
Efficient Maintenance of all k-Dominant Skyline Query Results for Frequently
Updated Database

Md. Anisuzzaman Siddique∗
University of Rajshahi

Rajshahi-6205, Bangladesh
Email: anis cst@yahoo.com

Yasuhiko Morimoto
Hiroshima University

Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan
Email: morimoto@mis.hiroshima-u.ac.jp

Abstract—Skyline queries are useful to multi-criteria deci-
sion making as they represent the set of all solutions that
the user can safely take without fear that something better
is out there. It can act as a filter to discard sub-optimal
objects. However, a major drawback of skylines is that, in
datasets with many dimensions, the number of skyline objects
becomes large and no longer offer any interesting insights.
To solve the problem, k-dominant skyline queries have been
introduced, which can reduce the number of retrieved objects
by relaxing the definition of the dominance. Though it can
reduce the number of retrieved objects, the k-dominant skyline
objects are difficult to maintain if the database is updated.
This paper addresses the problem of maintaining k-dominant
skyline objects for frequently updated database. We propose
an algorithm for maintaining k-dominant skyline objects. An
extensive performance evaluation using both real and synthetic
datasets demonstrated that our method is efficient and scalable.

Keywords-Skyline, k-Dominant Skyline, Database Update.

I. INTRODUCTION

Abundance of data has been both a boon and a curse, as
it has become increasingly difficult to process data in order
to isolate useful and relevant information. In order to com-
pensate, the research community has invested considerable
effort into developing tools that facilitate the exploration
of a data space. One such successful tool is the skyline
query. The set of skyline objects presents a scale-free choice
of data objects worthy for further considerations in many
application contexts. Figure 1 shows a typical example of
skyline. The table in the figure is a list of hotels, each of
which contains two numerical attributes: distance to beach
and price, for online booking. A tourist chooses a hotel from
the list according to her/his preference. In this situation,
her/his choice usually comes from the hotels in skyline, i.e.,
any of h1, h3, h4 (see Figure 1(b)). Many approaches have
been proposed for the efficient computation of skylines in
the literature [2], [3], [5], [6], [8], [9], [10], [12].

The skyline query can greatly help user to narrow down
the search range. It is always assumed that all the attributes

*This work was done when the author was in Hiroshima University.

are involved in the skyline queries, that is, the dominating
relationship is evaluated based on every dimensions of the
dataset. However, a major drawback of skylines is that,
in datasets with many dimensions, the number of skyline
objects becomes large and no longer offer any interesting
insights. The reason is that as the number of dimensions
increases, for any object O1, it is more likely there exists
another object O2 where O1 and O2 are better than each
other over different subsets of dimensions. If our tourist,
cared not just about price and distance to beach, but also
about the distance to airport, distance to downtown, rank,
and internet charge then most hotels may have to be included
in the skyline answer since for each hotel there may be no
one hotel that beats it on all criteria.

To deal with this dimensionality curse, one possibility is
to reduce the number of dimensions considered. However,
which dimensions to retain is not easy to determine, and
requires intimate knowledge of the application domain. To
reduce the number of dimensions without any intimate
knowledge of the application domain, Chan, et al. con-
sidered k-dominant skyline query [4]. They relaxed the
definition of “dominated” so that an object is more likely to
be dominated by another. Given an n-dimensional database,
an object Oi is said to k-dominates another object Oj (i ̸= j)
if there are k (k ≤ n) dimensions in which Oi is better
than or equal to Oj . A k-dominant skyline object is an
object that is not k-dominated by any other objects. Note
that conventional skyline objects are n-dominant objects.

A. Motivating Example

Assume we have a symbolic dataset containing six at-
tributes (D1, ..., D6) as listed in Table I. Without loss
of generality, we assume smaller value is better in each
dimension. Conventional skyline query for this database
returns five objects: O2, O3, O5, O6, and O7. On the other,
if we apply the k-dominant skyline query for this dataset it
can control the selectivity by changing k. For example, if
k = 5, the 5-dominant skyline query returns two objects:
O5 and O7. Objects O1, O2, O3, O4, and O6 are not in 5-

424

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 1. Skyline example

Table I
SYMBOLIC DATASET

Obj. D1 D2 D3 D4 D5 D6

O1 7 3 5 4 4 3
O2 3 4 4 5 1 3
O3 4 3 2 3 5 4
O4 5 3 5 4 1 2
O5 1 4 1 1 3 4
O6 5 3 4 5 1 5
O7 1 2 5 3 1 2

dominant skyline because they are 5-dominated by O7. The
4-dominant skyline query returns only one object, O7 and
the 3-dominant skyline query returns empty.

