
Stochastic Greedy Algorithms 
A Learning-Based Approach to Combinatorial Optimization 

Viswa Viswanathan 
Stillman School of Business 

Seton Hall University 
South Orange, NJ, 07079 

viswa.viswanathan@shu.edu  

 
Anup K Sen 

Management Information Systems 
Indian Institute of Management 

Calcutta 
D. H. Road, Kolkata 700104, India 

sen@iimcal.ac.in  

Soumyakanti Chakraborty 
Information Systems Area 

XLRI School of Business and HR 
Jamshedpur, India 

soumyakc@xlri.ac.in  

 
 

Abstract - Research in combinatorial optimization initially 
focused on finding optimal solutions to various problems. 
Researchers realized the importance of alternative approaches 
when faced with large practical problems that took too long to 
solve optimally and this led to approaches like simulated 
annealing and genetic algorithms which could not guarantee 
optimality, but yielded good solutions within a reasonable 
amount of computing time. In this paper we report on our 
experiments with stochastic greedy algorithms (SGA) – 
perturbed versions of standard greedy algorithms. SGA 
incorporates the novel idea of learning from optimal solutions, 
inspired by data-mining and other learning approaches. SGA 
learns some characteristics of optimal solutions and then 
applies them while generating its solutions. We report results 
based on applying this approach to three different problems – 
knapsack,  combinatorial auctions and single-machine job 
sequencing.  Overall, the method consistently produces 
solutions significantly closer to optimal than standard greedy 
approaches. SGA can be seen in the space of approximate 
algorithms as falling between the very quick greedy 
approaches and the relatively slower soft computing 
approaches like genetic algorithms and simulated annealing. 
SGA is easy to understand and implement -- once a greedy 
solution approach is known for a problem, it becomes possible 
to very quickly rig up a SGA for the problem. SGA has 
explored only one aspect of learning from optimal solutions. 
We believe that there is a lot of scope for variations on the 
theme, and the broad idea of learning from optimal solutions 
opens up possibilities for new streams of research.  

Keywords- greedy algorithms; stochastic approaches; 
approximate solutions; knapsack problem; combinatorial 
auctions; single-machine scheduling; machine learning 

I.  INTRODUCTION  
“Greedy” solutions are commonplace in the field of 

combinatorial optimization for obtaining very quick 
solutions to complex problems. For example, the 
unconstrained knapsack problem (UKP) is known to be NP-
complete, but there exists a greedy algorithm with O(N2) 
time complexity that yields very good solutions in practice. 
In general, greedy algorithms do not guarantee optimal 
solutions. In this paper, we elaborate on the idea of stochastic 
greedy algorithms first presented in [31]. 

In general terms, a greedy algorithm tackles a problem in 
several steps. At each step, the algorithm chooses the locally 
most attractive option with no concern for its effect on global 

optimality. Greedy algorithms are usually very simple and 
intuitive. In the Traveling Salesperson Problem (TSP) [12], 
the problem is to start at a city and visit n-1 other cities and 
return to the original city while traversing the minimal 
distance. A greedy algorithm for the TSP is straightforward – 
at each stage, simply travel to the closest unvisited city and 
continue this process till the tour is complete.  In the 
Transportation Problem (TP) [17], we are given a set of 
requirements for goods to be satisfied from stocks available 
in various warehouses. The unit transportation cost from 
each warehouse to each demand point is also given and the 
problem is to satisfy the demands while incurring minimal 
cost. Vogel’s Approximation Method [17] is a greedy 
algorithm that first finds the warehouse-demand point 
combination with the lowest unit transportation cost,  
satisfies the demand to the extent possible, and continues in 
similar vein till all demands are satisfied (or all supplies are 
exhausted). 

Greedy algorithms are useful when the time available to 
solve a problem is severely limited. In the space of solution 
approaches to combinatorial optimization problems, greedy 
approaches can be seen as lying at one end of the spectrum 
with optimal algorithms lying at the other extreme. In the 
middle are approximate algorithms like genetic algorithms 
and simulated annealing. As we move from the greedy 
algorithms to optimal algorithms, the solution quality 
increases with a concomitant increase in the solution time. 

In this paper, we elaborate on the results we presented in 
[31] on stochastic greedy algorithms (SGA). Whereas 
greedy algorithms choose the next step deterministically 
based solely on what is locally best, SGA, a variant of 
greedy algorithms, selects it stochastically. In other words, 
rather than the probability of the best available option being 
selected being 1, the algorithm uses a probability distribution 
to select the next step. It selects the next step as the nth best 
available option with probability p(n). SGA generates many 
solutions and returns the best one as the output of the 
algorithm. 

How do we determine the probability distribution that 
specifies p(n)? In seeking quick and good, but not 
necessarily optimal, solutions to combinatorial optimization 
problems, researchers have thus far hardly adopted the idea 
of learning from optimal solutions. We introduce the idea, 
and showcase the use of a data-mining inspired approach to 
learn from optimal solutions the probability distribution to 
use in SGA.  
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Learning the probability distribution involves solving 
many problem instances up front to optimality -- which 
imposes a large fixed cost. SGA is thus only good in 
situations where this fixed cost can be amortized over many 
problem instances. Therefore, SGA only makes sense when 
many problem instances have to be solved on an ongoing 
basis and the time allowed for solving each instance is small. 
This could arise  for example, when solving the problem is 
part of a larger business process in a real-time transaction 
processing system where the on-line user cannot be kept 
waiting for too long and yet the response to the user’s 
request involves solving a moderately large non-trivial 
combinatorial optimization problem. With the proliferation 
of complex web-based transactional processing systems, this 
scenario is only likely to become increasingly common. 

We have experimented extensively with three 
combinatorial optimization problems – the Unbounded 
Knapsack Problem (UKP), Single Unit Combinatorial 
auction (CA) and Single machine sequencing with quadratic 
penalties (QPSD) , and obtained very encouraging results. 
These problems represent a good range because the greedy 
approach is extremely effective for the UKP and very 
ineffective for the SQP. The combinatorial auction problem 
falls in between. 

