
Implementing Row Version Verification for Persistence Middleware using SQL
Access Patterns

Fritz Laux
Fakultät Informatik

Reutlingen University
D-72762 Reutlingen, Germany

fritz.laux@reutlingen-university.de

Martti Laiho
Dpt. of Business Information Technology

Haaga-Helia University of Applied Sciences
FI-00520 Helsinki, Finland
martti.laiho@haaga-helia.fi

Tim Lessner
School of Computing

University of the West of Scotland
Paisley PA1 2BE, UK
tim.lessner@uws.ac.uk

Abstract—Modern web-based applications are often built as
multi-tier architecture using persistence middleware. Middle-
ware technology providers recommend the use of Optimistic
Concurrency Control (OCC) mechanism to avoid the risk
of blocked resources. However, most vendors of relational
database management systems implement only locking schemes
for concurrency control. As a consequence a kind of OCC has
to be implemented at client or middleware side. The aim of
this paper is to recommend Row Version Verification (RVV) as
a mean to realize an OCC at the middleware level. To help the
developers with the implementation of RVV we propose to use
SQL access patterns. For performance reasons the middleware
uses buffers (cache) of its own to avoid network traffic and to
reduce disk I/O. This caching, however, complicates the use of
RVV because the data in the middleware cache may be stale
(outdated). We investigate various data access technologies,
including the Java Persistence API and Microsoft’s LINQ
technologies in combination with commercial database systems
for their ability to use the RVV programming discipline.
The use of persistence middleware that tries to relieve the
programmer from the low level transaction programming turns
out to even complicate the situation in some cases.

The contribution of this paper are patterns and guidelines
for an implementation of OCC at the middleware layer using
RVV. Our approach prevents from inconsistencies, reduces
locking to a minimum, considers a couple of mainstream tech-
nologies, and copes with the effects of concurrency protocols,
data access technologies, and caching mechanisms.

Keywords-persistence middleware, caching, data access pat-
tern, row version verification.

I. INTRODUCTION

Databases provide reliable data storage services, but es-
pecially for business critical applications the use of these
services requires that applications will obey the concurrency
control protocol of the underlying Database Management
System (DBMS).

In this paper we look at the application development
from the Online Transaction Processing (OLTP) point of
view, and especially on the modern mainstream commercial
DBMS used by industry , namely DB2, Oracle, and SQL
Server, with ISO SQL standard as the common denomina-
tor. The ideas described here are extensions of the work
first presented in [1]. A cornerstone of data management

is the proper transaction processing, and a generally ac-
cepted requirement for reliable flat SQL transactions is the
ACID transaction model defined by Haerder and Reuter
[2]. The acronym ACID stems from the initials of the four
well known transaction properties: Atomicity, Consistency,
Isolation, and Durability. However, the original definition
for Isolation ”Events within a transaction must be hidden
from other transactions running concurrently” cannot be
fulfilled by the mainstream commercial DBMS systems.
They only provide a concurrency control (CC) mechanism
that, according to the isolation level settings, prevents a
transaction itself from seeing changes made by concurrent
transactions, and protects the transaction’s updates against
overwrites from other transactions during its execution time.
The implemented isolation levels follow roughly the defini-
tions in the ISO SQL standard, but with semantics of the
used CC mechanism.

A typical CC mechanism used to ensure the isolation
of concurrent SQL transactions in mainstream DBMS, for
example DB2 and SQL Server, is some variant of multi-
granular Locking Scheme Concurrency Control (which we
call shortly LSCC, whereas in literature the more general
term pessimistic concurrency control is often used). LSCC
systems use exclusive locks to protect writes until the end
of a transaction, and shared locks protect read operations
against concurrent modifications of the data. The term
multi-granular refers to a mechanism of applying locks, for
example, at row level or table level, and compatibility issues
of these locking levels are solved using special intent locks.
The isolation level declared for the transaction fine-tunes the
duration of the shared locks. Locking may block concurrent
transactions, and may lead to deadlocks as a kind of concur-
rency conflict, in which the victim transaction is chosen by
the DBMS according to internal rules among the competing
transactions. Another typical CC mechanism is some variant
of Multi-Versioning Concurrency Control (MVCC), which
is used for example by Oracle and a specially configured
SQL Server database. In addition, Oracle also uses locking
at table level and provides the possibility of programmatic
row level locking by the SELECT .. FOR UPDATE variant

407

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of the SQL select statement.
The MVCC mechanism always allows reading of com-

mitted data items without blocking. In case of concurrency
competition between transactions, the first writer transac-
tion wins and conflicting updates or write operations are
prevented by raising serialization exceptions.

The third available concurrency control mechanism is
server-side optimistic concurrency control (OCC), as pre-
sented by Kung and Robinson [3], in which transactions
only read contents from the database while all changes are
first written in the private workspace of the transaction, and
finally at transaction commit phase - after successful valida-
tion - the changes will be synchronized into the database
as an atomic action. In case of concurrency competition
between transactions the first transaction to COMMIT is the
winner and others will get a serialization exception, however,
after requesting the COMMIT only. Currently server-side
OCC has not yet been implemented in any commercial
mainstream DBMS systems. The only implementation of
which we know is the Pyrrho DBMS [4] and VoltDB
[5], [6]. Both products focus on transaction processing in
the Cloud and apply OCC to overcome the drawbacks of
locking that significantly reduces the concurrency, hence,
the response time and scalability crucial for Cloud storage
services. Please note, however, that scalability is a general
requirement and not limited to Cloud storage services. One
reason, why OCC might be more appealing for the Cloud,
is the basic assumption of OCC that conflicts are rare and
especially applications that are built on top of the cloud are
not primarily OLTP applications with a high concurrency on
the same record.

With the advent of multi-tier web applications, or
more precisely, decentralized and loosely coupled transac-
tional systems, client-side OCC has gained new attention.
Providers of enterprise architecture frameworks (like Java
Enterprise Edition (JEE)) and persistence middleware (like
object relational mappers, e.g., Hibernate) propose to use
optimistic concurrency control to avoid the risk of blocked
resources and orphan locks. Developers face now the sit-
uation that they have to implement a kind of optimistic
concurrency control over the existing concurrency control
provided by the DBMS. But shifting the burden to the
middleware or application is a tricky task [1]. First, there is
a need to distinguish between business/user transaction and
SQL transaction. Second, we have to deal with transactional
legacy applications that bypass the middleware.

Definition: (SQL transaction) A SQL transaction is
defined as finite sequence of SQL statements that
obey the ACID properties.

This definition is equivalent to the general transaction def-
inition from Härder and Reuter [2], but restricted to SQL
databases. SQL transactions are supported by relational
DBMS.

Figure 1. Example UML diagram for a business/user transaction

Definition: (Business/user transaction) A business/user
transaction is an unit of work that holds the ACID
properties. The unit of work is defined by the busi-
ness (application) as an aggregate of applications,
each one executing at least one SQL transaction.

Ideally business/user transactions should be supported by
a transaction coordinator, that ensures the overall ACID
outcome. But the result is not necessarily based on Herbrand
semantic. Depending on the business rules there might be
more than one successful outcome (e.g. an alternative result)
or compensation transactions could be involved. As example,
think of a complex business transaction like booking a
holiday arrangement that involves multiple, non-integrated
applications, e.g. flight booking, hotel reservation, car rental
contract, or siteseeing tour (see Figure 1). If flight and hotel
bookings succeed and car rental fails, but the siteseeing
tour is possible, this could be considered as an alternative
successful business transaction. However, a car rental with-
out flight or hotel booking should be forbidden. Each of
the applications that is part of a business/user transaction
comes with its own SQL transactions that might be already
committed before another application happens to fail, hence,
a compensation for already committed SQL transactions is
needed. In this paper the only aggregate used for RVV is a
sequence of SQL transactions.

In general, the design of a multi-tier architecture requires
to split a business/user transaction into a sequence of SQL
transactions for several reasons:

• The business transaction needs to access more than one
DBMS

• Access to a database is executed under different ses-
sions because of session pooling

• The business transaction uses legacy systems not de-
signed to support distributed transactions.

This leads to a situation where the DBMS is unaware of the
complete business/user transaction because different sessions
and different transactions form the actual transaction. On
the one hand, the splitting avoids automatic locking for a
possibly unpredictable time, on the other hand, it requires
additional mechanisms to ensure the global consistency of

408

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the business/user transaction.
But, if concurrent business transactions are splitted into

multiple SQL transactions these may interfere without the
possibility for any help by the DBMS. For instance a lost
update could arise due to interleaved execution. Therefore,
the applications, the middleware, and the DBMS need to
co-operate somehow.