Though the k-dominant skyline query can control selec-
tivity, but unfortunately, there exist no efficient methods that
can handle k-dominant skyline queries under continuous
updates. Therefore, we consider continuous queries, that is,
queries that are executed when there are some changes in
the dataset that affects their result. Continuous k-dominant
skyline queries are very useful, since they allow users to
monitor the dataset and get informed about new interesting
objects. However, the maintenance of k-dominant skyline
for an update is much more difficult due to the well-known
intransitivity of the k-dominance relation. Assume that “A”
k-dominates “B” and “B” k-dominates “C”. However, “A”
does not always k-dominates “C”. Moreover, “C” may k-
dominate “A”. Because of the intransitivity property, we
have to compare each object against every other object
to check the k-dominance. To illustrate this problem con-
sider the 5-dominant example again. In the dataset, objects
O5, O7 are in 5-dominant skyline. If we insert a new object
Onew = (6, 4, 4, 2, 2, 3) into the dataset, we can compare
Onew with the 5-dominant skyline objects (i.e., {O5, O7})
to maintain the 5-dominant skyline and after comparisons
we may find that Onew is in the 5-dominant skyline. But
it is not true, because Onew is 5-dominated by O2. Like
this example, for each insertion in the dataset, we have to
perform domination check of each new object against all

k-dominant as well as non-k-dominant skyline objects. This
procedure is cost effective and we have to reduce the cost
in order to handle frequent updates in a large dataset.

If an update is a deletion, we have to recompute the
entire k-dominant skyline from the scratch. Because some
objects that are not in the current k-dominant skyline objects
may be “promoted” as k-dominant skyline objects by a
deletion. Suppose, if we delete object O2, this deletion will
“promote” Onew as a 5-dominant skyline object. Again,
if we want to revise or update the attributes values of
an object. Then similar to deletion operation, we have to
recompute the entire k-dominant skyline from the scratch.
After this type of modification, three cases can be happened:
some k-dominant skyline objects may be “removed”, some
objects that are not in the current k-dominant skyline objects
may be “promoted” as k-dominant skyline objects, and
both may be occurred at a time. For example, if we select
object O7 for update and revise the values of D1 and D5

from 1 to 6, then the 5-dominant skyline result updated as
{O5, O4, O7, O2}. The focus of this paper is on developing
an efficient algorithm for continuous k-dominant skyline
objects.

This paper is the journal version of our paper [1]. The
main contributions of this paper are as follows:

• We propose an algorithm to compute k-dominant sky-
line objects for all k at a time.

• We addresses the problem of continuous k-dominant
skyline objects of frequently updated database.

• We develop algorithms for continuous k-dominant sky-
line objects.

• We conduct the extensive performance evaluation using
both real and synthetic datasets and compare our method
with the adaptive version of Two-Scan Algorithm (TSA)
technique [4], which is currently considered the most effi-
cient k-dominant skyline method. Our evaluation shows that
the proposed method is significantly faster than the adaptive
version of TSA technique.

The remaining sections of this paper are organized as
follows: Section II presents the notions and properties of
k-dominant skyline computation, we provide detailed exam-
ples and analysis of proposed k-dominant skyline computa-
tion and maintenance methods in Section III, Section IV
discusses related work, we experimentally evaluate our
algorithm in Section V by comparing with other existing
algorithms under a variety of settings, finally, Section VI
concludes the paper.

425

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



II. PROBLEM DEFINITION

Assume there is an n-dimensional database DB and D1,
D2, · · ·, Dn be the n attributes of DB. Let O1, O2, · · ·, Or

be r objects (tuples) of DB. We use Oi.Ds to denote the
s-th dimension value of Oi. An object Oi ∈ DB is said to
dominate another object Oj ∈ DB, denoted as Oi ≺ Oj , if
(1) for every s ∈ {1, · · · , n}: Oi.Ds ≤ Oj .Ds; and (2) for
at least one t ∈ {1, · · · , n}: Oi.Dt < Oj .Dt. The skyline
of DB is a set of objects Skyn(DB) ⊆ DB which are not
dominated by any other objects. Skyline query for Table I
dataset returns five objects: O2, O3, O5, O6, and O7. Objects
O1 and O4 are not in skyline because they are dominated
by O7.

In the remaining sections, we first define the k-dominance
relationship using above notation, then introduce k-dominant
skyline based on the definition of the k-dominance relation-
ship.

A. k-dominance Relationship

An object Oi is said to dominate another object Oj , which
we denote as Oi ≺ Oj , if Oi.Ds ≤ Oj .Ds for all dimensions
Ds (s = 1, · · · , n) and Oi.Dt < Oj .Dt for at least one
dimension Dt (1 ≤ t ≤ n). We call such Oi as dominant
object and such Oj as dominated object between Oi and Oj .

By contrast, an object Oi is said to k-dominate another
object Oj , denoted as Oi ≺k Oj , if (1) Oi.Ds ≤ Oj .Ds in
k dimensions among n dimensions and (2) Oi.Dt < Oj .Dt

in one dimension among the k dimensions. We call such Oi

as k-dominant object and such Oj as k-dominated object
between Oi and Oj .

An object Oi is said to have δ-domination power if there
are δ dimensions in which Oi is better than or equal to all
other objects of DB.

B. k-dominant Skyline

An object Oi ∈ DB is said to be a skyline object of DB
if Oi is not dominated by any other object in DB. Similarly,
an object Oi ∈ DB is said to be a k-dominant skyline object
of DB if Oi is not k-dominated by any other object in DB.
We denote a set of all k-dominant skyline objects in DB as
Skyk(DB).

Theorem 1: Any object in Skyk−1(DB) must be an
object in Skyk(DB) for any k such that 1 < k ≤ n.
Any object that is not in Skyk(DB) cannot be an object
in Skyk−1(DB) for any k such that 1 < k ≤ n.

