International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http.//www.iariajournals.org/software/

371

A Framework for Monitoring and Reconfiguration
of Components Using Dynamic Transformation

Djamel Belaid*, Imen Ben Lahmar*, and Hamid Muktart
*Institut Telecom; Telecom SudParis, CNRS UMR SAMOVAR, Evry, France
Email: {djamel.belaid, imen.ben_lahmar} @it-sudparis.eu
TNational University of Sciences and Technology (NUST), Islamabad, Pakistan
Email: hamid.mukhtar@seecs.edu.pk

Abstract—Distributed applications can be created using
component-based software development. Such applications are
defined as an assembly of components requiring services from
and providing services to each other. The existing component
models provide a description of functional and non-functional
requirements of an application. However, this capability is to be
determined at the design time of the application. Once deployed,
the application cannot be modified to respond to the changing
context.

In order to allow creation of such applications that can be
transformed dynamically to respond to changing environments,
in this article we propose a framework that allows monitoring and
dynamic reconfiguration of different components. These compo-
nents may be functional components of the user application or
other components of the environment on which an application
depends. The components of environment may represent the
underlying environment (i.e., hardware and network entities)
and are presented in our framework in the same way as
the application components. A component can monitor other
components in order to be aware of their changes. Moreover, the
components can also be monitored and reconfigured remotely. If
a component is not monitorable or reconfigurable by default, we
propose a procedure that transforms it to respond to components
requests.

Keywords-Framework, component model, monitoring, recon-
figuration, UPnP, transformation

I. INTRODUCTION

With the emergence of wireless technologies and ubig-
uity of hand held wireless devices, application development
for the pervasive environments is gaining more and more
attention. In such environments, computing is pushed away
from the traditional desktop to small hand-held and networked
computing devices that are present everywhere we go. As
such, Service-Oriented Architecture (SOA) has emerged as a
computing paradigm that changed the traditional way of how
applications are designed, implemented and consumed in a
pervasive computing environment.

One particular approach for developing SOA-based appli-
cations is to use component-based application development.
Using this approach, an application is defined as a composition
of re-usable software components, which implement the busi-
ness logic of the application domain collectively by providing
and requiring services to/from one another. The components
required by an application are assembled at the time of
application development. Thus, at the time of application
deployment, all the components have been defined statically.

However, when considering the broad range of comput-
ing devices in pervasive environments (smartphones, PDAs,
tablets, laptops, etc.) — with different capabilities and limi-
tations - this approach may not work. Moreover, pervasive
environments are highly dynamic due the mobility of users and
devices. Thus, an important aspect of pervasive applications is
that their realization is very much dependent on their execution
context. Due to variability of the environment, modelling the
application behaviour needs to satisfy not only the functional
requirements in an effective way, but in order to provide better
quality of service (QoS) for user satisfaction, it should also
consider the current state of the environment in which the
application is executing. In addition, the application should
also adapt itself according to changing context.

Existing component models like PCOM [1] [18], Fractal
[4], OSGi [17] and SCA [5] propose application development
using component assembly. In these models, a component of-
fers its capabilities through provided interfaces and consumes
functionalities offered by other components through required
interfaces. Along with offered and required interfaces, a com-
ponent may define one or more properties. These properties
can also be modified so that a component can be reconfigured
dynamically at runtime.

Due to the heterogeneity of the environment, modelling
the application behaviour needs to consider the current state
of the environment in which the application is executing
in addition to its functional requirements. However, most
of the existing component models leave such issues to the
underlying middleware, which provides a uniform Application
Programming Interface (API) or a framework for this purpose
[1] [18]. This means that the programmers and the designers
have to rely on the functionality of the underlying middleware
and such aspects need to be considered during application
development life-cycle. All of the reconfiguration aspects,
such as determination of reconfigurable properties, have to be
decided at development time. Once an application has been
developed, and deployed, its composition becomes fixed. A
property that was not set to be reconfigurable or monitorable
during development remains so and changes need to be made
at source code level to make it reconfigurable or monitorable
dynamically.

In order to explain these limitations, let’s consider an
application that provides the functionality of sending large

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

files from one device to another using a communication link
that exists between them. Files are transferred via a WiFi
connection and as the size of a typical file is large (e.g., 1 GB
each), each file is transferred in several compressed chunks
(e.g., 256 KB) to allow quick transfer. On the receiving side,
once a device receives a compressed chunk, it decompresses it
before merging it with other chunks to reconstruct the whole
transferred file.

Due to variability of the WiFi signal strength, the application
needs to continuously monitor the network signal to decide
the chunk size to be used for sending the file. In case of high
signal strength, data can be sent at higher rates and larger
chunk size can be used; however, in case of weak signal
strength, a smaller chunk size may be applied for a quick
transfer. Moreover, to decide the degree of compression, the
application needs to monitor the remaining battery powers of
the sender and receiver devices. If the battery power of any
of the devices is low, it uses lower degree of compression
to conserve the battery power required for the compression
and/or the decompression. However, if the remaining battery
power is sufficiently high for both devices, higher degree
of compression can be used for a better throughput over
the network. As it can be seen, the decompression degree
depends on the used degree of compression. Thus, the use
of a lower/higher compression degree for a given file chunk
at the sender’s side implies that the decompression degree is
to be maintained the same on the receiving side. Therefore,
whenever the compression ratio changes, the decompression
degree should be reconfigured for an efficient transfer of files
over the network.

We deduce a few important points from the file sender
application. First, the behaviour of the application is dependent
on certain properties which are not part of the File Sender
application, namely, remaining battery power and network
signal strength. Both of them correspond to externally required
properties: they do not form the core logic of the application,
however, the desired Quality-of-Service (QoS) provided by the
application greatly depends on their values. Thus, a mech-
anism is needed to consider such required properties in the
application design without altering the application logic and
architecture. Second, the monitoring can be notifications from
the provider side or observations from the client side. Third,
the reconfiguration of components’ properties is dependent
on changes of properties of other components. Thus, we
require a mechanism that is able to reconfigure dynamically
the properties of components whenever there is a need. Finally,
since these properties may belong to components found locally
or remotely, we need a uniform strategy for accessing local or
remote properties to be monitored or reconfigured.

As discussed previously, the above mentioned requirements
are not considered by the existing component models. There-
fore, in our previous work [2], we have proposed a component
model that 1) considers explicitly the required properties of an
application in addition to the functional behaviour; 2) allows
the monitoring ; and 3) if a property is not monitorable by
default, we provide transformation mechanism to render it

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http.//www.iariajournals.org/software/

372

monitorable.