The implementation of a concurrency control mechanism
in every application is inefficient and depends on the skills
of the programmer. Therefore it is preferable to implement
the concurrency control protocol in the middleware for
the benefit of all applications using this middleware. The
implementation of a concurrency control protocol providing
full serializability is often to restrictive and derogates perfor-
mance. A good compromise is the Row Version Verification
(RVV) discipline that avoids the lost update problem from
the business transaction’s view.

The contribution of this paper is how to apply the data
access patterns of [11] to different middleware technologies.
The novel parts are techniques how to reliably implement
RVV discipline for complex business transactions as defined
above.

A. Structure of the Paper

In the next Section we motivate the RVV and describe its
mechanism. After the related work, Section IV introduces
the blind overwriting in the business context and compares
it to the generally known lost update problem, which is
typically covered in database literature. Section V presents
three SQL patterns, which serve as guideline for the imple-
mentations of RVV. Section VI starts with the presentation
of a typical use case including SQL statements for its setup
on a relational database. Each of the following Sections,
VII (JDBC, .NET), VIII (Hibernate, JPA), IX (MS LINQ),
and X (JDO) present implementations of RVV using the data
access patterns presented in Section V. Section XI concludes
the paper with a comparison between these technologies.

II. THE ROW VERSION VERIFICATION (RVV)
DISCIPLINE

The lost update is a typical phenomenon in multi-user
file-based systems without proper concurrency control, i.e.,
a record x updated by some process A will be over-
written by some other concurrent process B like in the
following problematic canonical schedule [7, pp. 62 - 63]:
rA(x), rB(x), wA(x), wB(x), where rT (x) and wT (x) de-
note read and write operations of transaction T on data item
x .

With a sufficient isolation level a DBMS would not allow
for a lost update and if a LSCC is used x would be locked
for the transaction’s duration and other transactions are
prevented from accessing x. But, if we decide to follow the
recommendation of the middleware vendors or the writers of
JEE tutorials to use OCC, the DBMS should be configured

not to use transactions to avoid locking or to use auto-
commit such that every data access statement results in
a transaction with locks held as short as possible. With
this configuration the DBMS would be unable to prevent
the lost update problem within the business transaction’s
view as it appears only as a blind write to the DBMS. A
blind write is defined as overwriting an existing data item
with a new value that is independent from the old value.
RVV, however, as a concurrency control mechanism at the
Middleware layer, on top of the DBMS, prevents from the
lost update phenomenon.

RVV depends on a technical row version column that
needs to be added to every SQL table. Its value is in-
cremented whenever any data in the row is changed. A
verification of the row version enables to detect if any
concurrent transaction has modified the data meanwhile. If
this happened, the validation fails and the transaction has to
abort. If the row version is still the same, then the transaction
may write the new data. In pseudo-code the mechanism
looks like this:

(t1) Read(x, versionX)
// Input data
// Process x
old versionX := versionX

(t2) if (old versionX = Read(versionX))
(t2) then
(t2) Write(x, versionX+1)
(t2) else
(t2) // Report serialization conflict
(t2) end if
In the time period between t1 and t2 other concurrent

transactions may access and modify data element x. The if-
then-else block is a critical section that must be executed in
an uninterruptable manner.

If the row version is cached by the middleware this could
lead to stale data. Therefore, it is necessary to circumvent
the middleware cache for the row version in order to apply
RVV.

RVV is better known under the misleading and ambiguous
name optimistic locking (see [7, pp. 365 - 367], [8], [9], [10])
even if there is no explicit locking involved.

The motivation to use RVV results from the practice
that for example web applications usually split a business
transaction into several SQL transactions as previously
explained for multi-tier transactional applications. In this
case the database concurrency mechanism cannot ensure
transactional properties for the business transaction, but
RVV helps to avoid at least the blind overwriting. Consider a
typical concurrency scenario with two users that try to book
the same flight online. First, a list of flights is displayed
(Phase 2, in Figure 2), second, a certain flight is chosen
(Phase 4), and third, the flight is booked (Phase 6). When a
second user books the same seat and commits before the first
user proceeds to Phase 6 then the first user would overwrite

409

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the reservation of the second user. This could be avoided by
re-reading the seats in Phase 6 and compare it with Phase 4
before storing the new number.

We consider the RVV discipline as a critical reliability cri-
terion in web based transactional application development.
The proper way for applications to meet the RVV discipline
is to strictly follow the SQL data access patterns presented
in Laux and Laiho [11], which will be recapped in Section
V. The patterns describe how to implement the RVV pro-
tocol for different database programming interfaces. These
patterns essentially ensure that the row version is checked
before overwriting a data value. The patterns describe how
to deal with different concurrency schemes of the underlying
DBMS and how to exploit triggers to support RVV from the
database side.

In the present paper these data access patterns are applied
to the already mentioned generic use case (Figure 2) and
code samples show implementations for various technolo-
gies.

III. RELATED WORK

Concurrency control is a cornerstone of transaction pro-
cessing, it has been extensively studied for decades. Namely
Gray and Reuter [9] studied locking schemes, whereas Badal
[12], Kung and Robinson [3] developed optimistic methods
for concurrency control (OCC). OCC distinguishes three
phases (see Figure 3) within a transaction:

• read phase
• validation phase
• write phase
The first phase includes user input and thinking time. It

may last for an unpredictable period. The following phases
are without any user interaction. Validation and write phases
are therefore very short in the range of milliseconds. The last
two phases are critical in the sense that exclusive access is
required. Failing to do so could result in inconsistent data,
e.g lost update.

Unland [13] presents OCC algorithms without critical
section. He specifically focuses on a OCC solution that
solves the starvation problem, increasing the chance for long
living and read only transactions to survive. Using these
algorithms would allow relaxed locking but involve checking
the read set against all concurrent transactions. Even if a
full OCC of this type would be implemented at the middle-
ware layer, it could only control applications that use this
middleware service. Therefore this algorithms can be ruled
out for our approach. Although, OCC mechanisms have
been studied already 30 years ago, hardly any commercial
DBMS implements algorithms of this type (see Bernstein
and Newcomer [14] or Gray and Reuter [9]) except for
Multi-Version Concurrency Control (MVCC).

A higher concurrency for query intensive transactions
provides MVCC as described by Stearns and Rosenkrantz
[15] and Bernstein and Goldman [16]. Comparing locking

with MVCC it can be said that a database system with
locking holds a single truth of every data item, and if it
is locked by others, one needs to wait until the lock is
released, whereas a MVCC systems holds a history of the
truth. On read committed isolation level it is always possible
to read the latest committed truth without waiting, and on
serializable isolation level (also called snapshot in some
systems), the data that will be read is the latest committed
truth at the beginning of the transaction.

In case of MVCC, the middleware has to make sure
that caching is not invalidating the multi-versioning system.
This problem is discussed by Seifert and Scholl [17] who
counteract with a hybrid of invalidation and propagation
message. In Web applications the risk of improperly ter-
minating transactions is extremely high (users simply ”click
away”). In such cases snapshot data or locks in the case of
a locking protocol are held until (hopefully) some timeout
elapses. This can severely degrade performance.

With the dissemination of middleware, OCC has been rec-
ommended by IT-vendors ([18], [19], [20]) for transactional
e-business and m-commerce applications but only little effort
has been spent on the realisation using commercial SQL
databases. Adya et al [21] recommend to use the system
clock as blocking-free protocol for global serialization in
distributed database systems. However this approach has to
fail if the resolution is not fine enough to produce unique
timestamps as we have shown for Oracle [22].

Nock ([8, pp. 395-404] describes an optimistic lock pattern
based on version information. He points out that this access
pattern does not use locking (despite of its misleading name)
and therefore avoids orphan locks. His pattern does not
address caching. Akbar-Husain [19] believes that demark-
ing the method that checks the version with the required
transaction attribute will be sufficient to avoid lost updates.
He does not consider that only a strong enough isolation
level like REPEATABLE READ or SERIALIZABLE will
achieve the desired results.

During decades of development in relational database
technologies the programming paradigms in data access
technologies have constantly changed. The two mainstream
schools in object oriented programming today are the Java
[23] and the Microsoft .NET framework [24] camps, both
provide call-level APIs and Object-Relational Mappings
(ORM) of their own. The problems of using RVV with the
older version of Enterprise Java Beans 2.0 are discussed in
[25].

We follow in this paper the object persistence abstractions
of Hoffer, Prescott, and Topi [26, Chapter 16] and implement
the RVV discipline at the middleware level applying the SQL
access patterns described in Section V.