Proof: Based on the definition, a (k−1)-dominant skyline
object Oi is not (k − 1)-dominated by any other objects in
DB. It implies that Oi is not k-dominated by any other
objects. Therefore, we can say that Oi is a k-dominant
skyline object. Similarly, if an object Oj is k-dominated by
another object, it must be (k − 1)-dominated by the object.

Therefore, any k-dominated object cannot be a (k − 1)-
dominant skyline object. ♢

The conventional skyline is the k-dominant skyline where
k = n. If we decrease k, more objects tend to be k-
dominated by other objects. As a result, we can reduce
the number of k-dominant skyline objects. Using above
properties, we can compute Skyk−1(DB) from Skyk(DB)
efficiently. For example, O1 and O4 of Table I are not in
Sky6(DB) because they are 6-dominated by O7. Therefore,
they cannot be a candidate of k-dominant skyline object
for k < 6. We can prune such non-skyline objects for
further procedure of the k-dominant query. If we consider
5-dominant query, then O2, O3, and O6 are 5-dominated
objects. Therefore, we can prune all of those five objects in
4-dominant query computation. Thus, by decreasing k, more
dominated objects can be pruned away.

Theorem 2: Every object that belongs to the k-dominant
skyline also belongs to the skyline, i.e., Skyk(DB) ⊆
Skyn(DB).

Proof: Immediate from theorem 1. ♢

III. k-DOMINANT SKYLINE COMPUTATION AND
MAINTENANCE

In this section, we present our algorithm for computing
k-dominant skyline objects and how to maintain the result
when update occurs. We illustrate how to compute k-
dominant skyline for all k at a time in section III-A. Next
in section III-B, we present three types of maintenance
solution. They are insertion, deletion, and update operation.

A. Algorithm for k-dominant Skyline

Chan, et al. sort the whole objects with a monotonic
scoring function sum in their One-Scan Algorithm (OSA),
algorithm for k-dominant query [4]. By using the ordered
objects, we can eliminate some of non-skyline objects
easily. However, this ordered objects is not effective for
k-dominant query computation, especially, when values of
each attribute is not normalized. For example, assume Oi =
(1, 2, 3, 3, 3, 2) and Oj = (7, 1, 3, 2, 3, 1) are two objects in
6-dimensional space. Although sum of Oi’s values is smaller
than that of Oj’s, Oi does not 5-dominant of Oj . Instead,
Oi is 5-dominated by Oj .

In order to prune unnecessary objects efficiently in the
k-dominant skyline computation, we compute domination
power of each object. Algorithm 1 represents the domination
power calculation procedure. We sort objects in descending
order by domination power. If more than one objects have
the same domination power then sort those objects in ascend-
ing order of the sum value. This order reflects how likely to
k-dominate other objects.

426

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Algorithm 1: Compute Domination Power, DP
01. for each object Oi(i = 1 · · · r) do
02. Oi.DP := 0 (initialize DP for each object)
03. for each attribute Ds(s = 1 · · · n) do
04. minValue := O1.Ds

05. for each object Oi(i = 2 · · · r) do
06. if (Oi.Ds < minValue) then
07. minValue := Oi.Ds

08. for each object Oi(i = 1 · · · r) do
09. if (minValue == Oi.Ds) then
10. Oi.DP := Oi.DP + 1 (Increment DP)
11. Sort dataset, DB, in descending order by DP and Sum

Table II is the sorted object sequence of Table I, in which
the column “DP” is the domination power and the column
“Sum” is the sum of all values. In the sequence, object
O7 has the highest domination power 4. Note that object
O7 dominates all objects lie below it in four attributes,
D1, D2, D5, and D6.

After computing the sorted object sequence, we compute
dominated counter (DC) and dominant index (IDX) by
using the algorithm 2. The dominated counter (DC) indi-
cates the maximum number of dominated dimensions by
another object in DB. The dominant index (IDX) is the
strongest dominator. That means IDX keeps the record of
the corresponding strongest dominator for each object.

For example, O7 is 3-dominated by O5 and there exist
no other object which can 4-dominate O7. In the algorithm
(8-13), we count the number of dominated dimensions for
each pair of objects. In the algorithm, we denote the i-th
object in the sorted sequence as Oi. During the procedure,
we keep the max value and its dominator object in DC and
IDX for each object.

The column DC and IDX of Table II shows the result
of the procedure. Skyk(DB) is a set of objects whose DC
is less than k. According to the dominated counter, we can
see that Sky6(DB) = {O7, O5, O2, O6, O3}, Sky5(DB) =
{O7, O5}, and Sky4(DB) = {O7}. Since there is no object
whose DC value is less than 3, thus Sky3(DB) = {∅}.

B. k-dominant Skyline Maintenance

In this section, we discuss the maintenance problem of
Skyk(DB) after an update is occurred in DB. In the
maintenance phase, we keep a vector that contains the min-
imal value for each dimension, which we call the minimal
vector. The minimal vector of Table II is {1, 2, 1, 1, 1, 2}. We
also keep an inverted index of the dominant index column
(IDX). Table III is the inverted index of Table II. We use
a multi-hash data structure for the records in the inverted
index so that we can look up efficiently.

