
Coordinated Exploration and Goal-Oriented Path Planning using Multiple UAVs

Christoph Rasche, Claudius Stern, Lisa Kleinjohann, and Bernd Kleinjohann
Faculty of Computer Science, Electrical Engineering and Mathematics

Department of Computer Science
University of Paderborn

Paderborn, Germany
crasche@c-lab.de, claudis@c-lab.de, lisa@c-lab.de, bernd@c-lab.de

Abstract—Successful rescue operations after big accidents
or natural disasters require a fast and efficient overview of
the overall situation. Using aircrafts is an efficient method to
achieve such an overview in relatively short time. With recent
advances, unmanned aerial vehicles (UAVs) are more and more
a viable choice under such circumstances.

With the number of employed UAVs, the problem of coordi-
nation arises as well as proper task allocation among possibly
heterogeneous UAVs. Coordination has to be done so that
redundant exploration and collision of UAVs with each other
are avoided.

This paper presents a hybrid approach for UAV coordination
that covers the exploration of unknown terrains as well as goal-
oriented coordination and simultaneous task allocation. The
approach combines the simplicity of the gradient method with
informed A∗ search and supports prioritized task assignment.
It is based on the potential field theory using harmonic
functions. Only one single configuration space for representing
all relevant information, regarding the terrain and the UAVs
is used. The system is suited for highly dynamic environments
requiring frequent path recalculations.

Keywords-Path Planning, Multiple UAVs, Exploration, Coor-
dination, Potential Field Theory, Harmonic Functions

I. INTRODUCTION

Over the last years, unmanned aerial vehicles (UAVs)
received increasing attention in rescue operations. They can
be used to explore terrains and are able to relieve humans
from dangerous and risky tasks.

Through the use of cameras, it is for instance possible
to detect victims or dangerous situations like fire nearby
explosives. Such information can be used to coordinate the
assistants at the accident site.

Another task, which can be solved is to take measure-
ments in the air, e. g., after a volcanic eruption without
risking the life of pilots.

A major task in rescue operations is the exploration of
the disaster area. This is important to get an overview of the
surroundings and to locate victims. It is necessary to obtain
such an overview as fast as possible to start effective rescue
operations and–in some cases–to avoid an escalation of the
situation, e. g., when explosives are detected near a fire.

Exploratory navigation includes determining all obstacles
and goals in a given environment. UAVs travel from their
initial positions to one or more different goal positions, while

avoiding obstacles and recognizing landmarks and objects.
Therefore, the UAVs have to memorize the explored space
to plan efficient paths to unknown territory.

In rescue scenarios often places can be identified by the
staff where victims are very likely to be found. These areas
will be explored first. To take this into account it is possible
to mark areas as given goal areas.

The main challenge is to design a system, which covers
all the following aspects: autonomous exploration, flying to
given targets, and the coordination of multiple UAVs. So, the
system to be designed has to manage exploratory navigation
as well as goal-oriented planning. Also a task allocation
amongst the UAVs is needed.

Another point is that the system has to be efficient. In
medical emergencies often every second counts. A system,
which needs a long time span to plan paths gives away
important time for lifesaving. This means that every calcu-
lation, necessary for path planning, should be done without
any noticeable delay.

In this paper, an approach combining exploratory navi-
gation, goal-oriented path planning and simultaneous task
allocation is presented. It gives a more detailed view of
the work presented at the ICAS 2010 [1]. The presented
approach is based on artificial potential fields (Section II-D).
Path generation then utilizes an informed search algorithm in
combination with a gradient method (Section VI). To obtain
the desired efficiency, several methods (Section V-C), like a
quadtree and an activation window, are used to reduce the
calculation costs for path planning. The system ensures a
complete exploration of unknown regions and scales well in
relation to the number of operating UAVs.

The presented system has two modes of operation, which
change automatically during runtime, dependent on the
existence or absence of goals: goal-oriented and non-goal-
oriented mode.

Every single UAV has an individual configuration (Sec-
tion IV-B), amongst others containing its task list. In goal-
oriented mode a UAV has one or more prioritized tasks
(goals). In non-goal-oriented mode exploration of the com-
plete territory will be done. The approach is cost-efficient be-
cause of the combination of the advantages of goal-oriented
path planning with the simplicity of gradient methods for

351

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

exploration. UAVs without a given goal always move to the
nearest unexplored region to optimize exploration. Local as
well as global information is used to coordinate multiple
UAVs and to generate consistent trajectories. Areas, which
probably contain important information can be explored first.

To even support exploration in goal-oriented mode, there
is an adjustable tradeoff for the maximum allowed deviation
from the shortest path to explore unknown regions (Sec-
tion V-A). In many cases, gathering new information is also
important and a small detour is worth a slight increase of
flight time.

The paper is organized as follows. In Section II we show
the basics of our approach and some differences to other
research. Section III gives an overview of the system we
developed. Section IV shows our configuration space, which
is used as world model. In Section V we explain how we
calculate the potential field using harmonic functions. In
Section VI we show the path planning algorithms using
the potential field to calculate smooth paths that guarantee
obstacle avoidance and always lead to the goal if a path
exist. In Section VII we show several results for exploratory
navigation including the calculation costs. Finally, Section
VIII gives a conclusion and a perspective of future work.

II. RELATED WORK

This section describes related work in the fields of ex-
ploration, path planning, and task allocation. Afterwards,
the theoretical background for the methods used in our
approach is introduced. We start with the basic problem of
path planning, which leads to the concept of a configuration
space C, and show an overview of the used approaches,
based on C.

Today the potential field theory [2] is used in several re-
search areas, e. g., when autonomous robots have to explore
terrains [3], [4], [5] or in game theory for path planning of
units in strategy games [6]. Several different potential field
techniques exist for the different applications.

Exploration of unknown terrain is one of the most im-
portant tasks of UAVs. Sawhney et al. [7] presented an
exploration system for multiple robots and UAVs in 2D and
3D environments. Their work is focused on an asynchronous
exploration strategy in unknown terrains. Asynchronous
means that in contrast to synchronous allocation only UAVs,
which have stopped are considered for the next exploration
of unknown terrain.

Their main goal is to find several paths, which completely
explore the terrain, such that the time needed for exploration
is reduced as much as possible and the height of the path
over any point is constrained to lie beneath an exposure
surface. For this purpose they subdivide the terrain using
an occupancy grid and plan their paths based on this data
structure. In simulations they showed that their approach
explores the terrain faster than a synchronous one.

Another part of UAV navigation is goal-oriented path
planning. Jung et al. [8] showed a hierarchical path planning
approach, including a control algorithm for one single UAV.
The UAV had to accomplish the mission objective with
limited computational resources. This was to reach a goal
destination, while avoiding obstacles.

They start path planning using the A∗-algorithm as an
informed search algorithm. Afterwards, a path smoothing
takes place and the calculated path is followed by an auto
pilot.

Like our approach, theirs is based on a multiresolution
decomposition of the environment for path planning too,
such that a coarser resolution is used far away from the
agent, whereas fine resolution is used in the vicinity of the
UAV.

For task allocation a scheduling was introduced. To in-
crease the efficiency of their approach a real-time kernel
was used. They demonstrated that the UAV with its limited
resources managed the mission objective by using a real-
time kernel.

Nikolos et al. [9] showed a goal-oriented approach based
on evolutionary algorithms, which is capable to navigate
through explored and unexplored terrain to a given goal.
They distinguish two problems:
• UAV navigation using an offline planner, considering a

known 3D environment
• UAV navigation using an online planner, considering a

completely unknown 3D environment
In this context offline planning means that a complete path
from the initial position of the UAV to the goal position is
calculated in advance, whereas in online planning a nearly
optimal path will be generated to an intermediate position
within the sensors’ range. During flight time this is repeated,
until the goal position is reached.

They considered the path planning problem within an
evolutionary algorithm context, in which B-Spline curves are
used to represent the path line. The evolutionary algorithm
models the coordinates of the UAV’s control points as
artificial chromosome genes.

They used the potential field theory combined with a
grid-based cell decomposition method as underlying system
on which path planning is done. Their results show that
it is possible to find feasible paths efficiently by using
evolutionary algorithms. This solution could be reached cost-
efficiently since only a few iterations were needed to find a
feasible solution. The most costly part was to optimize the
solution.

All these approaches consider either goal-oriented or non-
goal-oriented path planning. In this work we present a
combined approach that considers three aspects: exploratory
navigation, goal-oriented path planning and simultaneous
task allocation. Our approach works in completely unknown
environments as well as in (partially) known environments.
Paths are always computed offline, which means that our

352

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

approach calculate paths to given goals or to unexplored
areas a priori and the UAVs follow them. If obstacles appear,
which lie in the trajectory of any UAV, a recalculation is
triggered.

For example in [7] no task allocation is done and the
UAVs are considered to be homogeneous (at least in terms
of exploration capability). In contrast, the UAVs in this work
are considered to be heterogeneous and, in particular, some
tasks can be solved only by a matching UAV. Additionally,
in this work exploration of some areas is needed repeatedly
as data can become obsolescent over time.

In contrast to most path planning approaches, which focus
on the optimization of the path length or where the tests
always end after one single exploration of the terrain, we try
to lower the time for exploration of a terrain. In our work
in some circumstances detours are allowed or even desired
(Section V-A). The cases where detours are allowed are in
goal-oriented mode. Taking a detour to explore some new
terrain leads to an information gain, which can be important.
To avoid paths where the detours increase the time needed
to reach given goals too much the maximum length of the
detours can be defined a priori (Section V-A). Additionally,
as information can become obsolescent, explored terrain
becomes unexplored again after some time.

A. Path planning basics

Path planning is a wide area of research. A lot of
approaches to plan paths are described in the literature.
But most approaches are based on a few basic methods.
Most commonly used are the following three methods or a
combination of them:

1) Roadmap method
2) Cell decomposition
3) Potential field theory
The roadmap method’s basic idea is to create a roadmap,

which reflects the connectivity of the free space. If such a
roadmap exists, path planning is simple. Only the initial and
the goal configuration must be connected to the roadmap.
A feasible path is found by simply following the path in
the roadmap, if both configurations can be connected to it.
Otherwise, no feasible path exists. Kazemi et al. [10], e. g.,
combined the roadmap method with cell decomposition.

We combine cell decomposition with the potential field
theory. For this a subdivision of the whole terrain into several
subareas is done using a quadtree. Afterwards, each area gets
a so-called potential value φ. Based on these values path
planning can be done. A detailed description of this process
is given in the further sections.