410

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Business transaction with SQL transactions (phases 2, 4, 6, 7) and isolation levels of a sample use case

IV. BLIND OVERWRITING PROBLEM IN THE
APPLICATION CONTEXT

Let us first consider the following problematic scenario
of two concurrent processes A and B, each running a SQL
transaction that is updating the balance of the same account,
as shown in Table I. In this scenario step 4 of process A is
empty.

The withdrawal of 200 emade by the transaction of
process B will be overwritten by process A; in other words
the update made by B in step 5 will be lost in step 7 when
the transaction of A overwrites the updated value by value
900 ewhich is based on stale data, i.e., an outdated value
of the balance, from step 3. If the transactions of A and B
are serialized properly, the correct balance value after these
transactions would be 700 e , but there is nothing that the
DBMS could do to protect the update of step 5, assumed
an isolation level of READ COMMITTED which is the
default isolation level for most relational DBMS because
of performance reasons. In READ COMMITTED isolation
level the shared locks provided for the SELECT statement
are released immediately after the completion of the state-
ment and therefore it is possible for process B to obtain
a lock and update the balance. So, READ COMMITTED
does not protect any data read by a transaction of getting
outdated right after reading the value. Locking Scheme Con-
currency Control (LSCC) could prevent conflicting access to

Table I
A BLIND OVERWRITING SCENARIO USING SELECT-UPDATE IN

TRANSACTION A

step process A [T1, T2] balance process B
1 SET TRANSACTION

ISOLATION LEVEL
READ COMMITTED

2 1000e
3 SELECT BALANCE

INTO :BALANCE
FROM ACCOUNTS
WHERE ACCTID = :ID;

4 [COMMIT WORK;]
5 NEWBALANCE = UPDATE ACCOUNTS

BALANCE - 100 SET BALANCE =
BALANCE - 200
WHERE ACCTID = :ID;

6 800e COMMIT;
7 UPDATE ACCOUNTS

SET BALANCE =
:NEWBALANCE
WHERE ACCTID = :ID;

8 COMMIT; 900e

data, but not at READ COMMITTED isolation level. The
proper isolation level on LSCC systems to prevent a lost
update of process B should be REPEATABLE READ or
SERIALIZABLE, which would protect the balance value
read in the transaction of process A from getting outdated

411

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

during the transaction by holding shared locks on these
rows up to the end of the transaction. As result the shared
locks of Process A would block process B from a too early
update. The isolation service of the DBMS guarantees that
the transaction will either get the requested isolation level,
or, in case of a serialization conflict, the transaction will
be rejected by the DBMS. The means used for this service
and the transactional outcome for the very same application
code can be different when using different DBMS systems,
and even in using different table structures. The LSCC
may wait with granting a lock request until the possible
conflict disappears. Usually a transaction rejected due to a
serialization conflict should be retried by the application, but
we discuss this later in Section VI.

In the second scenario of Table I, process A splits its
transaction into two transactions. The first transaction, let it
call T1, consists of steps 1 to 4, including the COMMIT
WORK at step 4. After some user interaction and the
calculation in step 5, another transaction T2 continues with
steps 7 and 8. In this case, no isolation level can help, but
transaction T2 will make a blind write based on stale data
from step 3. But, meanwhile the balance value was updated
by transaction TB of process B in step 5.

From the database perspective, the 3 transactions have
been serialized correctly in the order: (T1, TB , and T2).
However, the problem is that there is no transaction bound-
ary around T1 and T2; they are treated separately by the
transaction manager. Hence, it is absolutely correct for TB

to interleave with T1 and T2. From a business or user point
of view, especially the user that runs 1 and T2, this is a
semantically wrong behavior. Hence, as soon as a transaction
is split into several sessions (e.g., due to connection pooling)
or different SQL transactions, a transaction manager at
the middleware layer is required that prevents from blind
overwrites and provides one transactional context for T1 and
T2. RVV provides such a context in a transparent way and
the row verification ensures only consistent writes.

V. SQL ACCESS PATTERNS FOR AVOIDING BLIND
OVERWRITING

The blind write of the update transaction T2 of steps 7 - 8
of Table I, which results in the loss of transaction TB , could
have been avoided by any of the following practices. The
proposed access patterns assure that either before or during
the write phase (step 7), a validation takes place and data
will only be updated after a successful validation (see Figure
3). We present the patterns in the canonical form given by
Coplien [27] that appears to be more compact than the one
used by Gamma et al [28]:

A. Access Pattern: Sensitive UPDATE

Problem: How to prevent a blind overwrite in case of
concurrent updates?

Figure 3. Context of the OCC Access Patterns

Context: Concurrent transaction processing in distributed
systems has to deal with temporary disconnected
situations, or sequences of SQL transactions be-
longing to one business transaction and neverthe-
less ensure correct results.

Forces:
• Using locks (LSCC) to prevent other transactions from

changing values can block data items for unpredictable
time in case of communication failure or in case of long
user thinking time.

• Multiversion concurrency control (MVCC) or OCC do
not block data access, but lead to abort conflicting
transactions, except for the first one that updates the
data.

• OCC is not supported by the mainstream commercial
SQL databases, hence we cannot directly rely on the
CC mechanism provided by the DBMS.

Solution: There is no risk of blind overwriting if T2 in step
7 uses the form of the update which is sensitive to
the current value, like B uses in step 5 as follows:

UPDATE Accounts
SET balance = balance - 100
WHERE acctId = :id;

Consequences: Please note, the update of the balance is
based on a value unseen by the application. There-
fore, the user will not be aware of the changed
balance and this access pattern does not provide
repeatable read isolation. If the user needs to know
about the changed situation the access pattern ”Re-
SELECT .. UPDATE” could be used (see Subsec-
tion V-C) or a SELECT command could be used
after the UPDATE.

B. Access Pattern: Conditional UPDATE

Problem: How to prevent a blind overwriting and provide
repeatable-read for a business transaction in case
of concurrent updates without using locking?

Context: The ”Sensitive UPDATE” pattern in concurrent
read situations may result in non-repeatable phe-
nomenon.

Forces: Same as for ”Sensitive UPDATE” plus:

412

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• The data value on which the update is based, as read
and displayed to the user, may no longer be the same
(non-repeatable read phenomenon).

Solution: After transaction T1 first has read the original
row version data in step 3, transaction T2 verifies in
step 7, using an additional comparison expression
in the WHERE clause of the UPDATE command,
that the current row version in the database is still
the same as it was when the process previously
accessed the account row. For example,

UPDATE Accounts
SET balance = :newBalance
WHERE acctId = :id AND
(rowVersion = :old rowVersion);

The comparison expression can be a single com-
parison predicate like in the example above where
rowVersion is a column (or a pseudo-column pro-
vided by the DBMS) reflecting any changes made
in the contents of the row and :old rowVersion is
a host variable containing the value of the column
when the process previously read the contents of
the row. In the case that more than one column is
involved in the comparison, the expression can be
built of version comparisons for all columns used.
The comparison will be based on the 3-value logic
of SQL.

Consequences: Since this access pattern does not explic-
itly read data, there is no need to set the isolation
level. The result of the concurrency control ser-
vices is the same for locking scheme concurrency
control (LSCC) and multiversion concurrency con-
trol (MVCC) based database systems. The result
of the update depends on the row version verify-
ing predicate, and the application code needs to
evaluate the return code to find out the number of
updated rows to verify the result.

C. Access Pattern: Re-SELECT .. UPDATE

Problem: How to provide a repeatable-read isolation for a
business transaction in case of concurrent updates?
How to inform the user when the read set has
changed and take an alternative decision?

Context: In case the result of the ”Conditional UPDATE”
pattern can not be directly communicated to the
user. For example, when an application is using
the database via middleware services (see Section
VIII).

Forces: Same as for ”Conditional UPDATE” plus:
• In the time between the re-SELECT and the UPDATE

statement, the data read may be updated again by con-
current transactions. This serialisation conflict would
force the transaction to rollback.

Solution: This is a variant of the ”conditional UPDATE”

pattern in which transaction T2 first reads the cur-
rent row version data from the database into some
host variable current rowVersion which allows the
application to inform the user of the changed
situation and take an alternative decision:

SELECT rowVersion
INTO :current rowVersion
FROM Accounts
WHERE acctId = :id;
if (current rowVersion = old rowVersion)
then

UPDATE Accounts
SET balance = :newBalance
WHERE acctId = :id;

else
// inform the user if desired
// and/or take an alternative decision

end if
To avoid any concurrency problems in this phase, it
is necessary to make sure that no other transaction
can change the row between the SELECT and
the UPDATE. For this purpose, we need to apply
a strong enough isolation level (REPEATABLE
READ, SNAPSHOT, or SERIALIZABLE) or ex-
plicit row-level locking, such as Oracle’s FOR
UPDATE clause in the SELECT command.