Lemma 1: Assume O1.Ds ≤ O2.Ds for all dimensions
Ds (s = 1, · · · , n) for O1, O2 ∈ DB. If O1 is not deleted

Algorithm 2: Compute DC and IDX
01. for each object Oi (i := 1 · · · r)
02. Oi.DC := 0 (initialize DC)
03. for each i := 1 · · · r
04. if Oi.DC == n then
05. skip the i-th and continue
06. for each j := i+1 · · · r
07. if Oj .DC == n then
08. skip the j-th and continue
09. ki := 0; kj := 0
10. for each attribute Ds(s := 1 · · ·n)
11. if Oi.Ds ≤ Oj .Ds then
12. kj ++
13. if Oj .Ds ≤ Oi.Ds then
14. ki ++
15. if kj > Oi.DC then
16. Oi.DC := kj and Oi.IDX := Oj

17. if ki > Oj .DC then
18. Oj .DC := ki and Oj .IDX := Oi

Table II
ORDERED DOMINATION TABLE

Obj. D1 D2 D3 D4 D5 D6 DP Sum DC IDX
O7 1 2 5 3 1 2 4 14 3 O5

O5 1 4 1 1 3 4 3 14 4 O7

O4 5 3 5 4 1 2 2 20 6 O7

O2 3 4 4 5 1 3 1 20 5 O7

O6 5 3 4 5 1 5 1 23 5 O7

O3 4 3 2 3 5 4 0 21 5 O7

O1 7 3 5 4 4 3 0 26 6 O7

Algorithm 3: Insertion Procedure
01. OI .DC := 0 (initialize DC for inserted object OI )
02. for each i := 1 · · · r
03. if Oi.DC == n then
04. skip the i-th and continue
05. ki := 0; kI := 0
06. for each attribute Ds(s := 1 · · ·n)
07. if Oi.Ds ≤ OI .Ds then
08. kI ++
09. if OI .Ds ≤ Oi.Ds then
10. ki ++
11. if ki > Oi.DC then
12. OI .DC := ki and OI .IDX := Oi

(update inverted index)
13. if OI .DC == n then
14. break loop
15. if kI > Oi.DC then
16. Oi.DC := kI and Oi.IDX := OI

(update inverted index)

427

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Table III
INVERTED INDEX

Obj. dominated
O5 O7

O7 O5, O4, O2, O6, O3, O1

from DB,O2 will never be in the k-dominant skyline of
DB.

Proof: Since O2 is n-dominated by O1, it will also k-
dominated by O1 because (k ≤ n). Therefore, while O2 is
in the DB, there will be at least one object, namely O1, that
k-dominate it and consequently cannot become a k-dominant
skyline. ♢

The lemma implies that only Skyn(DB) objects are
relevant for the k-dominant skyline maintenance task, since
according to theorem 1 other objects can never become part
of Skyk(DB). Because, they are already n-dominated by
Skyn(DB) objects.

Insertion

Assume OI is inserted into DB. We maintain Skyk(DB)
by using algorithm 3. In the algorithm, we examine the
dominated counter (DC) by scanning the sorted object
sequence. If the DC value of an object is updated, we
also update the inverted index. According to theorem 2,
any data object added to k-dominant skyline during the
execution of the algorithm is guaranteed to be a skyline
object. Thus, during the update procedure, if OI is n-
dominated by another object, then we can stop the procedure
immediately.

After updating DC and IDX , we insert OI in the sorted
object sequence. We use a skip list data structure for the
sequence so that we can insert efficiently.

Assume we insert O8 = (6, 6, 6, 6, 6, 6) in the running
example. By comparing with the first object O7, we can find
that O8 is 6 dominated by O7. Therefore, we immediately
complete the update of DC and IDX . Then, we insert O8

into the last position of the sorted sequence. Next, we insert
O9 = (3, 4, 4, 2, 2, 3). O9 is not 6 dominated by any object
and we can find that the strongest dominator of O9 is O2.
Then, DC and IDX are updated as in Table IV (left) after
inserting O9. Next, we insert O10 = (2, 2, 3, 1, 2, 3). O10 is
not 6 dominated by any object and the strongest dominator
of O10 is O7. Moreover, O10 becomes the strongest domina-
tor of O9. Then, DC and IDX are updated as in Table IV
(right) after inserting O10.

Deletion

Assume OD is deleted from DB. We check the inverted
index to examine whether there is OD’s record in the index.

Note that in Table III “Obj.” column in each record is the
strongest dominator for objects in the “dominated” column.

Table IV
ORDERED DOMINATION TABLE AFTER INSERTIONS

Obj. DP Sum DC IDX Obj. DP Sum DC IDX
O7 4 14 3 O5 O7 4 14 3 O5

O5 3 14 4 O7 O5 3 14 4 O7

O4 2 20 6 O7 O10 2 13 4 O7

O2 1 20 5 O7 O4 2 20 6 O7

O6 1 23 5 O7 O2 1 20 5 O7

O9 0 18 5 O2 O6 1 23 5 O7

O3 0 21 5 O7 O9 0 18 6 O10

O1 0 26 6 O7 O3 0 21 5 O7

O8 0 36 6 O7 O1 0 26 6 O7

O8 0 36 6 O7

Algorithm 4: Deletion Procedure
1. for each OD do
2. if OD /∈ IDX
3. no change in Dominant Counter
4. break loop
5. else
6. for each affected objects do
7. Compute DC and IDX by using algorithm 2

Therefore, if there is no OD’s record in the inverted index,
we do not have to change the dominated counter (DC) for
other objects. Otherwise, we initialize DC for each object
in the OD’s index record. Then, we perform the pairwise
comparison like in algorithm 2. In this case, we do not have
to examine DC for objects that are not in the OD’s index
record and therefore it is not costly.