All methods are used to solve the basic problem to plan
paths, which can be described as follows:

Let A be a UAV. It moves in a Euclidean space W ,
represented as RN (in our case N = 3). Additionally,
B1, · · · ,Br|Bi ⊂ W, (i = 1, · · · , r) are fixed objects
distributed in W . Every single Bi is an obstacle. Assume

that the geometry and the position of A is known. The Bi
can be known but they don’t have to be. Further we assume
that A is not restricted in its movement through kinematic
constraints. This leads to the following problem:

Given an initial position and direction plus a goal position
and direction of A in W , calculate a path τ consisting of a
consecutive sequence of positions and directions of A under
avoidance of contact with any Bi. The path has to start at
the initial position and must end at the goal position. Return
an error, if such a path does not exist.

All path planning problems have in common that a path
from the initial configuration to the goal configuration must
be found. This leads to the concept of the configuration space
[11].

B. Configuration space

The configuration space C ⊂ Rn, with n describing the
dimension of C is used to represent the UAV A within a
terrain W . A configuration q ∈ C is a tuple q1, · · · , qn. The
n independent variables can, e. g., represent the position,
the role and tasks of a UAV. A comes with a specific
role and tasks, which have to be fulfilled. In our work
A is represented as a point p ∈ W . The point p is also
the position of A in W . So, UAV A has a configuration
qA ∈ C that consists of all relevant properties of A, e. g., the
current position p and its direction. Following the definition
of Barraquand et al. [11] one can consider a geometrical
application, which maps any configuration q to the point p
in the terrain. This map

X : C → W,
q 7→ p = X(q)

is called the forward kinematic map. C is the union of all
possible configurations q.

A Cartesian coordinate system FW is embedded in C. In
our work a configuration of A is the specification of the
position and direction of A in consideration of FW , plus
its role, fuel level, maximum and favorite height and its
tasks. The position of the UAV in W is called pA. Due to
consistency C is discretized like the real space using cell
decomposition.

1) Occupied space: The workspace of A contains a finite
number of obstacles Bi, i = 1, · · · , r. Obstacles can, e. g.,
be skyscrapers, mountains or other UAVs, which lie in the
trajectory of the UAV. Each obstacle Bi is in CBi ⊂ C of
those configurations in which the UAV would take a position
inside an obstacle Bi. This means:

CBi = {q ∈ C|X(q) ∈ Bi},∀i = 1, · · · , r.

Configurations including these positions are forbidden as
they lead to damage of the UAVs.

353

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Free space: Due to the existence of obstacles the
UAVs are not able to take every position in C. With the
definition of CBi it is possible to calculate the allowed
configurations of the UAVs. This subset of configurations
in which the UAVs do not take positions within an obstacle
is called free space. This means:

Cfree = C \
r⋃

i=1

CBi.

Every configuration q ∈ Cfree is called a free configuration.
Using this modeling a collision-free path from a start confi-
guration qstart to a goal configuration qgoal is a consecutive
map τ : [0, 1]→ Cfree with τ0 = qstart and τ1 = qgoal .

C. Cell decomposition

The main idea of cell decomposition is the subdivision
of C into disjoint areas, called cells or leaves. An important
part is the connectivity graph G. It captures the structure of
C. Each subarea is represented through a leaf. A distinction
between exact and approximative approaches is made. We
use an approximative approach due to cost reductions when
dynamic changes take place.

The subdivision is made through the introduction of an
internal data structure. This structure has to contain all
relevant data, like positions and dimensions of the subareas,
positions of obstacles and so on.

One of the most commonly used approaches are grids.
They subdivide W into a number of equally sized subareas.
One disadvantage of this approach is that it does not
take into account neighboring areas with equal properties,
e. g., several neighboring areas, which are occupied space.
Neighbors of a current area are all areas, which have one or
more border points in common with the current one. For cost
reduction it is more efficient to combine such neighboring
areas to one big area, so that only one big area has to be
taken into account for calculations.

Therefore we use a quadtree for the subdivision of W .
The quadtree divides the complete space into four subspaces
of equal size. These subspaces are recursively divided into
four subspaces. Subdivision stops when the enclosed space
of a leaf is of homogeneous type or a pre-defined maximum
breakdown is reached. Homogeneous means that the space
consists of only one type, e. g., occupied space. If the given
breakdown is reached and the space is not homogeneous, an
approximation is done: Every leaf which includes occupied
space will be marked as occupied space. Otherwise, if the
space includes different types of Cfree , it is marked with
that type of space, which constitutes the largest part of the
leaf. After subdivision, the complete terrain is represented
through the leaves of the quadtree, i. e., the union of all
leaves represents W .

One disadvantage of a simple quadtree in contrast to
a grid is, that finding neighbor leaves is more costly. It
takes logarithmic time instead of constant time when using

a grid. This becomes more important as neighbor finding
is one of the operations needed most. It is necessary for
potential calculations (Section V-B) and for finding paths
(Section VI).

To take this into account, we extended the quadtree to
a linear quadtree [12]. For transforming a quadtree into a
linear quadtree each node of the tree gets a unique code
and its level is saved. With this information it is possible
to find neighboring nodes with constant time complexity on
average.

The approach of cell decomposition is combined with the
potential field theory in such a way, that a so-called potential
value φ is assigned to each leaf of the quadtree.

D. Artificial potential fields for motion planning

The idea of using artificial potential fields for motion
planning was introduced in 1985 by Khatib [2]. Using
this technique a manipulator moves in a field of artificial
forces. The idea is that paths can be obtained through linear
superpositions of these fictitious forces or their potentials
φ, which affect the UAV. The positions to be reached are
modeled as attractive poles and obstacles are modeled as
repulsive poles for the UAVs. So, a field of forces that affects
the complete terrain has to be realized. This can be done
using potential values. Therefore, the terrain is divided into
sub-terrains, which get potential values. The difference of
the potentials of two neighboring areas can be used to model
forces. Two types of forces based on two types of potentials
exist:
• Attractive forces, which represent goals and pull the

UAVs towards them.
• Repulsive forces, which represent obstacles and push

the UAVs away from them.
For a proper modeling of potential fields these attractive
forces must fulfill two requirements:

1) they have to affect the whole configuration space and
2) they must always lead to the goal.
Figure 1 shows an example for an attractive potential.

The goal to be reached is in the middle of the potential field
shown in Figure 1 and all surrounding potential values are
higher. So, following the descent gradient will always lead
to the goal.

Suppose that the first condition is not fulfilled. Then there
would exist areas in which no forces act. If the UAV started
in such an area, it would never move. Another problem
occurs if a UAV flies into such an area. In that case the
UAV would usually stop flying. Reaching the goal is not
possible then.

The second condition is crucial for reaching the goal,
too. If there exist forces, which do not lead to the goal, it
would be possible that the UAV selects a trajectory, which
makes it impossible to reach the goal. Several possibilities
to guarantee forces as demanded exist. One possibility is to

354

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. An example for an attractive potential.

adjust the potentials like a cone. The determining value can,
e. g., depend on the Euclidean distance to the goal, as it is
shown in Figure 1.

Repulsive forces have to fulfill two requirements, too:
1) they have to affect only a specified surrounding area

of the obstacle and
2) they must always lead away from the obstacle.
Figure 2 shows an example for a repulsive potential. The

obstacle is in the middle of the potential field shown in
Figure 2 and all surrounding potential values are less than
that of the obstacle. So, following the descent gradient will
always lead away from the obstacle.

Figure 2. An example for a repulsive potential

The first condition is needed to ensure that obstacles do
not affect the complete configuration space. An effect on the
complete configuration space can affect the trajectories of
the UAVs in such a way that they take unnecessary detours.
The second condition ensures that UAVs will not be pulled
toward obstacles, which would lead to crashes.

To ensure the two conditions repulsive potentials can be
based, e. g., on the Euler’s number, as it is shown in Figure 2.

In such a field of forces a path follows the descent
gradient within the potential field. It keeps a UAV away
from obstacles and pulls it towards the goal.

However, there are some problems when using such
potential fields, especially in case of complex and highly
dynamic environments. The basic movement in such a field
is often done using a gradient method. In this case a UAV
is pulled toward the goal. However, obstacles lying around
the UAVs trajectory may cause the occurrence of so-called
local minima. These minima are one of the most important
problems.

A local minimum occurs if a single potential value is less
than all surrounding potential values. In that case the driving
force vanishes and the UAV gets trapped. Several methods to
avoid and to get out of these minima exist. We use harmonic
functions [13] for calculating one global artificial potential
field. This avoids the generation of local minima.

E. Harmonic Functions

Using harmonic functions for potential value calculation
was done first by Connolly and Burns [13] in 1990. One of
the advantages of these functions is that one can prove that
local minima can be avoided. Additionally, consistent and
collision-free paths can be calculated. Harmonic functions
satisfy Laplace’s equation in n dimensions:

∇2φ =

n∑
i=1

∂2φ

∂x2i
= 0.

Namely, φ must be two-times differentiable and the second
partial derivatives of the potential φ must be zero. Addi-
tionally, φ must be strictly increasing, e. g., dependent on
the distance to the goal. The value of φ is given on a
closed domain Ω in the configuration space C (Section IV)
and satisfies the min-max principle1 and the uniqueness
principle2 [14], [15]. The min-max principle means that the
potential function has its maximum and minimum values at
its boundary points (in our case obstacles and goals). So the
min-max principle can guarantee that no local minimum can
have a potential value less than that of a global minimum and
no saddle point can have a greater potential value than an
obstacle. The uniqueness principle means that no two areas
have the same potential value. This guarantees the absence
of flat regions.

Connoly [16] showed that it is possible to generate paths
without spurious minima. Combining harmonic functions
with Dirichlet’s boundary conditions leads to a value-
restricted configuration space, which is important for cal-
culations with discrete arithmetic. To respect Dirichlet’s

1A harmonic function f(x, y) defined on a closed domain Ω takes its
minimum and maximum values on the boundary.

2If f(x, y) and g(x, y) are harmonic functions defined on Ω such that
f(x, y) = g(x, y) for every bound point, then f(x, y) = g(x, y),∀x, y

355

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

boundary conditions we bound goal areas with the potential
value 0 and occupied areas with the value 1.