In this article, we propose the following contributions, some
of which extend our previous work [2]. As an extension, first,
we present a remote monitoring approach allowing compo-
nents to monitor their remote required properties. Second, we
extend our proposed component model to allow components to
reconfigure their local and remote required properties. Third,
we present some transformation processes for components to
render their properties monitorable or reconfigurable whenever
there is a need by a third-party.

The remaining article is structured as follows. In Section
II, we first describe our proposed component model and the
component assembly, then, in section III, we explain the
monitoring and reconfiguration concepts and how components
can be transformed to make them monitorable or reconfig-
urable locally as well as remotely. Section IV describes how
components can be declared and how the transformation can
be achieved followed by the implementation details in section
V. In Section VI we provide an overview of existing related
approaches as well as their limitations. Finally, Section VII
concludes the article with an overview of our future work.

II. OUR APPROACH

In this section, we outline the different concepts involved
in our approach. We begin by introducing our component
model and component assembly. We then describe the need
for component transformation and how they are accompanied
by integrating adaptive logic into the application to make it
adaptive to the changing context.

A. The Component Model

Property
T

Service
«— Component

L

Required Property

Required
Service

Fig. 1. Component model describing required properties

In an object-oriented paradigm, an object provides its ser-
vices through a well-known interface, which specifies the
functionality offered by the object. In the relatively newer
component-oriented paradigm, components may specify, in
addition to their provided interfaces, their dependencies on
the offered properties of other components using required
interfaces. As defined by Szyperski et al. [20] "A software
component is a unit of decomposition with contractually
specified interfaces and explicit context dependencies only.”
Thus, a component not only exposes its services but it also
specifies its dependencies. Most of the existing component
models [1][4][17][5] allow specification of their dependencies
for business services external to the component. However, they
do not allow specification of their dependency for external
properties. The ability to specify dependency for external
properties has two important implications. First, it results

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

:"Se der Chunks Size

:Se e e gl S —— -
! E‘ Compression Degree

1 L T

. Compression| _

i Service * File Compressor

|

i Device A

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http.//www.iariajournals.org/software/

373

e —S—S—S————— .
Recgiver
Se ',C.F: File Merger Decompression
Degree

Decompression| _
Service File Decompressor

| |
| |
| |
| |
| |
| |
| |
| T !
| :
|
| |
| |
| |
| |
| |
| |
| |
|

Device B

Fig. 2. File Sender Application

in specification at relatively fine granularity thus helping
the architects and designers in fine tuning the component’s
requirements. Second, this fine tuning helps in elaborating the
contract between two components because the properties can
be enriched with additional attributes that constrain the nature
of the contract through appropriate policies. To achieve this
objective, in one of our previous works [2], we have proposed
a component model that allows expressing this dependency
explicitly in terms of required properties, which are provided
by other components.

Figure 1 shows main characteristics of a component that
provides a service through an interface and requires a service
from other components through a reference. The component
also exposes a property through which it can be configured.
In addition, the component also specifies its dependency on a
certain property. This required property, which appears at the
bottom of the component, will be satisfied if we can link this
component with another component that offers the requested
property, thus, solving the dependency.

We use components to represent not only software entities
that make up an application, but also to represent hardware
and network entities present in the execution environment. For
example, a component may represent the screen of a device,
a WiFi card, or even user preferences.

B. Component Assembly

Components can be combined together in an assembly
of components to build complex applications. For example,
figure 2 shows how the File Sender application described in
the introductory section can be represented by an assembly of
components distributed across two devices: two of them on
the sender device (A) and two others on the receiving device
(B).

On the sender side (device A) the File Splitter component
splits a given file into chunks for an efficient transmission. The
appropriate size of the file chunk is determined by the network
signal strength. If the signal strength is high, data can be sent
at higher rates and larger file chunks (e.g., 1 GB each) will
be created. However, if the signal is weak, smaller chunks
(e.g., 256 KB) will be created to allow quick transfer. Once
a file chunk is created, it is passed to the File Compressor
component for compression before sending it to the receiver
device. This is done using the service provided by the File
Compressor component. The File Compressor component uses

an adaptive compression algorithm whose compression ratio
depends upon the remaining battery powers of the sending and
receiving device. If the remaining battery power of each device
is above a certain threshold (e.g., 20 percent), higher degree of
compression is used. However, if the remaining battery power
of any of the devices is below the specified threshold, lower
degree of compression is used by doing quick compression of
each chunk thereby conserving the battery power.

On the receiving side (device B), a File Decompressor
component is used to decompress the received compressed
chunk. The component has a decompression degree property
whose value should be the same as the value used for com-
pression by the File Compressor component. Thus, any change
of the compression degree must imply the same change of the
decompression degree in the File Decompressor component.
Once the received chunk is decompressed, a File Merger
component combines it with the other decompressed chunks
to recreate the transferred file.

C. Component Transformation

Figure 2 shows the File Sender application as defined
by the architect. As can be seen, it represents only the
functional components of the application and does not show
the components external to the application — battery and
WiFi — which are required by the functional components for
providing the necessary QoS desired by the user. Assume that
this application was developed for fixed environments, e.g. a
desktop PC connected to a wired network with fixed QoS, in
which the application would not need to be adapted.

Our objective is that given such an application, which was
not conceived for dynamic environments with changing QoS,
we would like to transform it in order to adapt its functionality
according to the changing QoS. This transformation can be
of two types. If we are interested in knowing the changes
in the properties of a component, we need to transform the
component to make it monitorable. On the other hand, if we
are interested in modifying the properties of a component due
to external notifications, we need to make it reconfigurable.
Furthermore, a transformation may apply to a component
available on the device locally resulting in local transformation
or it may apply to some component in remote device, in which
case it is known as remote transformation.

In our previous work [2], we proposed a monitoring mech-
anism to permit an application — based on our component

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http.//www.iariajournals.org/software/

374

Sender _ Chunks Size

N T
SENISE File splitter

' ‘j Compressjon Degrée
c :
ompressign File Compressor

Service

| th

AdaptationPolicy
configuring® [configuring |

monitoringOnChange

Device A

Receiver

Seryice i
— o File Merger Decompression

i Degree
T

i
File Decompressor

Decompression
Service

AdaptationPolicy

Lmonitoringotha%ge " configuring

Device B

Fig. 3.

model — to be adapted. However, the approach was limited
to monitoring in the local scope. In our present work, we go
a step further to address the remote monitoring as well as the
local and remote reconfiguration of the components.

