
Stochastic Greedy Algorithms
A Learning-Based Approach to Combinatorial Optimization

Viswa Viswanathan
Stillman School of Business

Seton Hall University
South Orange, NJ, 07079

viswa.viswanathan@shu.edu

Anup K Sen

Management Information Systems
Indian Institute of Management

Calcutta
D. H. Road, Kolkata 700104, India

sen@iimcal.ac.in

Soumyakanti Chakraborty
Information Systems Area

XLRI School of Business and HR
Jamshedpur, India

soumyakc@xlri.ac.in

Abstract - Research in combinatorial optimization initially
focused on finding optimal solutions to various problems.
Researchers realized the importance of alternative approaches
when faced with large practical problems that took too long to
solve optimally and this led to approaches like simulated
annealing and genetic algorithms which could not guarantee
optimality, but yielded good solutions within a reasonable
amount of computing time. In this paper we report on our
experiments with stochastic greedy algorithms (SGA) –
perturbed versions of standard greedy algorithms. SGA
incorporates the novel idea of learning from optimal solutions,
inspired by data-mining and other learning approaches. SGA
learns some characteristics of optimal solutions and then
applies them while generating its solutions. We report results
based on applying this approach to three different problems –
knapsack, combinatorial auctions and single-machine job
sequencing. Overall, the method consistently produces
solutions significantly closer to optimal than standard greedy
approaches. SGA can be seen in the space of approximate
algorithms as falling between the very quick greedy
approaches and the relatively slower soft computing
approaches like genetic algorithms and simulated annealing.
SGA is easy to understand and implement -- once a greedy
solution approach is known for a problem, it becomes possible
to very quickly rig up a SGA for the problem. SGA has
explored only one aspect of learning from optimal solutions.
We believe that there is a lot of scope for variations on the
theme, and the broad idea of learning from optimal solutions
opens up possibilities for new streams of research.

Keywords- greedy algorithms; stochastic approaches;
approximate solutions; knapsack problem; combinatorial
auctions; single-machine scheduling; machine learning

I. INTRODUCTION
“Greedy” solutions are commonplace in the field of

combinatorial optimization for obtaining very quick
solutions to complex problems. For example, the
unconstrained knapsack problem (UKP) is known to be NP-
complete, but there exists a greedy algorithm with O(N2)
time complexity that yields very good solutions in practice.
In general, greedy algorithms do not guarantee optimal
solutions. In this paper, we elaborate on the idea of stochastic
greedy algorithms first presented in [31].

In general terms, a greedy algorithm tackles a problem in
several steps. At each step, the algorithm chooses the locally
most attractive option with no concern for its effect on global

optimality. Greedy algorithms are usually very simple and
intuitive. In the Traveling Salesperson Problem (TSP) [12],
the problem is to start at a city and visit n-1 other cities and
return to the original city while traversing the minimal
distance. A greedy algorithm for the TSP is straightforward –
at each stage, simply travel to the closest unvisited city and
continue this process till the tour is complete. In the
Transportation Problem (TP) [17], we are given a set of
requirements for goods to be satisfied from stocks available
in various warehouses. The unit transportation cost from
each warehouse to each demand point is also given and the
problem is to satisfy the demands while incurring minimal
cost. Vogel’s Approximation Method [17] is a greedy
algorithm that first finds the warehouse-demand point
combination with the lowest unit transportation cost,
satisfies the demand to the extent possible, and continues in
similar vein till all demands are satisfied (or all supplies are
exhausted).

Greedy algorithms are useful when the time available to
solve a problem is severely limited. In the space of solution
approaches to combinatorial optimization problems, greedy
approaches can be seen as lying at one end of the spectrum
with optimal algorithms lying at the other extreme. In the
middle are approximate algorithms like genetic algorithms
and simulated annealing. As we move from the greedy
algorithms to optimal algorithms, the solution quality
increases with a concomitant increase in the solution time.

In this paper, we elaborate on the results we presented in
[31] on stochastic greedy algorithms (SGA). Whereas
greedy algorithms choose the next step deterministically
based solely on what is locally best, SGA, a variant of
greedy algorithms, selects it stochastically. In other words,
rather than the probability of the best available option being
selected being 1, the algorithm uses a probability distribution
to select the next step. It selects the next step as the nth best
available option with probability p(n). SGA generates many
solutions and returns the best one as the output of the
algorithm.

How do we determine the probability distribution that
specifies p(n)? In seeking quick and good, but not
necessarily optimal, solutions to combinatorial optimization
problems, researchers have thus far hardly adopted the idea
of learning from optimal solutions. We introduce the idea,
and showcase the use of a data-mining inspired approach to
learn from optimal solutions the probability distribution to
use in SGA.