On the UKP, we have obtained solutions consistently 
within 0.02% of the optimal. Our results on the other two 
problems are also very encouraging and establish SGA as a 
viable alternative in the pool of soft computing approaches. 
More research is definitely needed to understand the nuances 
and to establish performance parameters more rigorously. 
Nevertheless, the results we present prove conclusively the 
viability of the approach.  

Learning from optimal solutions is a novel, useful and 
generic idea that opens up exciting new unions between 
statistics and combinatorial optimization. Whereas we have 
demonstrated in this paper only a small aspect of learning 
from optimal solutions, there is clearly unlimited scope to 
exploit this idea in the search for good quick solutions to 
combinatorial optimization problems. 

In section II we discuss prior work in related areas and 
present, in section III a generic domain-independent 
description of SGA. In subsequent sections we discuss the 
specifics of our application of SGA to the UKP, CA and 
QPSD problems and the corresponding empirical findings. 
We conclude the paper with a summary and a discussion of 
the scope for further work. 

II. RELATED WORK 
Greedy algorithms [14] represent natural ways of quickly 

finding good solutions to combinatorial optimization 
problems [19]. In rare cases, [14], greedy approaches can 
even guarantee optimal solutions. Greedy algorithms use 
deterministic steps in that they select the next course of 
action by choosing the locally best option available.  
Stochastic algorithms ([10], [11]), on the other hand, use 
probabilistic elements to alter the steps of the algorithm. 
Blending the two approaches lies at the heart of SGA. 
Although researchers have looked at stochastic local search 
approaches ([4], [10], [11] and [13]), prior research has not 

explored the pros and cons of stochastic perturbations of 
known and new greedy approaches. 

We use the knapsack problem, single unit combinatorial 
auctions and a class of single machine sequencing problems 
to demonstrate the utility of SGA. Knapsack problems have 
been widely studied in ([16], [21]). The Unbounded 
Knapsack Problem (UKP) is known to be NP-hard.  Greedy 
approaches to knapsack problems have been discussed in 
[16]. A new algorithm for finding exact solutions to UKP 
can be found in [22].   

 Auctions have been in use since antiquity. The 
commonest format has been the ascending auction, also 
known as the ‘English’ auction. The first major work on 
auction theory is that of Vickrey [30] who recommended the 
adoption of second price sealed bid auctions (later called 
Vickrey auctions). His ideas were extended to combinatorial 
auctions by Clarke and Groves ([3],[8]). In their scheme, 
bidders submit their valuations of packages, and the seller 
solves the revenue maximization problem, known as Winner 
Determination Problem (WDP) and allocates the bundles. 
Solving WDP with dynamic programming was proposed by 
[25]. Two approaches, CASS [5] and CABOB [26] are the 
prominent heuristic search techniques to solve large 
instances of WDP optimally for the single unit case. Both 
these approaches employ Depth-First Branch-and-Bound 
(DFBB) but they differ in the formulation of their search 
space. Both these algorithms may take a long time for 
solving large instances optimally. For the methodical 
evaluation and comparison of algorithms for solving WDP, 
Kevin Leyton-Brown et al. [15] designed a suite of 
distribution families called CATS 2.0 
(http://cats.stanford.edu) for generating realistic, 
economically motivated combinatorial bids in a number of 
broad real world applications. With the proliferation of on-
line auction situations, it is conceivable that there will be an 
increasing need to obtain reasonably good solutions quickly 
to CA and related problems. 

Single machine sequencing problems [20] are generally 
known to be NP-hard [23]. The presence of sequence-
dependent setup times makes the sequencing problem with 
quadratic penalties ([28], [29]) very difficult to solve [27]. 
Greedy approaches to the single machine sequencing 
problem with quadratic penalties and setup times (QPSD) are 
not popular yet. The best exact approach reported thus far 
[18] can solve problems that have only up to 22 jobs. 
Therefore, providing good solutions to larger instances 
serves to extend the envelope for this problem. 

Machine learning through neural networks has been 
applied to optimization problems [1]. However, machine 
learning based on the analysis of optimal solutions to learn 
their characteristics and then augmenting the process of 
generating solutions with the resultant knowledge has not 
been effectively tried before. This paper shows clearly that 
the approach has promise. 

III. GENERIC DESCRIPTION OF SGA 
An instance of an optimization problem [19] is a pair (F, 

c) where F is any set, the domain of feasible points and c is 
the cost function, a mapping: c: F → R1. The problem is to 
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find an f ∈ F for which c(f) ≤ c(y) for all y ∈ F for a 
minimization problem (or to find an f ∈F for which c(f) ≥
c(y) for all y∈F for a maximization problem).  

When the set F has a finite number of points, the problem 
becomes a combinatorial optimization problem. A solution 
procedure that guarantees the best f in the above sense is an 
exact procedure; other procedures are approximate.  

EXAMPLE 1: In the Unbounded Knapsack Problem 
(UKP), we are given a knapsack with weight-capacity K, and 
N items, with item i having weight wi and value vi, with each 
item available in unlimited quantity. The objective is to fill 
the knapsack with qi units of the ith item in such a way that 
the value of the items in the knapsack is maximized. Here 

( ) }:,,,{
1

21 ∑
=

=

≤=
Ni

i
iiN KwqqqqF                            (1) 

and 

( ) ∑
=

=

=
Ni

i
iiN vqqqqc

1
21 ,,,                                             (2) 

EXAMPLE 2: In single unit combinatorial auctions, there 
is only one unit of each item. Bidders place bids on the items 
or the combination of items they desire, and the auctioneer 
determines the winning allocation, i.e. the set of winning 
bids. In determining the winning bids the objective is to 
select a feasible set of bids such that no item is allocated to 
more than one bid (no overlapping items) and revenue is 
maximized. Let there be M distinct items and N bids, and let 
bid Bi has quoted price vi on a non-empty bundle S ⊆ M of 
items. In this case: F = {feasible set of bids with no 
overlapping items} and  

∑
=

=∈
N

i
iuFxxc

1
):(          (3)   

where ui =  vi if bid Bi ∈  x and 0 otherwise. 
  