Corresponding to our scenario, our application needs to
monitor the components of environment: battery and WiFi.
Assuming that these components are not monitorable by
default, we need to make them monitorable by transformation.
Similarly, the functional components of the application need
to be reconfigured every time the QoS provided by these non-
functional components changes. The File Splitter component
needs to be reconfigured for its chunk size property whenever
the WiFi signal strength changes. The compression degree of
the File Compressor component should also be reconfigured
whenever the battery level crosses its threshold. Corresponding
to File Compressor component, the File Decompressor com-
ponent must also be reconfigured with the same degree of
decompression as that used for compression.

Since the components are not reconfigurable by default, i.e.,
when they were defined initially during application assembly,
we need to transform them to make them reconfigurable. In
the next section, we describe how these transformations can
be used along with some adaptation policies to render an
application adaptable.

D. Adaptation Logic

Transformation allows a component to be monitorable or re-
configurable. However, only transforming an application does
not help in making the application adaptive. For example, in
our example application, only by making the WiFi component
monitorable and the File Splitter component reconfigurable
will not make the application to take adaptation decisions. In-
stead, we need some adaptive logics that will make appropriate
adaptation decisions based on certain rules for adaptation. This
adaptation logic has to be defined by the architect at design
time to make the application adaptable. It is encapsulated in an

Monitoring and Reconfiguration of required properties of the File Sender Application

adaptation policy component which is a functional component
and defined following our component model. The adaptation
policy components express through their required properties
their need to monitor and/or to reconfigure local as well as
remote properties offered by components of the adaptable
application.

III. MONITORING AND RECONFIGURATION FRAMEWORK

To make our example application adaptable, we transform
its components to make them monitorable or reconfigurable
and integrate an adaptation policy component that defines
the policy to be used for adaptation. The transformed File
Sender application is shown in figure 3. Two Adaptation
Policy components have been used to manage the adaptation
of the application to respond to adaptation due to the change
of the context. The context is defined by the properties of
the WiFi and the Battery components and the adaptation is
made on the properties of the File Splitter, File Compressor
and File Decompressor components. These adaptation policy
components express their need to monitor and to reconfigure
local and remote properties of other components through their
required properties.

On device A, the adaptation policy component expresses
through its required properties its need to monitor the signal
strength property of the WiFi component, the level property
of the local Battery component and the level property of the
remote Battery. Depending on changes in the values of these
properties, the Adaptation Policy component also expresses its
need to reconfigure the chunk size property of the File Splitter
component and the compression degree property of the File
Compressor component.

On device B, another adaptation policy component is used
to monitor remotely the compression degree property changes
of the File Compressor and to reconfigure the decompression
degree property of the File Decompressor component accord-

ingly.

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

public interface GenericProxy {
Property[] getProperties();
Object getPropertyValue (String propertyName);
void setPropertyValue (String propertyName,
Object propertyValue);
Object invoke (String methodName, Object([] params);}

Fig. 4. Description of the Generic Proxy interface

If the offered properties of components are not defined as
monitorable or reconfigurable resources, we need to transform
them to respond to the requests of the adaptation policy
components. A transformation is applied dynamically at run-
time and is carried out by some predefined components of
our framework. For different types of transformation, the
framework has defined different components. In the next
subsections, we introduce them and we detail the main features
of the monitoring and the reconfiguration mechanisms and
their transformation processes.

A. Generic Proxy Service

The Generic Proxy Service, provided by our framework, can
be applied to any component of an application that we want
to introspect before any transformation.

We have defined a general purpose interface GenericProxy
that provides four generic methods. These methods are de-
scribed in figure 4. Each implementation of this interface
is associated with a component for which the first method
getProperties() returns the list of the properties of the compo-
nent, the getPropertyValue() returns the value of a property,
the setPropertyValue() changes the value of a property and
the invoke() method invokes a given method on the associated
component and returns the result.

We provide two implementations of the GenericProxy inter-
face (see section V). The first one, LGenericProxy component
is for implementation of a local proxy. That is, when associated
with a local component it translates its method calls into
calls of the associated component. The second one, RGener-
icProxy component is a remote implementation. That is, when
associated with a remote component it forwards the calls of
its methods to calls of the associated remote component, over
the network.

B. Local Reconfiguration

In parametric adaptation, a component is able to reconfigure
the properties of another component. In this context, reconfig-
uring the required properties of a component is defined as the
reconfiguration of the offered properties of another component.
For this purpose, we extend our component model [2], in
order to allow components to specify their need to reconfigure
some of their required properties. For example, in figure 5(a),
a component A specifies a required property, offered by the
component B, that it needs to reconfigure.

A given property of component can be reconfigured by
calling its associated setter method. However, the component

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http.//www.iariajournals.org/software/

375

that wishes to reconfigure a property of another component
does not know a priori the type of this component. To complete
the reconfiguration of any component from only the name
and type of a property, the reconfigurator component uses an
appropriate interface that provides the method setProperty-
Value(propertyName, propertyValue) to change the value
of a property.

However, the component to be reconfigured may not define
its properties as reconfigurable resources despite the request.
So we need to transform the component to make its proper-
ties reconfigurable by offering an appropriate reconfiguration
interface. This can be done dynamically by our framework
by encapsulating the component with the predefined LGener-
icProxy component as defined above. The two components
are combined together in a single composite that offers
the services of the original component as well that of the
LGenericProxy component. The component can be then re-
configured using the setPropertyValue() method provided by
the LGenericProxy component. The framework then replaces
the original component with the newly created composite in
the application. Figure 5(c) shows the transformation of the
component B to render its property reconfigurable by the
component A.

C. Local Monitoring

In [2], we have presented a monitoring approach to allow a
component to be aware of required properties changes. Moni-
toring process consists in informing the interested component
about the changes of required properties or notifying it on a
regular way or for each variation. We have considered two
types of monitoring: monitoring by polling and monitoring by
subscription.

Polling is the simpler way of monitoring, as it allows the
observer to request the current state of a property whenever
there is a need. However, subscription allows an observing
component to be notified about changes of monitored proper-
ties.

1) Monitoring by Polling: A component may express its
need to monitor by polling a required property provided by
another component (figure 5(b)). The monitoring by polling of
a property can be made by calling its getter method. However,
the component that wishes to monitor a property of another
component does not know a priori the type of this component.
To complete the monitoring of any component from only
the name and type of a property, the interested component
often uses an appropriate interface that provides the method
getProperty Value(propertyName) to request the current state
of a property.