1

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Learning the probability distribution involves solving
many problem instances up front to optimality -- which
imposes a large fixed cost. SGA is thus only good in
situations where this fixed cost can be amortized over many
problem instances. Therefore, SGA only makes sense when
many problem instances have to be solved on an ongoing
basis and the time allowed for solving each instance is small.
This could arise for example, when solving the problem is
part of a larger business process in a real-time transaction
processing system where the on-line user cannot be kept
waiting for too long and yet the response to the user’s
request involves solving a moderately large non-trivial
combinatorial optimization problem. With the proliferation
of complex web-based transactional processing systems, this
scenario is only likely to become increasingly common.

We have experimented extensively with three
combinatorial optimization problems – the Unbounded
Knapsack Problem (UKP), Single Unit Combinatorial
auction (CA) and Single machine sequencing with quadratic
penalties (QPSD) , and obtained very encouraging results.
These problems represent a good range because the greedy
approach is extremely effective for the UKP and very
ineffective for the SQP. The combinatorial auction problem
falls in between.

On the UKP, we have obtained solutions consistently
within 0.02% of the optimal. Our results on the other two
problems are also very encouraging and establish SGA as a
viable alternative in the pool of soft computing approaches.
More research is definitely needed to understand the nuances
and to establish performance parameters more rigorously.
Nevertheless, the results we present prove conclusively the
viability of the approach.

Learning from optimal solutions is a novel, useful and
generic idea that opens up exciting new unions between
statistics and combinatorial optimization. Whereas we have
demonstrated in this paper only a small aspect of learning
from optimal solutions, there is clearly unlimited scope to
exploit this idea in the search for good quick solutions to
combinatorial optimization problems.

In section II we discuss prior work in related areas and
present, in section III a generic domain-independent
description of SGA. In subsequent sections we discuss the
specifics of our application of SGA to the UKP, CA and
QPSD problems and the corresponding empirical findings.
We conclude the paper with a summary and a discussion of
the scope for further work.

II. RELATED WORK
Greedy algorithms [14] represent natural ways of quickly

finding good solutions to combinatorial optimization
problems [19]. In rare cases, [14], greedy approaches can
even guarantee optimal solutions. Greedy algorithms use
deterministic steps in that they select the next course of
action by choosing the locally best option available.
Stochastic algorithms ([10], [11]), on the other hand, use
probabilistic elements to alter the steps of the algorithm.
Blending the two approaches lies at the heart of SGA.
Although researchers have looked at stochastic local search
approaches ([4], [10], [11] and [13]), prior research has not

explored the pros and cons of stochastic perturbations of
known and new greedy approaches.

We use the knapsack problem, single unit combinatorial
auctions and a class of single machine sequencing problems
to demonstrate the utility of SGA. Knapsack problems have
been widely studied in ([16], [21]). The Unbounded
Knapsack Problem (UKP) is known to be NP-hard. Greedy
approaches to knapsack problems have been discussed in
[16]. A new algorithm for finding exact solutions to UKP
can be found in [22].

 Auctions have been in use since antiquity. The
commonest format has been the ascending auction, also
known as the ‘English’ auction. The first major work on
auction theory is that of Vickrey [30] who recommended the
adoption of second price sealed bid auctions (later called
Vickrey auctions). His ideas were extended to combinatorial
auctions by Clarke and Groves ([3],[8]). In their scheme,
bidders submit their valuations of packages, and the seller
solves the revenue maximization problem, known as Winner
Determination Problem (WDP) and allocates the bundles.
Solving WDP with dynamic programming was proposed by
[25]. Two approaches, CASS [5] and CABOB [26] are the
prominent heuristic search techniques to solve large
instances of WDP optimally for the single unit case. Both
these approaches employ Depth-First Branch-and-Bound
(DFBB) but they differ in the formulation of their search
space. Both these algorithms may take a long time for
solving large instances optimally. For the methodical
evaluation and comparison of algorithms for solving WDP,
Kevin Leyton-Brown et al. [15] designed a suite of
distribution families called CATS 2.0
(http://cats.stanford.edu) for generating realistic,
economically motivated combinatorial bids in a number of
broad real world applications. With the proliferation of on-
line auction situations, it is conceivable that there will be an
increasing need to obtain reasonably good solutions quickly
to CA and related problems.

Single machine sequencing problems [20] are generally
known to be NP-hard [23]. The presence of sequence-
dependent setup times makes the sequencing problem with
quadratic penalties ([28], [29]) very difficult to solve [27].
Greedy approaches to the single machine sequencing
problem with quadratic penalties and setup times (QPSD) are
not popular yet. The best exact approach reported thus far
[18] can solve problems that have only up to 22 jobs.
Therefore, providing good solutions to larger instances
serves to extend the envelope for this problem.

Machine learning through neural networks has been
applied to optimization problems [1]. However, machine
learning based on the analysis of optimal solutions to learn
their characteristics and then augmenting the process of
generating solutions with the resultant knowledge has not
been effectively tried before. This paper shows clearly that
the approach has promise.