Consequences: Since isolation level implementations of
LSCC and MVCC based DBMS are different, the
result of concurrency services can be different:
in LSCC based systems the first writer of a row
or the first reader using REPEATABLE READ or
SERIALIZABLE isolation level will usually win,
whereas in MVCC based systems the first writer
wins the concurrency competition. On server side
OCC the first one to commit wins, and in the event
of LSCC deadlocks the victim (the transaction that
is aborted) is determined by internal rules of the
DBMS.

VI. A BASIC USE CASE EXAMPLE

In the following scenario we will distinguish SQL trans-
actions from business transactions (also called user trans-
action) as defined in Section I. An SQL transaction is
known to the DBMS. It starts explicitly with a BEGIN
TRANSACTION statement or implicitly with the first SQL
statement after the last transaction. The SQL transaction
terminates either with COMMIT or ROLLBACK. A business
transaction in our case consists of a finite sequence of
SQL transaction that are treated as a logical unit of work.
The involved database system is unaware of this logical
unit. Therefore, the databases can not support the atomicity
of a business transaction. If the business transaction maps
one-to-one to an SQL transaction as in legacy applications
the DBMS can fully support the transactional properties.

413

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In modern, web-based transactional applications a business
transaction consists of multiple SQL transactions. This is
not only because multiple database systems are involved,
there is a technical reason too. Application servers use
connection pooling, so even if only one database system
is used, different SQL statements may belong to different
connections and consequently to different transactions.

We see that the concurrency scope of an application needs
to be extended to cover sequences of SQL transactions (or
more generally server-side transactions), implementing some
business transaction. Figure 2 presents a typical business
transaction in 6 phases containing three SQL transactions
(list, select, and edit/book) like the flight booking mentioned
before plus an optional compensation phase. The ideal iso-
lation levels listed for each SQL transaction depends on the
concurrency control provided by the DBMS. For example,
the default concurrency control mechanism on SQL Server
is locking (LSCC), but it can alternatively be configured
to use ”snapshot” isolation (MVCC). With RVV we refer
to the sequence of inter-related SQL transactions (phases 4
and 6 in the Figure 2), which may belong to the same SQL
connection, but typically in a Web application could belong
to different connections as explained above. In this case the
locks from Phase 4 cannot be held until Phase 6.

To make sure that no concurrent transaction has changed
the contents of the row fetched in Phase 4, we need to verify
that the content in the database is still the same when trying
to update the row/object in Phase 6. Otherwise, the update
will cause a blind write that overwrites the result from other
competing transactions, thus loosing data from the database.

If the DBMS reports a concurrency conflict in Phase 6 (the
write/update phase), the application may retry the statement
because some conflicts are of transient nature. Temporary
conflicts that disappear after the conflicting transactions
have terminated could result either from an active deadlock
prevention, from transactions terminated with ROLLBACK,
or from released locks. A RVV validation that fails is
unrepeatable as the version value is never decremented.

A committed transaction cannot be rolled back, but some
systems provide a compensation transaction that reverses the
effects of a previously successful transaction. This is like
cancelling an order or contract that in fact results in a new
order or contract that reverses the previous one.

For setting up the scenario on the SQL Server, the
following Transact-SQL commands could be used:

CREATE TABLE rvv.VersionTest(

id INT NOT NULL PRIMARY KEY (id),

s VARCHAR(20), -- a sample data column

rv ROWVERSION -- pseudo-column reflecting updates

) ;

GO

CREATE VIEW rvv.RvTestList (id,s)) -- for Phase 2

AS SELECT id,s FROM rvv.VersionTest ;

GO

CREATE VIEW rvv.RvTest (id,s,rv) --for phases 4 and 6

AS SELECT id,s,CAST(rv AS BIGINT) AS rv

FROM rvv.VersionTest WITH (UPDLOCK) ;

GO

INSERT INTO rvv.RvTest (id,s) VALUES (1,’some text’);

INSERT INTO rvv.RvTest (id,s) VALUES (2,’some text’);

For technical details of the above script the reader is
referred to the SQL Server online documentation [29].

VII. BASELINE RVV IMPLEMENTATIONS USING
CALL-LEVEL API

The first open database call-level interface and de facto
standard for accessing almost any DBMS is the ODBC
API specification which has strongly influenced the data
access technologies since 1992. The current specification
is almost the same as the SQL/CLI standard of ISO SQL.
Many class libraries have been implemented as wrappers
of ODBC and many data access tools can be configured
to access databases using ODBC. Based on pretty much
the same idea, Sun has introduced the JDBC interface for
Java applications accessing databases which has become an
industry standard in the Java world. Using the previously
defined SQL views for accessing table VersionTest and
applying the RVV discipline, the following sample Java
code for Phase 6 (the update phase) of Figure 2 reveals
the necessary technical details:

// *** Phase 6 - UPDATE (Transaction) ***

con.setAutoCommit(false);

// Pattern B update - no need to set isolation level

string sqlCommand = "UPDATE rvv.RvTest " +

"SET s = ? " +

"WHERE id = ? AND rv = ? ";

pstmt = con.prepareStatement(sqlCommand);

pstmt.setString(1, newS);

pstmt.setLong(2, id);

pstmt.setLong(3, oldRv);

int updated = pstmt.executeUpdate();

if (updated != 1) {

throw new Exception("Conflicting row version in the

database! ");

}

pstmt.close();

// Update succeeded -> The application needs to know

the new value of RV

sqlCommand = "SELECT rv FROM rvv.RvTest WHERE id =

?";

pstmt = con.prepareStatement(sqlCommand);

pstmt.setLong(1, id);

ResultSet rs = pstmt.executeQuery();

newRv = rs.getLong(1);

rs.close();

pstmt.close();

414

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

con.commit();

In the above, as in all following examples, it is assumed that
the version attribute rv will be maintained by the database
itself, e.g., by a row level trigger or some pseudo-column
mechanism as described in the following Subsection VII-A.
If the database has no such capability, every application
itself has to take care of incrementing the version on every
update. If legacy applications do not follow this convention
of incrementing the version, they are subject to lose their
transactions.

Every 4-5 years Microsoft has introduced a new data
access technology after ODBC, and in the beginning of this
millennium ADO.NET built on various already existing data
providers. Compared to Microsoft’s ADO it is a new data
access design close to JDBC, but simplified and extended.
Instead of providing a universal interface to all kind of data
sources it consists of a family of data models which can
be generic like OleDb or native providers like SqlClient for
SQLServer or OracleClient for Oracle. Each of these im-
plement their own object classes. Without providing details
about this rich technology we just show below the Phase 6 of
Figure ?? from our baseline implementation of RVV using
C# language and the native .NET Data Provider (SqlClient)
[30] to access SQL Server 2008:

SqlCommand cmd = cn.CreateCommand(); //connection

creates new command object

// Phase 6 - update transaction

txn = cn.BeginTransaction();

cmd.Transaction = txn; // bind cmd to transaction

// Pattern B update including reread of rv using

OUTPUT clause of T-SQL:

cmd.CommandText = "UPDATE rvv.RvTest " +

"SET s = @s OUTPUT INSERTED.rv " +

"WHERE id = @id AND rv = @oldRv ";

cmd.Parameters.Clear();

cmd.Parameters.Add("@s", SqlDbType.Char, 20).Value =

newS;

cmd.Parameters.Add("@id", SqlDbType.Int, 5).Value =

id;

cmd.Parameters.Add("@oldRv", SqlDbType.BigInt,

12).Value = oldRv; // retrieved in step 4

long newRv = 0L;

try { newRv = (long) cmd.ExecuteScalar();

txn.Commit();

}

catch (Exception e) {

throw new Exception("Conflicting row version in

database "+ e.Message);

}

cmd.Dispose();

The above code-snippet shows how to bind the SQL
command cmd to the controlling transaction object txn.

The SQL Server provides an elegant solution for reading
the current row version rv at the end of the SQL UPDATE
command. Using the OUTPUT clause the Transact-SQL
UPDATE command retrieves the new value when the SQL
UPDATE is executed with the call to ExecuteScalar().

A. Server-side version management

There are multiple options for verifying the row version.
These include the comparison of the original contents of all
or some relevant subset of column values of the row, a check-
sum of these, some technical pseudo-column maintained by
the DBMS, or an additional technical SQL column. In the
latter case it is the question how the values of this column
are reliably maintained.