However, the component to monitor may not define its
offered properties as monitorable by polling resources despite
the request. So, we need to transform the component to make
its properties to be monitorable by offering an appropriate
interface of monitoring. This can be done dynamically by
our Framework at runtime in the same way as the trans-
formation process for the reconfiguration since it uses the
same LGenericProxy component that provides the needed

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Component
A

&b
requiredProperty : propertyOfB
i Reconfiguration

_C‘EenericProxy

-i-propertyOfB
Component
B

ServiceB
-—

(a) Specification of reconfiguration

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http.//www.iariajournals.org/software/

376

Component EgnerlcProxy
A
L

Erequired Property : propertyOfB
imonitoringByPolling

.i.propeﬂyOfB
ServiceB[Component
* B

(b) Specification of monitoring by polling

Component
»]
propgrtyOfB
ServiceB Component
B
(2
GenericP : _J
RIS LGenericProxy -

(c) Transformation

Fig. 5.

interface. In figure 5(c), we show the transformation of the
component B to render its property monitorable by polling
by the component A. Figure 5(d) is a symbol, we used to
represent the transformation for monitoring by polling as well
as reconfiguration.

2) Monitoring by Subscription: There are two modes of
monitoring by subscription: 1) subscription on change which
specifies that the subscribed component is notified every time
the value of the property changes; 2) subscription on interval
which specifies that the subscribed component is to be notified
after a specified time interval. For notification on change, a
component must precise the starting time and the duration of
notifications. For notification on interval it must specify the
notification interval value. It may also precise the starting time
and the duration of notifications. The component A must also
implement a notification callback through which it will receive
appropriate notification messages.

Figure 6(a) shows how component A specifies its need
to monitor a required property offered by a component B
by subscription on change. Figure 7(a) shows monitoring by
subscription on interval. Figures 6(c) and 7(c) shows the
symbols we used for denoting subscription on change and
subscription on interval, respectively.

For the monitoring with notification mode on interval,
as shown in the figure 7(b), each time the MonitoringBy-
Subscription component have to notify the subscriber (the
component A), it gets (or monitor by polling) the value of the
required property of the component B via the LGenericProxy
component.

When the notification mode is on change for a required
property of B (figure 6(b)), the MonitoringBySubscription
component offers a (callback) service of notification PCNo-
tification to the component B so that it can be notified of
the changes of a required property and in turn inform all

(d) Representation

Monitoring by polling and reconfiguration

the subscribers of this change. To allow the component B to
notify the MonitoringBySubscription for the change of its
properties, our framework adds the needed instructions in the
byte-code of the component B at runtime.

D. Remote Monitoring and Reconfiguration

To adapt a distributed application in a pervasive environ-
ment, some components may be interested in monitoring or
reconfiguring properties of other components remotely. For
this purpose, components in our framework can specify their
need about remote reconfiguration or remote monitoring of
some of their required properties.

For example, figure 8 shows how component A specifies
its need to monitor by subscription a property offered by a
remote component B. For the two modes of notification, the
component B (the server) must offer a remote subscription
service over the network to the component A (the client)
and in turn, the component A must subscribe to the remote
component B specifying its need. When a change of the
property happens, a notification from the component B to
A is sent over the network. As for the local case, to pro-
vide a remote reconfiguration and monitoring by polling the
component B must offer a GenericProxy service and should
also be reachable over the network. We note that for the
remote purposes there are two transformations: server-side
(component B) and client-side (component A).

1) Server-side transformation: The framework first encap-
sulates the component B in a composite (figure 9(a)) such
as defined for the transformations for the monitoring by
subscriptions. Then it adds a new component (the RServer
component) that integrates the network communication aspects
like remote call and event processing. The RServer component
has two references: one for the subscription service offered the
MonitoringBySubscription component and one for the Gener-

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http.//www.iariajournals.org/software/

377

PCNotification| Component
—

A ﬂ
PCNotification [Gomponent |PCSubscription propertyOfB
A *
: . SepyiceB Component B
i requiredProperty : propertyOfB Modified byte code
i monitoringBySubscription G o
i e notificationMode = OnChange EeNerichrox ;
Lo startTime = X ms ' GenericProxy ol
i » duration =Y ms
PCNotification — L g
4 tpropertyOfB o OL— Momtor_lng_By
ServiceB[Component PCSubscription Subscription -
B Callback=PCNotification|

(a) Specification

(b) Transformation (c) Representation

Fig. 6. Monitoring by subscription with notification mode on change

PCNotification| Component
A

PCNotification[Component |PCSubscription
A prope-TrtyOfB
requiredProperty : propertyOf8 ServiceB N
monitoringBySubscription Component B
« notificationMode = Onlinterval
o startTime = X ms i
« duration =Y ms Gen'e rickiox GenericProxy -
« notificationinterval = Z ms
PCNotification P L 2
propertyOfB o— MonitoringBy
ServiceB[" Component PCSubscription Subscription o
B Callback=PCNotification

(a) Specification

Fig. 7.

icProxy service provided by the LGenericProxy component.
The first reference is used to subscribe and the second one
is used for the reconfiguration and monitoring by polling on
behalf of the client component A. We note that the newly
defined composite provides the GenericProxy service and
the PCSubscription service in addition to the services of
the component B. Thereby it can be used, reconfigured and
monitored locally as well as remotely. Figure 9(b) is a symbol
denoting the server-side transformation.

2) Client-side transformation: If the component B was on
the same device as the component A, we would have used the
same composite defined for the monitoring by subscription
and connect A to its subscription interface. Since this is
not the case, our framework creates the same kind of that
composite (figure 10(a)) with the ServerProxy component
in place of the component B and for the implementation
of the interface GenericProxy we use the RGenericProxy
described in section III-A. The ServerProxy component is a
byte-code generated component by our framework at runtime
(see section V). Its implementation of the service B consists
on forwarding the calls to the RGenericProxy component
which in turn make the call over the network to the server
side. Figure 10(b) is a symbol, we used to represent the
transformation in the client-side.

(b) Transformation (c) Representation

Monitoring by subscription with notification mode on interval

PCNotification

Component
-—

PCSubscription
A

'J‘ requiredProperty : propertyOfB
i monitoringBySubscription
remotable=true

i propertyOfB

ServiceB Component
-—
B
Fig. 8. Specification of remote monitoring

E. Putting it all together

Referring back to figure 3, we assume that signal strength,
the compression degree and the local and remote battery levels
are not defined as monitorable properties. So we need to trans-
form WiFi, File Compressor and the two Battery components
to render their properties monitorable by the Adaptation Policy
components.

Figure 11 shows the creation of new composites in response
of the monitoring request of the Adaptation Policy compo-
nents. The transformation of the WiFi component corresponds
to the creation of a composite as shown in figure 6(c), while
the local Battery component is transformed following the
figure 7(c).