Every harmonic function defined on a compact region
Ω = ∂Ω ∪ Ω satisfies three properties [13]:

1) Every harmonic function is analytic.
2) Select a point qd to be a goal point with the constraint

that φ(qd) = 0. Set all obstacle boundary points p
to some constant φ(p) = c. All harmonic functions
satisfy the min-max principle, so φ is polar. That
means that qd will be the point at which φ attains
its minimum value at Ω and all streamlines lead to qd.

3) If c is set to 1, φ will be admissible in our sense. This
is a simple normalization.

Additionally, harmonic functions have several valuable prop-
erties [13]:

• Completeness up to discretization error
• Fast surface normal computation
• Ability to exhibit different modes of behavior (grazing

vs. avoidance)
• Robust control in the presence of unanticipated obsta-

cles and errors
• Lack of spurious local minima
• Linear superpositioning
• Robustness with respect to geometrical uncertainty
• Continuity and smoothness of configuration space tra-

jectories

Completeness in terms of path planning is given if one can
guarantee that a path from each initial position to each goal
position will be found if such a path exists. It is possible
that a coarse discretization disables the finding of a path
as shown in Figure 3, where the grey area represents an
obstacle. Each leaf, which contains a part of the obstacle
is treated as occupied space to ensure collision avoidance.
Using a fine discretization as shown in Figure 3(a) makes a
path planning from the start to the goal position possible. In
Figure 3(b) the coarse discretization makes it impossible to
find a route around the obstacle. This discretization errors
cannot be compensated by harmonic functions.

Originally, harmonic functions were used for path plan-
ning only with a fixed map and one single known goal.
But one can show that they also are well suited to dynamic
environments with multiple UAVs and goals.

One problem of harmonic functions is their superposi-
tioning. As Connolly mentioned [13], there is no guarantee
that in complex or dynamic environments obstacles are
avoided when superpositioning is used. The potential values
in the neighborhood of an obstacle depend not only on that
obstacle’s potential, but also on every other obstacle’s or
possible goals’ potentials. If the configuration or the strength
changes, the path of a UAV can get infinitely close to the
obstacle. The only structure that can be safely modeled as
obstacle this way is a point itself, which cannot get affected.

Figure 3. The figure shows two different discretizations of some terrain,
including a grey area, which symbolize an obstacle. While in Figure a) a
path from the start position to the goal position can be found, using the
discretization in Figure b) it is not possible to plan a path from the start to
the goal position.

III. OVERVIEW OF THE APPROACH

This section gives a basic overview of our approach. For
financial reasons the approach was implemented first as a
simulation environment. The detailed description is given in
the following sections.

In our work the presented path planning approach is
considered to be a centralized one, in terms of using one
global configuration space C to model the world in which the
UAVs act. Path planning itself can be done in a centralized
manner using a control station or in a decentralized way by
the single UAVs.

On the one hand, UAVs have to explore unexplored parts
of the terrain, while objects and landmarks must be recog-
nized. Their position and size has to be noticed. Additionally,
the UAVs must keep track of regions already visited to plan
efficient paths to still unexplored regions of the territory.
On the other hand, UAVs have to find collision-free paths
from their initial positions to given goal positions. In both
cases they act autonomously without any human interaction
(except insertion and deletion of goals).

According to [17], it is possible to divide path planning
into three general categories:

1) global path planning: A complete path from the posi-
tion of the UAV to the goal will be computed.

2) local path planning: Several paths which lead towards
the goal are planned and compared with each other.

3) reactive path planning: Only the next step is computed
dependent on the current situation.

This work presents an approach combining global and reac-
tive path planning for exploratory navigation. Additionally,
the global approach is used to find paths to designated goal
positions.

To ensure an efficient goal-oriented path planning using
multiple UAVs, a coordination of the UAVs is indispensable.
The coordination is done using a task allocation system. To
ensure this, each UAV has a so-called role (Section IV-B)
and schedules the given goals, based on this role.

356

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

To explore the terrain and to gain information about
it, each UAV has one or two cameras. Different types of
cameras, like infrared cameras, are used.

The simulation system currently used to evaluate our
approach consists of two types of components, representing
a single control station and the UAVs, respectively. Both
make use of the same path planning library. The library
contains the gradient method as well as the A∗-algorithm and
a neighbor finding algorithm. Figure 4 shows an overview
of the system.

Figure 4. Overview of the designed system.

A. Control station

A control station was realized to represent the confi-
guration space C, which holds the data needed for path
planning, including the properties of each UAV and the
terrain, like positions of known obstacles, explored and
unexplored space, position of the single UAVs, etc.

To distinguish between Cfree and CBi a subdivision of
the terrain is needed. We use a quadtree, which is one of
the most commonly used data structures to subdivide 2D
terrains. By extending the quadtree to a linear quadtree
we are able to find neighbors and to update the structure
dynamically in constant time. Dynamic changing of the
quadtree is needed to respect changes of the terrain due to
exploration and aging of the information about subareas. The
quadtree was designed in such a way that the union of the
areas represented by all its leaves is the complete terrain.

Based on this subdivision it is possible to use the potential
field theory for path planning. Therefore, each leaf gets
a potential value, dependent on its distance to goals and
obstacles.

The potential values φ are used to calculate paths, combin-
ing them with a gradient method for exploratory navigation
and the A∗-algorithm for goal-oriented path planning. For
path planning only 2 dimensions are used. With respect to
the different camera types of the UAVs, which have different
properties, the third dimension, the height of the UAVs over
ground is calculated by themselves.

The control station comes with a visualization of the ter-
rain and the UAVs. For this purpose a 3D environment was
implemented. It shows the positions of the single UAVs and
is able to display their configurations. To display the terrain
heightmaps are used. A heightmap is a monochrome picture
where the value of each pixel represents the height of a
single area of the terrain. The advantage of using heightmaps
is that new terrains can be created easily. Additionally, the
visualization allows an interaction between the user and the
system. It is possible to set up new goals or obstacles and
to delete them dynamically during simulation.

B. UAV

The UAVs were implemented as an external program.
They consist of the UAV configuration qA and schedule
given goals, based on their role. Additionally, they are able
to plan paths, based on a copy of C, they can ask for. Hence,
path planning can be decentralized through the UAVs or
centralized, as a UAV can ask the control station to plan a
path from the UAV position to each goal position.

The UAVs communicate with the control station using
TCP/IP. They send their configuration periodically to the
control station and can ask for path planning, a copy of the
configuration space and additional information.

In our model, a UAV is unable to fly backwards, so it
must be able to plan its motion, based on its direction and
the goal direction. The movement calculation of a UAV for
flying along the calculated path is done by itself.

Additionally, the UAVs have to calculate their height over
the terrain. Each UAV has a favorite height with respect to
its cameras. The resulting height over ground depends on a
UAVs favorite height, the height of the terrain it is currently
over and the height of the terrain it reaches next, as it is
known so far. Considering also the height of the next terrain
leads to a smoother flight when flying over terrains with
huge height differences, if for instance steep faces lie in the
trajectory of a UAV.

C. Pathplanning library

We developed a library, which can be used by the control
station and the UAVs to calculate a path. This ensures that
both a centralized path planning by the control station and
a decentralized path planning by the single UAVs can be
done. Using a library avoids a redundant implementation of
the algorithms in the control station and the UAV. Therefore,
the library implements the gradient method for exploratory
navigation and the A∗-algorithm for goal oriented path
planning. Additionally, the neighbor finding algorithm is
implemented, as it is needed to calculate paths.

IV. CONSTRUCTION OF THE CONFIGURATION SPACE

This section gives a more detailed description of the
configuration space. We start with the cell decomposition

357

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

approach. Afterwards, we present the configuration of a
UAV, which is necessary for path planning.

In order to represent the complete scenario, the configu-
ration space has to contain the coordinates and identities
of all UAVs, goals, obstacles, known and unknown areas.
This section, therefore, describes how the complete area is
discretized into leaves using a quadtree. Afterwards, it is
presented how additional information regarding the UAVs,
like fuel level or individual tasks, are represented. Finally,
the section discusses how the recalculation complexity of C
can be decreased to a level at which online calculation is
feasible.

A. Quadtree

As mentioned before, the configuration space is divided
by a quadtree and each UAV is represented as a point
in C. The subdivision is done in several steps. First C is
divided into free space Cfree and occupied space CBi. When
representing the UAV as a point in C the dimensions of the
UAVs are not considered. However, to ensure a collision-
free path it is necessary to consider their dimensions. This
is done using obstacle growing, whereby the occupied space
is expanded by the dimensions of the UAVs in all three
dimensions.

Finally, the resulting Cfree is subdivided into unknown,
unexplored, explored and goal space. These space types are
represented through different leaf types. This subdivision
changes dynamically during runtime.

Note the distinction between unknown and unexplored
space. Unknown space represents areas with no information
about the terrain height. Unexplored space represents areas
without up-to-date information. Hence, during a rescue
mission the age of some data is of crucial importance. If the
exploration time of a region exceeds a pre-defined threshold,
the according region becomes unexplored again, but it can
never become unknown again.

The resulting nodes store several properties as shown in
Table I.

Property Description
boundaries Points to specify the position and the dimensions of

the node.
space type The type of space of the node, e. g., Cfree or CBi.
location code A unique code, used for neighbor finding with con-

stant time complexity on average.
level The level of the node (depending on the tree-depth

of the node).
potential value The potential value on which path planning is based.
exploration
time

Time point at which the node was explored last time.

Table I
PROPERTIES OF THE QUADTREE NODES

To specify the positions of UAVs and obstacles, a Carte-
sian coordinate system FW was embedded into the configu-

ration space C. Hence, each UAV has an associated position
and direction within the coordinate system.

The position and dimensions of each node are based
on FW , too. Each node is specified through 2 points in
space spanning a rectangular region. When extending the
quadtree to a linear quadtree a unique code and its level
must be saved. In rescue scenarios up-to-date information
is necessary. The exploration time is the point in time the
node was explored. If the difference between the current
time and the exploration time is above a given threshold,
the node becomes unexplored again.

B. UAV configuration

Each UAV A has a configuration qA within C. It is
represented as a 9-tuple (q1, . . . , q9) as shown in Table II.

Tuplenumber Description
q1 X - position in space
q2 Y - position in space
q3 Z - position in space
q4 flight direction
q5 favorite height
q6 maximum altitude
q7 role
q8 task list
q9 fuel level

Table II
UAV CONFIGURATION (qA)

The position of a UAV in C is described by three entries
and must be unique, because if two UAVs had the same
position in C, they would have crashed. For path planning
only two entries are used (q1, q2). The height of the UAVs
(q3) is neglected as the UAVs can have different favorite
heights over ground. Of course the height is important to
avoid collisions. It is also important for the cameras of
the UAVs. The area the UAVs can explore at one moment
depends on the flare angle of their cameras and the height
of the UAVs above the terrain.

