th Working Conference on Reverse Engineering (WCRE’97), pp.
136-143, 1997

[64] L. Hohmann, “Journey of the Software Professional: The Sociology
of Software Development”, 1996.

[65] D.Hou and H.J. Hoover, “Towards specifying constraints for object-
oriented frameworks”, Proceedings of the 2001 conference of the
Centre for Advanced Studies on Collaborative research, page 5, IBM
Press, 2001.

[66] S. Hupfer, L.-T Cheng, S. Ross, and J. Patterson, “Introducing
collaboration into an application development environment”,
Proceedings of the ACM Conference on Computer Supported
Cooperative Work, pp. 444-454, 2004.

[67] Imagix 4D. Imagix Corporation. URL: http://www.imagix
.com/index.html.

[68] S.Isoda, T.Shimomura, and Y. Ono, “VIPS: A visual debugger”,
IEEE Software, May 1987

[69] R. Johansen (1988) “Groupware: Computer Support for Business
Teams” The Free Press.

[70] R.Johnson, “Documenting Frameworks using Patterns”, Proceedings
of the OOPSLA’92, SIGPLAN notices, 27(10), pp.63-76. 1992

[71] R.Johnson, “Components, framework, patterns. SIGSOFT Software
Engineering Notes, 22(3), pp. 10-17, 1997

[72] R. Kadia (1992), "Issues Encountered in Building a Flexible Software
Development Environment," in ACM SIGSOFT 92: 5th Symposium
on Software Development Environments, Tyson's Corner, Virginia,
1992, pp. 169-180.

[73] S. M. Kaplan, W. J. Tolone, A. M. Carroll, D. P. Bogia, and C.
Bignoli (1992), "Supporting Collaborative Software Development
with ConversationBuilder," in ACM SIGSOFT 92: 5th Symposium
on Software Development Environments, Tyson's Corner, Virginia,
1992, pp. 11-20.

[74] M.Kersten and G.Murphy, “Mylar: a degree-of-interest model for
IDE’s”, International Conference on Aspect Oriented Software
Development, pp.159-168, 2005

[75] D.Kirk, M.Roper, and M.Wood, “Identifying and Addressing
Problems in Framework Reuse”, Proceedings of the 13th
International Workshop on Program Comprehension (IPWC’05), pp.
77-86, 2005

[76] G. Kizcales, J.Lamping, A.Mendhekar, C.Maeda, C.V.Lopes, J-M
Loingtier, and J. Irwin. “Aspect Oriented Programming”, Proceedings
of the European Conference on Object-Oriented Programming
(ECOOP), June 1997.

[77] R. Kling (1991) “Co-operation, Co-ordination and Control in
Computer-Supported Work”, CACM, vol. 34, no. 12, December
1991.

[78] G.E.Krasner, S.T.Pope,”A Cookbook for Using the Model-View-
Controller User Interface Paradigm in Smalltalk-80”, Journal of
Object-Oriented Programming 1,3, pp. 26-49, 1988

[79] M.Lanza and S.Ducasse, “A Categorization of Classes based on
Visualization of their Internal Structure: the Class
Blueprint”.Proceedings for OOPSLA 2001, pp.300-311, ACM Press,
2001

[80] T.D.LaToza, G.Venolia, and R.DeLine (2006), “Maintaining Mental
Models: A Study of Developer Working Habits”. Proc. of the
International Conference of Software Engineering (ICSE’06),
Shanghai, China.

 [81] B. S. Lerner, L. J. Osterweil, Stanley M. Sutton Jr., and A. Wise
(1998), "Programming Process Coordination in Little-JIL Toward the
Harmonious Functioning of Parts for Effective Results," in European
Workshop on Software Process Technology, 1998.

[82] S.Letovsky, “Cognitive processes in program comprehension”,
Empirical Studies of Programmers, pp.58-79, 1986

133

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[83] P.Linos, P.Aubet, L.Dumas, Y.Helleboid, P.Lejeune, and P.Tulula.
“Visualizing program dependencies: An experimental study”
Software-Practice and Experience, 24(4):387-403, 1994

[84] D.C Littman, J.Pinto, S.Letovsky, and E.Soloway, “Mental models
and software maintenance”, Empirical Studies of Programmers, pp.
80-98, 1986

[85] T. W. Malone and K. Crowston (1994), "The Interdisciplinary Study
of Coordination," in ACM Computing Surveys (CSUR), vol 26, no 1,
pp. 87-119, 1994.