The Battery component on device B is remotely observed

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http.//www.iariajournals.org/software/

378

propertyOfB
ServiceB ServiceB Component B
o Modified byte code
GenericProxy GenerigProx LGenericProxy
PCNotifi :at|o[|_ NenEngEy
PCSubscription PCSubscription | Subscription |
calback=PCNotification ~ Cailback:PCNptification ¢ %
. ¢ |
PCNotification | RServer —E l:|
(a) Transformation (b) Representation
Fig. 9. Remote monitoring and reconfiguration: server side
PCNotification| Component
—
A 'j
i 0..1
ServiceB ServerProxy -I:—‘
GenericPigh] RGenericProxy
E -
PCNotificati P
otiiga |ot|_ MonitoringBy *
PCSubscription Subscription
Callback=PCNotification, *

(a) Transformation

(b) Representation

Fig. 10. Remote monitoring and reconfiguration: client side

by the Adaptation Policy component of device A. For this
purpose, we require two transformations: a server-side (Battery
component) and a client-side (Adaptation Policy component)
transformation. The transformation of the Battery component
is done following figure 9(b), and a new composite rep-
resenting the remote Battery component is created in the
device A following figure 10(b) to allow the Adaptation Policy
component to observe the battery level changes.

Similarly, the File Compressor component (server side) is
transformed following the figure 9(b) to allow the Adaptation
policy component of device B (client side) to subscribe to the
changes of the compression degree property.

For the reconfiguration needs of the Adaptation Policy
components, our framework transforms the File splitter and
the File Decompressor components following the figure 5(d).
The File Compressor component is already transformed into
a composite that offers a generic proxy service for reconfigu-
ration.

IV. ARCHITECTURAL DESCRIPTION

The description of an application can be done with the help
of an Architecture Description Language (ADL). Instead of
inventing a new ADL, we prefer to use one of the existing
description languages. In this regard, Service Component

Architecture (SCA) [5] provides a rich ADL that details most
of the aspects that we are looking for. One of the main
features of this component model is that it is independent of
particular technology, protocol, and implementation. It consists
of a set of services, which are assembled together to create
solutions that serve a particular business need. These services
correspond to offered services and required ones called ref-
erences. Along with services and references, a component
can also define one or more properties. We use SCA for
its extensibility to overcome the missing elements related to
required properties, monitoring and reconfiguration aspects.

In our previous work [2], we have extended the standard
SCA description by adding the @requiredProperty at-
tribute to express explicitly the dependency of components
to the offered properties of other components. This attribute
specifies the resource whose property will be monitored or
reconfigured.

Moreover, we have also specified the resource type of
each component or property. For a component, the resource
type corresponds to the classification of the component in one
of the predefined categories, such as software, hardware, and
network, etc. Some of these categories have been defined pre-
viously as extension of the Composite Capability/Preference
Profile (CC/PP) [14] by the authors [16]. For a property,

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ende

é-——T—[- FTS e —C
Ser\ncg’% _j

WiFi] 3 ’
I o Bat
I'IJ o
1
Device A
Fig. 11.

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http.//www.iariajournals.org/software/

379

Recpiver
o

: FM
envice

Fl b
E_Hry
==

UPnP

Device B

Transformation of the File Sender Application

l<composite name="FileSender">

2 <service name="FileSenderService" promote="FileSplitter/FileSenderService"/>

3 ..

4 <component name="AdaptationPolicy" resource="Software.Component">

5 <service name="PCNotification">

6 <interface.java interface="eu.tsp.iaria-example.PCNotificationInterface"/>

7 </service>

8 <requiredProperty resource="Hardware.Battery" remotable="true" monitoring="ByPolling">
9 <property name="BatteryLevel"/>

10 </requiredProperty>

11 <requiredProperty resource="network.WiFi" monitoring="BySubscription" notificationMode="ON_CHANGE">
12 <property name="SignalStrength"/>

13 </requiredProperty>

14 <requiredProperty resource="Software.FileSplitter" reconfiguration="true">

15 <property name="chunckSize"/>

16 </requiredProperty>

17 e

18 </component>

19 <component name="FileSplitter" resource="Software.Component">

200 Loo....

21 </component>

22 </composite>

Fig. 12. Description of the File Sender Application using our extended SCA ADL

the resource type specifies the component to which this
property belongs. The separation between property name and
the associated resource type is significant as it allows the
transformation of a given component into a monitorable or
reconfigurable component for only the specified properties.

Figure 12 shows the description of the File Sender
application. As it can be seen (lines 11-13), a
@monitoring annotation is used to specify the subscription
requirement for SingalStrength property. Moreover, a
@notificationMode annotation is used to specify the
monitoring by subscription mode. The Adaptation Policy
component requires the monitoring of the SingalStrength
property of the WiFi component, belonging to the network
category, by subscription with notification mode on change .

In addition to the monitoring feature, the required property

allows components to specify their configuration requirements.
For this goal, we have extended the @requiredProperty
attribute to express explicitly the configuration requirements.
The extension consists of a new @reconfiguration an-
notation that specifies if the property of resource would
be reconfigured or not. For example, the AdaptationPolicy
component requires the reconfiguration of the chunckSize
property offered by the File Splitter component (lines 14-16).

To handle remote components by monitoring or configuring
their offered properties, we used the @ remotalble annotation
of SCA specification [5] to specify if the required property is
remotable or not. The @remotable annotation has boolean
value; if it is true, it implies that the requested resource is
remotable else it is a local resource. For example, the Battery
component (lines 8-10) provided by device B, is remotely

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http.//www.iariajournals.org/software/

380

l<composite name="FileSender">

2 <service name="FileSenderService" promote="FileSplitter/FileSenderService"/>
3 ...

4 <component name="AdaptationPolicy">

5 <service name="PCNotification">

6 <interface.java interface="eu.tsp.iaria-example.PCNotificationInterface"/>
7 </service>

8 <reference name="PCSubscriptionService" target="WiFiComposite"/>

9 <reference name="PCSubscriptionService" target="BatteryComposite"/>

10 <reference name="PCSubscriptionService" target="UPnPClientComposite"/>

11 <reference name="GenericProxyService" target="FileSplitterComposite"/>

12 <reference name="GenericProxyService" target="FileCompressorComposite"/>
13 </component>

14 <component name=FileSplitterComposite>

15 <service name="FileSenderService">

16 <interface.java interface="eu.tsp.iaria-example.FileSenderInterface"/>
17 </service>

18 <implementation.sca name="FileSplitterComposite"/>

19 </component>
20</composite>

Fig. 13.

