
Dynamic Resource Management in Virtualized Environments
through Virtual Server Relocation

Gastón Keller and Hanan Lutfiyya
Department of Computer Science

The University of Western Ontario
London, Canada

{gkeller2,hanan}@csd.uwo.ca

Abstract—Virtualization has become an essential technology
in the data center. Virtualization improves resource utilization
through server consolidation, but it also makes resource man-
agement more complex. Golondrina, an autonomic resource
management system, was built to use virtual server relocation
to handle resource stress situations, that is, situations where
the combined resource needs of the virtual servers hosted in a
physical machine exceed the resource availability. Experimental
evaluation shows that replication offers improvements over
migration, and both mechanisms offer improvements over
taking no action upon detection of a CPU stress situation.
The main contribution of this work is the introduction of
virtual server replication as an alternative to migration and
the experimental comparison of both mechanisms.

Keywords-virtualization; resource management; migration;
replication; autonomic computing

I. INTRODUCTION

A data center is defined as a collection of computing
resources shared by multiple applications concurrently in
return for payment by the application providers, on a per-
usage basis, to the data center provider [2]. To guarantee that
an application will always be able to cope with all demand
levels the application is statically allocated enough resources
so that peak demand is satisfied. The unit of allocation is
typically a physical server. This often results in resources
being underutilized.

One approach to increasing resource utilization is server
consolidation, which consists of hosting multiple application
servers in one physical server. This approach is possible
through virtualization. Virtualization refers to an abstract
layer between the operating system and the hardware. The
layer provides an interface to the actual hardware that allows
for the support of a number of virtual machines. In a data
center a virtual machine would have a server application
installed on it. We will use the term virtual server to refer
to a virtual machine that runs an application server.

Virtualization reduces the unit of resource allocation to
fractions of a physical server. This potentially benefits data
centers by allowing several applications to make use of the
same physical server. If the virtual servers are placed on
a physical server based on peak demand, then the physical
server can still be highly underutilized. On the other hand, if

the virtual servers are placed on a physical server based on
the average demand, then this may result in virtual servers
competing for the same resources when demand increases.
The reason is that demand for an application may increase
such that it needs computing resources currently being used
by other applications on the same physical server.

The time-varying demand that application servers may ex-
perience in a data center [3] suggests that resource allocation
should be done dynamically. Dynamic resource management
requires monitoring mechanisms and dynamic resource re-
allocation mechanisms. Golondrina, an autonomic resource
management system, was developed with resource utiliza-
tion sensors for monitoring and virtual server relocation
mechanisms. Two examples of the latter are migration and
replication.

Migration consists of transferring a running virtual server
from one physical server to another. Replication entails the
creation of a replica of a virtual server on another physical
server. Requests for the virtual server are balanced between
the two instances. This should reduce the computing re-
sources needed by a single physical server by distributing
requests to two different virtual server instances hosted in
two different physical servers. A replica in this work is not
an actual copy of the virtual server running at the time, but
an instantiation of an image of the virtual server.

The primary focus of this work is to study the use of
virtual server relocation to deal with resource stress situa-
tions, that is, situations where the combined resource needs
of the virtual servers hosted in a physical server exceed the
resource availability. One reason for this study arises from
a challenge in dynamic resource management where it is
often difficult to determine the appropriate action in response
to a resource stress situation. The goal of our study is to
determine effective strategies in the use of different virtual
server relocations for effective management of computing
resources.

The rest of this paper is organized as follows: Section
II provides background on the virtualization software used,
Section III describes the resource management system, Sec-
tion IV presents the experiments, Section V discusses the
experimental results, Section VI describes related work, and

333

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Section VII provides a conclusion.

II. BACKGROUND

This work uses OpenVZ which provides operating
system-level virtualization [4], [5]. OpenVZ is essentially
a Linux kernel modified to run multiple, isolated containers
(i.e., virtual user-space environments) on a single physical
server or hardware node. OpenVZ supports the execution of
multiple containers. The containers are isolated program ex-
ecution environments, which appear as stand-alone servers to
users. Each container has its own set of processes including
the init process, file system, users (including root), applica-
tions, memory, network interfaces with IP addresses, routing
tables, and firewall rules. Information on resource utilization
for the hardware node and each container can be retrieved
by reading the accounting files in the proc filesystem. The
host system runs inside a privileged container.

OpenVZ provides container checkpointing, which is the
ability to suspend an executing container, save its state to
a file and restart it again later. Container live migration is
a natural extension of checkpointing. This process consists
of two phases. First, the container’s file system is copied to
the target machine while the container is still running. In
the second phase, the container is checkpointed, its state file
is transferred to the target machine and a second copy of
the container’s file system is started. This second copy is
incremental, in the sense that it only affects those files that
were modified after the first copy. When the second copy
finishes, the container is restored from the state file at the
target machine. All the network connections are migrated
with the container, so the user perceives no downtime, but
does perceive a delay in processing.

OpenVZ does not provide container replication, but it can
be implemented. The first step is to stop the container that is
to be replicated. The second step is to copy the container’s
file system and configuration file to the target machine.
(Once the file system is copied, the original container can
be restarted.) The third step is to modify the replica’s
configuration file with its own information (identifier, IP
address, etc). After this last step, the replica can be started.
Our current implementation of the replication process avoids
stopping the container to replicate by using a stored image
of it.

III. MANAGEMENT SYSTEM

Golondrina was conceived as a multi-resource manage-
ment system for data centers. This first prototype, however,
works with the CPU as its only managed resource. For that
reason, we will use the term CPU stress situation instead of
the more general term resource stress situation, as defined
in Section I. Similar procedure will be followed with related
terms.

Figure 1. Golondrina’s architecture

Golondrina consists of three primary management entities:
Client, Manager and Gate (see Figure 1) which are described
in this section.