III. GENERIC DESCRIPTION OF SGA
An instance of an optimization problem [19] is a pair (F,

c) where F is any set, the domain of feasible points and c is
the cost function, a mapping: c: F → R1. The problem is to

2

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

find an f ∈ F for which c(f) ≤ c(y) for all y ∈ F for a
minimization problem (or to find an f ∈F for which c(f) ≥
c(y) for all y∈F for a maximization problem).

When the set F has a finite number of points, the problem
becomes a combinatorial optimization problem. A solution
procedure that guarantees the best f in the above sense is an
exact procedure; other procedures are approximate.

EXAMPLE 1: In the Unbounded Knapsack Problem
(UKP), we are given a knapsack with weight-capacity K, and
N items, with item i having weight wi and value vi, with each
item available in unlimited quantity. The objective is to fill
the knapsack with qi units of the ith item in such a way that
the value of the items in the knapsack is maximized. Here

() }:,,,{
1

21 ∑
=

=

≤=
Ni

i
iiN KwqqqqF  (1)

and

() ∑
=

=

=
Ni

i
iiN vqqqqc

1
21 ,,,  (2)

EXAMPLE 2: In single unit combinatorial auctions, there
is only one unit of each item. Bidders place bids on the items
or the combination of items they desire, and the auctioneer
determines the winning allocation, i.e. the set of winning
bids. In determining the winning bids the objective is to
select a feasible set of bids such that no item is allocated to
more than one bid (no overlapping items) and revenue is
maximized. Let there be M distinct items and N bids, and let
bid Bi has quoted price vi on a non-empty bundle S ⊆ M of
items. In this case: F = {feasible set of bids with no
overlapping items} and

∑
=

=∈
N

i
iuFxxc

1
):((3)

where ui = vi if bid Bi ∈ x and 0 otherwise.

EXAMPLE 3: In the Single Machine Sequencing with

Quadratic penalties on job completion times and Sequence
Dependent Setup times (QPSD) problem [27], there are N
jobs, Ji , i = 1..N with Ji having processing time ai , penalty
coefficient qi and setup times si,j (being the setup time for Jj
when it is immediately preceded by Ji, and s0,j is the setup
time for Ji when it is the first job in the sequence). The
objective is to find the schedule that minimizes the total cost.
Each feasible schedule is a permutation of 1..N and
therefore, in this case F = {all permutations of 1 ... N} and

∑
=

=
N

i
iitqxc

1

2)(where ti is the completion time for Ji as per

permutation x.
 It is common to view the solution procedure for a

general optimization problem as starting from a given point
in F and then moving step by step towards the final solution
(optimal or otherwise). For combinatorial optimization

problems, a point in the set F is usually determined through a
systematic process of construction involving several stages.
For example:

• In UKP, each member of F represents one feasible
way of filling the knapsack. Constructing one
feasible solution involves selecting items one by one
and determining how many pieces of each to take.
Here, we could see a feasible solution as being
constructed through steps with each step involving
the selection of an item and a quantity such that the
weight added by this item, when combined with the
weights of items already added in prior steps, does
not exceed the capacity of the knapsack..

• In CA, a member of F represents a feasible set of
bids with non-overlapping items. Here, constructing
an element of F can be seen as involving a series of
steps with each step selecting a bid which does not
have any overlapping items with any bid already
selected.

• In QPSD, a member of F is any valid permutation of
jobs, and creating one could be seen as a series of
steps with each step involving the selection of a job
which has not already been selected.

Having laid down the fact that creating a member of F
involves a process of constructions having several steps, it is
now possible to describe abstractly both the greedy approach
and SGA. In the greedy approach, we first identify an
intuitive measure of attractiveness of each possible step. This
measure varies from domain to domain and we will describe
the actual measure used for each problem domain when we
discuss the domain separately in later sections. At each step
in the process of constructing a feasible solution, we choose
the step that seems most attractive according to this intuitive
estimate. Thus, for UKP, we first choose the item that seems
most attractive and take as many units of it as will fit. We
then choose as many units of the next best item as will fit
and take as many units as possible and so on till no more
items will fit. For CA, we first choose the most attractive bid
and then choose the most attractive bid from those that
remain which do not have an overlap with bids already
selected. We go on like this till no more bids are available.
For QPSD, we simply order the jobs by their attractiveness
with the most attractive job as the first. The generic version
of the greedy algorithm is shown below. It is written from
the perspective of a maximization problem and can be easily
modified for a minimization problem.

We use the following notation:

P A combinatorial optimization problem
F The set of feasible solutions to P
ai 1 ≤ i ≤ N, all possible actions which can be used to

construct any feasible solution in F. Each action can be
used at most once in building one element of F

ri A measure of attractiveness of action ai , 1≤ i ≤ N
(higher is better)

ES The set of eligible actions, given that the actions
contained in set S have already been chosen

3

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

pi Probability of choosing the ith most attractive action
from ES (this is used only in SGA)

L Number of trials for SGA

Algorithm Greedy {
 S =empty set
 Initialize Es to set of eligible actions
 While Es is not empty {
 From the actions in Es select action ai that

corresponds to the maximum ri
 Add ai to S
 Remove ai and all ineligible actions from ES
 }
 Output the actions in S
}

Figure 1. Algorithm Greedy

In the greedy approach we choose the next step
deterministically as the best available step at that point. In
SGA, we perform this step stochastically, by selecting at
each stage the ith best available step with probability pi .We
generate many solutions in this process and select the best of
these as the output. SGA is driven by a probability
distribution. The details of how the probability distribution is
arrived at are specific to each problem domain and we will
describe those when we look at each problem domain
separately.