Transformation of the Adaptation Policy component

l<composite name=FileSplitterComposite>

2 <service name="FileSenderService" promote="FileSplitter/FileSenderService" />

3 <service name="GenericProxy" promote="LGenericProxy/GenericProxy" />

4 <reference name="FileCompressorService" promote="FileCompressor/FileCompressorService" />
5 <reference name="FileReceiverService" promote="FileSplitter/FileReceiverService"/>

6 <component name="FileSplitter" resource="Software.Component">

7 <service name="FileSenderService">

8 <interface.java interface="eu.tsp.liaria-example.FileSplitterInterface"/>

9 </service>

10 <implementation class="eu.tsp.iaria-example.impl.FileSplitterImpl"/>

11 <reference name="FileCompressorService" target="FileCompressorComposite/FileCompressorService" />
12 <reference name="FileReceiverService" target="FileMerger/FileReceiverService" />

13 </component>
14 <component name="LGenericProxy"

resource="Software.Component">

15 <service name="GenericProxy">

16 <interface.java interface="eu.tsp.laria-example.GenericProxy"/>

17 </service>

18 <implementation class="eu.tsp.iaria-example.impl.LGenericProxy"/>

19 <reference name="FileSplitterService" target="FileSplitter/FileSenderService"/>

20 </component>
21</composite>

Fig. 14. Transformation of the File Splitter component

monitorable by polling by the Adaptation Policy component.

Figure 13 shows the transformation of our extended SCA
description of the File Sender application into standard SCA
description. As it can be seen, the required properties of the
Adaptation Policy component are transformed into references
to the created composites (lines 8-12).

In figure 14, we show the transformation of the File Splitter
component to a new composite to render its property recon-
figurable by the Adaptation Policy component. The created
composite exposes in addition to the FileSender service of
the File Splitter component, a GenericProxy service that is
provided by a Local Generic proxy component allowing the
reconfiguration of the chunckSize property.

V. IMPLEMENTATION

In order to validate our approach, we have implemented a
prototype of our approach in Java. The prototype implements
our framework as services that offers the various transforma-
tion mechanisms to the applications.

For dynamic transformation we required code level manip-
ulation for which we used the open source software JAVA
programming ASSISTant (Javassist) library [13]. Javassist is
a class library for editing byte codes in Java; it enables Java
programs to define a new class at runtime and to modify a
class file when the Java Virtual Machine (JVM) loads it. The
implementation of the LGenericProxy component implements
the GenericProxy interface (figure 4). It is based on the Java
reflection API. As defined in the java API specification [12],

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the java API java.lang.reflect provides classes and interfaces
for obtaining reflective information about classes and objects.
Reflection allows programmatic access to information about
the fields, methods and constructors of loaded classes, and the
use reflected fields, methods, and constructors to operate on
their underlying counterparts on objects.

For remote communication, we have used the Universal
Plug and Play (UPnP) [21] technology. A UPnP network
consists of UPnP devices that act as servers to UPnP control
points, the clients. The control point can search for devices
and invoke actions on them. The RServer component, as
shown in figure 9 (a), integrates the network communication
aspects like remote method call and event processing on behalf
of the server component it represents and is implemented
as a UPnP device. For that purpose, it uses the services
(interfaces) of the server component, generates a UPnP device
and services (actions and stateVariables) descriptions and starts
the device to be detected (by the UPnP control points) over
the network. When it receives from control points a call as
a UPnP action, it translates it as a call to the appropriate
method of the LGenericProxy component which in turn calls
the associated method of the server. When it is notified, by the
MonitoringBySubscription component, for a change of one
of the server properties it modifies the related state variable
and then the device sends an event over the network with
the new value of the property so the control points that has
subscribed to that change receives this notification.

The ServerProxy component, in figure 10 (a), is used in
place of a server when this last is on another device. Thanks
to the javasist API, it is Java generated implementation of the
services (interfaces) of the server. The calls to its methods
are forwarded to the appropriate method of the component,
implementing the GenericProxy interface, it references.

The RGenericProxy in figure 10 (a), is implemented as
an UPnP control point. When it starts, it searches for a UPnP
device with the same type of RServer component and subscribe
to the UPnP events related to the change of the variables
state of this server component. Each time it receives a state
variable change event it notifies the MonitoringBySubscription
component that in turn notifies the interested subscribers
(e.g. ServerProxy component). The RGenericProxy also im-
plements the GenericProxy interface. Each call to a method
of this interface is transformed as an UPnP action call to the
device server (i.e. RServer component).

Finally, to allow a component to notify the Monitoring-
BySubscription for the change of its properties, the open-
source Javassist is used, at runtime, to inject the notification
code in the property setter of the byte-code of the component
implementation (class).

VI. RELATED WORK

The monitoring and reconfiguration issues have been ex-
tensively studied in different contexts, notably in the area of
software components that has become an accepted standard
for building complex applications. In this section, we detail
some of the existing related approaches as well as their

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http.//www.iariajournals.org/software/

381

limitations. But let’s first give an overview of some component
models that become an accepted standard for building complex
applications.

The OSGi component model [17] enables components to
hide their implementations from other components while com-
municating through services that are shared between compo-
nents. It allows specification of properties when registering
components in the service registry. This ensures searching
and binding of components having specific properties. An
advantage is that these properties cover a wide range of
characteristics such as context, quality of service, and other
non-functional aspects. However, the major drawback is that
the specification of properties is done at the code level; so
properties are tied to the functional code.

Another relevant component model is SCA [5], which
provides a programming model for building applications and
systems based on a Service Oriented Architecture. More
recently, there has been SCA extension for event process-
ing [6]. It is based on the publish/subscribe model, which
allows components to produce and consume events through
channels. These events may be sent to notify a consumer
about changes occurring on the producer’s side, without the
consumers having knowledge of the producer’s functionality.
Currently, the SCA specifications of existing runtimes do not
provide any transformation mechanism to render a property
nor monitorable neither reconfigurable.

The PCOM component model [1][18] allows specification

of distributed applications made up of components. Compo-
nents reside within a component container that contains listen-
ers allowing application programmers to be notified whenever
a parameter or a communication changes or new components
are discovered. Each component explicitly specifies its depen-
dencies in a contract, which defines the functionality offered
by the component, i.e., its offer, and its requirements with
respect to local resources and other components. To model the
required properties, the syntactical description can be enriched
with properties of typed name-value pairs for offers and typed
name-value-comparator triples for requirements. Using this
description, the system can automatically determine whether
an offer can satisfy a requirement.
In a recent work [10], the PCOM container was extended by
two services; assembler and application manager, to separate
the task of calculating the configuration from the application
execution. The application manager is responsible for manag-
ing the life cycle of application and also the selection of the
configuration algorithm. However, the assembler is responsible
for calculating a valid configuration. Clearly, using a fully
distributed assembler, for instance, requires the availability of
an instance of this assembler on each device.