A. Client

Each hardware node has a Client instance that runs in
the priviledged container. The Client requires access to the
operating system’s configuration and accounting files, and
the OpenVZ management tools. The Client instance provides
the following functionality:

1) The periodic collection of CPU utilization statistics
from the containers and the hardware node. This
is done by reading the hardware node’s operating
system’s accounting files through the proc file system.
These statistics are sent to the Manager;

2) Support for migration and replication of contain-
ers. This is done upon a request from the Man-
ager. Migration is provided by one of the OpenVZ
Management tools. However, since OpenVZ does not
provide a replication feature, the Client has to follow
a sequence of steps to trigger a replication. For the
container to be replicated requires the following:

a) An identifier is generated for the replica;
b) An image of the container is retrieved from

a central repository and placed on the target
hardware node;

c) The appropriate configuration files on the hard-
ware node are edited.

B. Manager

Upon receiving the CPU utilization statistics sent by the
Client, the Manager stores the statistics. The data model
used assumes that the hardware node is an aggregation of
containers. The attributes of the hardware node and contain-
ers represent CPU utilization metrics. This information is
analyzed (III-B1) to execute CPU stress checks (III-B2) and
relocation searches (III-B3).

334

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



1) Analyzing CPU Utilization Statistics: The CPU uti-
lization statistics sent by the Clients are used to create a
CPU utilization profile over time. A mathematical model
uses the CPU utilization statistics collected at time ti for
predicting the CPU utilization of a container or hardware
node at time ti+1.

The mathematical model used is the Auto-regressive
Model of Order 1 AR(1) [6], which relies on the last obser-
vation in the sequence of observations and two parameters:
µ, the mean of the values in the sequence, and θ, which
accounts for the variations of the values in the sequence.

Given a sliding window of CPU utilization statistics W =
[ux, ..., ut] with maximum size w and where x = max(0, t−
w + 1). The parameters µ and θ at time t are calculated as
follows:

µt =

t∑
i=x

ui

t− x+ 1
(1)

θt =

t−1∑
i=x

(ui − µt) ∗ (ui+1 − µt)

max(1,

t−1∑
i=x

(ui − µt)
2)

(2)

Having the values ut, µt and θt, it is possible to predict
the CPU utilization at time t+ 1:

ût+1 = µt + θt ∗ (ut − µt) (3)

The profiling process uses a historical policy to calculate
the container’s profiled CPU utilization. This value has to
satisfy a given percentile of the container’s CPU needs
registered in the last window of time W = [ux, ..., ut], in
addition to the container’s current CPU needs. The process
sorts in increasing order the collected statistics in W and
takes the value corresponding to the 90th percentile. The
profiled CPU utilization at time t+1 is the maximum of the
90th percentile and the container’s predicted CPU utilization
plus an additional ∆:

ūt+1 = max(90thpercentile, ût+1 + ∆) (4)

2) CPU Stress Detection Mechanism: The Manager ex-
ecutes a CPU stress check on every hardware node that is
not currently involved in a relocation. The hardware nodes
already involved in relocations (be it as source or target)
are likely to change their CPU utilization soon, so they are
deemed unstable until all current relocations are completed.

The CPU stress check consists of two steps. First, it ver-
ifies whether the predicted CPU utilization of the hardware
node exceeds the CPU utilization threshold. Then, if the
latter is true, it checks whether k out of the previous n CPU
stress checks also exceeded the threshold, in which case

the hardware node is considered to be under a CPU stress
situation.

(ût+1 > threshold) ∧ (

n∑
i=1

(ûi > threshold) ≥ k) (5)

3) Relocation Search: The problem of finding a sequence
of relocations is complex. As it is noted in [7], the problem is
similar to the NP-hard problem N-dimensional bin packing,
but with the additional restriction that the bins are loaded
right from the beginning. For this reason, the relocation
search uses a greedy strategy to solve the problem.

After the CPU stress check round is completed the hard-
ware nodes are classified as stressed or non-stressed hard-
ware nodes. If both sets are non-empty, then the Manager
searches for a sequence of relocations to solve the CPU
stress situations. This decision making process consists of
determining which containers hosted in stressed hardware
nodes will be relocated and which non-stressed hardware
nodes will serve as a target for those relocations. The input to
the algorithm (shown in Algorithm 1) includes information
about stressed hardware nodes (denoted by SH) and non-
stressed nodes (denoted by NSH). SH and NSH are assumed
to be sorted in descending order of CPU load and ascending
order of CPU load respectively. A container is chosen to be
relocated (line 3). Currently the implementation starts with
the containers using the most CPU cycles. The next step (line
4) is to determine a target hardware node that the container is
either replicated or migrated to. The migration or replication
is then carried out (line 5).

1: for i = 0 to SH.length() do
2: while SH[i] is stressed do
3: CT = pickMostHeavilyLoadedCT(SH[i]);
4: targetHN = pickMostLightlyLoadedHN(NSH);
5: ExecuteAction(CT,targetHN);
6: end while
7: end for

Algorithm 1: Relocation search

Essentially the policy encapsulated by the algorithm is
that for each stressed hardware node the containers using the
most CPU cycles should be the first ones to be considered for
relocation. Targets of relocation should be as lightly loaded
as possible. A check of a potential target hardware node
is done to determine if the potential target hardware node
is able to accommodate the container to be relocated. For
replication, an additional check is done to determine if the
target hardware node already has a copy of the container to
be replicated.

C. Gate

The Gate component runs in a non-virtualized physical
server, which is used as the gate of the cluster (i.e., all

335

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



service requests come through this physical server). Its
responsibility is to update the load balancer’s configuration
after a replication occurs.

IV. EXPERIMENTS

The objective of the experiments was to study how the
system reacted to CPU stress situations using the container
relocation mechanisms.

In order to cause CPU stress situations, load had to be gen-
erated for the containers. For this purpose, HTTP requests
were sent to web servers running inside the containers. The
HTTP requests involved dynamic content so as to increase
CPU utilization. With every request, a PHP file was executed
to process a two MBytes text file [8], counting the number
of words in the file. The execution returned a HTML file
with the result of the process. The web servers were Apache
[9] instances and the HTTP requests were generated using
httperf [10] (running on physical servers in the cluster that
were not part of the managed system).