A general solution for row version management is to
include a technical row version column rv in each table
as defined in the following example:

CREATE TABLE Accounts (

acctId INTEGER NOT NULL PRIMARY KEY,

balance DECIMAL(11,2) NOT NULL,

rv BIGINT DEFAULT 0); -- row version

and using a row-level trigger to increase the value of column
rv on any row automatically every time the row is updated.
The row-level UPDATE trigger is defined in SQL language
as follows:

CREATE TRIGGER TRG_VersionStamper

NO CASCADE BEFORE UPDATE ON Accounts

REFERENCING NEW AS new_row OLD AS old_row

FOR EACH ROW

IF (old_row.rv = 9223372036854775807) THEN

SET new_row.rv = -9223372036854775808;

ELSE

SET new_row.rv = old_row.rv + 1;

END IF;

We call the use of a trigger or a DBMS maintained technical
pseudo-column as server-side stamping which no application
can bypass, as opposed to client-side stamping using the SET
clause within the UPDATE command - a discipline that all
applications should follow in this case. Row-level triggers
are affordable, although they lead to lower performance and
hence to approximately 2% higher execution time on Oracle
and DB2 [22, p. 28], whereas SQL Server does not even
support row-level triggers.

Timestamps are typically mentioned in database literature
as a means of differentiating any updates of a row. However,
our tests [22] show that, for example, on a 32bit Windows
workstation using a single processor Oracle 11g can generate
up to 115 updates having the very same timestamp. Almost
the same problem applies to DATETIME of SQL Server
2008 and TIMESTAMP of DB2 LUW 9, with exception of
the new ROW CHANGE TIMESTAMP option in DB2 9.5

415

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

which generates unique timestamp values for every update
of the same row using the technical TIMESTAMP column.

The native TIMESTAMP data type of SQL Server is not
a timestamp but a technical column which can be used
to monitor the order of all row updates inside a database.
We prefer to use its synonym name ROWVERSION. This
provides the most effective server-side stamping method in
SQL Server, although, as a side-effect it generates an extra
U-lock which will result in a deadlock in the example at step
6 of Figure 2. The remedy for this deadlock is to use the
table hint UPDLOCK which will block new U-lock requests
and prevents the transactions from running into a deadlock.

In version 10 and later versions, Oracle provides a new
pseudo-column, the Oracle Row System Change Number
(ORA ROWSCN) for rows in every table created with the
ROWDEPENDENCIES option [31]. This will show the
transaction’s System Change Number (SCN) of the last
committed transaction which has updated the row. This
provides the most effective server-side stamping method for
RVV in Oracle databases, although as a harmful side-effect,
the row-locking turns its value to NULL for the duration of
the writing transaction.

VIII. RVV IMPLEMENTATIONS USING ORM
MIDDLEWARE

Data access patterns solving the impedance mismatch
between relational databases and object-oriented program-
ming are called Object-Relational Mappers (ORM) [8]. One
widely known ORM technology is the Container Managed
Persistence (CMP) pattern of the Java Persistence API (JPA)
as part of the Java Enterprise Beans 3.0 (EJB3). The JPA
specification assumes the use of ”optimistic locking” [20].

The JPA stimulated the market for sophisticated persis-
tence managers providing object-relational mappings, such
as TopLink [32] and Hibernate [33]. Figure 4 shows our
interpretation of the alternatives of the current Hibernate
framework which implements the JPA but also allows full
control over Hibernate’s Core down to the JDBC code level,
which we actually need for our RVV implementation when
using Hibernate. In terms of RVV we are mainly interested
in the object persistence services of ORM frameworks. As
examples for these services Hibernate Core and Hibernate
JPA providers are tested for their ability to implement RVV.

A. RVV implementation using Hibernate Core

Hibernate provides an optimistic concurrency mechanism
called ”optimistic locking” (described in the Hibernate Ref-
erence Documentation [34]) based on version control. This
service can be configured programmatically and may be
overwritten by XML-based configuration files.

For instance, the programming paradigm for persistent
classes can chose any of the following options

• version checking by the application, e.g., RVV valida-
tion

Figure 4. Hibernate architecture

• automatic version checking by an entity manager
• automatic version checking of detached objects by an

entity manager
Automatic version checking takes place for every instance
of the class during the transaction’s COMMIT phase based
on a technical version column when the attribute setting
is optimistic-lock="version". As alternative, Hi-
bernate provides a validation based on a set of columns
when setting the attribute to optimistic-lock="all"
which will compare the contents of all columns, or by
optimistic-lock="dirty" which will compare only
the contents of columns which have been changed by the
transaction.

The single technical column for version validation can be
defined by the XML element <version> of the Hibernate
object-relational mapping declaration in an entity’s cfg.xml
file as follows:

<class name=”rvvtest” table=”RVTest” ...
optimistic-lock=”version”>

<id name=”id” column=”ID” />
<version column=”RV” generated=”always” ../>

</class>

where the attribute value generated=”always” means that
the value of the technical column is generated by the
DBMS on insert and update, whereas the attribute gener-
ated=”never” means that Hibernate will generate the value
during synchronizing the contents with the database. The
drawback of the validation based on Hibernate’s generated
technical column is that it is not reliable in case the data
gets updated by some other software.

Another configurable behaviour of the data access is the
SQL Isolation Level, which unfortunately cannot be changed
for a single transaction. But exactly this capability is needed
for Phase 6 of our example scenario. The original Hibernate
engine, called Hibernate Core, provides a native interface
providing the needed low level capability. Hibernate Core

416

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

services allow direct JDBC access to the data sources.
Switching to the JDBC level involves the creation of a new
connection on JDBC level and a subsequent method call
to set the isolation level. See comments 1) and 2) in the
example Java code of Phase 6.

Hibernate, like Toplink, tries to optimize data access
performance using its own cache, that makes row version
verification difficult. One must bypass the cache when
fetching the current row version from the data source.
Switching to the JDBC level allows to reload the RVV entity
including the row version which bypasses Hibernate’s cache
mechanism. This is done in the example Java code using the
refresh(re2) method on session level.

The use case scenario (see Figure 2) needs at least
isolation level REPEATABLE READ in Phase 6. This is
available in DB2 and SQL Server, but not in Oracle, which
for our purposes can only provide the snapshot isolation,
calling it SERIALIZABLE. We see this as a challenge and
want to prove that ORA ROWSCN can be used as row
version field managed at server-side without Hibernate’s
optimistic locking services. It should be pointed out that the
maintenance of the ORA ROWSCN is done by the DBMS
and cannot be bypassed by any application (including those
not using Hibernate).

Hibernate requires a class definition with member vari-
ables matching the table columns of our view RVTEST.
Objects of this class act as a wrapper for rows retrieved from
or written to the view. The following XML-file defines the
mapping between the RvvEntity class and the RVTest table
for our scenario:

...
<hibernate-mapping>
<class name=”rvvtest.RvvEntity” table=”RVTEST”>
<id name=”id” column=”ID”/>
<property name=”s” column=”S” update=”true”/>
<property name=”rv” column=”RV” update=”false”/>

</class>
</hibernate-mapping>

Since the column RV is actually the ORA ROWSCN
pseudo column, we don’t allow Hibernate to update it. The
code portion of the critical Phase 6 shows that special
tuning is needed to make Hibernate Core work correctly
with Oracle (numbers refer to the comments in the code):

1) The default isolation level of READ COMMITTED
suits in other phases of our use case, but it would
lead to ”blind overwriting” of concurrent transactions
during Phase 6. Hibernate does not offer the possibility
to change the isolation level dynamically, so we need
to switch first to the level of JDBC services.

2) REPEATABLE READ would be the proper isolation
level for Phase 6, but Oracle requires SERIALIZ-
ABLE, and Hibernate’s Oracle dialect adapter does
not transform REPEATABLE READ into SERIAL-

Figure 5. JPA persistence management

IZABLE, so to keep the code portable we stick to
SERIALIZABLE.

3) The save() method used to store the modified entity
back to the database allows no conditional update, i.e.,
only SQL Pattern C is applicable.
// Phase 6 - "model"

try {

tx = session.beginTransaction();

Connection conn = session.connection(); // 1) switch

to JDBC

conn.setTransactionIsolation(

conn.TRANSACTION_SERIALIZABLE); // 2)

RvvEntity re2 = (RvvEntity)

session.load(RvvEntity.class, id);

session.refresh(re2);

Long newRv = (Long)re2.getRv();

if (oldRv.equals(newRv)) { // 3) Pattern C

re2.setS(s);

session.save(re2); // 3)

/* Programmed breakpoint for concurrency testing:

*/

tx.commit();

} else

throw new Exception("StaleObjectState \n" +

"oldRv=" + oldRv + " newRv=" + newRv);

System.out.println("persisted S = " + re2.getS() +

"\n oldRv=" + oldRv + " newRv=" + newRv);

}

catch (Exception ex) {

System.out.println("Exception: " + ex);

}

B. RVV implementation using Hibernate JPA

Hibernate provides now its Java Persistence API (JPA)
implementation (EntityManager and Annotations) as a wrap-
per of Hibernate Core. Figure 5 presents methods of JPA for
managing the persistence of an object.