Consider the running example again. Assume we delete
O10. We examine DC of O9 by scanning Table IV (right).
The updated result is Table IV (left).

Update

In this section, we propose maintenance solution for
update operation. Although one can handle update operation
with consecutive deletion and insertion. However, single
update operation is usually faster than consecutive delete
and insert operation. Assume OU is updated from DB.
Then, same as delete, we have to check the inverted index to
examine whether there is OU ’s record in the index. If there is
no OU ’s record in the inverted index, then we need one scan
to revise the dominated counter (DC) for updated object as
well as all other data objects. Otherwise, we initialize DC
for each object from scratch. However, in this situation we
argue that compare with non-IDX objects, the number of
IDX objects is very few and therefore update operation also
not very costly.

Consider the Table II and select a non-IDX object such
as O3 for update. Assume we update D5 value of this object
from 5 to 1. Then after dominance checking with other
objects we find that O3 becomes the strongest dominator
of object O6. This update procedure is shown in Table V
(left). Again from Table II if we select an IDX object such
as O7. In this case, we update the values of D1 and D5

428

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Table V
ORDERED DOMINATION TABLE AFTER UPDATES

Obj. DP Sum DC IDX Obj. DP Sum DC IDX
O7 4 14 3 O5 O5 3 14 3 O4

O5 3 14 4 O7 O4 2 20 4 O7

O4 2 20 6 O7 O7 2 24 4 O5

O3 1 17 5 O7 O2 1 20 4 O5

O2 1 20 5 O7 O6 1 23 5 O4

O6 1 23 6 O3 O3 0 21 5 O5

O1 0 26 6 O7 O1 0 26 6 O4

from 1 to 6. The revised result after this update is shown in
Table V (right).

IV. RELATED WORK

Our work is motivated by previous studies of skyline
query processing as well as k-dominant skyline query pro-
cessing, which are reviewed in this section. Section IV-A and
IV-B, respectively discuss about the related work on skyline
query processing and k-dominant skyline query processing.

A. Skyline Query Processing

Borzsonyi, et al. first introduce the skyline operator
over large databases and proposed three algorithms: Block-
Nested-Loops(BNL), Divide-and-Conquer(D&C), and
B-tree-based schemes [2]. BNL compares each object of the
database with every other object, and reports it as a result
only if any other object does not dominate it. A window
W is allocated in main memory, and the input relation is
sequentially scanned. In this way, a block of skyline objects
is produced in every iteration. In case the window saturates,
a temporary file is used to store objects that cannot be
placed in W . This file is used as the input to the next pass.
D&C divides the dataset into several partitions such that
each partition can fit into memory. Skyline objects for each
individual partition are then computed by a main-memory
skyline algorithm. The final skyline is obtained by merging
the skyline objects for each partition. Chomicki, et al.
improved BNL by presorting, they proposed Sort-Filter-
Skyline(SFS) as a variant of BNL [3]. SFS requires the
dataset to be pre-sorted according to some monotone scoring
function. Since the order of the objects can guarantee that
no object can dominate objects before it in the order, the
comparisons of tuples are simplified.

Among index-based methods, Tan, et al. proposed two
progressive skyline computing methods Bitmap and In-
dex [13]. Both of them require preprocessing. In the Bitmap
approach, every dimension value of an object is represented
by a few bits. By applying bit-wise and operation on
these vectors, a given object can be checked if it is in the
skyline without referring to other objects. The index method
organizes a set of d-dimensional objects into d lists such
that an object O is assigned to list i if and only if its value
at attribute i is the best among all attributes of O. Each
list is indexed by a B-tree, and the skyline is computed
by scanning the B-tree until an object that dominates the

remaining entries in the B-trees is found. Kossmann, et al.
observed that the skyline problem is closely related to the
nearest neighbor (NN) search problem [8]. They proposed
an algorithm that returns skyline objects progressively by ap-
plying nearest neighbor search on an R*-tree indexed dataset
recursively. The current most efficient method is Branch-
and-Bound Skyline(BBS), proposed by Papadias, et al.,
which is a progressive algorithm based on the best-first
nearest neighbor (BF-NN) algorithm [10]. Instead of search-
ing for nearest neighbor repeatedly, it directly prunes using
the R*-tree structure. Balke, et al. show how to efficiently
perform distributed skyline queries and thus essentially ex-
tend the expressiveness of querying current Web information
systems [14]. Kapoor studies the problem of dynamically
maintaining an effective data structure for an incremental
skyline computation in a 2-dimensional space [15]. Tao
and Papadias studied sliding window skylines, focusing on
data streaming environments [16]. Huang, et al. studied
continuous skyline queries for dynamic datasets [17].