One of the limiting factors of PCOM resource description is
that resources are not standardized: there is no formal way of
resource description and the different types of resources can
not be distinguished from one other. Another problem is that
the non-functional aspects of an application are also treated in
the programming API. This means the component developer
has to take care of the non-functional aspects (monitoring,

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

binding, and unbinding of the components) at the code level.
Moreover, PCOM does not support the remote monitoring of
components’ parameters, since each container is reponsible of
the monitoring of the hosted components.

In [3], Beugnard et al propose a process that makes func-
tional aspects of components independent from observational
ones. This separation of concerns allows the advantage of
changing observations without modifying the core part of
components. They have also defined a set of predefined
components dedicated to observation that can be attached to
any functional component. Both the functional and observation
components are defined declaratively and then using a kind
of weaver they can be integrated to result in context-aware
components.

While their approach is quite general, we can identify
two limitations compared to our proposed approach. First,
instead of defining a few dedicated observation components,
we propose that any of the components in our system can be
transformed into observation component by adding to it the
capabilities of observation. Second, since this transformation
is done dynamically, we can selectively specify the properties
of a component that we want to make observable.

As a monitoring and a reconfiguration middleware, we cite
MADAM (Mobility and ADaption enAbling Middleware) [8],
which is a middleware for runtime adaptation with: context
management, adaptation management and configuration man-
agement. Their objective is to adapt the application at runtime
in response to context changes. For this purpose, the mid-
dleware provides a Context Manager to monitor context when
this latter changes. It is responsible for context reasoning, such
as aggregation, derivation, and prediction in order to provide
the Adaptation Manager component with relevant context
information when context changes occur. The Configurator
middleware component is responsible for reconfiguring an
application by deleting or replacing component instances,
instantiating components, transferring states, etc.

However, MADAM middleware does not support the re-
mote monitoring and the remote reconfiguration and it is
limited to the local scope. Moreover, it does not support the
transformation of components to render them monitorable or
reconfigurable resources.

In the same context, we cite the AwareWare middleware that
tends to facilitate the development of applications to be more
adaptive in such a heterogeneous environment [22] [23]. The
AwareWare middleware consists of Awareness measurement
tools that are used to measure and to collect awareness
data. The awareness manager organizes these tools and pro-
vides system independent query and notification interfaces for
adaptive applications. They consider two basic methods, pull
and push, for querying distributed awareness information. An
adaptation decision module and adaptation policy language are
used to reconfigure applications. The adaptation policy defines
rules to determine how the application changes its behaviours,
by changing the applications component inter-connections and
tuning parameters.

However, the reconfiguration is limited to the hosted compo-

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http.//www.iariajournals.org/software/

382

nents and it does not cover the remote components. Moreover,
AwareWare middleware does not support the transformation
of components to monitorable of reconfigurable resources.
However, our framework is able to transform the components
into monitorable or reconfigurable resources to reply to the
components’ request.

In another recent related work [7], a reconfiguration mid-
dleware handles the reconfiguration of applications in het-
eregenous environment. Towards this objective, Corradi et al
propose to partition the middleware logic into two reconfigu-
ration layers that basically feature an application logic layer
and a non-functional layer on top of a very minimal kernel
layer. Each reconfiguration layer features a monitoring engine
whose aim is to keep track of current status of elements of the
(monitored) layer above. A reconfiguration enactment engine
concretely executes the reconfiguration actions determined by
policies.

Compared to our approach, the major drawback of the
reconfiguration middleware that does not support the remote
monitoring and the remote reconfiguration of applications.
Further, the proposed middleware does not consider the trans-
formation of components to monitorable or reconfigurable
resources despite the components’ request.

The approaches in [9] and [11] focus on the adaptation
of system behaviour at runtime. They consists of reusable
infrastructure corresponding to probes, and resource discovery
components to support respectively, monitoring of properties
changes, and quering for new resources. An adaptation engine
is used to carry out the necessary reconfiguration by using
some adaptation operators and adaptation strategies.

However, the reconfiguration of components does not cover
the remote components and it is limited to the local scope.
Moreover, they do not support the transformation of com-
ponents to render them monitorable or reconfigurable by
other components. However, in our approach, we propose to
model explicitly these features through required properties of
components, and even these latter are not defined by default
as monitorable or reconfigurable resources, our framework is
able to transform them to reply to components request.

In [15], Melisson et al propose pervasive binding to provide
support for service discovery in SCA-based applications. This
binding is called UPnP binding since it is based on UPnP
protocol [21]. Towards this objective, they propose to integrate
UPnP into FRASCATI platform (a SOA platform for the SCA
standard)[19] to support the remote call of a service that is
advertised via the UPnP protocol. The FRASCATI platform
was modified to supply spontaneous communications between
SCA components using UPnP bindings.

However, in our approach, the SCA composite is transformed
by adding UPnP components allowing its remote monitoring
and its remote reconfiguration using the existing open-source
SCA runtimes (e.g. Newton, Tuscani, etc.). Moreover, their
approach is limited on the remote call and it does not take
into account neither the remote monitoring nor the remote re-
configuration. However, in our present work, we rely on UPnP
protocol to manipulate remote components by monitoring their

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

changes and reconfiguring their properties in addition to the
remote call.

Project Monitoring Reconfiguration

Local | Remote || Local [Remote

Madam Middleware [8]

Rainbow Middleware [9]

AwareWare Middleware [22] [23] N

Reconfiguration Middleware [7]

<<

PCOM Component Model [1][10]

SLCA Component Model [11] N

<N

Our Framework v/ N

TABLE I
EXAMPLES OF MONITORING AND RECONFIGURATION APPROACHES

In table I, we summarize the most important features related
to some of the cited middlewares and component models. We
compare them regarding the monitoring level, i.e., if it is exe-
cuted locally or remotely, and the similarly the reconfiguration
level. As it can be seen, most of the given approaches focus on
the local monitoring and/or local reconfiguration mechanisms.
There are limited approaches that consider remote monitoring
and/or remote reconfiguration. And even if they exist, their
presented mechanisms are not defined in appropriate way.
Moreover, in our knowledge, none of the cited middleware
supports the transformation of components to render them
monitorable or reconfigurable resources.