417

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Object properties can be changed only for loaded objects.
This means that only Pattern C (re-SELECT..UPDATE) up-
dates are possible in ORM frameworks. The caching service
of ORM middleware improves performance by buffering
objects, but RVV requires the current row version from the
database and therefore needs to bypass the cache. ORM
frameworks provide automatic ”optimistic locking” services
based on a timestamp or version column, but according
to the JPA specification these are maintained by the ORM
middleware itself (persistence provider) at client-side, so any
other software can bypass the version maintenance. There-
fore, the only generally reliable version control mechanism
is the server-side stamping.

The following Java code sample from our RVV Paper [22]
shows how to avoid stale data from Hibernate’s cache. To
set the isolation level via JDBC we first need to switch to
Hibernate’s core level as in the previous example. This is
done from the underlying session object at the JDBC level.
The session object creates a new connection, the connection
conn begins a new transaction and sets the isolation level to
SERIALIZABLE. Then, the object is reloaded and the actual
newRv is read. The used Pattern C requires REPEATABLE
READ to ensure that the row version will not change
during validation and execution of the update. But, for
portability reasons we choose the stronger isolation level
SERIALIZABLE.

// Phase 6 - "model"

em.clear(); //1) clear EntityManager’s cache for RVV

try { Session session = (Session)em.getDelegate();

// JPA => Hibernate Core

Connection conn = session.connection(); // => JDBC

Transaction tx6 = session.beginTransaction();

conn.setTransactionIsolation(

conn.TRANSACTION_SERIALIZABLE); // Pattern C

RvvEntity re2 = em.find(RvvEntity.class, id);

// reload the object

Long newRv = (Long)re2.getRv(); // read current

row version

if (oldRv.equals(newRv)) { // verifying the

version re2.setS(s); // update of properties

em.persist(re2); // Pattern C RVV update

tx6.commit();

}

else

throw new Exception("StaleObjectState: oldRv=" +

oldRv + " newRv=" + newRv);

}

catch (Exception ex) {

System.out.println("P 6, catched exception: " +

ex);

}

Apart from different method names, Hibernate API and
JPA provide approximately the same abstraction level and

in both cases it is necessary to use JDBC level access to
ensure the appropriate control over the SQL isolation level.
To circumvent Hibernate’s cache we need to either refresh
the object with the session refresh() method (Hibernate
API) or clear the entity manager’s cache with the clear()
method (Hibernate JPA).

IX. RVV IMPLEMENTATION USING LINQ TO SQL

Microsoft’s answer to the ORM frameworks is Language
Integrated Query (LINQ) for the .NET Framework 3.5. The
class libraries of LINQ can be integrated as part of any .NET
language providing developer ”IntelliSense” support during
coding time and error checking already at compile-time [35].
So called ”standard query operators” of LINQ can be applied
to different mappings using LINQ providers, such as LINQ
to XML, LINQ to Datasets, LINQ to Objects, and LINQ to
SQL. In the following C# code sample the object myRow is
loaded from the database in Phase 4 and string newS contains
a new value entered in Phase 5. In Phase 6 our use case
enters the update phase, first the string newS is assigned
to myRow’s member variable S and then the changes are
submitted to the DataContext dc. The DataContext object
holds the open connection to the database in order to finally
synchronize the object myRow’s data. The shaded part of
the code is just a programmed break allowing concurrent
processing for concurrency tests:

// Phase 4 - data access

var myRow = (from r in myTable

where r.ID == id

select r).First();

// Phase 5 - User interface

Console.WriteLine("Found the row ");

Console.WriteLine("ID={0}, S={1}, RV={2}",

myRow.ID, myRow.S, myRow.Rv);

long oldRv = myRow.Rv;

Console.Write("Enter new value for column S: ");

string newS = Console.ReadLine();

// Phase 6

TransactionOptions txOpt = new TransactionOptions();

txOpt.IsolationLevel =

System.Transactions.IsolationLevel.RepeatableRead;

using (TransactionScope txs = new TransactionScope

(TransactionScopeOption.Required, txOpt)) {

try { myRow.S = newS;

// To allow time for concurrent update tests ...

Console.Write("Press ENTER to continue ..");

Console.ReadLine();

dc.SubmitChanges(ConflictMode.FailOnFirstConflict);

txs.Complete();

}

catch (ChangeConflictException e) {

Console.WriteLine("ChangeConflictException: " +

e.Message);

}

418

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

catch (Exception e) {

Console.WriteLine("SubmitChanges error: " +

e.Message + ", Source: " + e.Source +

", InnerException: " + e.InnerException);

}

}

The code shows the use of TransactionScope, the new
transaction programming paradigm of .NET Framework
which does not depend on LINQ. Setting the isolation level
is actually not necessary for the transaction since it uses
Pattern B (Conditional UPDATE), but we want to show that
it can be set programmatically. The test also shows that no
stale data was used in spite of LINQ caching.

At run-time, the data access statements of LINQ to SQL
are translated into native SQL code which can be traced.
The following sample test run trace shows that row version
verification is automatic based on Pattern B (Conditional
UPDATE) and LINQ automatically tries to refresh the
updated row version content:

Press ENTER to continue ..

Before pressing the ENTER key the contents of column S in row 1 is updated

in a concurrent Transact-SQL session.

UPDATE [rvv].[RvTestU]

SET [S] = @p3

WHERE ([ID] = @p0) AND ([S] = @p1) AND ([RV] = @p2)

SELECT [t1].[RV]

FROM [rvv].[RvTestU] AS [t1]

WHERE ((@@ROWCOUNT) > 0) AND ([t1].[ID] = @p4)

-- @p0: Input Int (Size = 0; Prec = 0; Scale = 0) [1]

-- @p1: Input NVarChar (Size = 9; Prec = 0; Scale =

0) [TestValue]

-- @p2: Input BigInt (Size = 0; Prec = 0; Scale = 0)

[32001]

-- @p3: Input NVarChar (Size = 7; Prec = 0; Scale =

0) [testing]

-- @p4: Input Int (Size = 0; Prec = 0; Scale = 0) [1]

-- Context: SqlProvider(Sql2005) Model:

AttributedMetaModel Build: 3.5.21022.8

ChangeConflictException: Row not found or changed.

The SQL UPDATE statement validates the row version with
the ([RV] = @p2) predicate. This is exactly our Pattern
B. The following SELECT statements reads the new row
version and ensures that the row count is greater than 0
((@@ROWCOUNT) > 0). In case of a version conflict no
row is updated and a ChangeConflictException is
returned. There is no need to implement any RVV pattern
on the application level as LINQ to SQL applies this pattern
automatically.

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE jdo SYSTEM ”jdo.dtd”>
<jdo>

<package name=”model”>
<class name=”RvvEntity”>
<extension vendor-name=”FastObjects” key=”index”

value=”IdIndex”>
<extension vendor-name=”FastObjects”

key=”member”
value=”id”/>

</extension>
</class>

</package>
</jdo>

Figure 6. Example XML file defines persistence capable class RvvEntity

X. RVV IMPLEMENTATION USING JDO OBJECT
DATABASE

Java Data Objects (JDO) is a vendor neutral programming
interface that enables the persistent storage of Java objects
developed in 2001. Meanwhile the JDO specification and
reference implementation is maintained by the JDO Apache
project under the Java community process and released its
version 3 in April 2010. JDO has strongly influenced the
definition of the Java Persistence API (JPA).

The programming model provides a transparent, easy to
use object persistence for standard Java objects including
transactional support. For this reason, vendors of object
oriented databases quickly adopted JDO as programming
interface. However, it is possible to implement the JDO API
for any persistent data storage (called datastore by the JDO
specification), in particular for relational database systems.
In contrast to ORM software there is no need to define
any transformation to tables. The programmer only needs
to specify in an XML file the classes that he wants to make
persistence capable and optionally - as an vendor extension -
the attributes that should have indexed access (as in example
Figure 6). This definition will be later used by the class
enhancer to make ordinary Java classes persistence capable
and the actual mapping - if applicable - is hidden from the
programmer.

While in JDO version 1 the mapping was undefined,
version 2 allowed different mappings to relational databases.
If one starts with the class definition the relational schema
can be generated from the optional XML-mapping file.