We distinguish two different height types. The favorite
height (q5) is the height above the underlying terrain a
UAV wants to reach. The maximum altitude (q6) describes
the height of the UAV above sea level. In the following
simulations (Section VII) sea level is modeled as the zero
point of the program. The height of a UAV (q3) is always
the height above sea level.

The maximum altitude is used to partition the terrain into
Cfree and CBi. Each part of the terrain, which is higher than
the maximum altitude, is CBi, the remaining terrain is Cfree .

The configuration of a UAV contains the flight direction
(q4). This direction can also be used to provide a preferred
direction in which the UAV will fly first while exploring
the terrain. The modeled UAVs can turn on the spot so the
direction is not too important for motion planning. Previous
tests showed that in this case the use of a preferred direction
does not lead to better results concerning the exploration rate

358

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

or speed. Hence, there is no favorite direction for the UAVs
in the resulting system. Two UAVs cannot take the same
position at the same time so the entries q1, q2 and q3 are
used to distinguish the single UAVs.

The task list includes all given goals. The types of goals
specified so far are shown in Table III. A single task always
contains one known goal. It can be UAV-specific or non-
UAV-specific, e. g., refueling would be a UAV-specific task,
whereas monitoring of areas would be a non-UAV-specific
one. Goals can be points, which the UAV has to explore
or areas, which have to be monitored with high priority.
Each goal is associated with one task. When the fuel level
reaches a given threshold, the UAV sets up a new task with
a fuel station as goal and highest priority. This task will be
executed before all other tasks to avoid damage.

Every UAV also has a role, which is used to realize a
scheduling of all given tasks. In this work three roles are
defined:

1) explorer: An explorer UAV is used mainly for terrain
exploration. Goal-oriented path planning will be done
only to avoid starvation.

2) seeker: A seeker UAV is used mainly to reach given
goal points. As long as goals exist goal-oriented path
planning will be done and exploration takes place only
if no specific goals exist.

3) surveillant: A surveillant UAV is used mainly for
goal-oriented path planning, too. The difference to the
seeker UAV is that it monitors areas rather then flying
to given goal points.

C. Decentralized task allocation for multiple UAVs

A role is associated with a specific priority scheme. Each
task gets a priority P ∈ {0, 1, · · · , 9}. The higher P is
the more important the task is. Depending on the role,
the task list will be sorted according to the different task
priorities. Explorer UAVs first explore the terrain and target
specific goals with less priority. Seeker UAVs favor goal
points over areas and exploration. Surveillant UAVs favor
goal areas over points and exploration. The priority schemes
of the seeker and the surveillant roles initialize tasks like
goal points or goal areas with high priority to favor these
tasks over exploration. Table III shows the implemented
scheduling scheme.

Goal Explorer Seeker Surveillant
Monitor areas 2 2 3
Exploration 3 0 0
Fly to goal point 1 3 2
Refueling 9 9 9
Landing 8 8 8

Table III
INITIAL PRIORITIES OF TASKS

The higher the priority the more important the task
becomes. If several tasks have equal priority, the processing

order of these tasks depends on the position of the cor-
responding goals. Tasks with goals closer to the UAV are
executed first. This ensures fast completion of the tasks and
additionally, they are scheduled in such a way that tasks
with less distance to each other than to other tasks but equal
priority will be processed consecutively.

We distinguish two types of tasks. High priority tasks
(P > 4) and low priority tasks (P ≤ 4). High priority tasks
are tasks, which must be processed as fast as possible as
not-processing them will lead to damage of the UAV.

However, this static role assignment does not avoid star-
vation. That means that if, e. g., only surveillant UAVs are in
use and new tasks to monitor goal areas appear faster than
the old ones can be finished, flying to goal points would
never be executed. To avoid such a behavior the priorities
of low priority tasks increase during time. To ensure that
these tasks never preempt high priority tasks the increasing
stops if P = 4, which is higher than every initial priority of
low priority tasks.

Scheduling of tasks, assignment and increasing of the
priorities and creation of UAV specific tasks is always done
in a decentralized manner by the UAVs.

V. CALCULATING THE POTENTIAL FIELD FOR PATH
PLANNING

In this section we describe how the potential values are
calculated. This is a two-step procedure. We start calculating
a first approximation. Afterwards, we successively enhance
the results of the first approximation until we get potential
values, which are feasible for path planning. Our approach
for potential field calculation has the disadvantage of being
quite costly. Hence, to lower the calculation costs in such a
way that we can make every calculation without noticeable
delay we use several cost reduction techniques, which are
described at the end of the section.

We assume that the control station, responsible for coor-
dinating the UAVs, provides a single configuration space C,
which is used as a representation of the complete scenario.
C is based on a quadtree (Section IV-A), whereby the leaves
carry descriptive information, like a potential value. The
quadtree subdivides the terrain in such a way that the union
of the leaves represents the complete terrain. Each leaf of
the quadtree gets one single potential value. Based on these
values, the UAVs decide which leaves they use to find a
trajectory to their designated goal position.

Additionally, C includes all UAVs with their configura-
tions (Section IV-B), every goal and obstacle.

The intention is to maintain only one harmonic function,
which describes the entire potential field, concerning mul-
tiple goals as well as multiple UAVs, avoiding the negative
effects of linear superpositioning of harmonic functions
described in [13].

Therefore we model the potential field as a discrete
Dirichlet problem for harmonic functions, which always has

359

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a solution and we try to solve it using a relaxation technique.
As a relaxation technique to transform the potential field
update under Dirichlet boundary conditions the Gauss-Seidel
method [18] is used.

To make use of the advantages of harmonic functions,
in particular the absence of local minima, the potential
values of the configuration space have to fulfill several
requirements, e. g., potential values must strictly increase
with the distance to the goals, the second partial derivatives
have to vanish and so on. To take into account all these
restrictions, the calculation process is modeled as an opti-
mization problem to solve the discrete Dirichlet problem.

A. First Approximation

We distinguish two types of potential values φ. Bound
and unbound values. Bound values are fixed values for goal
and obstacle areas, which are set before the calculation starts
and they will not be changed during the calculation. These
values are the boundaries. Thereby we are able to ensure
that obstacles have maximum and goals minimum values as
harmonic functions satisfy the min-max principle. We use a
potential value range from 0 to 1. Obstacles are bound with
1 and goals with 0.

Every other leaf u(x, y) of the quadtree gets a so-called
unbound potential value φ(x, y), which is greater than 0
and less than 1. These values are calculated for each leaf
that is neither obstacle nor goal space. Therefore, we use
the following equation. It depends on the distances to the
nearest goal area, in sense of Euclidean distance.

φ(x, y) = ξ · log (τ (x, y))

log(d)
. (1)

Here τ(x, y) represents the Euclidean distance from the
point (x, y) ∈ C to the nearest target point. The logarithm of
the diagonal d of the complete terrain is used to normalize
the values between 0 and 1. φ(x, y) satisfies Laplace’s
equation.

For goal-oriented mode it is possible to trade off shortest
path calculation and gathering additional information by
taking a detour over unexplored regions. To take this into
account the ξ-Value was introduced. The value is between
0 and 1 and is set by the user. The lower the value of ξ
is, the more attractive unexplored terrain becomes for the
path planner. In case of non-goal-oriented path planning
(exploratory navigation) ξ is set to 1.

As mentioned, Equation 1 is used to calculate a first
approximation for every unbound potential in the environ-
ment. It is only a first approximation because not every
bound value was respected. This leads to a linear system
of equations.

B. Update equation

The first approximation does not consider obstacle areas.
But that is necessary to ensure collision avoidance and to

guarantee that the potential values are represented through a
single harmonic function with its advantages, like reducing
the number of local minima. To take this into account the
first approximation of the unbound values given by Equation
1 is successively enhanced using a relaxation method. In our
work the Gauss-Seidel algorithm is used for relaxation.

Numerical solutions for Laplace’s equations can be found
through finite differentiation methods. This is possible as the
value of a harmonic function at each point is the arithmetic
mean of the values of its surrounding points [15]. We use
the neighbors of the following four of the existing eight
neighbor directions to update the potential value of a leaf
u(xi, yj):

1) u(xi+1, yj),
2) u(xi−1, yj),
3) u(xi, yj+1),
4) u(xi, yj−1).

If we had only equally sized nodes, e. g., when using a
grid with equal sized cells, we could calculate the potentials
φ(xi, yj) using the following function:

φ(xi, yj) = 1
4 [φ(xi+1, yj) + φ(xi−1, yj)

+ φ(xi, yj+1) + φ(xi, yj−1)].

However, when using a quadtree to partition C as in our
approach, the dimensions of the part of the terrain each
leaf represents have to be considered. Another point is
that through the use of a quadtree a leaf can have several
neighbors per direction. In that case we make an approxi-
mation and use the mean distance and the mean potential
value of the neighbor nodes. We take into account the
following distances from the current leaf u(xi, yj) to its used
neighbors:

τright: distance from u(xi, yj) to u(xi+1, yj),
τleft: distance from u(xi, yj) to u(xi−1, yj),
τup: distance from u(xi, yj) to u(xi, yj+1),

τdown: distance from u(xi, yj) to u(xi, yj−1).

This leads to the following update equation, which is
based on [19]:

φ(xi, yj) =
τupτdown

[
τrightφ(xi+1, yj) + τleftφ(xi−1, yj)

]
τupτdown (τright + τleft) + τrightτleft (τup + τdown)

+
τrightτleft [τupφ(xi, yj+1) + τdownφ(xi, yj−1)]

τupτdown (τright + τleft) + τrightτleft (τup + τdown)
. (2)

Neighboring leaves are all leaves, which have a border
in common. Hence, possibly different leaf sizes are also
taken into account. The potential value of the current leaf
is represented through φ(xi, yj), the potential of the left
neighbor through φ(xi−1, yj) and so on.

This modeling leads to a system where the UAVs are
driven away from obstacles and led to the goals. Figure 5
shows a sample potential field, calculated using this op-
timization method. For better visualization the calculated

360

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

potential field was mapped to a grid in Figure 5. Here the
UAV is in the left upper corner, the goal to be reached is
in the lower right corner. The higher parts of the terrain
represent occupied space, whereas the lower ones are free
space. The UAV will now follow the descent gradient, which
always leads it to the neighboring space with the lowest
potential value, until the goal is reached.