Algorithm SGA {
 best_sol = 0
 best_s = empty set
 Repeat the following L times {

 S =empty set
 Initialize Es to set of eligible actions
 While Es is not empty {

 Select a random i using probability distribution
pi

 From the actions in Es select action ai that
corresponds to the ith highest ri

 Add ai to S
 Remove ai and all ineligible actions from ES

 }
 sol = objective function value corresponding to the

actions in S
 If sol > best_sol {
 best_sol = sol
 best_s = S
 }
 }
 Output the actions in best_s
}

Figure 2. Algorithm SGA

IV. SGA APPLICATION TO THE UNBOUNDED
KNAPSACK PROBLEM

The problem statement for UKP appears in section III.
To implement the greedy approach for UKP, we need a
specification of the attractiveness ri’ 1≤ i ≤ N. Intuitively, the
“bang for the buck” ratio of vi /wi looks like a good measure
of the attractiveness of an item and in fact leads to good
greedy solutions.

The greedy approach is to order the items in non-
increasing order of the ratio ii wv / and then to fill the
knapsack with as many units of the first item as can fit, and
then as many units of the next lowest numbered item that
will fit, and so on, till the knapsack is full (that is, the
residual weight capacity is less than the weight of the lightest
item). In doing this, at each stage we are taking the locally
most attractive step, without considering its global effects. It
could turn out, for example, that the greedy approach is
unable to fill the knapsack completely, but that taking one
less unit of one of the items currently in the knapsack would
enable us to fill the knapsack completely, albeit with more
units of a lower valued item, but with a larger total value. It
is for this reason that the greedy solution cannot guarantee
optimality.

In UKP there are N items and therefore a maximum of N
possible actions at each step. In order to implement SGA for
UKP, we need to specify the probability distribution, pi , 1 ≤
i ≤ N which gives the probability with which the ith most
attractive action available is to be chosen. The logic of SGA
is that whereas the greedy approach always picks the most
attractive step available while constructing a solution, SGA
determines this stochastically. Instead of always picking the
most attractive item, we select the next item based on a
probability distribution. Having selected the item to be used,
we next need to decide on how many units of the item should
be picked. It is not necessary to fill the knapsack with the
maximum number of units possible for the chosen item.
Once again we choose this probabilistically. Items are
chosen in this fashion till no more can be added to the
knapsack. This concludes a single trial. Several trials are
performed and the best solution is chosen.

At the stage of selecting the next item, it seems
reasonable to assume that the probability of picking items
with higher attractiveness should be higher because it is
expected that higher the attractiveness, higher is the chance
of striking an optimal solution. Likewise, at the stage of
choosing the quantity for the selected item, the chance of
picking the maximum possible quantity should be highest.

We now describe the procedure we adopted for
introducing stochasticity into the greedy approach for the
knapsack problem. In the standard greedy approach where
the next item to be allocated is chosen strictly according to
the best value-to-weight or ii wv / ratios, and the maximum
possible quantity of the selected item is used. In SGA, we
make both of these choices, namely the choice of item and
the quantity of the chosen item probabilistically.

We derived the probability distribution empirically by
solving many problems to optimality and then learning from
these optimal solutions. The dynamic programming solution

4

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

procedure for optimally solving the knapsack problem
(Gilmore and Gomory [7]) exploits the Bellman Optimality
principle.

As explained in the introduction, we introduce the novel
idea of learning from optimal solution and using the
knowledge thus derived in a stochastic process of generating
solutions. This approach can be seen to be inspired by
“learning” as applied to data mining. We describe the
learning process in detail in the next paragraph. Broadly, the
approach relies on generating optimal solutions to a large
number of instances of UKP. Once we have optimal
solutions to a large number of instances, we seek patterns in
these. In this paper we rely on the large body of optimal
solutions to calculate the probability with which the best
available piece is selected, the probability of the second best
available piece, and so on. We also calculate the probability
of the optimal solution containing the maximum number of
units of the selected piece, 1 less than the maximum and so
on. Once we have these, we can then use these probabilities
to generate a large number of random solutions and choose
the best among them. We based the calculations on optimal
solutions to a total of 500 problem instances with N varying
from 50 to 250. We lumped problems with different values
of N together because we did not find any significant
differences in the probabilities when we calculated them
separately for different values of N.