The JDO Specification 2.2 [36, pp 44-46] distinguishes
three types of identity:

• Application identity - based on attribute values, man-
aged by the application, and enforced by the database,

• Datastore identity - based on a system generated iden-
tity and managed by the database,

• Nondurable identity - the Java object identity, managed

419

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. JDO persistence capable object states

by the Java virtual machine.
Only the datastore identity is a persistent identity in the
object oriented sense. The representation of the identity
is via the JDO object identity that is returned as a
copy by method getObjectId(Object po). JDO defines two
types of transaction management, the Datastore Transaction
Management (DTM) and optimistic transaction manage-
ment (OTM). DTM ensures transactional properties simi-
lar to SQL transactions even if connections to the datas-
tore are dynamically handled by the ConnectionManager.
In the case of OTM, persistent objects modified within
or outside a transaction are not transactional until dur-
ing commit. At commit time a short transactional datas-
tore context is established in which all modifications are
flushed to the datastore if validation is successful. If an
JDOOptimisticVerificationException is raised,
the transaction fails and in memory modifications are rolled
back (the original state is restored). The tested implemen-
tation FastObjects J1 does not support the OTM and raised
an JDOUnsupportedOptionException.

The programming model of JDO version 1 distinguishes
between transient and persistent objects. The persistent ob-
jects may be in one of five states:

• persistent new - new object prepared to be committed
to the datastore

• hollow - object in the datastore
• persistent clean - (partial) object loaded into application
• persistent dirty - (partial) object loaded and modified

in application
• persistent deleted - persistent object deleted

The possible states and transitions for transactional objects
are shown in Figure 7. Typically an object is created in the
application by the Java constructor new. The resulting object
is Transient. If the object’s class is persistence capable,
calling makePersitent() changes its state to Persistent
new. If the object is committed to the datastore its state
is Hollow. After reading some fields of an object from the

datastore it reaches the state Persistent clean. Modifying any
attribute value makes the object Persistent dirty until it is
committed back to the datastore or the values are discarded
by the rollback() method. In both cases the resulting
state is Hollow again. A persistent object may be deleted at
any time by calling deletePersistent(). The deletion
is made durable by calling commit() or cancelled by
rollback().

In JDO version 2, nontransactional and detached opera-
tions were added that are not orthogonal to the above states.
This leads to an explosion of states and different life cycles
for JDO objects (see JDO 2.2 Specification [36, pp. 50 -
68].

JDO recognizes four isolation levels with identical names
as the SQL isolation levels plus the snapshot isolation level.
It is unclear if these isolation levels have the same semantics
as the isolation levels for relational databases. The tested
FastObjects J1 does not support this JDO 2.0 options, but
uses strict two-phase-locking that ensures REPEATABLE
READ, the isolation level needed for the RVV testing.

The class definition of RvvEntity should be stored in
the object database as well in order to provide the class
definition to all applications. The version attribute rv will
only be incremented by the setter methods of the other
attributes. It is important that all attributes are private and
that the rv attribute has no setter method. So the only way
to access an attribute is via its getter and setter methods. The
setter methods ensure that any modification to the object’s
state, i.e., changing any attribute value, will result in a new
row version. The setter method for each attribute should be
modified in the following way:

package model;

public class RvvEntity {

private int id;

private String s;

private long rv;

public RvvEntity() {// default constructor

} //needed for persistence capable classes

public RvvEntity(int id, String s) {

this.id = id;

this.s=s;

this.rv = 0;

}

public void setS(String s) {

this.s = s;

this.rv++;

}

}

As in the previous Hibernate examples, only loaded objects
can be modified. Therefore, only Pattern C is applicable as
the following listing of Phase 4 and 6 shows.

PersistenceManager pm;

...

420

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

public void doRVV() throws ExampleException {

RvvEntity p, p2RVV;

Object p2oid;

Extent e;

Iterator<?> i;

// Phase 4 of use case

pm.currentTransaction().begin();

e = pm.getExtent(RvvEntity.class, true);

i = com.poet.jdo.Extents.iterator(e, "IdIndex");

// find object with id = 1

boolean found = com.poet.jdo.Extents.findKey(i,

1);

// search for the first key match

if (found == true && i.hasNext())

p = (RvvEntity) i.next();

else {

System.out.println("RvvEntity #1 not found");

return;

}

p2oid = pm.getObjectId(p); //1)

long oldRvv = p.getRv(); //2)

pm.currentTransaction().commit();

// Phase 6 of use case

pm.currentTransaction().begin();

pm.currentTransaction().setIsolationLevel(

TransactionIsolationLevel.repeatable-read);

System.out.println("pm: Phase 6 started");

p2RVV =

(RvvEntity) pm.getObjectById(p2oid, true); //3)

if (p2RVV.getRv() == oldRvv){ //4) Pattern C

p.setS(" pm(Phase 6): NEW TEXT");

try {

pm.currentTransaction().commit();

System.out.println("pm: Phase 6 committed!");

}

catch (javax.jdo.JDOException x) {

pm.currentTransaction().rollback();

System.out.println("Could not commit! Reason:

"

+ x.getMessage());

}

} else {

System.out.println("pm: RVV serialisation

conflict!");

pm.currentTransaction().rollback();

}

}

In Phase 4 the RvvEntity #1 is retrieved from the database
by its id number. From the programming model the index
search could possibly retrieve more than one object with
id = 1. It is the responsibility of the application to ensure

uniqueness. Later, when the object is loaded, the method
getObjectId() retrieves its persistent datastore object
id (line with comment 1). This object id is later used in
Phase 6 to reload the object by its object id (see line with
comment 3). The row version from Phase 4 is saved in
variable oldRvv (comment 2) and used in Phase 6 for RVV
(comment 4).

Phase 6 relies on isolation level REPEATABLE READ,
but the tested version of FastObjects does not support
isolation level setting. From the exception messages we
concluded that any read access was protected by a shared
lock until the end of the transaction and conflicting implicit
lock requests (e.g., by a setter method) resulted in an
exception with message:

write lock for object with id (0:0-1030#0, 1001)
on behalf of transaction <unnamed> on database
FastObjects://LOCAL/MyRvv base.j1 not granted

The apparent use of strict two-phase-locking provided re-
liable isolation for a successful application of the RVV
using Pattern C. During Phase 4, no competing transaction
could modify the loaded object. Between phases 4 and 6
a concurrent transaction may successfully update objects
loaded during Phase 4 but in Phase 6 the changes are
discovered and the transaction under test had to abort.
During Phase 6 the transaction under test was protected by
read locks against any changes from the re-read (line with
comment 3) until the end of the transaction.

XI. CONCLUSION

Table II presents a comparison of the Call-level APIs
and ORM Frameworks with RVV practice in mind. It lists
the access patterns that can be used in conjunction with
different technologies and it depicts the level of control
and its limitations. Major findings are the differences when
applying the access patterns of Laux and Laiho [11] for
different middleware technologies with regard to isolation
levels, transaction control, caching, and performance over-
head. While we are writing this paper LINQ to SQL is
still in its beta phase and it was rather slow in our tests.
However, we are impressed about the built-in ”optimistic
concurrency control” as Microsoft calls it. Microsoft has the
advantage of experiences from the competing technologies.
Attributes of LINQ are more orthogonal than the numerous
JPA annotations and its object caching did not produce side-
effects in concurrency control making LINQ easier to use
and manage. It also utilizes server-side version stamping.
With the advanced features of the framework - as it proves
to do things right - this is a most promising software
development extension in the .NET Framework. The native
DBMS for LINQ is currently SQL Server, but since IBM
and Oracle have already shipped its own ADO.NET data
providers, their support for this technology can be expected.

421

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table II
COMPARISON OF CLI APIS AND ORM FRAMEWORKS

CLI APIs ORM Frameworks
Java
Hibernate

ODBC Web Service JDO
JDBC APIs TopLink .NET
ADO.NET JPA LINQ

Access Pattern A yes yes no no
Access Pattern B yes yes no yes
Access Pattern C yes yes yes no

DBMS http: low
Performance overhead low appl.serv: high high high (beta)
Obj. orient. Programming labor-intensive yes yes
Persistence SQL SQL middleware service middleware service
Use of native SQL detailed detailed limited limited
– isolation full control full control default full control
– local transaction full control full control TM 1) full control
– global transaction (ADO.NET) difficult TM 1) implicit 2)
2nd level caching yes
Optimistic Locking RVV RVV configurable built-in
Version stamping (default) client-side server-side

1) using Transaction Manager (TM), 2) using TransactionScope

As an advantage of ORM Frameworks Hoffer et al [26]
lists ”Developers do not need detailed understanding of the
DBMS or the database schema”. We don’t share this view.
Even if we use these higher abstraction frameworks we
need to verify that we understand the low level data access
operations so that our applications are transaction safe. For
example it was necessary to circumvent middleware caches
where possible or when using disconnected data sets we
had to explicitly reread the row version from the database
in repeatable read isolation (access Pattern C). The version
stamping of the ”optimistic locking” should not be handled
at client or middleware side, but on the server side instead
to avoid that applications can bypass the RVV mechanism.