[86] D. Mandelin, L. Xu, R. Bodik and D.Kimelman, “Mining Jungloids:
Helping to Navigate the API Jungle”, Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and
implementation, pp 48-61, 2005.

[87] A. Marcus, L. Feng, J.I. Maletic, “Comprehension of Software
Analysis Data Using 3D Visualization”, Proceedings of the IEEE
International Workshop on Program Comprehension (IWPC2003),
pp.105-114, 2003

[88] A. von Maryhauser and A. Vans. “Program comprehension during
software maintenance and evolution” IEEE Computer pp. 44-55,
August 1995.

[89] A. von Maryhauser and A. Vans. “From code understanding needs to
reverse engineering tool capabilities” Proceedings of CASE’93, pp.
230-239, 1993.

[90] S. McConnell (1996), "Lifecycle Planning," in Rapid Development:
Taming Wild Software Schedules Redmond, WA: Microsoft Press,
1996.

[91] A.Mendelson and J.Sametinger. “Reverse Engineering by visualizing
and querying”, Software – Concepts and Tools, 16:170-182, 1995

[92] Microsoft Corporation (2007), "Microsoft Office Project Standard
2007 Product Guide," April 2006, Available at:
http://download.microsoft.com/download/d/f/b/dfb0e645-3e5a-4fe8-
8ea6-1c9e86d6139a/ProjectStandard2007ProductGuide.doc.
Accessed at 30-06-2010

[93] Microsoft Visual Studio (2008) website.
http://msdn.microsoft.com/en-us/vstudio/default.aspx. Accessed on
30-06-2010

[94] A.Mockus, R.Fielding, and J.D. Herbsleb, “Two Case Studies of
Open Source Software Development: Apache and Mozilla”, ACM
Transactions of Software Engineering and Methodology, 11, 3,
pp.309-346, 2002

[95] S.Moser and O. Nierstrasz, The Effect of Object-Oriented
Frameworks on Productivity”, IEEE Computer, pp.45-51, 1996

[96] H.Muller and K. Klashinsky. “Rigi – A system for programming-in-
the-large”, Proceedings of the 10th International Conference on
Software Engineering (ICSE’10), pp.80-86, 1988.

[97] G.C. Murphy, D.Notkin, and K.Sullivan, “Software Reflexion
Models: Bridging the Gap Between Source and High-Level Models”,
Proceedings of Foundations of Software Engineering, pp. 18-28,
1995.

[98] A.Murray and T.Lethbridge, “On Generating Cognitive Patterns of
Software Comprehension”, Proceedings of the 2005 conference of the
Centre for Advanced Studies on Collaborative research, pp.200-211,
2005.

[99] NATO, Software Engineering Conference, Garmisch, Germany, 7-11
October 1968.

[100] J. F. Nunamaker, R. O. Briggs, and D. D. Mittleman (1995).
“Electronic meeting systems: Ten years of lessons learned.” In D.
Coleman, & R. Khanna (Eds.), Groupware: Technology and
Applications (pp. 149–192). Englewood Cliffs, NJ: Prentice-Hall,
1995.

[101] C. O’Reilly, D.Bustard, and P.Morrow, “The War Room Command
Console (Shared Visualizations for Inclusive Team Coordination)”,
Softvis, 2005.

[102] N.Pennington, “Stimulus structures and mental representations in
expert comprehension of computer programs”, Cognitive Psychology,
pp. 295-341, vol 19, 1987.

[103] D.A. Penny, “The Software Landscape: A Visual Formalism for
Programming-in-the-Large”, PhD Thesis, University of Toronto,
1992.

[104] M.Petre, A. Blackwell, and T.Green, “Cognitive questions in software
visualization”. Software Visualization: Programming as a Multi-
Media Experience, pp. 453-480. MIT Press, 1997

[105] M.Petre, “Why looking isn’t always seeing: readership skills and
graphical programming”, Communications of the ACM, vol. 38, pp.
33-44, 1995

[106] W.Pree, “Design Patterns for Object-Oriented Software
Development”, Addison-Wesley, 1994

[107] V.Rajlich, N.Damskinos, and P.Linos, “VIFOR: A tool for software
maintenance”. Software-Practice and Experience, 20(1):67-77, 1990

[108] Rational Software Corporation (2003), "Rational RequisitePro User's
Guide," June 2003,
http://www.ibm.com/developerworks/rational/library/content/03July/
getstart/RP/ReqProMain.pdf. Accessed on 30-06-2010.