We now describe the procedure for learning the
probability distributions. Consider a knapsack problem with
capacity 20, and 5 items with weights wi = {8, 3, 10, 5 and
2} in non-increasing order of their value-to-weight ratios (we
ignore the actual values for this discussion). Suppose the
optimal solution xi = {1, 0, 1, 0 1} (one unit each of items 1,
3 and 5). Note that this differs from the greedy solution
which would be {2, 1, 0, 0, 0}. Looking at this optimal
solution, we find that initially when the knapsack is empty,
all of the items are eligible for consideration and the optimal
solution actually used the best available item, namely the
first, although it does not use the maximum quantity possible
– two units would have fitted into the knapsack, but the
optimal solution uses only one unit. At the next stage, the
residual knapsack capacity is 12 (having allocated one unit
of item 1). Even at this stage, the residual capacity is
sufficient for all the remaining items to be eligible for
consideration – it can hold at least one unit of each of them.
However, we see that the optimal solution for the sub-
problem did not choose the best item and instead chose only
the third best item (namely item 3). Only one unit of this
item could fit and hence the maximum allowable number of
units were used. The residual knapsack capacity now is 2 and
the optimal solution now chose the best item available (only
item 5 is eligible for consideration now because only it can
fit) and the maximum allowable quantity, namely 1, was
used.

We did the above analysis for each optimal solution and
calculated the probability of the jth eligible item being
actually chosen, and also noted the probability of the number
of units of the chosen item used in the optimal solution
deviating by an amount d, d = 1, 2, 3, … from the maximum
amount that would fit into the residual capacity.

In this way we calculated the probability jp of the item

with the thj highest ratio being chosen as the next item.
Similarly we also calculated the probability kjq , of the
number of units of the selected item j being less than the
maximum possible number by k units.

Figure 3 shows the algorithm for applying SGA to UKP.

Algorithm SGA_UKP
Re-order the N items such that
 NN wvwvwv /....// 2211 ≥≥≥
best_val 0←

Nkbestk ...,2,1,0 =←
Repeat numtrials times {

capacity K←
curpos 1←
sga_value 0←
while ()Niwcapacity i ..1),(min =≥) {

Randomly select a position j according to the
chosen probability distribution for the
position of the next item relative to curpos

Starting from curpos skip the first j items whose
weights are not greater than capacity. Let k
be the index of the next item whose weight
is not greater than capacity. If this causes a
spillover beyond N, then search backwards
for the first item whose weight is not greater
than capacity

 maxunits)/(kwcapacityfloor←
Randomly select a number m according to the

chosen probability distribution for the
quantity of the next item relative to maxunits

Set ksol the number of units of the thk item in the
solution to max(1, maxunits - m)

curpos 1−←k
capacity kk wsolcapacity *−←
sga_value ik vsolvaluesga *_ +←

}
if (sga_value > best_val)
 best_val = sga_value
 Nksolbest kk ..1, =←

}

Figure 3. Algorithm SGA-UKP

5

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Example of learned probability distribution for position of next

item relative to current item (based on 500 random instances)

Figures 4 and 5 show the probability distributions we
obtained experimentally for jp and jkq respectively. The
first bar on Figure 4 shows for example that almost 80% of
the time the optimal solution chooses the next item as the
one with the highest value-to-weight ratio. The second bar
shows that there is a close to 10% chance that this is the
second best item. Similarly, the first bar in Figure 5 shows
that about 36% of the time the optimal solution will utilize
the maximum number of units of the selected item. The
second bar shows that about 18% of the time, the optimal
solution will use one unit less than the maximum possible
and so on. Given the probability distributions being used,
and an optimal solution, it is easy to calculate the probability
that SGA will generate the given optimal solution.

Figure 5. Example of learned probability distribution for extent of

deviation of quantity used from maximum possible (based on 500 random
instances)

Suppose the probability that SGA will generate an
optimal solution in a single trial is p, then the probability that
it will generate a non-optimal solution in a single trial is (1-
p). If there are L trials, the probability that each trial
generates a non-optimal solution is (1-p)L. Therefore the
probability that at least one of the trials generates an optimal
solution is

()Lp−− 11

As is well known, this number can be surprisingly close
to 1 for even fairly low values of p. This probability estimate
is somewhat lower than then real value, as a problem could
have multiple optimal solutions. Also, it is possible for a
given solution to be generated in more than one way by our
algorithm.

Figure 6. Probability of finding optimal solutions in SGA as number of

trials increses

To demonstrate the probability calculation, we revert to
the example used earlier. Suppose we have a knapsack
problem with capacity 20 and 5 items with weights wi = {8,
3, 10, 5 and 2} in non-increasing order of their value-to-
weight ratios (we ignore the values for this discussion).
Suppose the probability of distribution for item position is
{0.6, 0.3, 0.1}. This means that the best item available was
chosen 60% of the time, the second best 30% of the time and
the third best 10% of the time. Suppose the probability
distribution for the deviation from the maximum is {0.7,
0.25, 0.05}. This means that the maximum number of units
possible would be used 70% of the time, one less than the
maximum would be used 25% of the time and two less than
the maximum would be used 5% of the time.