Figure 5. A sample potential field

To reach a given error rate with respect to a perfect
harmonic function of ε ≤ 10−p when using M leaves
for calculation, O(pM) iterations are needed. Intuitively,
choosing a quadtree instead of a grid lowers the calculation
costs. However, for large terrains, together with the demand
for detailed resolution, this method is still very costly.
Several methods reducing these costs are presented in the
following section.

C. Cost reduction

The methods presented in the previous sections ensure
complete exploration, reaching of given goals and task
allocation. These methods are rather complex, especially
the recalculation of C. A first approach for cost reduction
was an intelligent implementation (Section V-D). When
calculating the first approximation a pointer array is created,
which holds the leaves to be updated with pointers to their
corresponding neighbors. So, iterative loops through this
array are used for the update equation, instead of recursively
cycling through the quadtree with all nodes. Saving pointers
to the neighbors avoids redundant neighbor finding as the
quadtree does not change during potential calculations.

However, without any cost reduction techniques the meth-
ods still do not well suit embedded systems. Another part for
cost reduction is to make recalculations of C event based. So,
recalculation will be done only for the following reasons:

• Insertion of new targets or obstacles
• Deletion of targets or obstacles
• Path-planning request after exploration

After a UAV changed the configuration space through ex-
ploration it requests a new path. In that case the central
control station recalculates the potential values of the global
configuration space. Obviously, even this leads to frequent
recalculations of C. In addition, the calculation load depends

directly on the number of active UAVs. Therefore, the
recalculation step must be performed efficiently.

The update equation is used mainly to lower the number
of local minima. A complete calculation of the configuration
space means in our case that no local minima are left. The
lowering of the number of local minima is advantageous
since trajectories are calculated in such a way that they lead
to minima, even if they are only local minima. For the UAVs
this results in a detour or in the worst case the UAVs get
trapped in a local minimum. Leaving a local minimum is
costly as it has to be detected and a safe path out of the
minimum has to be calculated.

The costs to calculate the configuration space are directly
related to the number of nodes to be updated. Hence, a
quadtree was used instead of a grid, which is very common
for representing a terrain when using potential fields. To
reduce the costs for neighbor finding in the tree–which is
necessary for the update equation and the path planning
methods–the tree was extended to a linear quadtree. To
transform a tree into a linear quadtree a unique code and the
level of a node is saved for each leaf. An algorithm, which
finds neighbors with constant time complexity on average
was implemented. This is a further improved version of [20]
with the focus on reducing tree editing costs. With only
one configuration space for all UAVs, it is crucial to have
a data structure, which can be modified easily–usually this
is done several times per second. The modification must be
done much more frequently than the potential calculations
to respect changes in the terrain, like newly recognized
obstacles. In contrast to [20] no additional information about
the level difference to the neighbors is stored in the nodes.
This significantly increases the editing speed.

Even with this cost reductions, a complete calculation of
the configuration space is expensive. Prestes et al. showed
[4] that a complete absence of local minima is not necessary
for feasible path planning. They used a constant iteration
depth to reduce the costs. Based on their results we estab-
lished break conditions that also allow a dynamic number
of leaves. The iterative calculation stops if:

• the potential values remain unchanged,
• the number of local minima is less than 0.5% of the

number of updated leaves,
• the iteration depth is greater than or equal to 10% of

the number of updated leaves.

The last condition guarantees the termination of the update
method. Tests showed that these break conditions lead to an
appropriate tradeoff between number of local minima and
calculation costs.

Furthermore, leaves with potential values greater than or
equal to 0.999 are not considered as local minima. Tests
showed that such values usually occur in the neighborhood
of newly explored obstacles. Usually such potential values
are greater than the potential value of areas, which the UAVs

361

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

take. This leads to a significant reduction of the calculation
costs.

If a UAV gets trapped in a local minimum, the A∗-
algorithm is used to leave it. Therefore, the A∗ searches
through the quadtree to find an unexplored area. It takes the
first area found and sets it as the next target. Afterwards, a
goal-oriented path planning to this area will be done.

For further cost reduction in non-goal-oriented mode,
an activation window was established. First all nodes are
inactive. After the exploration of an area the newly explored
leaves are marked as active. After a given time, leaves can
be marked as unexplored again and are no longer active. The
first approximation and the following updates will be done
only for active leaves.

D. Implementation details

The implementation of the calculation algorithm consists
of three main methods. The first method, which is shown as
pseudo-code in Listing 1, is used to start the first approx-
imation and to ensure an iterative accomplishment of the
update equation until the break conditions are reached. As
our first approximation is based on goal distances we have
to set up goals even in exploratory navigation. Therefore, we
calculate the nearest unexplored or unknown space for each
UAV and set this spaces as next targets to be reached. This
is done in the method SetNearestUnexploredAsNextGoal.
While processing the loop for the update equation we check
the number of local minima each cycle. Therefor the method
CheckNumberMinima is called, which checks for each node
to be updated if there exists at least one neighbor node
with a lower potential value. If one of the break conditions
introduced in Section V-C is fulfilled the while loop, which
calls the update equation, stops.

CalculatePotentialField()
{
if(exploratory_navigation)

SetNearestUnexploredAsNextGoal()

leaf_number = 0
FirstApproximation(Rootnode)

max_minima = update_list.length() * 0.005
number_minima = max_minima + 1
max_depth = update_list.length() * 0.1
iteration_depth = 0
value_change = 1

while(number_minima > max_minima &&
iteration_depth <= max_depth &&
value_change)

{
iteration_depth++
value_change = UpdateEquation()
number_minima = CheckNumberMinima()

}

}

Listing 1. Pseudo-code of the main function for potential field calculations.

FirstApproximation(Treenode)
{
if(Treenode not leaf)
{
for(i = 0; i < 4; i++)

FirstApproximation(Treenode.child(i))
return

}

if(Treenode.space == Target)
{

Treenode.potential = 0
return

}

if(Treenode.space == Obstacle)
{

Treenode.potential = 1
return

}

if((Treenode.space == Unexplored ||
Treenode.space == Unknown) &&
exploratory_navigation)

{
Treenode.potential = 0
return

}

update_list[leaf_number] = Treenode
update_list[leaf_number].potential = log(

target_distance)/log(terrain_diagonal)

if(Treenode.space == Unexplored ||
Treenode.space == Unknown)

update_list[leaf_number].potential *= xi

SaveNeighborNodes()

for each(direction)
{

distance[direction] = SumDirections()
distance[direction] /=
num_neighbors[direction]

}

update_list[leaf_number].udr = distance[up]*
distance[down]*distance[right]

update_list[leaf_number].udl = distance[up]*
distance[down]*distance[left]

update_list[leaf_number].rlu = distance[right]*
distance[left]*distance[up]

update_list[leaf_number].rld = distance[right]*
distance[left]*distance[down]

update_list[leaf_number].direction =
update_list[leaf_number].udr

+ update_list[leaf_number].udl
+ update_list[leaf_number].rlu
+ update_list[leaf_number].rld

leaf_number++
}

Listing 2. Pseudo-code of the function to calculate the first approximation

The method used to calculate the first approximation
(Listing 2) has several additional requirements. We move
recursively through the complete tree but only the leaves
are considered. First, we check if a node consists of target
space, occupied space or in exploration mode unexplored

362

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

space or unknown space. If so, we bound the potential value
of the leaf with the corresponding value. If not, we need to
calculate an unbound value for the leaf. In that case we use
the first approximation equation from Section V-A.

We profit from the fact that there are no quadtree changes
during the calculations. We use this property in several ways.
As it makes no sense to move through the complete quadtree
in each update iteration we first set up a list, where we save
pointers to the leaves to be updated later, called update list.
As there are no tree changes also the neighbors of the leaves
do not change. That makes it possible to calculate them once
and save pointers to the neighbor nodes using a method
called SaveNeighborNodes. It is possible for a node to have
multiple neighbors in some directions. In that case we use
an approximation for the following update equation as we
only save the mean distance to the neighbor nodes in each
direction. Finally, we calculate all relevant distances needed
for the update equation once and save them, too.

UpdateEquation()
{
value_change = 0
for(i = 0; i < update_list.length(); i++)
{

old_potential = update_list[i].potential

for each(direction)
{

potential[direction] = SumPotentials()
potential[direction] /=

update_list[i].num_neighbors[direction]
}

new_potential = update_list[i].udr *
potential[right]

new_potential += update_list[i].udl *
potential[left]

new_potential += update_list[i].rlu *
potential[up]

new_potential += update_list[i].rld *
potential[down]

update_list[i].potential = new_potential /
update_list[i].distances

value_change+= |old_potential - new_potential|
}

return value_change
}

Listing 3. Pseudo-code of the function to calculate the update equation

As we made several calculations, needed for the update
equation, which is shown in Listing 3, once after calculating
the first approximation, the implemented update equation
itself is not as complex as it seems to be in Section V-B.
We now can use the update list to access the nodes to be
updated directly. In case we have several neighbor nodes
in one direction we made an approximation in such a way
that we use the mean potential value of the neighbors for
calculation. After that we just have to multiply the resulting
potential values with the relevant distances from Equation 2,

sum them, and divide the result through the given complete
distance value. Finally, we calculate the difference between
the old and the new potential value to check if the potential
values change or if a break condition is fulfilled.

VI. PATH PLANNING APPROACH

In this section we present our approach for path plan-
ning. We distinguish between reactive path planning for
exploratory navigation and global goal-oriented path plan-
ning. Additionally, in case of goal-oriented path planning a
coordination method is introduced.

In contrast to the calculation of potential values φ, the
path planner consider all leaves in all eight directions of the
current leaf.

A. Planning paths for single UAVs

Based on the potential field stored in the configuration
space C as described in the previous section, discrete path
planning is possible. Here two different approaches are
utilized:

1) Gradient based path planning for exploratory naviga-
tion (non-goal-oriented)

2) The A∗-algorithm for goal-oriented path planning
Since the UAVs are considered to be heterogeneous, e. g., in
terms of camera or other equipment, each UAV must be able
to reach every point of the terrain. Therefore, it is impossible
to assign subareas of the terrain to a single UAV.