The frequency with which requests were sent determined
the weight of the generated load. The weight of the load
was the percentage of CPU cycles required from one CPU
core to handle that load. For example, sending 1 request per
second (1 req/sec) resulted in a CPU core being used at 70%
capacity.

The metrics used to evaluate the system included lost
requests and response time of the web servers. The requests
were classified into three categories: lost, failed and success-
ful. Lost requests were those not processed before a client
timeout (client-timo). Failed requests were those where the
server refused a connection (connrefused), sent a RESET
(connreset) or replied with a Server Error 5xx status code
(reply-status-5xx). A web server’s effectiveness was defined
as the ratio of the number of successful requests to the total
generated requests.

The web servers’ response time was measured as the
average (avg) duration of the established connections (when
sending a request, a connection is established between the
client and the server, and once the reply is received, the
connection is terminated), measured in milliseconds.

The infrastructure on which Golondrina ran consisted of a
cluster where one physical server was the gate of the cluster,
another physical server was a manager server and the rest
of the physical servers were OpenVZ hardware nodes. Each
physical server was an Intel Pentium D 3.40GHz (dual-core)
with two GBytes of RAM. The containers were built with
the default resource allocation provided by OpenVZ.

A. Experiments Design and Configurations

Three different experiments were designed to evaluate
Golondrina. Each experiment used the same number of
hardware nodes, but the number of containers and the weight
of the loads varied.

Each experiment was run three times. For the first run,
Golondrina was configured to monitor the CPU utilization
and check for CPU stress situations. The relocation mecha-
nisms were disabled. This run provided a baseline, enabling
observations on how the environment performed without
Golondrina taking corrective actions.

In the second and third runs, Golondrina was configured
to use replications and migrations, respectively. The results
of these runs were compared with each other and against
the baseline.

Golondrina’s CPU stress detection mechanism was con-
figured in all cases with a CPU utilization threshold of 0.75.
Given that the physical servers possessed two cores, the
threshold was equivalent to 150% CPU capacity. (The total
CPU capacity of a physical server with x cores is equal to
x∗100%. In this case, the total CPU capacity of the hardware
nodes was 200%.) The mechanism was also configured to
trigger CPU stress checks every 10 seconds (same frequency
with which the monitoring mechanisms were configured).

The HTTP requests sent to the web servers had an
associated timeout of 10 seconds and the time span between
the start of two different loads during an experiment was 60
seconds.

1) Experiment 1: The managed system consists of two
hardware nodes, bravo02 and bravo03, and two containers,
A and B, hosted in bravo02. At a given point in time,
container A receives a load of around 70% (450 requests at
a rate of 1 req/sec). After 60 seconds, container B receives
a load of around 105% (450 requests at a rate of 1.5
req/sec). At this point in time, the hardware node bravo02
experiences a load of around 175%, which exceeds the CPU
utilization threshold of 150%. Thus, bravo02 is under a CPU
stress situation.

In this scenario, no request should be lost since the
CPU needs of both containers can be satisfied. However,
Golondrina will determine that bravo02 is under a CPU
stress situation and will try to address this situation through a
relocation. Golondrina should try first to relocate to bravo03
the container with the highest load, that is, B.

2) Experiment 2: The second experiment is similar to the
previous one with the exception that both containers receive
a load of around 105% (450 requests at a rate of 1.5 req/sec)
each. Consequently, the hardware node bravo02 becomes
CPU stressed with a load of 200% (total CPU capacity).

In this scenario, the web servers running in A and B
will lose requests, due to the lack of spare CPU cycles to
allocate to the containers. Golondrina will detect the CPU
stress situation experienced by bravo02 and will respond
by triggering a relocation for the container with the highest
load (in this case, both containers are candidates). Two
replications or one migrations should be enough to terminate
the CPU stress situation.

3) Experiment 3: In this experiment, the managed system
consists of two hardware nodes, bravo02 and bravo03, and

336

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



four containers, A, B, C and D, hosted in bravo02. One after
another, with a 60-second separation in time, the containers
receive a load of around 51% (300 requests at a rate of 0.72
req/sec). Thus, bravo02 experiences a CPU stress situation
with a load of 200%.

In this scenario, the web servers hosted in the four
containers will lose requests. Golondrina will detect the CPU
stress situation and will search for relocations in order to
dissipate it. Three replications or two migrations should be
enough to terminate the CPU stress situation.

B. Results

This subsection presents the results of the experiments
described in Subsection IV-A.

1) Experiment 1: In the first run of the experiment,
Golondrina was monitoring the CPU utilization of the
hardware node and containers, but no action was taken in
response to CPU stress situations. Figure 2 shows the CPU
utilization of containers A and B, and the CPU utilization
and predicted CPU utilization (as explained in Subsection
III-B1) of the hardware node bravo02.

The first time the CPU utilization of bravo02 went over
the 150% threshold was at t = 11. Golondrina’s CPU stress
detection mechanism signaled the problem at t = 15. Since
no action was taken, the CPU stress situation persisted and
was signaled every single time until t = 39 (included).

Since there were enough CPU cycles to satisfy the demand
of the containers, no request was lost or failed.

The web server one.com, hosted in A, had an average
connection time of 701.9 milliseconds. The web server
two.com, hosted in B, had an average connection time of
904.5 milliseconds.

In the second run of the experiment, Golondrina was to
search for feasible replications if a CPU stress situation was
detected. Figure 3 shows the CPU utilization of containers A
and B, and the CPU utilization and predicted CPU utilization
of the hardware node bravo02. Figure 4 shows the CPU
utilization of the replicas A’ and B’, and the CPU utilization
and predicted CPU utilization of bravo03.

The first CPU stress situation in bravo02 was signaled at
t = 15. At that time, Golondrina determined that container
B had to be replicated in bravo03. By t = 16 the replica
B’ had been created and the load balancer at the gate of
the cluster was updated. At t = 17, B’ had CPU load, but
then it did not process any request for three consecutive
periods. As a consequence of container B’ not receiving any
load, the CPU stress situation persisted in bravo02 and a
second CPU stress situation was signaled at t = 19. This
time container A was replicated in bravo03. It could be said
then that the creation of container A’ took place due to an
improper balancing of the load for the web server two.com,
hosted in B and B’.