Suppose the optimal solution xi = {1, 0, 1, 0 1} (one unit
each of items 1, 3 and 5). With these numbers, the
probability of SGA finding the optimal solution in a single
trial is the product of the probability of selecting each of the
actual items chosen and the probabilities of the correct
quantities being chosen. The first element of the optimal
solution is a choice of one unit of the best item. The
probability of this happening is the probability of the first
item being chosen – which is 0.6 times the probability that
the deviation from the maximum number of units being 1
(since 2 units will fit, but only one unit is represented in the
optimal solution) which is 0.25. Calculating in this way we
find the probability as (0.6*0.25)*(0.1*0.7)*(0.6*0.7) =
0.0041. Therefore the probability of generating an optimal
solution in 250 trials will be about 0.63. Since the
computation and the results are similar for other problem

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20

Relative item position

P
ro

ba
bi

lit
y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

Deviation from maximum units

Pr
ob

ab
ili

ty

`

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

50 100 150 200 250 300 350 400 450 500Pr
ob

ab
ili

ty
 o

f o
pt

im
al

Number of SGA trials

p = 0.001 p = 0.002 p = 0.003

p = 0.004 p = 0.005

6

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

domains, we have not shown this probability for CA and
QPSD problems.

Table I and II show the results obtained on UKP
instances with varying numbers of items, as well as different
instance types based on [21], where the weights and values
are weakly correlated (easy) and strongly correlated (harder),

TABLE I. AVERAGES OF 100 RUNS FOR UKP USING LEARNED
PROBABILITY DISTRIBUTIONS IN WEAKLY CORRELATED CASE

N Weakly correlated (easy)
Greedy
%dev

SGA_UKP

50 trials 100 trials 200 trials

%dev Prob %dev Prob %dev Prob

50 0.410 0.097 0.321 0.061 0.367 0.012 0.564
100 0.401 0.112 0.243 0.079 0.310 0.013 0.545
150 0.425 0.100 0.266 0.073 0.300 0.015 0.496

200 0.435 0.100 0.263 0.063 0.290 0.018 0.439
250 0.458 0.103 0.277 0.063 0.275 0.019 0.418

TABLE II. AVERAGES OF 100 RUNS FOR UKP USING
LEARNED PROBABILITY DISTRIBUTIONS IN STRONGLY CORRELATED CASE

N Strongly correlated (hard)
Greedy
%dev SGA_UKP

50 trials 100 trials 200 trials

%dev Prob %dev Prob %dev Prob

50 0.430 0.172 0.180 0.110 0.171 0.061 0.256
100 0.490 0.200 0.151 0.146 0.141 0.090 0.251
150 0.521 0.210 0.128 0.171 0.130 0.113 0.183

200 0.541 0.225 0.113 0.183 0.222 0.142 0.121
250 0.580 0.251 0.107 0.175 0.104 0.150 0.100

All the data are based on an average over 100 problem
instances. For each instance, we also calculated the
probability of SGA obtaining the optimal solution, and the
tables show these as well. Across all the figures in Tables I-
II, the deviation from optimal for the greedy solution is, at
the minimum, 2.5 times the SGA deviation and the
maximum is 35 times.

V. APPLICATION TO COMBINATORIAL AUCTIONS
In single unit combinatorial auctions, there is only one

unit of each item. Bidders place bids on the items or the
combination of items they desire, and the auctioneer
determines the winning allocation, i.e. the set of winning
bids. In determining the winning bids the objective is to
select a feasible set of bids such that no item is allocated to
more than one bid (no overlapping items) and revenue is
maximized. The formal description of the problem is given
in section III.

Individual items have no prices associated with them.
Prices are only associated with bids and each bid can be for
many items. Accordingly a useful measure of attractiveness
of a bid is its price per item. Thus suppose a bid has price

200 and is for four different items. The price per item for this
bid is 50. Suppose there is another bid whose price is 80, but
is for just a single item. Then the second bid is in some sense
preferable to the first because its price per item is higher.
Table III below shows an example of CA with 10 items and
5 bids.

TABLE III. SINGLE UNIT COMBINATORIAL AUCTION WITH 10 ITEMS
AND 5 BIDS

Bid no Price Items in bid Attractiveness
1 100 {8, 9, 10} 33.33
2 125 {6, 9, 2, 1} 31.25
3 75 {4, 6} 37.5
4 80 {5, 7, 1} 26.66
5 30 {6} 30

The greedy approach for CA therefore is very

straightforward. Simply pick the most attractive bid first and
then continue to pick the most attractive remaining bid which
has no overlapping items with any bids already chosen. In
the above example, first we would choose bid 3. Then we
can choose bid 1. Now, since items 4, 6, 8, 9 and 10 have
already been chosen, only bid 4 can be chosen because of
item overlap considerations. The greedy solution is 255,
which also happens to be the optimal solution,