In goal-oriented mode sometimes an additional explo-
ration should be done, even if it leads to detours. The
length of the detours can be limited. Therefore, two ξ-values
are used. One is used during the potential field calculation
(Section V-A), the other by the A∗-algorithm. Depending on
the priority of the goal, the algorithm uses Equations 3 or 4
to calculate the costs (the selection is explained below).

f = fpre + φ(pnew) · ξ +
τgoal
2d

. (3)

f = fpre + τpre + τgoal . (4)

The costs to fly to the current leaf are f . The current
leaf is the leaf, which is currently considered by the path
planner. The costs for the start leaf are set to 0. The less
f is, the more attractive the leaf becomes for the path
planner. Furthermore, fpre describes the costs to reach the
predecessor. The potential value of the current node is
φ(pnew) and for unexplored regions ξ|0 < ξ ≤ 1 is used
to lower the costs even more, dependent on the role of the
UAV (ξ = 1 for explored regions).

Additionally, the algorithm uses two distances for the
calculation: an estimated distance from the current leaf to the
goal leaf, τgoal , and the actual distance from the predecessor
to the current leaf, τpre .

Equation 3 is used, if the goals are of low priority (P ≤
4). In this case the costs depend mostly on the potential
values and unexplored regions become more attractive. The

363

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

complete diagonal of the terrain d is used to normalize the
distance values to values between 0 and 1. Dividing by the
double diagonal lowers the values even more, which makes
the potential values more important for path planning.

Equation 4 is used, if the goals are of high priority (P >
4). In this case it is necessary to reach the goal as soon as
possible. The equation achieves this by setting the costs in
such a way that the shortest path will be computed.

B. Goal-oriented coordination of multiple UAVs

It is possible that multiple UAVs set the same goal as the
next task to process. This behavior should not be completely
avoided as a UAV, which sets the goal later than others, may
be closer to it, which reduces the time to reach it. After a
UAV reached the goal the others are informed that the goal
was reached and they remove it from their lists.

However, if multiple UAVs, which are close to each other,
select nearly simultaneously the same goal as next goal, this
behavior is not efficient. In this case these UAVs would
calculate nearly the same paths. Parallel exploration would
neither yield considerable information gain, nor would the
goal be reached significantly earlier. To avoid this undesired
behavior an error handling was implemented. For the han-
dling distUAV denotes the distance between a subsequent
UAVi and the position of the UAV1, which did the first
calculation for this goal at time T1. Additionally, distG1

represents the distance of UAV1 to the goal at T1. tt denotes
the minimum time UAV1 needs to reach the goal. If a UAV
calculates a path to the goal position G1 at time T1 and
another UAV calculates a path to G1 at time Ti as well, the
error handling starts. This handling avoids the calculation of
nearly equal paths. It takes into account the points in time
T1 and Ti as well as the distances distUAVi and distG1 in
the following way:(

Ti − T1 <
tt
2

)
∧
(
distUAV

2
< distG1

)
.

If the formula becomes true, a subsequent UAV i sets the
priority for this goal to 0 and moves it to the end of its
scheduling list. Hence, even if the UAV, which has set the
goal first is not able to reach it, no starvation of that goal
would occur.

A more simple way would be to avoid multiple path
planning to a single goal. But a goal should be processed
as soon as possible and as already mentioned, the first UAV,
which makes a path planning, is not necessarily that one,
which can reach the goal first. Goals with equal priority
are sorted in an ascending order with respect to the UAV’s
distance to the goals, such that the possible detour to start
flying to a goal, which is reached by another UAV first
should be not quite as long.

The information about the used terrain can be obtained
in two ways. One way is to get the data through third party
applications like satellite images. Additionally, the UAVs

have on-board cameras for the exploration of unknown areas
and to update the information available so far.

VII. RESULTS

For financial reasons the approach was implemented first
as a simulation environment and several tests were done
to check the costs for calculation and to check if it is
able to fulfill all given requirements. The implementation
consists of a control station, which models the world and
visualizes it in 3D. It was implemented in C++ using
OpenGL. Additionally, UAVs were simulated, which connect
to the simulation environment using TCP/IP.

In this section we present several tests of the designed
system. The focus of our tests was the exploration of terrains.
Goal-oriented path planning with parallel exploration was
neglected as those tests are presented in [21]. We mainly
focus on the time needed to explore given terrains using
different numbers of UAVs and the costs for the potential
field calculations.

The used terrains were partitioned into Cfree and CBi in
such a way that the UAVs were able to reach the complete
free space.

The following tests were done to demonstrate that the
system assures a complete exploration of a given terrain.
Even by using only a single configuration space the use of
multiple UAVs leads to faster exploration rates. Additionally,
by using the cost reduction methods introduced in the
previous section all calculations can be done online. For
testing, a 3D simulation was created, which represents the
terrain with the corresponding configuration space and the
UAVs. The simulations were run on a desktop PC with a
dual core 2.6 GHz CPU.

The tests include the calculation costs for C. The time
needed to calculate the configuration space during the
different tests is shown in Figure 8(c), Figure 9(c) and
Figure 10(c). Each calculation contains the following tasks:
• Assignment of the next terrains to be explored
• Bind goal space and occupied space
• Calculation of the distances to the next goal space
• Calculation of the first approximation
• Determining all neighbors of the relevant leaves
• Update of the potential values
• Check for break conditions

A. Used terrains

The tests were executed on two fictive maps represented as
heightmaps (monochrome pictures, see Section III-A) with
simulated UAVs. For exploratory navigation the following
input parameter are relevant:
• Dimensions of the terrain
• Speed of the UAV
• Maximum altitude
• Size of the heightmap in pixels
• Maximum depth of the quadtree

364

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Distribution of Cfree and CBi

• Number of UAVs

The first terrain (Figure 6) was represented through a
heightmap with a resolution of 256 × 256 pixels. The
underlying quadtree had a maximum resolution of 2 × 2
pixels per leaf, which led to a tree depth of 7. A terrain
of 1000 m × 1000 m × 160 m was simulated. The UAVs
had a maximum altitude of 140 m. So, everything above
140 m was treated as occupied space. In our test scenarios C
was partitioned into Cfree (72%) and CBi (28%). The UAVs
flew with a speed of 60 km/h and had a favorite height of
40 m over ground. To explore the terrain, the UAVs used a
camera with a flare angle of 90◦. When using such a camera
the UAVs were able to explore 5026.55 m2 at one moment
when they had reached their favorite height.

Figure 6. The first test terrain. The black areas are occupied space, the
remaining areas are free space.

The second terrain (Figure 7) was represented through
a heightmap with the same resolution. The underlying
quadtree had a maximum resolution of 2×2 pixels per leaf.
A terrain of 1000 m×1000 m×200 m was simulated. The
UAVs had a maximum altitude of 120 m. So, everything
above 120 m was treated as occupied space. In our test
scenarios C was partitioned into Cfree (65%) and CBi (35%).
The UAVs flew with a speed of 60 km/h and had a favorite
height of 20 m over ground. To explore the terrain the UAVs
used a camera with a flare angle of 90◦. When using such a
camera the UAVs were able to explore 1256.64 m2 at one
moment when they had reached their favorite height.

The environment is able to consider the time points at
which an area was explored. This ensures that areas, which
were explored a given time ago become unexplored again
to check whether they hold new information. During the
following tests this behavior was disabled and areas explored
once never became unexplored again.

Figure 7. The second test terrain. The black areas are occupied space, the
remaining areas are free space.

B. Test results: first heightmap

Several tests are presented in this paper. The first test
series consists of exploring the terrain. The exploration was
done by 1, 3, 6 and 9 UAVs. The partitioning of the terrain
was unknown at the beginning. The UAVs had to recognize
the occupied space through their cameras. For all tests the
exploration was non-goal-oriented. Therefore, no areas had
to be explored with high priority and the exploration con-
tinued as long as unexplored terrain reachable by the UAVs
existed. Mostly, the gradient method was used to reduce the
costs for path planning. Additionally, the A∗-algorithm was
used whenever UAVs got trapped in local minima, which
occurred very rarely due to the use of harmonic functions
for potential field calculation (Section V-A). Figure 8 depicts
the results of the first test series.

Figure 8(a) shows the percentage of explored terrain
covered relative to the exploration duration. In every test
the complete terrain was explored. By using three UAVs
instead of one only half the time for the exploration was
needed. Increasing the number of UAVs always leads to a
lower time needed for exploration. But tripling the number
of UAVs again to nine did not reduce the exploration time by
half again, because the more UAVs were used the more often
they constrained each other and collisions had to be avoided.
This needs time in which the UAVs are not available for
exploration. Another point is that the less unexplored terrain
is left the more UAVs start to fly to the same terrain to
explore it.

Additionally, the figure shows that until an exploration
rate of 70% was reached there are only a few time spans in
which the UAVs did not explore large areas of the terrain.
This lack-of-exploration behavior occurred after the UAVs
explored a large terrain and had missed a few small areas or
when the next unexplored area was far away from the UAVs.

365

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

ex
p
lo

re
d
 t

er
ra

in
 (

%
)

time (min)

1 UAV
3 UAVs
6 UAVs
9 UAVs

(a) Percentage terrain covered

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30

n
u
m

b
er

 o
f

ex
p
lo

re
d
 l

ea
v
es

time (min)

1 UAV
3 UAVs
6 UAVs
9 UAVs

(b) Number of utilized leaves for the calculations of C

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30

c
a
lc

u
la

ti
o
n
 t

im
e
 (

m
s)

time (min)

1 UAV
3 UAVs
6 UAVs
9 UAVs

(c) Calculation times for single calculations of C

Figure 8. Test result for the first test series

This shows that there is some room for further improvement
for faster exploration.

Figure 8(b) shows the number of explored leaves related
to the exploration duration. These leaves are those, which
have to be updated. It shows that a maximum of about
1200 leaves had to be updated. The number of used leaves
increased very fast at the beginning and decreased after a
while because the the quadtree’s recombining. As shown in
the figure the maximum number of leaves remains nearly
the same, independent of the number of used UAVs.

Figure 8(c) depicts the costs for the single calculations
of the complete configuration space. The costs rise with

the exploration rate because of the activation window. The
more areas are explored, the more leaves are active and
have to be considered for the calculations. But besides this,
the costs are relatively constant except for a few spikes.
They increase with the number of UAVs, which makes the
environment more complex and leads to higher costs. For
instance, recalculation is done every time a UAV requests
a new path for exploration. So, more UAVs lead to more
recalculations, which also increases the complete calculation
costs. But the costs are in most cases below 20 ms, which
allows online calculations.