EXAMPLE 3: In the Single Machine Sequencing with 

Quadratic penalties on job completion times and Sequence 
Dependent Setup times (QPSD) problem [27], there are N 
jobs, Ji , i = 1..N with Ji  having processing time ai , penalty 
coefficient qi  and setup times si,j  (being the setup time for Jj  
when it is immediately preceded by Ji, and s0,j is the setup 
time for Ji  when it is the first job in the sequence). The 
objective is to find the schedule that minimizes the total cost. 
Each feasible schedule is a permutation of 1..N and 
therefore, in this case F = {all permutations of 1 ... N} and  

∑
=

=
N

i
iitqxc

1

2)( where ti is the completion time for Ji  as per 

permutation  x. 
 It is common to view the solution procedure for a 

general optimization problem as starting from a given point 
in F and then moving step by step towards the final solution 
(optimal or otherwise). For combinatorial optimization 

problems, a point in the set F is usually determined through a 
systematic process of construction involving several stages. 
For example: 

• In UKP, each member of F represents one feasible 
way of filling the knapsack. Constructing one 
feasible solution involves selecting items one by one 
and determining how many pieces of each to take. 
Here, we could see a feasible solution as being 
constructed through steps with each step involving 
the selection of an item and a quantity such that the 
weight added by this item, when combined with the 
weights of items already added in prior steps, does 
not exceed the capacity of the knapsack.. 

• In CA, a member of F represents a feasible set of 
bids with non-overlapping items. Here, constructing 
an element of F can be seen as involving a series of 
steps with each step selecting a bid which does not 
have any overlapping items with any bid already 
selected. 

• In QPSD, a member of F is any valid permutation of 
jobs, and creating one could be seen as a series of 
steps with each step involving the selection of a job 
which has not already been selected. 

Having laid down the fact that creating a member of F 
involves a process of constructions having several steps, it is 
now possible to describe abstractly both the greedy approach 
and SGA. In the greedy approach, we first identify an 
intuitive measure of attractiveness of each possible step. This 
measure varies from domain to domain and we will describe 
the actual measure used for each problem domain when we 
discuss the domain separately in later sections. At each step 
in the process of constructing a feasible solution, we choose 
the step that seems most attractive according to this intuitive 
estimate. Thus, for UKP, we first choose the item that seems 
most attractive and take as many units of it as will fit. We 
then choose as many units of the next best item as will fit 
and take as many units as possible and so on till no more 
items will fit. For CA, we first choose the most attractive bid 
and then choose the most attractive bid from those that 
remain which do not have an overlap with bids already 
selected. We go on like this till no more bids are available. 
For QPSD, we simply order the jobs by their attractiveness 
with the most attractive job as the first. The generic version 
of the greedy algorithm is shown below. It is written from 
the perspective of a maximization problem and can be easily 
modified for a minimization problem.  

 
We use the following notation: 
 
P A combinatorial optimization problem 
F  The set of feasible solutions to P 
ai  1 ≤ i ≤ N, all possible actions which can be used to 

construct any feasible solution in F. Each action can be 
used at most once in building one element of F 

ri A measure of attractiveness of action ai , 1≤ i  ≤ N 
(higher is better) 

ES The set of eligible actions, given that the actions 
contained in set S have already been chosen 
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pi Probability of choosing the ith most attractive action 
from  ES (this is used only in SGA) 

L Number of trials for SGA 
 

Algorithm Greedy { 
 S =empty set 
 Initialize Es to set of eligible actions 
 While Es is not empty { 
  From the actions in Es select action ai that 

corresponds to the maximum ri 
  Add ai to S 
  Remove ai and all ineligible actions from ES 
 } 
 Output the actions in S 
} 
 

Figure 1.  Algorithm Greedy 

In the greedy approach we choose the next step 
deterministically as the best available step at that point. In 
SGA, we perform this step stochastically, by selecting at 
each stage the ith best available step with probability pi .We 
generate many solutions in this process and select the best of 
these as the output. SGA is driven by a probability 
distribution. The details of how the probability distribution is 
arrived at are specific to each problem domain and we will 
describe those when we look at each problem domain 
separately. 
 
Algorithm SGA { 
 best_sol = 0 
 best_s = empty set 
 Repeat the following L times { 

 S =empty set 
 Initialize Es to set of eligible actions 
 While Es is not empty { 

 Select a random i using probability distribution 
pi 

 From the actions in Es select action ai that 
corresponds to the ith highest ri 

 Add ai to S 
 Remove ai and all ineligible actions from ES 

  } 
 sol = objective function value corresponding to the 

actions in S 
  If sol > best_sol { 
   best_sol = sol 
   best_s = S 
  } 
 } 
 Output the actions in best_s 
} 
 

Figure 2.  Algorithm SGA 

IV.  SGA APPLICATION TO THE UNBOUNDED 
KNAPSACK PROBLEM 

The problem statement for UKP appears in section III. 
To implement the greedy approach for UKP, we need a 
specification of the attractiveness ri’  1≤ i ≤ N. Intuitively, the 
“bang for the buck” ratio of vi /wi looks like a good measure 
of the attractiveness of an item and in fact leads to good 
greedy solutions.  