[109] W. Reinhard, J. Schweitzer, G. Volksen, and M. Weber, (1994)
"CSCW tools: concepts and architectures," Computer , vol.27, no.5,
pp.28-36, May 1994

[110] S.Reiss, “Pecan: Program development systems that support multiple
views”, IEEE Transactions on Software Engineering, SE-11(3): 276-
285, 1985

[111] S.Reiss, “An overview of BLOOM”, Proceedings of the 2001 ACM
SIGPLAN-SIGSOFT Workshop on Program analysis for software
tools and engineering, pp.2-5, 2001.

[112] D.Riehle, “Framework Design: A Role Modelling Approach”, PhD
Thesis, Swiss Federal Institute of Technology, 2000

[113] R.S. Rist, “plans in programming: Definition, Demonstration, and
Development”, Empirical Studies of Programmers, 1st Workshop,
1986.

[114] M.P. Robillard and G.Murphy, “FEAT: A tool for locating,
describing, and analyzing concerns in source code”, Proceedings of
the 25th International Conference on Software Engineering, pp. 822-
823, 2003

[115] G.-C.Roman, K.C. Cox, C.D. Wilcox, and J.Y.Plun. “Pavane: A
system for declarative visualization of concurrent computations”.
Techinical Report WUCS-91-26, Washington University, St. Louis,
1991.

[116] A. Sarma, Z. Noroozi, and A. van der Hoek (2003). “Palantír –
raising awareness among configuration management workspaces”. In
Proc. Of the 25th International Conference on Software Engineering,
444-454

[117] D.A. Scanlan, “Structured flowcharts outperform pseudocode: An
experimental comparison”, IEEE Trans. Soft. Eng., 1989

[118] F.Schull, F.Lanubile, and V.Basil, “Investigating Reading Techniques
for Object-Oriented Framework Learning”, IEEE TSE, vol.26, nº.11,
2000

[119] B. Shneiderman and R.Mayer, “Syntatic/semantic interactions in
programmer behavior: A model and experimental results”.
International Journal of Computer and Information Science, pp. 219-
238, 8(3), 1979

[120] B. Shneiderman, “Measuring computer program quality and
comprehension”, InternationalJournal of Man-Machine Studies, vol.
9, pp. 465-478, 1977

[121] B. Shneiderman, R.Mayer, D.McKay, and P.Heller, “Experiment
investigations of the utility of detailed flowcharts in programming”,
Communications of the ACM, vol. 20, pp. 373-381, 1977

[122] I. A. da Silva, P. H. Chen, C. V. der Westhuizen, R. M. Ripley and A.
van der Hoek (2006)” Lighthouse: Coordination through Emerging
Design”.In Proc. of the 2006 OOPSLA workshop on eclipse
technology eXchange.

[123] J. Singer, T.Lethbridge, N.Vinson, and N. Anquetil, “An Examination
of Software Engineering Work Practices”, Proceedings of
CASCON’97, pp. 209-233, 1997

134

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[124] J. Singer, R. Elves, and M-A. Storey, “NavTracks Demonstration:
Supporting Navigation in Software Space”, International Workshop
on Program Comprehension, 2005

[125] P.Schorn, A. Brungger, and M. de Lorenzi, “The XYZ Geobench:
Animation of geometric algorithms. Animations for Geometric
Algorithms: A Video Review, Digital Systems Research Center, Palo
Alto, California, 1992

[126] K. Schmidt and L. Bannon, (1992). "Taking CSCW seriously".
Computer Supported Cooperative Work 1: 7–40.

[127] E. Soloway, J.Pinto, S.Letovsky, D.Littman, and R.Lampert,
“Designing documentation to compensate for delocalized plans”,
Communication of the ACM, 31(11): 1259-1267, 1988.

[128] E. Soloway and K. Erlich, “Empirical studies of programming
knowledge”, IEEE Transactions on Software Engineering, pp. 595-
609, SE-10(5), September 1984.

[129] M-A Storey, “Theories, Methods and Tools in Program
Comprehension: Past, Present and Future.” Proceedings of the 13th
IEEE International Workshop on Program Comprehension (IWPC).
St. Louis, MO, pp. 181-191, IEEE Computer Society Press 2005.