B. k-dominant Skyline Query Processing

Chan, et al. introduce k-dominant skyline query [4]. They
proposed three algorithms, namely, One-Scan Algorithm
(OSA), Two-Scan Algorithm (TSA), and Sorted Retrieval
Algorithm (SRA). OSA uses the property that a k-dominant
skyline objects cannot be worse than any skyline object
on more than k dimensions. This algorithm maintains the
skyline objects in a buffer during the scan of the dataset
and uses them to prune away objects that are k-dominated.
TSA retrieves a candidate set of dominant skyline objects
in the first scan by comparing every object with a set of
candidates. The second scan verifies whether these objects
are truly dominant skyline objects or not. This method turns
out to be much more efficient than the one-scan method. A
theoretical analysis is provided to show the reason for its
superiority. The third algorithm, SRA is motivated by the
rank aggregation algorithm proposed by Fagin, et al., which
pre-sorts data objects separately according to each dimension
and then merges these ranked lists [7].

Another study on computing k-dominant skyline is k-
ZSearch proposed by Lee, et al. [18]. They introduced a
concept called filter-and-reexamine approach. In the filtering
phase, it removes all k-dominant objects and retain possible
skyline candidates, which may contain false hits. In the reex-
amination phase, all candidates are reexamined to eliminate
false hits.

For any static dataset in case of insertions and deletions
the k-dominant skyline result should be updated accordingly.
But in a dynamic dataset insertions and deletions are very
frequent and the above schemes [4], [18] are not efficient
to solve the frequent update problem. Because they need to
recompute k-dominant skyline result from scratch. On the
other hand, algorithms developed for skyline maintenance
are not easily adapted for the maintenance of k-dominant

429

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



skyline, except for the obvious case where k = n. This
is because existing skyline computation algorithms do not
satisfy the requirement of k-dominant skyline computation.
Moreover, they can not compute k-dominant skyline for all
k at a time. To overcome frequent update problem, our
proposed method introduce two new concepts dominated
counter and inverted index. From the discussion and ex-
perimental results it has been seen that those are very helpful
to retrieve the k-dominant skyline query result efficiently.

Recently, more aspects of skyline computation have been
explored. Vlachou, et al. introduce the concept of ex-
tended skyline set, which contains all data elements that
are necessary to answer a skyline query in any arbitrary
subspace [19]. Fotiadou, et al. mention about the efficient
computation of extended skylines using bitmaps in [20].
Chan, et al. introduce the concept of skyline frequency to
facilitate skyline retrieval in high-dimensional spaces [5].
Tao, et al. discuss skyline queries in arbitrary subspaces [11].
There exist more work addressing spatial skyline [21],
[22], skylines on partially-ordered attributes [6], dada cube
for analysis of dominance relationships [23], probabilistic
skyline [24], skyline search over small domains [9], and
reverse skyline [25].

V. PERFORMANCE EVALUATION

We conduct a series of experiments to evaluate the
effectiveness and efficiency of our proposed methods. In
lack of techniques dealing directly with the problem of
maintaining k-dominant skyline in this paper, we compare
our methods against TSA, which was the most efficient
k-dominant skyline search algorithm proposed in Ref. 4).
To handle updates, we adapt a variant of the TSA called
ATSA (Adaptive Two-Scan Algorithm). Let r be the total
number of objects in DB. ATSA takes O(r2) to compute
all k-dominant objects from scratch. If an object is inserted
in the DB, ATSA has to perform k-domination check of
the inserted object against all objects. Therefore, for each
insertion ATSA takes O(r). If an object is deleted from
the DB, ATSA has to recompute entire k-dominant skyline
objects because some objects that are not in the current k-
dominant skyline objects may be “promoted” as k-dominant
skyline objects. Therefore, for each deletion ATSA requires
O(r2) time. Moreover, for each update it also requires O(r2)
time for the recomputation of k-dominant skyline.

Though the time complexity of our proposed method is
substantially the same, we can drastically reduce compar-
isons for k-dominant skyline computation. For each new
insertion, the time complexity of proposed method varies
in between O(1) and O(r) to perform k-domination check.
For each deletion, if the deleted object is not in the dominant
objects list then the proposed method takes O(1). Otherwise,
if we assume the number of dominant objects is x, then it
takes O(x2). We can expect that x is much smaller than
r. Finally for each update, if the updated object is not in

the dominant objects list then the proposed method takes
O(r). Otherwise, it takes O(r2). However, the number of
dominant objects is not large. So it is not costly. From the
above analysis we understand that the recomputation of k-
dominant skyline is not efficient than proposed maintenance
solutions. The results of all experiments support our claim
that using proposed techniques we can reduce the number
of comparisons drastically.

We conduct simulation experiments on a PC running on
MS Windows XP professional. The PC has an Intel(R) Core2
Duo 2GHz CPU and 3GB main memory. All experiments are
coded in Java J2SE V6.0. Each experiment is repeated five
times and the average result is considered for performance
evaluation.