The greedy approach is to order the items in non-
increasing order of the ratio ii wv /  and then to fill the 
knapsack with as many units of the first item as can fit, and 
then as many units of the next lowest numbered item that 
will fit, and so on, till the knapsack is full (that is, the 
residual weight capacity is less than the weight of the lightest 
item). In doing this, at each stage we are taking the locally 
most attractive step, without considering its global effects. It 
could turn out, for example, that the greedy approach is 
unable to fill the knapsack completely, but that taking one 
less unit of one of the items currently in the knapsack would 
enable us to fill the knapsack completely, albeit with more 
units of a lower valued item, but with a larger total value. It 
is for this reason that the greedy solution cannot guarantee 
optimality.  

In UKP there are N items and therefore a maximum of N 
possible actions at each step. In order to implement SGA for 
UKP, we need to specify the probability distribution, pi , 1 ≤ 
i ≤ N  which gives the probability with which the ith most 
attractive action available is to be chosen.   The logic of SGA 
is that whereas the greedy approach always picks the most 
attractive step available while constructing a solution, SGA 
determines this stochastically. Instead of always picking the 
most attractive item, we select the next item based on a 
probability distribution. Having selected the item to be used, 
we next need to decide on how many units of the item should 
be picked. It is not necessary to fill the knapsack with the 
maximum number of units possible for the chosen item. 
Once again we choose this probabilistically. Items are 
chosen in this fashion till no more can be added to the 
knapsack. This concludes a single trial. Several trials are 
performed and the best solution is chosen. 

At the stage of selecting the next item, it seems 
reasonable to assume that the probability of picking items 
with higher attractiveness should be higher because it is 
expected that higher the attractiveness, higher is the chance 
of striking an optimal solution. Likewise, at the stage of 
choosing the quantity for the selected item, the chance of 
picking the maximum possible quantity should be highest. 

We now describe the procedure we adopted for 
introducing stochasticity into the greedy approach for the 
knapsack problem. In the standard greedy approach where 
the next item to be allocated is chosen strictly according to 
the best value-to-weight or ii wv / ratios, and the maximum 
possible quantity of the selected item is used. In SGA, we 
make both of these choices, namely the choice of item and 
the quantity of the chosen item probabilistically.  

We derived the probability distribution empirically by 
solving many problems to optimality and then learning from 
these optimal solutions. The dynamic programming solution 
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procedure for optimally solving the knapsack problem 
(Gilmore and Gomory [7]) exploits the Bellman Optimality 
principle.  

As explained in the introduction, we introduce the novel 
idea of learning from optimal solution and using the 
knowledge thus derived in a stochastic process of generating 
solutions. This approach can be seen to be inspired by 
“learning” as applied to data mining. We describe the 
learning process in detail in the next paragraph. Broadly, the 
approach relies on generating optimal solutions to a large 
number of instances of UKP. Once we have optimal 
solutions to a large number of instances, we seek patterns in 
these. In this paper we rely on the large body of optimal 
solutions to calculate the probability with which the best 
available piece is selected, the probability of the second best 
available piece, and so on. We also calculate the probability 
of the optimal solution containing the maximum number of 
units of the selected piece, 1 less than the maximum and so 
on. Once we have these, we can then use these probabilities 
to generate a large number of random solutions and choose 
the best among them. We based the calculations on optimal 
solutions to a total of 500 problem instances with N varying 
from 50 to 250. We lumped problems with different values 
of N together because we did not find any significant 
differences in the probabilities when we calculated them 
separately for different values of N. 

We now describe the procedure for learning the 
probability distributions. Consider a knapsack problem with 
capacity 20, and 5 items with weights wi = {8, 3, 10, 5 and 
2} in non-increasing order of their value-to-weight ratios (we 
ignore the actual values for this discussion). Suppose the 
optimal solution xi = {1, 0, 1, 0 1} (one unit each of items 1, 
3 and 5). Note that this differs from the greedy solution 
which would be {2, 1, 0, 0, 0}. Looking at this optimal 
solution, we find that initially when the knapsack is empty, 
all of the items are eligible for consideration and the optimal 
solution actually used the best available item, namely the 
first, although it does not use the maximum quantity possible 
– two units would have fitted into the knapsack, but the 
optimal solution uses only one unit. At the next stage, the 
residual knapsack capacity is 12 (having allocated one unit 
of item 1). Even at this stage, the residual capacity is 
sufficient for all the remaining items to be eligible for 
consideration – it can hold at least one unit of each of them. 
However, we see that the optimal solution for the sub-
problem did not choose the best item and instead chose only 
the third best item (namely item 3). Only one unit of this 
item could fit and hence the maximum allowable number of 
units were used. The residual knapsack capacity now is 2 and 
the optimal solution now chose the best item available (only 
item 5 is eligible for consideration now because only it can 
fit) and the maximum allowable quantity, namely 1, was 
used.  

We did the above analysis for each optimal solution and 
calculated the probability of the jth eligible item being 
actually chosen, and also noted the probability of the number 
of units of the chosen item used in the optimal solution 
deviating by an amount d, d = 1, 2, 3, … from the maximum 
amount that would fit into the residual capacity. 

In this way we calculated the probability jp  of the item 

with the thj  highest ratio being chosen as the next item. 
Similarly we also calculated the probability kjq ,  of the 
number of units of the selected item j being less than the 
maximum possible number by k  units. 

Figure 3 shows the algorithm for applying SGA to UKP. 
 