At t = 17 and t = 22 it can be seen in Figure 3 and
Figure 4 that the curves sloped down. During the periods

Table I
EXPERIMENT 1 - PERCENTAGE OF SUCCESSFUL REQUESTS

Web Servers’ Effectiveness

Servers Run 1 Run 2 Run 3

one.com 100% 99.11% 100%

two.com 100% 98.44% 100%

(16, 17) and (21, 22) the load balancer was being updated,
that required it to be restarted. As a consequence, some
connections were refused or reset, and hence there was a
slight decrease in the reported load.

The web server one.com, hosted in A and A’, had 4
failed requests out of 450 (connrefused 3 connreset 1), which
resulted in an effectiveness of 99.11%. The web server
two.com, hosted in B and B’, had 7 failed requests out
of 450 (connrefused 5 connreset 2), which resulted in an
effectiveness of 98.44%.

The web server one.com had an average connection time
of 749.1 milliseconds. The web server two.com had an
average connection time of 853.0 milliseconds.

In the third run of the experiment, Golondrina was to
look for migrations upon detection of a CPU stress situation.
Figure 5 shows the CPU utilization of containers A and B,
and the CPU utilization and predicted CPU utilization of the
hardware node bravo02. Figure 6 shows the CPU utilization
of B, and the CPU utilization and predicted CPU utilization
of bravo03.

A CPU stress situation was signaled at t = 15 in bravo02.
Golondrina determined that container B was to be migrated
to bravo03. At that point, the CPU utilization of both
hardware nodes increased, due to the start of the migration
process. Since there were spare CPU cycles in both hardware
nodes, the containers saw their CPU needs unaffected.

In the period (26, 27), the migration process was com-
pleted, but it was not until t = 28 that a CPU utilization
report from container B was sent to the Manager component
(running in the manager server) by the Client component
running in bravo03. That report showed a peak of around
140% in CPU utilization, which could be attributed to the
hosted web server processing the requests that could not
be handled during the suspension period of the migration
process.

None of the web servers hosted in A and B had lost
or failed requests. That means that the web servers had an
effectiveness of 100%.

The web server one.com, hosted in A, had an average
connection time of 715.2 milliseconds. The web server
two.com, hosted in B, had an average connection time of
991.1 milliseconds.

From the web servers’ effectiveness results (Table I), it
could be concluded that the replication mechanism is not a
convenient tool since requests were lost. However, that loss

337

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 2. Experiment 1 - No Action

Figure 3. Experiment 1 - Replication, bravo02

338

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 4. Experiment 1 - Replication, bravo03

Figure 5. Experiment 1 - Migration, bravo02

339

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 6. Experiment 1 - Migration, bravo03

Table II
EXPERIMENT 1 - WEB SERVERS’ AVERAGE CONNECTION TIME IN

MILLISECONDS

Web Servers’ Response Time

Servers Run 1 Run 2 Run 3

one.com 701.9 749.1 715.2

two.com 904.5 853.0 991.1

can be traced back to the load balancer’s need for a restart
when updating its configuration after a replication.

The comparison of the web servers’ response time does
not offer conclusive results (Table II).

In conclusion, when a hardware node experiences a CPU
stress situation, but the CPU is not exhausted, no requests
are lost. Thus, no action is necessary from the management
system. However, migration and replication cause no (se-
rious) performance degradation, so they could be used as
preventive actions in case the load was expected to increase.

2) Experiment 2: In the first run of the experiment,
Golondrina was monitoring the CPU utilization of the
hardware node and containers, but no action was taken in
response to CPU stress situations. Figure 7 shows the CPU
utilization of containers A and B, and the CPU utilization
and predicted CPU utilization (as explained in Subsection
III-B1) of the hardware node bravo02.

The first time the CPU utilization of bravo02 went over
the 150% threshold was at t = 11. Golondrina’s CPU stress

detection mechanism signaled the problem at t = 14. Since
no action was taken, the CPU stress situation persisted and
was signaled every single time until t = 38 (included).

Starting at t = 11 the CPU was equally shared between
the two containers, using almost 100% each. However, the
number of CPU cycles allocated to each container was not
enough for the hosted web servers to process all requests.
The web server one.com, hosted in A, had 101 lost requests
out of 450 (client-timo 101), resulting in an effectiveness
of 77.55%. The web server two.com, hosted in B, had 169
lost requests out of 450 (client-timo 169), resulting in an
effectiveness of 62.44%.

It can be seen in Figure 7 that during the interval
[36, 38] container B almost doubled its CPU utilization,
taking advantage of container A not requesting CPU cycles.
This behaviour could be attributed to web server two.com
processing all the requests that it had not been able to satisfy
before due to a lack of CPU cycles.

The web server one.com had an average connection time
of 2816.3 milliseconds. The web server two.com had an
average connection time of 3371.6 milliseconds.

In the second run of the experiment, Golondrina was to
search for feasible replications if a CPU stress situation was
detected. Figure 8 shows the CPU utilization of containers A
and B, and the CPU utilization and predicted CPU utilization
of the hardware node bravo02. Figure 9 shows the CPU
utilization of the replicas A’ and B’, and the CPU utilization
and predicted CPU utilization of bravo03.

340

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 7. Experiment 2 - No Action

Figure 8. Experiment 2 - Replication, bravo02

341

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 9. Experiment 2 - Replication, bravo03

The first CPU stress situation in bravo02 was signaled at
t = 14. Golondrina determined that both containers had to
be replicated in bravo03. By t = 16 the replicas B’ and A’
had been created and the load balancer at the gate of the
cluster was updated. The load balancer was first updated
(and restarted) for B’ in the period (15, 16) and updated
again in the period (16, 17) for A’. During those two periods,
it can be seen in Figure 8 that the CPU utilization of A and
B decreased, due to connections that were refused or reset.