For learning the probabilities, we ran CA to optimality
using CASS [5]. We then analyzed the optimal solutions
generated by CASS. For each optimal solution generated by
CASS, we first considered the bids in the optimal solution in
their order of their attractiveness. We then tallied the number
of times the optimal solution picked the best admissible bid,
the second best admissible bid and so on. We calculated the
probability with which CASS chose the most attractive bid at
each stage. Using the above problem as an example, we
would see that the optimal solution selected the best
available bid at each stage. It is important to note that while
analyzing the optimal solutions, we consider only the
admissible bids at any stage. For example, it is possible that
at some stage the optimal solution uses the fifth best bid
overall. However, if at that stage this bid happens to be the
best among the admissible bids at that stage based on
overlaps with bids already selected, then we will consider
that the best bid has been chosen. Suppose we perform this
analysis over a large number of problems and see that the ith
best available bid was chosen ni times across all the problem
instances. Then the probability of SGA choosing the ith best
available bid at any point is (N being the number of bids)

∑
=

= N

i
i

i
i

n

n
p

1

Algorithm SGA_CA {
 best_val = 0;
 best_bids = empty set
 repeat num_trials times {
 selected_bids = empty set
 S = set of all bids
 val = 0;

7

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 while the set S of bids is not empty {
 randomly select i based on the learned

probability distribution pi
 select the ith

 most attractive bid bi from S
 add bi to selected_bids
 remove bi and all bids overlapping with bi from

S
 val = val + pi
 }
 If val > best_val {
 best_val = val
 best_bids = selected_bids
 }
 }
 Output best_sol and best_bids
}

Figure 7. Algorithm SGA_CA

The probability distribution that we gleaned from optimal
solutions is shown in Figure 8.

Figure 8. Example of learned probability distribution for relative position

of next admissible bid (based on 500 random instances with number of
goods varying from 10 to 40 and number of bids between 50 and 200)

The results of running SGA on CA are shown in Table
IV. Each row shows the average of 100 random problem
instances generated using the standard problem suite
generator CATS 2.0 [15]. The results indicate very clearly
that even with 50 trials, SGA is able to drastically improve
on the greedy solution.

We wanted to see if this impressive performance of SGA
was merely the result of the fact that the greedy solution was
quite poor in the problem instances tested. We wanted to
create a situation where the greedy solution is a lot closer to
the optimal solution and then see if SGA can provide
benefits even under this scenario that tests SGA more
rigorously. We hypothesized that if the number of bids in
relation to the number of items is drastically increased, then
the greedy solution is likely to come a lot closer to the
optimal solution on the average. We expected this because
the drastically increased number of bids will make available
many more attractive bids than would have been possible
with fewer bids. Accordingly we generated random problem
instances with a significantly larger number of bids. The
results on running SGA on this set are shown in Table V. As
we expected, the greedy solution was indeed a lot closer to

the optimal. Encouragingly, SGA still managed to improve
significantly upon the greedy solution.

TABLE IV. AVERAGES OF 100 RUNS FOR CA USING LEARNED
PROBABILITY DISTRIBUTIONS IN CASE OF WEAK GREEDY SOLUTIONS

We were curious to see if the probability distributions for
the problems with lower number of bids and those for the
problems with a huge number of bids would be significantly
different. It turned out that they were very stable. The
probability distribution is shown in Figure 9. Thus, while it
might be a good idea to re-learn the probability distributions
when the problem parameters change a lot, this finding
indicates that in a time crunch nothing much would be lost in
using a probability distribution obtained from a set of
problem instances with different characteristics.

VI. APPLICATION TO SINGLE MACHINE SEQUENCING
We also studied the performance of SGA on a very hard
single machine sequencing problem with quadratic penalties
on job completion times and sequence dependent setup times
(QPSD) [27]. This is also described in section III. In QPSD,
there are N jobs , iJ i = 1..N with iJ having processing time

ia , penalty coefficient iq and setup times jis , (being the

setup time for jJ when it is immediately preceded by iJ ,

and js ,0 is the setup time for jJ when it is the first job in
the sequence). We assume that all values are non-negative
integers.