VII. CONCLUSION AND FUTURE WORK

In this article, we proposed an approach for monitoring
and dynamic reconfiguration of component-based applications.
The flexibility offered by our approach is that any software,
hardware, or network component that one wants to monitor
or reconfigure, but that does not offer these capabilities in-
herently, can be transformed to offer these functionalities —
given that they are representable by a software component.
These aspects are treated independently of the functional code
and, hence, do not make the situation more complex for the
designers and developers.

For this purpose, we proposed a generic component model
that allows unified specification of hardware, software, and
network components. In our component model, a component
specifies its provided and required services, and its properties,
but in addition, it also specifies the required properties that are
to be monitored or reconfigured. If the required properties are
not monitorable or reconfigurable by default, transformation
processes are done dynamically by our framework to reply to
the component request. Some Java implementation details of
the prototype were provided in the article.

We are integrating our prototype into an SCA runtime. This
will allow us to test the feasibility of our approach in real-
world scenarios.

VIII. ACKNOWLEDGMENTS

This work is partially supported by French ANR through
Seamless (SEamless and Adaptive Services over MultipLe
AccEsS NetworkS) project number 07TCOMO18.

[1]

[2]

[3]

[4]

[5]
[6]
[7]

[8]

[9]

(10]

(1]

[12]

[13]
[14]

[15]

(16]

(17]

(18]

[19]

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http.//www.iariajournals.org/software/

383

REFERENCES

Christian Becker, Marcus Handte, Gregor Schiele, and Kurt Rothermel.
PCOM - A Component System for Pervasive Computing. In Proceedings
of the Second IEEE International Conference on Pervasive Computing
and Communications, PERCOM ’04, pages 67-76, Orlando, Florida,
USA, 2004.

Imen Ben Lahmar, Hamid Mukhtar, and Djamel Belaid. Monitoring of
non-functional requirements using dynamic transformation of compo-
nents. In Proceedings of the 6th International Conference on Networking
and Services, ICNS’10, pages 61-66, Cancun, Mexico, 2010.

Antoine Beugnard, Sophie Chabridon, Denis Conan, Chantal Taconet,
Fabien Dagnat, and Eveline Kaboré. Towards context-aware compo-
nents. In Proceedings of the first international workshop on Context-
aware software technology and applications, CASTA ’09, pages 1-4,
Amsterdam, Netherlands, 2009.

Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and
Jean-Bernard Stefani. The fractal component model and its support
in java: Experiences with auto-adaptive and reconfigurable systems.
Software Practice and Experience (SP&E), 36:1257-1284, 2006.

Open SOA Collaboration. SCA Assembly Model Specification V1.00.
http://www.osoa.org/, 2007.

Open SOA Collaboration. SCA Assembly Extensions for Event Pro-
cessing and Pub/Sub V1.00. http://www.osoa.org/, 2009.

Antonio Corradi, Enrico Lodolo, Stefano Monti, and Samuele Pasini.
Dynamic reconfiguration of middleware for ubiquitous computing. In
Proceedings of the 3rd international workshop on Adaptive and depend-
able mobile ubiquitous systems, ADAMUS’09, pages 7-12, London,
United Kingdom, 2009.

Jacqueline Floch, Svein Hallsteinsen, Erlend Stav, Frank Eliassen,
Ketil Lund, and Eli Gjorven. Using architecture models for runtime
adaptability. IEEE Software, 23:62-70, March 2006.

David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl,
and Peter Steenkiste. Rainbow: Architecture-based self-adaptation with
reusable infrastructure. IEEE Computer, 37:46-54, October 2004.
Marcus Handte, Klaus Herrmann, Gregor Schiele, and Christian Becker.
Supporting pluggable configuration algorithms in pcom. In Proceedings
of the Fifth IEEE International Conference on Pervasive Computing
and Communications Workshops, PERCOMW’07, pages 472476, NY,
USA, 2007.

Vincent Hourdin, Jean-Yves Tigli, Stéphane Lavirotte, Gaétan Rey, and
Michel Riveill. SLCA, composite services for ubiquitous computing.
In Proceedings of the International Conference on Mobile Technology,
Applications, and Systems, Mobility’08, pages 11:1-11:8, Yilan, Taiwan,
2008.

Java 2 Platform APl Specification. http://download-
llnw.oracle.com/javase/1.4.2/docs/api/java/lang/reflect/package-
summary.html.

JAVA programming Assistant. http://www.csg.is.titech.ac.jp/ chiba/javassist/.
Cédric Kiss. Composite capability/preference profiles (cc/pp): Struc-
ture and vocabularies 2.0. w3c working draft 30 april 2007.
http://www.w3.0rg/TR/2007/WD-CCPP-struct-vocab2-20070430/, 2007.
Rémi Mélisson, Daniel Romero, Romain Rouvoy, and Lionel Seinturier.
Supporting Pervasive and Social Communications with FraSCAti. In 3rd
DisCoTec Workshop on Context-aware Adaptation Mechanisms for Per-
vasive and Ubiquitous Services, CAMPUS’10, Amsterdam, Netherlands,
2010.

Hamid Mukhtar, Djamel Belaid, and Guy Bernard. A policy-based
approach for resource specification in small devices. In Proceedings of
the second International Conference on Mobile Ubiquitous Computing,
Systems, Services and Technologies, pages 239-244, Valencia, Spain,
2008.

OSGI. Open services gateway initiative. http://www.osgi.org, 1999.
Stephan Schuhmann, Klaus Herrmann, and Kurt Rothermel. A frame-
work for adapting the distribution of automatic application configuration.
In Proceedings of the 5th international conference on Pervasive services,
ICPS’08, pages 163—172, Sorrento, Italy, 2008.

Lionel Seinturier, Philippe Merle, Damien Fournier, Nicolas Dolet,
Valerio Schiavoni, and Jean-Bernard Stefani. Reconfigurable SCA appli-
cations with the frascati platform. In Proceedings of IEEE International
Conference on Services Computing, SCC’09, pages 268-275, Bangalore,
India, 2009.

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http.//www.iariajournals.org/software/

[20]

[21]

[22]

[23]

Clemens Szyperski. Component Software: Beyond Object-Oriented
Programming. Addison-Wesley/ACM Press, Boston, MA, USA, 2nd
edition, 2002.

UPnP Forum. UPnP Device Architecture 1.1. http://www.upnp.org,
2008.

Qinag Wang and Liang Cheng. Awareware: an adaptation middleware
for heterogeneous environments. In IEEE International Conference on
Communications, Paris, France, 2004.

Qinag Wang and Liang Cheng. A flexible awareness measurement and
management architecture for adaptive applications. In [EEE Global
Telecommunications Conference, GLOBECOM’04, Dallas, Texas, USA,
2004.

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

384