A. Performance on Synthetic Datasets

As benchmark synthetic datasets, we use the datasets
proposed in Ref. 2). Objects are generated using one of the
following three value distributions:
Anti-Correlated: an anti-correlated dataset represents an
environment in which, if an object has a small coordinate
on some dimension, it tends to have a large coordinate on
at least another dimension. As a result, the total number
of non-dominating objects of an anti-correlated dataset is
typically quite large.
Correlated: a correlated dataset represents an environment
in which objects with large coordinate in one dimension
are also have large coordinate in the other dimensions. In a
correlated dataset, few objects dominate many other objects.
Independent: for this type of dataset, all attribute values are
generated independently using uniform distribution. Under
this distribution, the total number of non-dominating objects
in between that of the correlated and the anti-correlated
datasets.

Details of the three distributions can be found in Ref.
1). The generation of the synthetic datasets is controlled
by three parameters, n, “Size”, and “Dist”, where n is the
number of attributes, “Size” is the total number of objects
in the dataset, and “Dist” can be the any of the three
distribution. In addition, we have generated smaller synthetic
datasets for all insertion experiments. For example, to con-
duct insertion experiment on 100k synthetic dataset, we have
also generated additional 10k dataset. As for deletion and
update experiments, we choose the deleted/updated objects
randomly from the experimental dataset.

1) Effect of Data Distribution: We first study the effect
of data distributions on our techniques. Anti-correlated,
independent, and correlated datasets with dimensionality n
to 7, cardinality to 100k, and k to 6. Figure 2(a), (b),
and (c) shows the time to maintain k-dominant skyline for
update ranges from 1% to 5%. In the update experiments,
for 100k dataset 1% update implies that we have altered
1000 data objects. Those data objects are randomly selected.
However, among 1000 alterations we make sure that there

430

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 2. Update performance for different data distributions

are 333 insertions, 333 deletions, and 334 updates (total
1k updates) occurred in the dataset. Figure 2 shows that
the performance of both methods deteriorates significantly
with the increase value of update size. We further notice
that for anti-correlated dataset, many k-dominant skyline
objects are retrieved, as a result the maintenance cost of
this distribution incurs high computational overheads. On the
other hand, for correlated dataset, few objects are retrieved,
as a result the maintenance cost of this distribution incurs
low computational overheads.

Figure 3. Update Performance for different dimensions

2) Effect of Dimensionality: For this experiment, we use
the anti-correlated datasets. We fix the data cardinality to
100k and vary dataset dimensionality n ranges from 5 to 9
and k from 4 to 8. Figure 3(a), (b), and (c) shows the update
performance. The ATSA technique is highly affected by the
curse of dimensionality, i.e., as the space becomes sparser
its pruning power rapidly decreases. The proposed technique
also affected but to a lesser degree. The Figure 3 shows that
if the dimensionality and the update ratio increase the time
grows steadily, which is much less than that of ATSA.

431

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 4. Update performance for different datasize

3) Effect of Cardinality: For this experiment, we use
the anti-correlated datasets with varying dataset cardinality
ranges from 100k to 200k and set the value of n to 7 and
k to 6. Figure 4(a), (b), and (c) shows the time to maintain
k-dominant skyline for update ranges from 1% to 5%. The
result shows that if the update ratio and data cardinality
increases the maintenance time of proposed method also
increases. Even though, the time is much smaller than that
of ATSA.

B. Performance on Real Datasets

To evaluate the performance for real dataset, we study two
different real datasets. The first dataset is NBA statistics. It
is extracted from “www.nba.com”. The dataset contains
17k 13-dimensional data objects, which correspond to the
statistics of an NBA players’ performance in 13 aspects
(such as points scored, rebounds, assists, etc.) and domain
have range [0, 4000]. The dataset approximates a correlated
data distribution. The second dataset is FUEL dataset and
extracted from “www.fueleconomy.gov”. FUEL dataset
is 24k 6-dimensional objects, in which each object stands for
the performance of a vehicle (such as mileage per gallon of
gasoline in city and highway, etc). For this dataset attribute
domain range is [8, 89]. Using both datasets we conduct the
following experiment.

1) Experiments on NBA and FUEL datasets: We per-
formed an experiment on NBA dataset. In this experiment,
we study the effect of update and set the value of n to 13, and
k to 12. Figure 5(a) shows the result. NBA dataset exhibits
similar result to synthetic dataset, if the number of updates
increases the performance of proposed algorithm becomes
slower.

For FUEL dataset, we performed similar experiment like
NBA dataset. For this experiment, we set the value of n
to 6 and k to 5. Result is shown in Figure 5(b). In this
experiment with FUEL dataset, we obtain similar result like
NBA dataset that represents the scalability of the proposed
method on real datasets. However, in both cases proposed
method outperform than ATSA method.

VI. CONCLUSION

Compared with skyline query processing, k-dominant
skyline result maintenance is a relatively new research area.
The k-dominant skyline objects are difficult to maintain if
the database is updated. However, in lack of techniques
dealing directly with the problem of maintaining k-dominant
skyline in this paper we propose k-dominant skyline compu-
tation and maintenance algorithms for a frequently updated
database. As shown later, this technique can produce k-
dominant skyline update result for all k at a time. Be-
sides theoretical guarantees, our comprehensive performance
study indicate that the proposed maintenance framework is
very effective and efficient.