The JDO programming interface shielded much of the
mapping complexity and the implementation tested used
straight forward strict two-phase-locking. So the behaviour
was similar to SQL databases with locking scheme. Future
tests with products supporting optimistic transaction control
and disconnected (called detached by JDO) operations will
show if these models can improve performance or facilitate
programming.

Some comparisons in Table II are still speculative instead
of hard facts. In this respect Table II can be considered as
suggestions for further studies.

ACKNOWLEDGEMENTS

This paper is the result of collaborative work undertaken
along the lines of the DBTechNet Consortium. The authors
participate in DBTech EXT, a project partially funded by the
EU LLP Transversal Programme (Project Number: 143371-
LLP-1-2008-1-FI-KA3-KA3MP)

REFERENCES

[1] M. Laiho and F. Laux; ”Implementing Optimistic Concur-
rency Control for Persistence Middleware using Row Ver-
sion Verification,” in Second International Conference on
Advances in Databases Knowledge and Data Applications
(DBKDA 2010), April 11-16, 2010, Les Menuires, France,
pp. 45 - 50

[2] T. Härder and A. Reuter, ”Principles of Transaction-Oriented
Database Recovery,” ACM Computing Surveys, pp. 287 - 317,
Vol. 15, No. 4, December 1983

[3] H. T. Kung and J. T. Robinson; ”On Optimistic Methods
for Concurrency Control,” In ACM Transactions on Database
Systems (TODS) 6(2), pp. 213 - 226, 1981

[4] M. Crowe; (2011, Jan.), The Pyrrho Database Management
System, University of the West of Scotland, [Online], Avail-
able: http://www.pyrrhodb.com

[5] VoltDB, Inc. (2011, Jan.), VoltDB Home Page, [Online],
Available: http://voltdb.com/

[6] VoltDB, LLC (ed.) (2011, Jan.), VoltDB Technical
Overview, [Online], Available: http://www.voltdb.com/

pdf/VoltDBTechnicalOverviewWhitePaper.pdf

[7] G. Weikum and G. Vossen, Transactional Information Sys-
tems, Morgan Kaufmann Publishers, 2002

[8] C. Nock; Data Access Patterns, Addison-Wesley, 2004

[9] J. Gray and A. Reuter; Transaction Processing: Concepts and
Techniques, Morgan Kaufmann, 1993

[10] U. Halici and A. Dogac; ”An Optimistic Locking Technique
for Concurrency Control in Distributed Databases,” IEEE
Transactions on Software Engineering, Vol 17, pp. 712 - 724,
1991

422

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[11] F. Laux and M. Laiho; ”SQL Access Patterns for Optimistic
Concurrency Control,” in Future Computing, Service Com-
putation, Cognitive, Adaptive, Content, Patterns (COMPUTA-
TIONWORLD ’09), November 15-20, 2009 - Athens/Glyfada,
Greece, pp. 254 - 258

[12] D. Z. Badal; ”Correctness of Concurrency Control and Im-
plications in Distributed Databases,” in Proc. COMPSAC79,
Chicago, 1979, pp. 588 - 593

[13] R. Unland, U. Prädel, and G. Schlageter; ”Ideas on Optimistic
Concurrency Control I: On the Integration of Timestamps into
Optimistic Concurrency Control Methods and A New Solu-
tion for the Starvation Problem in Optimistic Concurrency
Control,” In Informatik Fachbericht; FernUniversität Hagen,
Nr. 26. 1982

[14] Ph. Bernstein and E. Newcomer; Principles of Transaction
Processing, Morgan Kaufmann, 1997

[15] R. E. Stearns and D. J. Rosenkrantz; Distributed Database
Concurrency Controls Using Before-Values,” in Proceedings
ACM SIGMOD International Conference on Management of
Data, 1981, pp. 74 - 83,

[16] P. A. Bernstein and N. Goodman; ”Multiversion Concurrency
Control – Theory and Algorithms,” ACM Transactions on
Database Systems 8, pp. 465 - 483, 1983.

[17] A. Seifert and M. H. Scholl; ”A Multi-version Cache Re-
placement and Prefetching Policy for Hybrid Data Delivery
Environments,” in Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002, pp. 850 - 861

[18] M. Heß; (2010, Oct), Lange Gespräche mit
Hibernate, [Online], Available: http://www.ordix.de/
ORDIXNews/2 2007/Java J2EE JEE/
hibernate long conversation.html

[19] Y. Akbar-Husain, (2010, Oct.), Optimistic Locking pattern
for EJBs, [Online], Available: http://www.javaworld.com/jw-
07-2001/jw-0713-optimism.html

[20] L. DeMichiel and M. Keith, JSR 220: Enterprise
JavaBeansTM, Version 3.0, Java Persistence API, Final
Release, 8 May, 2006, Sun Microsystems, Inc., Santa Clara,
California, USA,

[21] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari; ”Efficient
Optimistic Concurrency Control Using Loosely Synchronized
Clocks,” ACM SIGMOD Record, Volume 24 , Issue 2 (May
1995), pp 23 - 34, ISSN: 0163-5808

[22] M. Laiho and F. Laux; (2011, Jan.), On Row Ver-
sion Verifying (RVV) Data Access Discipline for avoid-
ing Blind Overwriting of Data, [Online], Available:
http://www.DBTechNet.org/papers/RVV Paper.pdf

[23] E. Jendrock, J. Ball, D. Carson, I. Evans, S. Fordin, and
K. Haase; (2010, Oct.), The Java EE 5 Tutorial, [Online],
Available: http://download.oracle.com/javaee/5/tutorial/doc/

[24] N.N.; (2010, Oct.), .NET Framework 3.5, msdn .NET
Framework Developer Center, [Online], Available:
http://msdn.microsoft.com/ en-us/library/w0x726c2.aspx

[25] M. Laiho and F. Laux; ”Data Access using RVV Disci-
pline and Persistence Middleware,” in The Conference for
International Synergy in Energy, Environment, Tourism and
Contribution of Information Technology in Science, Economy,
Society and Education (eRA-3), 2008, Aegina/Greece, pp. 189
- 198

[26] J. A. Hoffer, M. B. Prescott, and H. Topi; Modern Database
Management, 9th ed., Pearson Prentice-Hall, 2009

[27] J. O. Coplien, ”A Generative Development-Process Pattern
Language,” in J.O. Coplien and D.C. Schmidt (eds.), Pattern
Languages of Program Design, Addison-Wesley, 1995

[28] E Gamma, R Helm, R Johnson, and J Vlissides; Design
Patterns, Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994

[29] N.N.; (2010, Oct.), SQL Server Books Online, msdn
SQL Server Developer Center, [Online], Available:
http://msdn.microsoft.com/en-gb/library/ms130214.aspx

[30] N.N.; (2010, Oct.), SQL Server and ADO.NET, msdn
Visual Studio Developer Center, [Online], Available:
http://msdn.microsoft.com/en-us/library/kb9s9ks0.aspx

[31] Diana Lorentz and Mary Beth Roeser; (2011, Jan.),
Oracle SQL Language Reference Manual, 11g
Release 2 (11.1), October 2009, [Online], Available:
http://download.oracle.com/docs/cds/E11882 01.zip

[32] Oracle; TopLink Developers Guide 10g (10.1.3.1.0), B28218-
01, September 2006

[33] C. Bauer and G. King; Java Persistence with Hibernate,
Manning, 2007

[34] Gavin King, Christian Bauer, Max Rydahl
Andersen, Emmanuel Bernard, and Steve Ebersole;
(2010, Oct.), Hibernate Reverence Documenta-
tion, Version 3.5.1-Final, [Online], Available:
http://docs.jboss.org/hibernate/stable/core/reference/en/pdf/
hibernate reference.pdf

[35] S. Klein; Professional LINQ, Wiley Publishing, 2008

[36] Craig Russell; (2010, Oct.), Java Data Objects 2.2, JSR
243, 10 October 2008, Sun Microsystems, Inc., [Online],
Available: http://db.apache.org/jdo/releases/release-2.2.cgi

423

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