Algorithm SGA_UKP 
Re-order the N items such that 
  NN wvwvwv /....// 2211 ≥≥≥  
best_val 0←  

Nkbestk ...,2,1,0 =←  
Repeat numtrials times { 

capacity K←  
curpos 1←  
sga_value 0←  
while ( )Niwcapacity i ..1),(min =≥ ) { 

Randomly select a position j according to the 
chosen probability distribution for the 
position of the next item relative to curpos 

Starting from curpos skip the first j items whose 
weights are not greater than capacity. Let k 
be the index of the next item whose weight 
is not greater than capacity. If this causes a 
spillover beyond N, then search backwards 
for the first item whose weight is not greater 
than capacity 

 maxunits )/( kwcapacityfloor←  
Randomly select a number m according to the 

chosen probability distribution for the 
quantity of the next item relative to maxunits 

Set ksol the number of units of the thk item in the 
solution to max(1, maxunits - m) 

curpos 1−←k  
capacity kk wsolcapacity *−←  
sga_value ik vsolvaluesga *_ +←  

} 
if (sga_value > best_val) 
 best_val = sga_value 
 Nksolbest kk ..1, =←  

} 
 

Figure 3.  Algorithm SGA-UKP 
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Figure 4.  Example of learned probability distribution for position of next 

item relative to current item (based on 500 random instances) 

Figures 4 and 5 show the probability distributions we 
obtained experimentally for jp  and jkq respectively. The 
first bar on Figure 4 shows for example that almost 80% of 
the time the optimal solution chooses the next item as the 
one with the highest value-to-weight ratio. The second bar 
shows that there is a close to 10% chance that this is the 
second best item. Similarly, the first bar in Figure 5 shows 
that about 36% of the time the optimal solution will utilize 
the maximum number of units of the selected item. The 
second bar shows that about 18% of the time, the optimal 
solution will use one unit less than the maximum possible 
and so on. Given the probability distributions being used, 
and an optimal solution, it is easy to calculate the probability 
that SGA will generate the given optimal solution.  

 

 
Figure 5.  Example of learned probability distribution for extent of 

deviation of quantity used from maximum possible (based on 500 random 
instances) 

Suppose the probability that SGA will generate an 
optimal solution in a single trial is p, then the probability that 
it will generate a non-optimal solution in a single trial is (1-
p). If there are L trials, the probability that each trial 
generates a non-optimal solution is (1-p)L. Therefore the 
probability that at least one of the trials generates an optimal 
solution is  

( )Lp−− 11   

As is well known, this number can be surprisingly close 
to 1 for even fairly low values of p. This probability estimate 
is somewhat lower than then real value, as a problem could 
have multiple optimal solutions. Also, it is possible for a 
given solution to be generated in more than one way by our 
algorithm. 

 

 
Figure 6.  Probability of finding optimal solutions in SGA as number of 

trials increses 

To demonstrate the probability calculation, we revert to 
the example used earlier. Suppose we have a knapsack 
problem with capacity 20 and 5 items with weights wi = {8, 
3, 10, 5 and 2} in non-increasing order of their value-to-
weight ratios (we ignore the values for this discussion). 
Suppose the probability of distribution for item position is 
{0.6, 0.3, 0.1}. This means that the best item available was 
chosen 60% of the time, the second best 30% of the time and 
the third best 10% of the time. Suppose the probability 
distribution for the deviation from the maximum is {0.7, 
0.25, 0.05}. This means that the maximum number of units 
possible would be used 70% of the time, one less than the 
maximum would be used 25% of the time and two less than 
the maximum would be used 5% of the time.  

Suppose the optimal solution xi = {1, 0, 1, 0 1} (one unit 
each of items 1, 3 and 5). With these numbers, the 
probability of SGA finding the optimal solution in a single 
trial is the product of the probability of selecting each of the 
actual items chosen and the probabilities of the correct 
quantities being chosen. The first element of the optimal 
solution is a choice of one unit of the best item. The 
probability of this happening is the probability of the first 
item being chosen – which is 0.6 times the probability that 
the deviation from the maximum number of units being 1 
(since 2 units will fit, but only one unit is represented in the 
optimal solution) which is 0.25. Calculating in this way we 
find the probability as (0.6*0.25)*(0.1*0.7)*(0.6*0.7) = 
0.0041. Therefore the probability of generating an optimal 
solution in 250 trials will be about 0.63. Since the 
computation and the results are similar for other problem 
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domains, we have not shown this probability for CA and 
QPSD problems. 

Table I and II show the results obtained on UKP 
instances with varying numbers of items, as well as different 
instance types based on [21],  where the weights and values 
are weakly correlated (easy) and strongly correlated (harder),  

TABLE I.  AVERAGES OF 100 RUNS FOR UKP USING LEARNED 
PROBABILITY DISTRIBUTIONS IN WEAKLY CORRELATED CASE 

N Weakly correlated (easy) 
Greedy 
%dev 

SGA_UKP 

50 trials 100 trials 200 trials 

%dev Prob %dev Prob %dev Prob 

50 0.410 0.097 0.321 0.061 0.367 0.012 0.564 
100 0.401 0.112 0.243 0.079 0.310 0.013 0.545 
150 0.425 0.100 0.266 0.073 0.300 0.015 0.496 

200 0.435 0.100 0.263 0.063 0.290 0.018 0.439 
250 0.458 0.103 0.277 0.063 0.275 0.019 0.418 
 

TABLE II.  AVERAGES OF 100 RUNS FOR UKP USING 
LEARNED PROBABILITY DISTRIBUTIONS IN STRONGLY CORRELATED CASE 

N Strongly correlated (hard) 
Greedy 
%dev SGA_UKP 

50 trials 100 trials 200 trials 

%dev Prob %dev Prob %dev Prob 

50 0.430 0.172 0.180 0.110 0.171 0.061 0.256 
100 0.490 0.200 0.151 0.146 0.141 0.090 0.251 
150 0.521 0.210 0.128 0.171 0.130 0.113 0.183 

200 0.541 0.225 0.113 0.183 0.222 0.142 0.121 
250 0.580 0.251 0.107 0.175 0.104 0.150 0.100 
 

All the data are based on an average over 100 problem 
instances. For each instance, we also calculated the 
probability of SGA obtaining the optimal solution, and the 
tables show these as well. Across all the figures in Tables I-
II, the deviation from optimal for the greedy solution is, at 
the minimum, 2.5 times the SGA deviation and the 
maximum is 35 times. 