At t = 17, containers A’ and B’ had a low CPU utilization
and remained with minimal CPU utilization until t = 20 (in-
cluded). During those periods, the requests were handled by
A and B. In consequence, the CPU stress situation continued
in bravo02 and was signaled at t = 18, 19, 20, 21, 22. At
every one of those five points in time, Golondrina could not
find suitable replications since A and B had already been
replicated in bravo03 and the system does not allow two
replicas of the same container to reside in the same hardware
node.

The web server one.com, hosted in A and A’, had 21
failed requests (connrefused 4 connreset 17) and 35 lost
requests (client-timo 35) out of 450, which resulted in an
effectiveness of 87.55%. The web server two.com, hosted in
B and B’, had 25 failed requests (connrefused 4 connreset
21) and 29 lost requests (client-timo 29) out of 450, which
resulted in an effectiveness of 88%.

The web server one.com had an average connection time
of 1408.1 milliseconds. The web server two.com had an

average connection time of 1781.4 milliseconds.
In the third run of the experiment, Golondrina was to

look for migrations upon detection of a CPU stress situation.
Figure 10 shows the CPU utilization of containers A and
B, and the CPU utilization and predicted CPU utilization
of the hardware node bravo02. Figure 11 shows the CPU
utilization of A, and the CPU utilization and predicted CPU
utilization of bravo03.

A CPU stress situation was signaled at t = 14 in bravo02.
Golondrina determined that container A was to be migrated
to bravo03. The migration process was started, increasing
the CPU utilization in bravo03. The CPU in bravo02 was
already exhausted, so the migration process competed for the
CPU with the containers. A and B saw a reduction in their
CPU allocation in the interval (14, 20] until the migration
process ended in the period (20, 21).

In the period [21, 22], container B increased its CPU uti-
lization around 180%, and in the period [24, 25] A increased
its CPU utilization around 195%. The behaviour of both
containers could be attributed to the hosted web servers
processing the requests that could not be handled during
the migration process.

The web server one.com, hosted in A, had 10 failed
requests (reply-status-5xx 10) and 89 lost requests (client-
timo 89) out of 450, which resulted in an effectiveness of
78%. The web server two.com, hosted in B, had 70 lost
requests (client-timo 70) out of 450, which resulted in an
effectiveness of 84.44%.

342

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 10. Experiment 2 - Migration, bravo02

Figure 11. Experiment 2 - Migration, bravo03

343

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Table III
EXPERIMENT 2 - PERCENTAGE OF SUCCESSFUL REQUESTS

Web Servers’ Effectiveness

Servers Run 1 Run 2 Run 3

one.com 77.55% 87.55% 78%

two.com 62.44% 88% 84.44%

Table IV
EXPERIMENT 2 - WEB SERVERS’ AVERAGE CONNECTION TIME IN

MILLISECONDS

Web Servers’ Response Time

Servers Run 1 Run 2 Run 3

one.com 2816.3 1408.1 1723.6

two.com 3371.6 1781.4 1661.6

The web server one.com had an average connection time
of 1723.6 milliseconds. The web server two.com had an
average connection time of 1661.6 milliseconds.

From the web servers’ effectiveness results (Table III), it
can be concluded that migration offers an improvement over
taking no action upon detection of a CPU stress situation.
However, the migration mechanism does not achieve as
much benefit as the replication mechanism does.

The comparison of the web servers’ response time (Table
IV) shows that both relocation mechanisms help in reduc-
ing the average connection time. However, the comparison
between the second and third runs does not offer conclusive
results.

In conclusion, when a hardware node experiences a CPU
stress situation and the CPU is exhausted, some requests
will not be satisfied. Both relocation mechanisms offer a
convenient solution, since they help to reduce the losses.
However, the migration process competes with the contain-
ers for CPU cycles in the CPU stressed hardware node,
hence diminishing the benefit the migration mechanism
could provide.

3) Experiment 3: In the first run of the experiment,
Golondrina was monitoring the CPU utilization of the
hardware node and containers, but no action was taken
in response to CPU stress situations. Figure 12 shows the
CPU utilization of containers A, B, C and D, and the CPU
utilization and predicted CPU utilization (as explained in
Subsection III-B1) of the hardware node bravo02.

The first time the CPU utilization of bravo02 went over
the 150% threshold was at t = 17. Golondrina’s CPU stress
detection mechanism signaled the problem at t = 22. Since
no action was taken, the CPU stress situation persisted and
was signaled every single time until t = 51 (included).

Starting at t = 23 the CPU was equally shared between
the four containers, using almost 50% each. However, the
number of CPU cycles allocated to each container was not
enough for the hosted web servers to process all requests.

The web server one.com, hosted in A, had 36 lost requests
out of 300 (client-timo 36), resulting in an effectiveness
of 88%. The web server two.com, hosted in B, had 24
lost requests out of 300 (client-timo 24), resulting in an
effectiveness of 92%. The web server three.com, hosted in
C, had 39 lost requests out of 300 (client-timo 39), resulting
in an effectiveness of 87%. The web server four.com, hosted
in D, had 6 lost requests out of 300 (client-timo 6), resulting
in an effectiveness of 98%.

It can be seen in Figure 12 that at t = 47, when A saw
a decrease in its CPU utilization, the remaining containers
had a peak in their CPU utilization. This behaviour could
be attributed to the hosted web server processing all the
requests that could not be satisfied before due to a lack of
CPU cycles.

The web server one.com had an average connection time
of 2916.9 milliseconds. The web server two.com had an
average connection time of 2462.3 milliseconds. The web
server three.com had an average connection time of 2537.6
milliseconds. The web server four.com had an average
connection time of 2268.5 milliseconds.

In the second run of the experiment, Golondrina was to
search for feasible replications if a CPU stress situation was
detected. Figure 13 shows the CPU utilization of containers
A, B, C and D, and the CPU utilization and predicted CPU
utilization of the hardware node bravo02. Figure 14 shows
the CPU utilization of the replicas A’, B’, C’ and D’, and the
CPU utilization and predicted CPU utilization of bravo03.