We leave as future work extensions to explore precom-
putation techniques to further speed up the computation of
k-dominant skyline query. Future works should investigate
the efficient maintenance of k-dominant skyline for batch
updates. To increase the pruning power is another big
challenge for continuous k-dominant skyline computation.

ACKNOWLEDGEMENTS

This work was supported by KAKENHI (19500123). Md.
Anisuzzaman Siddique was supported by the scholarship of
MEXT Japan.

432

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 5. Experiments on NBA and FUEL datasets

REFERENCES

[1] M. A. Siddique and Y. Morimoto, “Efficient Maintenance of
k-Dominant Skyline for Frequently Updated ”, in: Proceedings
of DBKDA, 2010, pp. 107-110.

[2] S. Borzsonyi, D. Kossmann, and K. Stocker, “The skyline
operator”, in: Proceedings of ICDE, 2001, pp. 421-430.

[3] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with
presorting”, in: Proceedings of ICDE, 2003, pp. 717-719.

[4] C. Y. Chan, H. V. Jagadish, K-L. Tan, A-K. H. Tung, and
Z. Zhang, “Finding k-dominant skyline in high dimensional
space”, in: Proceedings of ACM SIGMOD, 2006, pp. 503-514.

[5] C. Y. Chan, H. V. Jagadish, K-L. Tan, A-K. H. Tung, and
Z. Zhang, “On high dimensional skylines”, in: Proceedings of
EDBT, 2006, pp. 478-495.

[6] C.-Y. Chan, P.-K. Eng, and K.-L. Tan, “Stratified computation
of skylines with partially-ordered domains”, in: Proceedings of
ACM SIGMOD, 2005, pp. 203-214.

[7] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation
algorithms for middleware”, in: Proceedings of ACM PODS,
2001, pp. 102-113.

[8] D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the
sky: an online algorithm for skyline queries”, in: Proceedings
of VLDB, 2002, pp. 275-286.

[9] M. Morse, J. M. Patel, and H. V. Jagadish, “Efficient skyline
computation over low-cardinality domains”, in: Proceedings of
VLDB, 2007, pp. 267-278.

[10] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive
skyline computation in database systems”, ACM Transactions
on Database Systems, vol. 30(1), pp. 41-82, March 2005.

[11] Y. Tao, X. Xiao, and J. Pei, “Subsky: efficient computation
of skylines in subspaces”, in: Proceedings of ICDE, 2006, pp.
65-65.

[12] T. Xia, D. Zhang, and Y. Tao, “On skylining with flexible
dominance relation”, in: Proceedings of ICDE, 2008, pp. 1397-
1399.

[13] K.-L. Tan, P.-K. Eng, and B. C. Ooi, “Efficient Progressive
Skyline Computation”, in: Proceedings of VLDB, 2001, pp.
301-310.

[14] W. T. Balke, U. Guntzer, and J. X. Zheng, “Efficient dis-
tributed skylining for web information systems”, in: Proceed-
ings of EDBT, 2004, pp. 256-273.

[15] S. Kapoor, “Dynamic Maintenance of Maxima of 2-d Point
Sets”, in: SIAM Journal on Computing, vol. 29(6), pp. 1858-
1877, April 2000.

[16] Y. Tao and D. Papadias, “Maintaining Sliding Window Sky-
lines on Data Streams”, in: IEEE Transactions on Knowledge
and Data Engineering, vol. 18(3), pp. 377-391, March 2006.

[17] Z. Huang, H. Lu, B. Ooi, and A. Tung, “Continuous skyline
queries for moving objects”, in: IEEE Transactions on Knowl-
edge and Data Engineering, vol. 18(12), pp. 1645-1658, Dec.
2006.

[18] K. C. K. Lee, B. Zheng, H. Li, and W. C. Lee, “Approaching
the Skyline in Z Order”, in: Proceedings of VLDB, 2007, pp.
279-290.

[19] A. Vlachou, C. Doulkeridis, Y. Kotidis, and M. Vazirgiannis,
“SKYPEER: Efficient Subspace Skyline Computation over
Distributed Data”, in: Proceedings of ICDE, 2007, pp. 416-
425.

[20] K. Fotiadou and E. Pitoura, “BITPEER: Continuous Subspace
Skyline Computation with Distributed Bitmap Indexes”, in:
Proceedings of DaAMaP, 2008, pp. 35-42.

[21] K. Deng, X. Zhou, and H. T. Shen, “Multi-source Skyline
Query Processing in Road Networks”, in: Proceedings of
ICDE, 2007, pp. 796-805.

[22] M. Sharifzadeh and C. Shahabi, “The Spatial Skyline Query”,
in: Proceedings of VLDB, 2006, pp. 751-762.

[23] C. Li, B. C. Ooi, A-K. H. Tung, and S. Wang, “DADA: A
Data Cube for Dominant Relationship Analysis”, in: Proceed-
ings of ACM SIGMOD, 2006, pp. 659-670.

[24] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic Skylines
on Uncertain Data”, in: Proceedings of VLDB, 2007, pp. 15-
26.

[25] E. Dellis and B. Seeger, “Efficient Computation of Reverse
Skyline Queries”, in: Proceedings of VLDB, 2007, pp. 291-
302.

433

International Journal on Advances in Software, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