V. APPLICATION TO COMBINATORIAL AUCTIONS 
In single unit combinatorial auctions, there is only one 

unit of each item. Bidders place bids on the items or the 
combination of items they desire, and the auctioneer 
determines the winning allocation, i.e. the set of winning 
bids. In determining the winning bids the objective is to 
select a feasible set of bids such that no item is allocated to 
more than one bid (no overlapping items) and revenue is 
maximized. The formal description of the problem is given 
in section III. 

Individual items have no prices associated with them. 
Prices are only associated with bids and each bid can be for 
many items. Accordingly a useful measure of attractiveness 
of a bid is its price per item. Thus suppose a bid has price 

200 and is for four different items. The price per item for this 
bid is 50. Suppose there is another bid whose price is 80, but 
is for just a single item. Then the second bid is in some sense 
preferable to the first because its price per item is higher. 
Table III below shows an example of CA with 10 items and 
5 bids. 

TABLE III.  SINGLE UNIT COMBINATORIAL AUCTION WITH 10 ITEMS 
AND 5 BIDS 

Bid no Price Items in bid Attractiveness 
1 100 {8, 9, 10} 33.33 
2 125 {6, 9, 2, 1} 31.25 
3 75 {4, 6} 37.5 
4 80 {5, 7, 1} 26.66 
5 30 {6} 30 

 
The greedy approach for CA therefore is very 

straightforward. Simply pick the most attractive bid first and 
then continue to pick the most attractive remaining bid which 
has no overlapping items with any bids already chosen.  In 
the above example, first we would choose bid 3. Then we 
can choose bid 1. Now, since items 4, 6, 8, 9 and 10 have 
already been chosen, only bid 4 can be chosen because of 
item overlap considerations. The greedy solution is 255, 
which also happens to be the optimal solution, 

For learning the probabilities, we ran CA to optimality 
using CASS [5]. We then analyzed the optimal solutions 
generated by CASS. For each optimal solution generated by 
CASS, we first considered the bids in the optimal solution in 
their order of their attractiveness. We then tallied the number 
of times the optimal solution picked the best admissible bid, 
the second best admissible bid and so on. We calculated the 
probability with which CASS chose the most attractive bid at 
each stage. Using the above problem as an example, we 
would see that the optimal solution selected the best 
available bid at each stage. It is important to note that while 
analyzing the optimal solutions, we consider only the 
admissible bids at any stage. For example, it is possible that 
at some stage the optimal solution uses the fifth best bid 
overall. However, if at that stage this bid happens to be the 
best among the admissible bids at that stage based on 
overlaps with bids already selected, then we will consider 
that the best bid has been chosen. Suppose we perform this 
analysis over a large number of problems and see that the ith 
best available bid was chosen ni times across all the problem 
instances. Then the probability of SGA choosing the ith best 
available bid at any point is (N being the number of bids) 

∑
=

= N

i
i

i
i

n

n
p

1  

 

 
Algorithm SGA_CA { 
 best_val = 0; 
 best_bids = empty set 
 repeat num_trials times { 
  selected_bids = empty set 
               S = set of all bids 
  val = 0; 
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  while the set S of bids is not empty { 
   randomly select i based on the learned 

probability distribution pi 
   select the ith

 most attractive bid bi  from S 
   add bi  to selected_bids 
                     remove bi and all bids overlapping with bi from 

S 
   val = val + pi 
  } 
  If val > best_val { 
   best_val = val 
   best_bids = selected_bids 
  }  
 } 
 Output best_sol and best_bids 
} 
 

Figure 7.  Algorithm SGA_CA 

The probability distribution that we gleaned from optimal 
solutions is shown in Figure 8. 
 

 
Figure 8.  Example of learned probability distribution for relative position 

of next admissible bid (based on 500 random instances with number of 
goods varying from 10 to 40 and number of bids between 50 and 200) 

The results of running SGA on CA are shown in Table 
IV.  Each row shows the average of 100 random problem 
instances generated using the standard problem suite 
generator CATS 2.0 [15]. The results indicate very clearly 
that even with 50 trials, SGA is able to drastically improve 
on the greedy solution.  

We wanted to see if this impressive performance of SGA 
was merely the result of the fact that the greedy solution was 
quite poor in the problem instances tested. We wanted to 
create a situation where the greedy solution is a lot closer to 
the optimal solution and then see if SGA can provide 
benefits even under this scenario that tests SGA more 
rigorously. We hypothesized that if the number of bids in 
relation to the number of items is drastically increased, then 
the greedy solution is likely to come a lot closer to the 
optimal solution on the average.  We expected this because 
the drastically increased number of bids will make available 
many more attractive bids than would have been possible 
with fewer bids. Accordingly we generated random problem 
instances with a significantly larger number of bids. The 
results on running SGA on this set are shown in Table V. As 
we expected, the greedy solution was indeed a lot closer to 

the optimal. Encouragingly, SGA still managed to improve 
significantly upon the greedy solution. 

TABLE IV.  AVERAGES OF 100 RUNS FOR CA USING LEARNED 
PROBABILITY DISTRIBUTIONS IN CASE OF WEAK GREEDY SOLUTIONS  

 
 

We were curious to see if the probability distributions for 
the problems with lower number of bids and those for the 
problems with a huge number of bids would be significantly 
different. It turned out that they were very stable. The 
probability distribution is shown in Figure 9. Thus, while it 
might be a good idea to re-learn the probability distributions 
when the problem parameters change a lot, this finding 
indicates that in a time crunch nothing much would be lost in 
using a probability distribution obtained from a set of 
problem instances with different characteristics. 