The first CPU stress situation in bravo02 was signaled at
t = 23. Golondrina determined that containers A, B and C
had to be replicated in bravo03. By t = 27 the replicas A’,
B’ and C’ had been created and the load balancer at the gate
of the cluster was updated. The load balancer was updated
(and restarted) three times (one for each replication) in the
period (27, 28). During that period and the following one, it
can be seen in Figure 13 that the CPU utilization of A, B,
C and D decreased, due to connections that were refused or
reset.

At t = 28, containers A’, B’ and C’ had a low CPU
utilization and remained with minimal CPU utilization until
t = 31 (included). During those periods, the requests were
handled by A, B and C. In consequence, an additional CPU
stress situation was signaled in bravo02 at t = 30. Golon-
drina determined that D had to be replicated in bravo03,
indicating also that the action would not be enough to
dissipate the CPU stress situation in bravo02.

The web server one.com, hosted in A and A’, had 7 failed
requests (connrefused 4 connreset 3) and 2 lost requests
(client-timo 2) out of 300, which resulted in an effectiveness
of 97%. The web server two.com, hosted in B and B’,
had 6 failed requests (connrefused 5 connreset 1) and 5
lost requests (client-timo 5) out of 300, which resulted in
an effectiveness of 96.33%. The web server three.com,
hosted in C and C’, had 10 failed requests (connrefused

344

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 12. Experiment 3 - No Action

Figure 13. Experiment 3 - Replication, bravo02

345

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 14. Experiment 3 - Replication, bravo03

5 connreset 5) and 1 lost requests (client-timo 1) out of
300, which resulted in an effectiveness of 96.33%. The web
server four.com, hosted in D and D’, had 9 failed requests
(connrefused 5 connreset 4) and 2 lost requests (client-timo
2) out of 300, which resulted in an effectiveness of 96.33%.

The web server one.com had an average connection time
of 1151.3 milliseconds. The web server two.com had an
average connection time of 1130.8 milliseconds. The web
server three.com had an average connection time of 1281.0
milliseconds. The web server four.com had an average
connection time of 1275.9 milliseconds.

In the third run of the experiment, Golondrina was to
look for migrations upon detection of a CPU stress situation.
Figure 15 shows the CPU utilization of containers A, B, C
and D, and the CPU utilization and predicted CPU utilization
of the hardware node bravo02. Figure 16 shows the CPU
utilization of A and B, and the CPU utilization and predicted
CPU utilization of bravo03.

A CPU stress situation was signaled at t = 24 in bravo02.
Golondrina determined that container A was to be migrated
to bravo03. The migration process was started, increasing
the CPU utilization in bravo03. The CPU in bravo02 was
already exhausted, so the migration process competed for
the CPU with the containers. The four containers saw a
reduction in their CPU allocation in the interval [26, 28] until
the migration process ended in the period (28, 29).

At t = 29, A had a peak of around 170% in CPU utiliza-
tion. Taking advantage of the CPU availability, containers B,

C and D increased their CPU utilization during the interval
[29, 33], what caused a second CPU stress situation to be
signaled at t = 30. At that time, Golondrina decided to
migrate B to bravo03. The migration process ended in the
period (35, 36) and B reached a peak of around 85% in CPU
utilization after being migrated.

A final CPU stress situation was signaled at t = 37
with the CPU utilization of bravo02 being 150.48% and
becoming 100.5% at the following point in time. Golondrina
found no solution to the situation.

The web servers one.com and two.com, hosted in A and
B respectively, had 18 lost requests out of 300 (client-timo
18), which resulted in an effectiveness of 94%. The web
server three.com, hosted in C, had 14 lost requests out of
300 (client-timo 14), which resulted in an effectiveness of
95.33%. The web server four.com, hosted in D, had 19 lost
requests out of 300 (client-timo 19), which resulted in an
effectiveness of 93.66%.

The web server one.com had an average connection time
of 1051.0 milliseconds. The web server two.com had an
average connection time of 1412.8 milliseconds. The web
server three.com had an average connection time of 1343.0
milliseconds. The web server four.com had an average
connection time of 1248.8 milliseconds.

As in the second experiment, it can be concluded that
container migration offered an improvement over taking no
action upon detection of a CPU stress situation. Once more,
the benefits offered by the replication mechanism exceeded

346

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 15. Experiment 3 - Migration, bravo02

Figure 16. Experiment 3 - Migration, bravo03

347

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Table V
EXPERIMENT 3 - PERCENTAGE OF SUCCESSFUL REQUESTS

Web Servers’ Effectiveness

Servers Run 1 Run 2 Run 3

one.com 88% 97% 94%

two.com 92% 96.33% 94%

three.com 87% 96.33% 95.33%

four.com 98% 96.33% 93.66%

Table VI
EXPERIMENT 3 - WEB SERVERS’ AVERAGE CONNECTION TIME IN

MILLISECONDS

Web Servers’ Response Time

Servers Run 1 Run 2 Run 3

one.com 2916.9 1151.3 1051.0

two.com 2462.3 1130.8 1412.8

three.com 2537.6 1281.0 1343.0

four.com 2268.5 1275.9 1248.8

the benefits obtained through migration.

V. DISCUSSION

The experiments presented in Section IV show that both
relocation mechanisms offer an improvement over taking no
action upon detection of a CPU stress situation. Even if there
are spare CPU cycles to allocate in the stressed hardware
node, the mechanisms do not have a negative impact, which
supports the use of the relocation mechanisms as preventive
actions in case the resource utilization were to continue
increasing in the stressed hardware node.

The replication mechanism offers a better improvement
over the migration mechanism. One exception is the scenario
where enough spare CPU cycles are available at the stressed
hardware node for the migration process to use. In that
scenario, the hosted containers see no performance degrada-
tion during the migration process, and hence the migration
mechanism provides the same benefits as the replication
mechanism. This suggests the creation of a policy that can
be briefly described as follows: Replication is preferred over
migration when the CPU utilization is high. If the CPU
utilization is relatively low, then the migration mechanism is
preferred. An algorithm that implements this policy is shown
in Algorithm 2.