A second test series was done for the first heightmap (see
Figure 6). Six tests were made to check whether if it makes
a difference if the terrain is known or not at the beginning.
Additionally, it was checked if it makes a difference if all
UAVs start from the same position or from different ones.

For the tests the following six scenarios were created:
1) Test 1: 1 UAV in known terrain.
2) Test 2: 3 UAVs in known terrain and all started from

the same position.
3) Test 3: 3 UAVs in known terrain with three different

start positions.
4) Test 4: 1 UAV in unknown terrain.
5) Test 5: 3 UAVs in unknown terrain and all started from

the same position.
6) Test 6: 3 UAVs in unknown terrain with three different

start positions.
Table IV gives an overview of the results. The following

values were determined:
• test: The number of the test with the properties de-

scribed above.
• test duration: The duration it took to explore the terrain.
• iteration depth ∅: The average number of iterations for

the calculation of the configuration space.
• number calculations: The number of recalculations of

the configuration space.
• costs complete: The complete time needed to make all

recalculations of the configuration space.
• costs ∅: The average time a recalculation of the confi-

guration space took.
• diff ∅: The average time between two recalculations of

the configuration space.
As expected, the tests with unknown terrain (tests 4 - 6)

needed more frequent recalculations of C. A recalculation
was done each time new occupied space was detected, what
never would happen in known terrains as the occupied space
is known at the beginning.

By the use of the break conditions and the introduction of
an activation window (Section V-C), a single calculation of
the configuration space took relatively little time. Except in
the second test case the costs were on average less than
5 ms and this result shows that the calculations can be
done before each path planning without causing a noticeable

366

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

test test iteration number costs costs diff
duration depth calcula- complete ∅ ∅

(min.) ∅ tions (ms) (ms) (s)
1 33.75 6.27 92 437 4.75 22.01
2 17.08 7.49 146 861 5.90 7.02
3 19.16 8.14 142 615 4.33 8.10
4 29.33 9.63 302 1337 4.43 5.83
5 13.83 7.99 303 1508 4.98 2.74
6 16.50 8.95 345 1672 4.85 2.87

Table IV
RESULTS OF THE SINGLE TEST CASES FOR THE SECOND TEST SERIES

ON THE FIRST TERRAIN.

delay. The higher costs in test case two are the result of
several repeatedly computed local minima, which needed
many iterations of the update equation to vanish. Because
of the higher number of explored nodes at the end of the
exploration, the single iterations took a relatively long time.

Since a recalculation of the configuration space takes
place only before a new path for exploratory navigation
is planned, the frequency of recalculating the configuration
space was lowered. The first test case needed the fewest
number of recalculations. In this test a recalculation was
done on average every 22.01 seconds. In the worst case
every 2.74 seconds (in test case five) such a recalculation
took place.

The results show that the disadvantage of harmonic
functions–the high calculation costs–compared to other
methods for potential field calculation, which often use
linear superpositioning, were reversed.

In Figure 9 the test results for the first heightmap are
depicted. Figure 9(a) shows the exploration rate compared
to the simulation time, which starts at 0 and is measured
in real-time. Figure 9(b) shows the number of nodes, which
are needed to calculate the configuration space at the single
time points. This number has direct influence on the single
calculation costs, which are shown in Figure 9(c).

One can see that the exploration was made relatively
steady over time, especially during the tests with three
UAVs. It made no big difference if all UAVs started from
the same position or from three different start positions. The
use of three UAVs made an advantage up to an exploration
rate of 99% concerning the exploration speed, compared
to the use of one single UAV. After a simulation time of,
e. g., 7 minutes in the first test case, one single UAV had
explored 39.65% of the terrain. When three UAVs made
the exploration using the same start parameters they had
explored 80.13% in test case two, respectively 81.39% of
the terrain in test case three, in the same time span.

In test cases one and four, where only one UAV was used,
it explored the terrain with a steady exploration rate until an
exploration level greater than 85% was reached. After that,
the exploration rate decreased dependent on time due to the
fact that the UAV had to fly over explored terrains to reach
the residual unexplored areas.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

ex
p
lo

re
d
 t

er
ra

in
 (

%
)

time (min)

1 UAV, terrain known
3 UAVs, terrain known, 1 start position

3 UAVs, terrain known, 3 start positions
1 UAV, terrain unknown

3 UAVs, terrain unknown, 1 start position
3 UAVs, terrain unknown, 3 start positions

(a) Percentage terrain covered (first heightmap)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35

n
u
m

b
er

 o
f

ex
p
lo

re
d
 l

ea
v
es

time (min)

1 UAV, terrain known
3 UAVs, terrain known, 1 start position

3 UAVs, terrain known, 3 start positions
1 UAV, terrain unknown

3 UAVs, terrain unknown, 1 start position
3 UAVs, terrain unknown, 3 start positions

(b) Number of utilized leaves for the calculations of C (first heightmap)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25 30 35

ca
lc

u
la

ti
o
n
 t

im
e

(m
s)

time (min)

1 UAV, terrain known
3 UAVs, terrain known, 1 start position

3 UAVs, terrain known, 3 start positions
1 UAV, terrain unknown

3 UAVs, terrain unknown, 1 start position
3 UAVs, terrain unknown, 3 start positions

(c) Calculation times for single calculations of C (first heightmap)

Figure 9. Test result for the first heightmap

In test case four such a steady exploration rate was not
reached permanently. During these tests the UAV had to
fly over explored terrains to reach the residual unexplored
areas when only a relatively small portion of the terrain
was explored. This behavior was observed only for a certain
time span. After that, the exploration rate was steady again.
Apart from that, a complete exploration of the free space
was reached in each test.

Figure 9(c) depicts the costs to calculate the configuration
space. One can see again, that the costs rise with the
exploration rate of the terrain. This is due to the use of
the activation window, which activates more leaves to be

367

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

considered for the calculation of C. This behavior can also
be seen in Figure 9(b), which depicts the number of utilized
leaves for the single calculations. As mentioned before, the
behavior that explored terrains can become unexplored again
was disabled. Therefore, the number of active nodes only
decrease when they are combined.

The calculation costs for C are, apart from a few spikes,
consistent. The only serious anomaly was in the sixth test
with 19 ms. This anomaly was caused by several local mi-
nima, which needed several iterations to vanish. Except for
this spike all other recalculations were between ≤ 1 ms and
10 ms. This shows that no noticeable delay of the exploration
occurred, due to the calculations of the configuration space.
Combined with the gradient method, which ensures that a
route can be started after eight comparisons, this ensures fast
path planning.

C. Test results: second heightmap

The six tests from the second test series were repeated on
a second terrain (Figure 7) to ensure that they hold for other
terrains as well. They are divided in the same six single tests
as for the first heightmap.

Table V gives an overview of the results. The values that
were determined are the same as for the first heightmap.

test test iteration number costs costs diff
duration depth calcula- complete ∅ ∅

(min.) ∅ tions (ms) (ms) (s)
1 35.50 7.18 113 334 2.96 18.85
2 19.50 8.12 155 624 4.03 7.55
3 21.16 10.91 160 659 4.12 7.94
4 22.00 12.61 146 646 4.42 9.04
5 7.75 9.40 141 710 5.04 3.30
6 6.66 5.25 150 625 4.17 2.67

Table V
RESULTS OF THE SINGLE TEST CASES FOR THE SECOND TERRAIN.

The results are mostly the same as those we achieved
on the first heightmap. Also, using this heightmap the time
for calculating the configuration space does not cause any
noticeable delay for path planning. On average the time was
below 5 ms except for the fifth test. In the fifth test they
were with an average of 5.04 ms not considerably higher.

It should be noted, that when using three UAVs instead
of one single UAV in unknown terrain, the exploration time
was only one-third. This is not due to the fact that the single
UAV had to fly much more often over explored terrain than
in other tests. But the reason for this is that a high steady
exploration rate was reached using three UAVs all the time
(see Figure 10(a)).

When using this terrain, the frequency of recalculations
of the configuration space was relatively low. It was similar
to the first heightmap in such a way that the fewest recalcu-
lations were made in the first test case where only one UAV
was used. A recalculation was done on average every 18.85
seconds. The most frequent recalculations were done in the

sixth test case, where every 2.67 seconds a recalculation
took place.

Figure 10 shows the results of the test cases for the second
heightmap graphically. Figure 10(a) depicts the exploration
over time, Figure 10(b) depicts the number of utilized
leaves, which are relevant for the duration to calculate the
configuration space. Finally, Figure 10(c) shows the duration
of the single calculations of the configuration space.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

ex
p
lo

re
d
 t

er
ra

in
 (

%
)

time (min)

1 UAV, terrain known
3 UAVs, terrain known, 1 start position

3 UAVs, terrain known, 3 start positions
1 UAV, terrain unknown

3 UAVs, terrain unknown, 1 start position
3 UAVs, terrain unknown, 3 start positions

(a) Percentage terrain covered (second heightmap)

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35 40

n
u
m

b
er

 o
f

ex
p
lo

re
d
 l

ea
v
es

time (min)

1 UAV, terrain known
3 UAVs, terrain known, 1 start position

3 UAVs, terrain known, 3 start positions
1 UAV, terrain unknown

3 UAVs, terrain unknown, 1 start position
3 UAVs, terrain unknown, 3 start positions

(b) Number of utilized leaves for the calculations of C (second heightmap)

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40

ca
lc

u
la

ti
o
n
 t

im
e

(m
s)

time (min)

1 UAV, terrain known
3 UAVs, terrain known, 1 start position

3 UAVs, terrain known, 3 start positions
1 UAV, terrain unknown

3 UAVs, terrain unknown, 1 start position
3 UAVs, terrain unknown, 3 start positions

(c) Calculation times for single calculations of C (second heightmap)

Figure 10. Results for the second heightmap

Figure 10(a) shows the exploration rates of the terrain for
the six test cases dependent on simulation time. It is shown
that similar to the first heightmap, when using three UAVs, a
steady exploration rate was reached in unknown terrain even

368

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

during the complete exploration. In the test cases with known
terrain the exploration rate decreased when an exploration
level of nearly 80% was reached. The worst rate, which
led to the longest time needed to explore the complete free
space, was in test one, when using only one UAV in known
terrain. Similarly to the tests done on the first heightmap,
in every test a complete exploration of the free space was
reached.