VI. APPLICATION TO SINGLE MACHINE SEQUENCING 
We also studied the performance of SGA on a very hard 
single machine sequencing problem with quadratic penalties 
on job completion times and sequence dependent setup times 
(QPSD) [27]. This is also described in section III. In QPSD, 
there are N jobs , iJ  i = 1..N with iJ  having processing time 

ia , penalty coefficient iq  and setup times jis ,  (being the 

setup time for jJ  when it is immediately preceded by iJ , 

and js ,0  is the setup time for jJ  when it is the first job in 
the sequence). We assume that all values are non-negative 
integers.  
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Relative Position of the Next Admissible Bid

50 Trials 100 Trials 200 Trials 500 Trials
% dev % dev % dev % dev

10 50 19.97 2.39 0.86 0.70 0.29
10 200 11.18 2.28 1.43 0.95 0.29
10 500 6.96 2.01 1.50 1.07 0.49
10 1000 6.75 3.08 2.45 2.14 1.68
12 50 21.50 2.18 1.08 0.41 0.23
12 200 12.58 2.70 1.79 1.09 0.55
12 500 7.34 2.56 1.68 1.19 0.82
12 1000 8.49 4.05 3.50 2.86 2.50
15 50 18.45 2.12 1.22 0.63 0.27
15 200 11.80 2.51 1.83 1.25 0.60
15 500 6.65 2.63 1.95 1.55 1.06
15 1000 9.24 4.82 4.36 3.83 3.25
20 50 27.73 4.08 2.49 1.32 0.46
20 200 15.62 4.56 3.03 2.15 1.46
20 500 10.98 4.54 3.75 3.08 2.43
20 1000 13.38 6.92 6.30 5.58 4.89
26 50 27.07 5.19 4.28 2.85 2.40
26 200 19.09 5.44 4.06 3.15 2.01
26 500 15.25 6.65 5.43 4.54 3.32
26 1000 20.79 11.08 9.98 9.05 8.00
30 50 27.92 6.13 4.59 2.81 1.91
30 200 19.11 6.53 4.85 3.84 2.92
30 500 13.22 5.85 5.16 4.08 3.31
30 1000 19.68 11.39 10.70 9.57 8.81
40 50 31.74 7.71 5.75 3.96 2.67
40 200 20.93 8.99 7.49 5.91 4.61
40 500 15.34 7.65 6.42 5.47 4.68
40 1000 21.18 13.07 12.13 11.28 10.41
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Figure 9.  Example of learned probability distribution for relative position 
of next admissible bid on problems with large nunmber of bids (500 and 

1000) 

 

TABLE V.  AVERAGES OF 100 RUNS FOR CA USING LEARNED 
PROBABILITY DISTRIBUTIONS IN CASE OF STRONG GREEDY SOLUTIONS  

 
 

 
Let 
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be the effective processing time for jJ when it is 
immediately preceded by iJ . Let M be a number such that 
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The objective is to minimize the total penalty across all 
jobs, that is, to minimize the weighted sum of the square of 
completion times. When the setup times are sequence-

dependent, the quadratic penalty problem becomes extremely 
difficult to solve. Drawing from Balas [2], the problem of 
minimizing the total penalty was formulated by [31] as: 
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Constraint 1 addresses the completion time for the first 
job in the sequence. Constraints 7 and 8 ensure that for any 
pair of jobs j and k, either j precedes k or k precedes j. We 
use “j < k” in constraints 7, 8 and 10 to reduce the number of 
x-variables by half. As in the case of Traveling Salesman 
Problem, such a formulation may not be efficient to solve in 
practice using IP solvers. 

In [27], it has been shown that the search space for 
sequencing problems can be modeled as a tree, or as a graph, 
and those algorithms using the graph search space run faster. 
For the QPSD problem under the tree formulation, two nodes 
with the same set of jobs but in different orders and having 
the same last job will generally not have the same cost 
because the setup times for the jobs could differ. 
Nevertheless, the sub trees below them are identical in terms 
of the structure. Algorithms using the tree search space 
cannot take advantage of this fact and might wastefully 
traverse these identical sub-trees more than once. The graph 
search space has far fewer nodes and offers the potential for 
faster search. The node count reduction results from the fact 
that unlike in the tree search space, there could be multiple 
paths from the root node to any given node, and this helps to 
avoid replicating the identical sub trees. However, sequence-
dependent setup times complicate traditional graph search 
because the identical sub trees may not have the same costs.   

The main feature of graph search algorithms like the 
graph version of A* [9] is that when these reach the same 
node through different paths, they retain the path having the 
lowest cost, discarding any other paths from the root to the 
node. This approach works fine when the incremental cost 
from a given node to a goal node is independent of the path 
by which the node was reached. This is the same as the 
principle of optimality on which the dynamic programming 
formulations [12] are based. However, this does not hold for 
sequence-dependent setup times[18]. For example, consider 
the following 4 job problem given in Table VI below. 
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50 Trials 100 Trials 200 Trials 500 Trials
% dev % dev % dev % dev

10 3000 1.27 0.72 0.59 0.44 0.31
10 5000 0.67 0.53 0.43 0.35 0.26
10 8000 0.54 0.38 0.31 0.26 0.18
10 10000 0.37 0.25 0.20 0.16 0.14
12 5000 0.76 0.53 0.46 0.37 0.27
12 8000 0.62 0.47 0.40 0.33 0.23
12 10000 0.31 0.23 0.21 0.19 0.13
15 8000 0.64 0.55 0.50 0.39 0.33
20 10000 1.34 1.10 0.99 0.88 0.78
26 10000 2.15 1.79 1.67 1.59 1.39
26 12000 1.67 1.55 1.47 1.36 1.20
26 15000 1.56 1.36 1.28 1.17 1.01
26 20000 0.91 0.80 0.77 0.70 0.64
30 8000 5.78 3.70 3.44 3.00 2.60
30 10000 3.49 2.76 2.51 2.26 2.03
30 12000 2.31 1.99 1.88 1.77 1.55
30 15000 1.76 1.62 1.53 1.42 1.20
40 4000 6.55 4.61 4.33 3.99 3.63
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TABLE VI.   4 JOB QPSD PROBLEM 