This policy may result in more replicas being created than
there are actually needed, but that can be dealt with by later
terminating any of the replicas.

As explained in Section III, this first prototype of Golond-
rina only manages CPU. Therefore, the prototype is limited
in its relocation search feature (Subsection III-B3). A hard-
ware node is classified as non-stressed based only on its CPU
utilization. However, the hardware node could be stressed
with respect to other resources (such as memory or network

1: for i = 0 to SH.length() do
2: while SH[i] is stressed do
3: CT = pickMostHeavilyLoadedCT(SH[i]);
4: targetHN = pickMostLightlyLoadedHN(NSH);
5: if SH[i].CPULoad > t then
6: ExecuteReplication(CT, targetHN);
7: else
8: ExecuteMigration(CT, targetHN);
9: end if

10: end while
11: end for

Algorithm 2: Relocation policy

bandwidth). The current version of the relocation search
does not address this issue and thus a container that makes
use of the stressed resource may be relocated to the hardware
node, which intensifies the hardware node’s resource stress
situation. Future work will address this limitation.

Another interesting outcome of the experiments is the
difference between the number of relocations expected in
each experiment (as described in Subsection IV-A) and the
number of relocations actually triggered by Golondrina to
deal with the CPU stress situations.

The first experiment resulted in two replications being
triggered when only one should have been enough. The CPU
stress situation that resulted in the second replication was
caused by an improper balancing of the load for the web
server two.com, hosted in B and B’, during the first four
periods after the creation of B’.

In the second experiment, no unexpected relocation took
place. However, multiple CPU stress situations were signaled
during the second run of the experiment. The reason why
no additional replications were triggered resides on the
managed system consisting only of two hardware nodes and
Golondrina being restricted by the policy of not allowing
two replicas of the same container to reside in the same
hardware node. Had more hardware nodes been available
or that policy not existed, Golondrina would have triggered
additional replications. Once more, the CPU stress situations
were originated on an improper working of the load balancer.

The third experiment resulted in one additional replication
being triggered due to the issue with the load balancer.
In addition, a third CPU stress situation was unexpectedly
signaled in the third run of the experiment. Be it noted,
however, that that third CPU stress situation was more of a
false alarm given that the CPU utilization of the hardware
node was drastically decreasing in the period when the CPU
stress situation was signaled.

If the managed system had consisted of more than two
hardware nodes, Golondrina would have triggered more re-
locations during the second and third experiments. Have ad-
ditional relocations happened, the web servers’ effectiveness
could have been improved, but with the cost of an overall

348

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



lower CPU utilization at cluster-level. This may suggest that
Golondrina should give a greater grace period to a stressed
hardware node where actions have been taken to restore its
stability before checking it again for CPU stress situations.
This may suggest as well that the CPU stress detection
mechanism should take into account CPU utilization trends
(increasing or decreasing) instead of absolute measures of
CPU utilization only.

VI. RELATED WORK

Virtualization has become an essential technology in the
data center. First, because it enables server consolidation,
which may result in lowering costs for building and running
data centers. Second, because it creates a very dynamic
environment where virtual servers can be resized and relo-
cated on-demand, and new virtual servers can be promptly
instantiated. However, this introduces new challenges, which
are being addressed by the research community.

Wood et al. studied two approaches to virtual server
monitoring: black-box and grey-box [11]. Black-box mon-
itoring consisted of collecting statistics from the virtual
servers without directly contacting them. Grey-box monitor-
ing required running an additional software module inside
each virtual server to collect operating system statistics
and process application logs. The authors concluded that
the grey-box approach enabled the system to make bet-
ter informed decisions. Still, Golondrina only implements
black-box monitoring, since grey-box monitoring could be
considered an invasive mechanism that clients might find
undesirable.

Zhao and Figueiredo studied the virtual server migration
process to be able to predict its performance [12]. After sev-
eral experiments, they concluded that the migration process’
time and performance could be predicted for a number of
virtual servers based on measurements from a single virtual
server. Kochut and Beaty worked on an analytical model to
estimate the improvement in response time achieved through
a virtual server migration [13]. Given the current system load
and the virtual servers’ expected resource demand, the model
could help determine whether a migration should be started
and which virtual servers to migrate. These studies are
important for the development of decision-making support
mechanisms that could be used by management entities such
as Golondrina’s Manager.

Gmach et al. evaluated resource reallocation policies that
a node controller could use to periodically do resource
reallocation among virtual servers hosted in a physical server
[14]. Their study showed that work conserving policies were
more effective than non-work conserving policies and that
dynamically adjusting workloads’ priority resulted in better
compliance with Service Level Objectives. These results
would be useful if we were to incorporate hardware node-
level resource reallocation to Golondrina.

Zhu et al. developed an automated resource management
system composed of three controllers that worked at dif-
ferent hierarchical levels and intervals in time [15]. Node
controllers would reallocate resources among the workloads
hosted in the physical server they were responsible for,
pod controllers (a pod was a set of nodes) would migrate
workloads between physical servers in their pod, and pod
set controllers would migrate workloads between pods. The
controllers implemented different analytic techniques, such
as control theory, bin packing, and trace-based analysis. The
integrated work of these controllers offered great results
in terms of resource utilization and Quality of Service.
Golondrina’s Manager component fulfills a similar role to
that of the pod controller. However, Golondrina’s Manager
executes both migrations and replications, whereas the pod
controller only executes migrations.

Kumar et al. addressed the lack of coordination between
management systems in data centers [16]. They proposed
a framework that loosely coupled platform management
and virtualization management, and enabled coordinated
management actions to be taken. They concluded from their
experiments that coordinated management resulted in energy
savings, greater stability, and better Quality of Service being
provided.