[130] M-A Storey, F.Fracchia, and H.Muller. “Cognitive design elements to
support the construction of a mental model during software
visualization”. Proceedings of the 5th International Workshop on
Program Comprehension (IWPC’97), Dearborn, Michigan, pp. 17-28,
May, 1997

[131] M-A Storey, F.Fracchia, and S.Carpendale, “A top down approach to
algorithm animation” Techincal Report CMPT 94-05, Simon Frasier
University, Brunaby, B.C., Canada, 1994

[132] M-A Storey, “Designing a Software Exploration Tool Using a
Cognitive Framework of Design Elements”, Software Visualization,
2003.

[133] M-A Storey, J. Michaud, M. Mindel, M. Sanseverino, D. Damian,
D,Myers, D.Geman and E.Hargreaves, “Improving the Usability of
Eclipse for Novice Programmers”, Eclipse Technology eXchange
(eTX) Workshop at OOPSLA 2003.

[134] M-A. D. Storey, D. Cubranic, and D.M. German (2005), “On the Use
of Visualization to Support Awareness of Human Activities in
Software Development: A Survey and a Framework”. In Proc. of the
2005 ACM symposium on Software Visualization, 193-202.

[135] J. Surowiecki, (2004) “The Wisdom of Crowds: Why the Many Are
Smarter Than the Few and How Collective Wisdom Shapes Business,
Economies, Societies and Nations”, Anchor Publishing.

[136] Rational DOORS, IBM (2008), Nov. 12, 2008. Available at:
http://www-01.ibm.com/software/awdtools/doors/productline/.
Accessed at 30-06-2010

[137] The Bugzilla Team (2008) , “The Bugzilla Guide - 3.3 Development
Release”. Mar 5, 2008. Available at:
http://www.bugzilla.org/docs/tip/en/pdf/Bugzilla-Guide.pdf.
Accessed at 30-06-2010

[138] W.F. Tichy, N. Habermann, and L. Pretchelt (1993). “Summary of
the dagstuhl workshop on future directions in software engineering:
February 17-21, 1992, schlo dagstuhl. ACM SIGSOFT Software
Engineering Notes, 18(1):35-48

[139] S.Tilley and D.B.Smith, “Coming Attractions in Program
Understanding”, Technical Report CMU/SEI-96-TR-019, 1996

[140] S.Tilley, S.Paul, and D.Smith. “Towards a framework for program
understanding”. WPC’96: 4th Workshop on Program Comprehension,
Berlin, Germany, pp. 19-28, March 1996

[141] T.Tourwé, “Automated Support for Framework-Based Software
Evolution”, PhD Thesis, Vrije Universiteit, 2002

[142] T.Tourwé and T.Mens, “Automated Support for Framework-Based
Software Evolution”, Proceedings of the International Conference on
Software Maintenance, page 148, 2003

[143] I.Vessey, “Expertise in debugging computer programs: A process
analysis”, International Journal of Man-Machine Studies, pp. 459-
494, vol 23, 1985.

[144] L. Wakeman and J. Jowett (2005), “PCTE: The Standard for Open
Repositories”: Prentice Hall, 1993. International Conference on
Software Engineering Research, Management and Applications
(SERA'05), Mount Pleasant, Michigan, USA, 2005, pp. 86-93.

[145] A. Walenstein, “Observing and Measuring Cognitive Support: Steps
Toward Systematic Tool Evaluation and Engineering”, 11th
International Workshop on Program Comprehension (IWPC’03), pp.
185-195, May 2003.

[146] J. Whitehead (2007). “Collaboration in Software Engineering: A
Roadmap”. In 2007 Future of Software Engineering (May 23 - 25,
2007). International Conference on Software Engineering. IEEE
Computer Society, Washington, DC, 214-225.

[147] E. J. Whitehead, Jr. and Y. Y. Goland, (1999) "WebDAV: A Network
Protocol for Remote Collaborative Authoring on the Web," in 6th
European Conference on Computer Supported Cooperative Work
(ECSCW'99), Copenhagen, Denmark, 1999, pp. 291-310.

[148] P.Wilson, (1991). “Computer Supported Cooperative Work: An
Introduction”. Kluwer Academic Pub, 1991.

[149] K. Wong. “The Reverse Engineering Notebook”, Ph.D Thesis,
University of Victoria, 2000.

[150] I. Zayour and T.C. Lethbridge, “A Cognitive and User Centric Based
Approach For Reverse Engineering Tool Design”, Proceedings of the
CASCON 2000.

[151] U.Zdun and P.Avgeriou, “Modelling Architectural Patterns Using
Architectural Primitives”, OOPSLA 2005

[152] M.V. Zelkowitz and D.R. Wallace (1998). “Experimental models for
validating technology”. IEEE Computer, 31(5):23-31

135

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