Job  Setup Times Proc. 
Times 

Penalty 
Coeff 

 1 2 3 4   
1 - 1 1 3 1 2 
2 1 - 3 2 4 1 
3 5 4 - 10 3 1 
4 3 6 9 - 10 1 

 
In this example, it is assumed that the setup time for a job 

is zero if it is the first in the sequence. Consider the ordered 
sequence of jobs (1, 2, 3) and (2, 1, 3). Under the graph 
formulation, a node is represented by the set of completed 
jobs without regard to the ordering, except for the last job in 
the sequence. Because the set of jobs and the last job in the 
two ordered sequences in question are the same, the two are 
represented by a single node ( )3},2,1{ , where the first two 
jobs form an (unordered) set and the last job is shown 
separately.   The cost when the node is reached through the 
sequence 1, 2, 3 is 182 and through the sequence 2, 1, 3 is 
188.  If a traditional graph search algorithm reaches the node 
through the two different paths considered, it would simply 
discard the higher cost path 2, 1, 3. However, if we look 
below this node, we see that the sequence 1, 2, 3, 4 has a cost 
of 1206, which is higher than the cost of the sequence 2, 1, 3, 
4 which is 1088. A traditional graph search algorithm thus 
runs the risk of missing the optimal solution. 

In [18], solutions for QPSD only up to 22-job problems 
using a memory constrained graph search algorithm have 
been reported. Increasing the memory limit to 512K nodes, 
we could solve 30-job problems using PC running Windows 
XP.  We wanted to study how SGA performs on this hard 
problem. For a simpler problem not involving setup times, 
Townsend [29] had proposed two sufficient conditions for a 
given sequence of jobs to be optimal. The first of these 
involves ordering the jobs by non-ascending order of their 
pi/ai ratios. Being only one of two sufficient conditions for 
optimality, this ordering cannot guarantee optimal solutions 
for the simpler problem, but it does provide the basis for very 
good greedy solutions for that problem. In the absence of any 
other known greedy approaches to QPSD, we chose to adopt 
Townsend’s heuristic. 

Our SGA application to QPSD orders the jobs as above, 
and at each stage, chooses the job with the highest pi/ai ratio. 
Since UKP and CA have already established the benefit of 
learning from optimal solutions, we wanted to check and see 
how a standard discrete probability distribution with the right 
shape would perform for SGA. The benefit of doing this is 
that the up-front cost of solving many problem instances to 
optimality can then be avoided. Accordingly, in our 
experiments with QPSD, instead of learning the probability 
distribution from the solutions to optimal solutions, we 
experimented with both the Geometric and the Binomial 
distributions (since they can have the proper shape with 
suitably chosen parameters) and found that the Binomial 
distribution with a low value for its parameter performed 
better. The results are given in Table VII. It shows that the 
results for QPSD are good, but not as impressive as for UKP. 
It is intuitively clear that SGA can give good results only 

when the underlying greedy algorithm is reasonably good. 
Results of SGA application to QPSD - based on 100 trials 
and averaged over 100 random problem instances for each 
value of N. 

 
 

TABLE VII.  RESULTS OF SGA APPLICATION TO QPSD 
(BASED ON 100 TRIALS AND AVERAGED OVER 100 RANDOM PROBLEM 
INSTANCES FOR EACH VALUE OF N) 

N % deviation from optimal 

 
Greedy SGA – Binomial 

(p = 0.025) 
SGA – Geometric 

(p=0.8) 
10 7.70 1.67 2.07 
12 10.02 2.81 3.48 
14 11.13 3.70 4.65 
16 11.05 4.01 5.14 
18 12.50 4.93 6.20 
20 13.91 6.10 7.61 
22 14.45 7.11 8.34 
24 14.41 7.43 8.93 
26 15.64 8.31 9.92 
28 15.54 8.53 9.75 
30 15.71 9.22 10.56 
 

For QPSD we based the greedy approach on a result 
obtained for a far simpler problem, and its performance was 
not very good. Nevertheless, we find that SGA is able to 
improve upon the solution significantly.  We need to 
experiment with learned distributions in this domain too. 

VII. CONCLUSIONS 
We have proposed a new approximate approach called 

the Stochastic Greedy Algorithm and presented the results of 
its application to the Unbounded Knapsack Problem, 
Combinatorial Auctions and a hard Single Machine 
Sequencing Problem.  

The two major contributions of SGA are  
• its combining greedy approaches with stochastic 

approaches 
• its introduction of the idea of learning from the 

characteristics of optimal solutions to incorporate in 
a generative approach 

In all three domains, SGA provides significant 
improvements over the greedy solution. Of the three, the 
results for the single machine sequencing problem are 
perhaps relatively weak, and one reason for this is that no 
good greedy approach is known for the problem as of now. 
One important finding is that standard discrete probability 
distributions perform quite well and that, if necessary, the 
costly step to learn the underlying probability distribution 
can be avoided on occasion. Furthermore, our findings seem 
to hint that probability distributions are pretty stable and 
need not necessarily be re-learned when the problem 
characteristics change. 

Our results explore the potential for learning patterns 
from optimal solutions and applying this learning in the 
process of generating solutions.  There is obviously much 
more scope to extend this “supervised learning” approach for 
combinatorial optimization. While analyzing optimal 
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solutions to learn characteristics, it is possible to assign 
several other descriptors to each decision point. For example, 
in the knapsack problem, we could attach the percentage 
difference between the best available option and the next 
best one as a descriptor. Once the decisions made in the 
optimal solution are thus tagged, we effectively have 
different probability distributions for different states and 
SGA could sample from a more fine-grained and situation-
specific probability distribution. Another approach would be 
to study numerous optimal solutions and impute decision 
rules and see how solutions based on such rules perform. 
Broadly speaking, this learning metaphor can be exploited in 
numerous ways and certainly opens up new avenues for 
further work. 
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