Munasinghe and Anderson worked on developing a data
center architecture (hardware and software configuration)
that could provide guaranteed Quality of Service to its
clients [17]. They developed two mechanisms to do resource
scaling: horizontal scaling (virtual server replication), and
vertical scaling (resource allocation adjustments and vir-
tual server migration). Their approach to resource scaling
was similar to the one implemented in Golondrina. Their
prototype at the moment, however, could not do horizontal
scaling.

VII. CONCLUSION AND FUTURE WORK

This work is one of the very few (if any at all) that pro-
poses a resource management system for operating system-
level virtualized environments. In addition, this is the first
study that uses replication as an alternative to migration
and compares both mechanisms. Others have proposed to
do replication, but have not done it [11]. Others have
implemented replication, but not migration [17].

There are many ways in which Golondrina could be
extended. One of them is implementing a mechanism to
monitor the activity of replicas and stop those that become
unnecessary (see Section V). Another extension is to imple-
ment a CPU under-stress detection mechanism, which would
detect and suspend lightly loaded hardware nodes.

Adding memory and network as managed resources is
obviously a very attractive extension. A second prototype
of Golondrina has already been developed featuring a mem-
ory stress detection mechanism and a simple heuristic for
adjusting memory allocations [18].

349

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Currently, we are studying the interaction between the
CPU and memory subsystems and the management strate-
gies that can be implemented to solve different combinations
of resource stress situations.

ACKNOWLEDGMENTS

We would like to thank the National Sciences and En-
gineering Research Council (NSERC) of Canada for their
support.

REFERENCES

[1] G. Keller and H. Lutfiyya, “Replication and migration as
resource management mechanisms for virtualized environ-
ments,” in ICAS ’10: Proceedings of the 2010 Sixth Inter-
national Conference on Autonomic and Autonomous Systems.
Washington, DC, USA: IEEE Computer Society, 2010, pp.
137–143.

[2] A. McCloskey, B. P. Simmons, and H. Lutfiyya, “Policy-based
dynamic provisioning in data centers based on slas, business
rules and business objectives,” in IEEE/IFIP Network
and Operations Management Symposium (NOMS 2008),
Salvador, Bahia, Brazil, Apr. 2008. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4575243

[3] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Salem, “Adaptive control of virtualized
resources in utility computing environments,” in EuroSys ’07:
Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007. New York, NY,
USA: ACM, 2007, pp. 289–302.

[4] (2010, Aug.) Openvz project. [Online]. Available:
http://openvz.org/

[5] K. Kolyshkin. (2005) Virtualization in linux. openvz-
intro.pdf. Documentation on OpenVZ. [Online]. Available:
http://download.openvz.org/doc/OpenVZ-Users-Guide.pdf

[6] G. Box, G. M. Jenkins, and G. Reinsel, Time Series Analysis:
Forecasting And Control, 3rd ed. Prentice Hall, Feb. 1994.

[7] C. Hyser, B. Mckee, R. Gardner, and B. J. Watson, “Au-
tonomic virtual machine placement in the data center,” HP
Laboratories, Palo Alto, CA, USA, Tech. Rep. HPL-2007-
189, Dec. 2007.

[8] (2010, Aug.) Don quijote by miguel de cervantes
saavedra - project gutenberg. [Online]. Available:
http://www.gutenberg.org/etext/2000

[9] (2010, Aug.) The apache http server project. [Online].
Available: http://httpd.apache.org/

[10] (2010, Aug.) Httperf site. HP Labs. [Online]. Available:
http://www.hpl.hp.com/research/linux/httperf/

[11] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif,
“Black-box and gray-box strategies for virtual machine migra-
tion,” in Proceedings of the Fourth Symposium on Networked
Systems Design and Implementation (NSDI’07), Cambridge,
MA, USA, Apr. 2007, pp. 229–242. [Online]. Available:
http://www.usenix.org/events/nsdi07/tech/wood.html

[12] M. Zhao and R. J. Figueiredo, “Experimental study of vir-
tual machine migration in support of reservation of cluster
resources,” in VTDC ’07: Proceedings of the 3rd interna-
tional workshop on Virtualization technology in distributed
computing. New York, NY, USA: ACM, 2007, pp. 1–8.

[13] A. Kochut and K. Beaty, “On Strategies for Dynamic Re-
source Management in Virtualized Server Environments,” in
MASCOTS ’07: Proceedings of the 2007 15th International
Symposium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 193–200.

[14] D. Gmach, J. Rolia, and L. Cherkasova, “Satisfying ser-
vice level objectices in a self-managing resource pool,” in
SASO ’09: Proceedings of the 2009 Third IEEE International
Conference on Self-Adaptive and Self-Organizing Systems.
Washington, DC, USA: IEEE Computer Society, 2009, pp.
243–253.

[15] X. Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia,
S. Singhal, B. McKee, C. Hyser, D. Gmach, R. Gardner,
T. Christian, and L. Cherkasova, “1000 islands: Integrated
capacity and workload management for the next generation
data center,” in Proceedings of the 2008 International
Conference on Autonomic Computing (ICAC’08), Chicago,
IL, USA, Jun. 2008, pp. 172–181. [Online]. Available:
http://ieeexplore.ieee.org/xpl/freeabs all.jsp?arnumber=4550838

[16] S. Kumar, V. Talwar, V. Kumar, P. Ranganathan, and
K. Schwan, “vmanage: loosely coupled platform and virtu-
alization management in data centers,” in ICAC ’09: Pro-
ceedings of the 6th international conference on Autonomic
computing. New York, NY, USA: ACM, 2009, pp. 127–
136.

[17] G. Munasinghe and P. Anderson, “Flexiscale
- next generation data centre management,” in
UKUUG Spring Conference, 2008. [Online]. Available:
http://homepages.inf.ed.ac.uk/dcspaul/publications/ukuug2008.pdf

[18] A. Pokluda, G. Keller, and H. Lutfiyya, “Managing dy-
namic memory allocations in a cloud through golondrina,”
in Proceedings of the 4th International DMTF Academic Al-
liance Workshop on Systems and Virtualization Management
(SVM’10), Oct. 2010, (Accepted to appear).

350

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