Figure 10(c) shows the costs to calculate the configuration
space for the six test cases. It is shown that the calculation
costs were relatively equal, except for the fifth test case with
three UAVs in unknown terrain, where several spikes appear.
In this test scenario the last calculation of the configuration
space was the most costly one (22 ms). But even this is
an acceptable value regarding a recalculation every few
seconds.

When considering the results one can conclude that the
disadvantage of calculating a potential field based on har-
monic functions, the high calculation costs, vanished. This
was due to the use of convergence criteria (Section V-C), the
use of a quadtree (Section IV-A) to reduce the number of
utilized leaves instead of using a grid and the introduction of
an activation window (Section V-C). Hence, the advantages
of harmonic functions can be exploited without suffering
from their disadvantage. Always achieving an exploration
rate of 100% of the reachable terrain shows that our path
planning approach leads to good results even in complex
and dynamic terrains.

The frequency of the recalculations of the configuration
space shows that the system is a cheap one in respect of the
calculation costs. This made it possible to use the designed
approach in embedded systems with limited hardware.

Additionally, it was shown that the explored area in-
creased with a steady rate in most cases and the UAVs had
to fly relatively rare through explored terrain to reach un-
explored terrain. In the cases where this behavior occurred,
the exploration rate decreased. So, this is one issue to be
solved, to decrease the time needed to explore terrains.

VIII. CONCLUSION AND FUTURE WORK

The motivation for this paper was to design an efficient
path planning system, which can be used to coordinate multi-
ple UAVs to explore different disaster areas. The requirement
was to create an efficient and robust system to coordinate
multiple UAVs, including path planning, exploratory naviga-
tion and simultaneous task allocation, using only one global
configuration space.

A hybrid approach for UAV coordination and efficient
exploration of disaster areas was presented. It uses arti-
ficial potential fields, combined with an informed search
algorithm, and a role system. Additional methods like a
quadtree, an activation window, and break conditions were
used to find a tradeoff between the number of local minima
and computational costs. Until an exploration level of more

than 70% was reached, a nearly steady exploration rate
was achieved. Three UAVs need only half of the time for
exploration in comparison to the time one single UAV needs.

The costs to compute the configuration space were de-
creased such that an online calculation without any no-
ticeable delay was possible. This is important for highly
dynamic environments, where the calculation has to be
faster than the changes of the configuration space, in order
to calculate efficient paths. In combination with the total
exploration of the terrain, this leads to a robust and efficient
system.

Future work is to lower the exploration time even more
when using multiple UAVs. This can be done by more active
coordination methods, e. g., explicit communication between
the UAVs. Another focus of future work is to achieve greater
autonomy. For this purpose an interaction of the UAVs with
each other will be implemented to replace the central control
station. This should be done in such a way, that using more
UAVs leads to faster exploration of the complete terrain.

Another part of future work is to advance the potential
field to n dimensions by including values like exploration
times of the leaves and UAV properties into the single
potentials. The next step is to extend the potential field to the
third dimension of the terrain. Using a 3D potential field will
allow the UAVs to move inside of buildings and fly, e. g.,
below bridges without any additional calculations.

An interesting point of investigation would be to decen-
tralize the field such that each UAV calculates only that part
of it, which is relevant for the UAV. In that case properties
like fuel level could be included into the potential field
to ensure that a UAV flies only to regions of the terrain
from which it can fly back with its remaining fuel. Such a
modeling of the potential field should reduce the number of
methods, which are necessary to control a real UAV.

One step of our research project is to apply the approach
to real UAVs. The achieved cost reduction enables the
system to be implemented even on embedded systems.
Of course, physical properties of real UAVs have to be
considered even more. Additionally, sensor errors and the
UAV behavior, e. g., in strong crosswind may lead to further
need for adaptations when using real UAVs.

When applying the approach to physical UAVs we also
need to consider non-holonomic constrains. This will lead
to much smoother paths as the UAVs do not have to stop
for course changes.

It is planned to extend the skills of the UAVs by intro-
ducing an inter-UAV communication, which makes decen-
tralized coordination possible. This leads to the possibility
that methods for formation flights can be realized. Several
methods for this may be evaluated, e. g., the use of consen-
sus finding [22] in communication graphs or adapting the
potential field to hold information for building a formation,
e. g., by using bifurcating potentials [23].

369

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ACKNOWLEDGMENT

This work was conducted in the BMBF funded project
SOGRO3.

REFERENCES

[1] C. Rasche, C. Stern, W. Richert, L. Kleinjohann, and
B. Kleinjohann, “Combining autonomous exploration, goal-
oriented coordination and task allocation in multi-uav scenar-
ios,” ICAS, The Sixth International Conference on Autonomic
and Autonomous Systems, March 2010.

[2] O. Khatib, “Real-time obstacle avoidance for manipulators
and mobile robots,” IJRR, vol. 5, no. 1, pp. 90–98, 1986.

[3] E. Prestes, M. E. Paulo, M. Trevisan, and M. A. P. Idiart,
“Exploration technique using potential fields calculated from
relaxation methods,” IEEE/RSJ International Conference on
Intelligent Robots and Systems, vol. 4, pp. 2012–2017, 2001.

[4] E. Prestes, P. M. Engel, M. Trevisan, and M. A. P. Idiart,
“Exploration method using harmonic functions,” Robotics and
Autonomous Systems, vol. 40, no. 1, pp. 25–42, 2002.

[5] M. Trevisan, M. A. P. Idiart, E. Prestes, and P. M. En-
gel, “Exploratory navigation based on dynamical boundary
value problems,” Journal of Intelligent and Robotic Systems,
vol. 45, no. 2, pp. 101–114, February 2006.

[6] J. Hagelbäck and S. J. Johansson, “Using multi-agent po-
tential fields in real-time strategy games,” in AAMAS ’08:
Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems. Richland,
SC: International Foundation for Autonomous Agents and
Multiagent Systems, 2008, pp. 631–638.

[7] R. Sawhney, K. Madhava, and K. Srinathan, “On fast ex-
ploration in 2d and 3d terrains with multiple robots,” in
AAMAS. Richland, SC: International Foundation for Au-
tonomous Agents and Multiagent Systems, 2009, pp. 73–80.

[8] D. Jung, J. Ratti, and P. Tsiotras, “Real-time implementation
and validation of a new hierarchical path planning scheme
of UAVs via hardware-in-the-loop simulation,” Journal of
Intelligent and Robotic Systems, vol. 54, no. 1-3, pp. 163–
181, March 2009.

[9] I. Nikolos, K. Valavanis, N. Tsourveloudis, and A. Kostaras,
“Evolutionary algorithm based offline/online path planner for
uav navigation,” IEEE SMC, vol. 33, no. 6, pp. 898–912, Dec.
2003.

[10] M. Kazemi, M. Mehrandezh, and K. Gupta, “An incremental
harmonic function-based probabilistic roadmap approach to
robot path planning,” Proceedings of the 2005 IEEE Interna-
tional Conference on Robotics and Automation, April 2005.

[11] J. Barraquand, B. Langlois, and J. C. Latombe, “Numerical
potential field techniques for robot path planning,” IEEE
Transactions on Systems, Man and Cybernetics, vol. 22, no. 2,
pp. 224–241, Mrz/April 1992.

3“Sofortrettung bei Großunfall mit Massenanfall von Verletzten”, sup-
ported by the Bundesministerium für Bildung und Forschung (BMBF)
13N10164.

[12] K. Aizawa, K. Motomura, S. Kimura, R. Kadowaki, and
J. Fan, “Constant time neighbor finding in quadtrees: An
experimental result,” 3rd International Symposium on Com-
munications, Control and Signal Processing, 2008. ISCCSP
2008., pp. 505–510, March 2008.

[13] C. Connolly, J. Burns, and R. Weiss, “Path planning using
laplace’s equation,” IEEE ICRA, vol. 3, pp. 2102–2106, Mai
1990.

[14] J. S. Zelek, “A framework for mobile robot concurrent
path planning and execution in incomplete and uncertain
environments,” in Proceedings of the AIPS-98 Workshop on
Integrating Planning, Scheduling and Execution in Dynamic
and Uncertain Environments, 1998.

[15] P. G. Doyle and J. L. Snell, “Random walks and electric
networks,” 2000. [Online]. Available: http://www.citebase.
org/abstract?id=oai:arXiv.org:math/0001057

[16] C. Connolly, “Applications of harmonic functions to robotics,”
in IEEE ISIC, Aug 1992, pp. 498–502.

[17] D. Beck, A. Ferrein, and G. Lakemeyer, “Landmark-based
representations for navigating holonomic soccer robots,” in
RoboCup 2008: Robot Soccer World Cup XII, ser. Lecture
Notes in Computer Science, vol. 5399. Springer Berlin /
Heidelberg, 2009, pp. 25–36.

[18] E. C. Zachmanoglou and D. W. Thoe, Eds., Introduction
to Partial Differential Equations with Applications. Dover
Publications, Inc., 1986.

[19] J. S. Zelek, “A framework for mobile robot concurrent path
planning and execution in incomplete and uncertain environ-
ments,” in AIPS, 1998.

[20] K. Aizawa, K. Motomura, S. Kimura, R. Kadowaki, and
J. Fan, “Constant time neighbor finding in quadtrees: An
experimental result,” in Communications, Control and Signal
Processing, 2008. ISCCSP 2008. 3rd International Sympo-
sium on, March 2008, pp. 505–510.

[21] C. Rasche, C. Stern, L. Kleinjohann, and B. Kleinjohann,
“Role-based path planning and task allocation with explo-
ration tradeoff for uavs,” ICARCV, 11th International Confer-
ence on Control, Automation, Robotics and Vision, December
2010.

[22] W. Ren, W. R. Beard, and T. W. McLain, “Coordination
variables and consensus building in multiple vehicle
systems,” in Cooperative Control, ser. Lecture Notes in
Control and Information Sciences, vol. 309. Springer
Berlin / Heidelberg, 2004, pp. 439–442. [Online]. Available:
http://www.springerlink.com/content/m2gpyjh0mkq4uapc/

[23] D. J. Bennet and C. R. McInnes, “Distributed control
of multi-robot systems using bifurcating potential fields,”
Robotics and Autonomous Systems, vol. 58, no. 3, pp.
256 – 264, 2010, towards Autonomous Robotic Systems
2009: Intelligent, Autonomous Robotics in the UK. [On-
line]. Available: http://www.sciencedirect.com/science/article/
B6V16-4XT3HPP-2/2/4338e40c022f12a0582b3655f7a51152

370

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