0

0.2

0.4

0.6

1 3 5 7 9 11 13 15 17 19Pr
ob

ab
ili

ty

Relative Position of the Next Admissible Bid

50 Trials 100 Trials 200 Trials 500 Trials
% dev % dev % dev % dev

10 50 19.97 2.39 0.86 0.70 0.29
10 200 11.18 2.28 1.43 0.95 0.29
10 500 6.96 2.01 1.50 1.07 0.49
10 1000 6.75 3.08 2.45 2.14 1.68
12 50 21.50 2.18 1.08 0.41 0.23
12 200 12.58 2.70 1.79 1.09 0.55
12 500 7.34 2.56 1.68 1.19 0.82
12 1000 8.49 4.05 3.50 2.86 2.50
15 50 18.45 2.12 1.22 0.63 0.27
15 200 11.80 2.51 1.83 1.25 0.60
15 500 6.65 2.63 1.95 1.55 1.06
15 1000 9.24 4.82 4.36 3.83 3.25
20 50 27.73 4.08 2.49 1.32 0.46
20 200 15.62 4.56 3.03 2.15 1.46
20 500 10.98 4.54 3.75 3.08 2.43
20 1000 13.38 6.92 6.30 5.58 4.89
26 50 27.07 5.19 4.28 2.85 2.40
26 200 19.09 5.44 4.06 3.15 2.01
26 500 15.25 6.65 5.43 4.54 3.32
26 1000 20.79 11.08 9.98 9.05 8.00
30 50 27.92 6.13 4.59 2.81 1.91
30 200 19.11 6.53 4.85 3.84 2.92
30 500 13.22 5.85 5.16 4.08 3.31
30 1000 19.68 11.39 10.70 9.57 8.81
40 50 31.74 7.71 5.75 3.96 2.67
40 200 20.93 8.99 7.49 5.91 4.61
40 500 15.34 7.65 6.42 5.47 4.68
40 1000 21.18 13.07 12.13 11.28 10.41

SGANo. of
Goods

No. of
 Bids

Greedy
 % dev

8

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. Example of learned probability distribution for relative position
of next admissible bid on problems with large nunmber of bids (500 and

1000)

TABLE V. AVERAGES OF 100 RUNS FOR CA USING LEARNED
PROBABILITY DISTRIBUTIONS IN CASE OF STRONG GREEDY SOLUTIONS

Let

 }..1{},..0{,, NjNiase jjiji ∈∈∀+= (4)

be the effective processing time for jJ when it is
immediately preceded by iJ . Let M be a number such that

}..0{,)max(
1

, NieM
N

j
ji ∈> ∑

=

. (5)

The objective is to minimize the total penalty across all
jobs, that is, to minimize the weighted sum of the square of
completion times. When the setup times are sequence-

dependent, the quadratic penalty problem becomes extremely
difficult to solve. Drawing from Balas [2], the problem of
minimizing the total penalty was formulated by [31] as:

∑
=

N

j
jjtqMin

1

2

Subject to:

{ }

)10(}..1{,,},1,0{

)9(}..0{,)max(..0

)8(}..1{,,,

)7(}..1{,,),1(

)6(}..1{,min

,

1
,

,,

,,

,0

Nkjkjx

Niet

NkjkjMxtet
NkjkjxMtet

Njet

kj

N

j
jij

kjjjkk

kjkkjj

jj

∈<∈








∈∈

∈<+≤+

∈<−+≤+

∈≥

∑
=

Constraint 1 addresses the completion time for the first
job in the sequence. Constraints 7 and 8 ensure that for any
pair of jobs j and k, either j precedes k or k precedes j. We
use “j < k” in constraints 7, 8 and 10 to reduce the number of
x-variables by half. As in the case of Traveling Salesman
Problem, such a formulation may not be efficient to solve in
practice using IP solvers.

In [27], it has been shown that the search space for
sequencing problems can be modeled as a tree, or as a graph,
and those algorithms using the graph search space run faster.
For the QPSD problem under the tree formulation, two nodes
with the same set of jobs but in different orders and having
the same last job will generally not have the same cost
because the setup times for the jobs could differ.
Nevertheless, the sub trees below them are identical in terms
of the structure. Algorithms using the tree search space
cannot take advantage of this fact and might wastefully
traverse these identical sub-trees more than once. The graph
search space has far fewer nodes and offers the potential for
faster search. The node count reduction results from the fact
that unlike in the tree search space, there could be multiple
paths from the root node to any given node, and this helps to
avoid replicating the identical sub trees. However, sequence-
dependent setup times complicate traditional graph search
because the identical sub trees may not have the same costs.

The main feature of graph search algorithms like the
graph version of A* [9] is that when these reach the same
node through different paths, they retain the path having the
lowest cost, discarding any other paths from the root to the
node. This approach works fine when the incremental cost
from a given node to a goal node is independent of the path
by which the node was reached. This is the same as the
principle of optimality on which the dynamic programming
formulations [12] are based. However, this does not hold for
sequence-dependent setup times[18]. For example, consider
the following 4 job problem given in Table VI below.

0
0.1
0.2
0.3
0.4
0.5
0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pr
ob

ab
ili

ty

Relative position of next admissible bid

50 Trials 100 Trials 200 Trials 500 Trials
% dev % dev % dev % dev

10 3000 1.27 0.72 0.59 0.44 0.31
10 5000 0.67 0.53 0.43 0.35 0.26
10 8000 0.54 0.38 0.31 0.26 0.18
10 10000 0.37 0.25 0.20 0.16 0.14
12 5000 0.76 0.53 0.46 0.37 0.27
12 8000 0.62 0.47 0.40 0.33 0.23
12 10000 0.31 0.23 0.21 0.19 0.13
15 8000 0.64 0.55 0.50 0.39 0.33
20 10000 1.34 1.10 0.99 0.88 0.78
26 10000 2.15 1.79 1.67 1.59 1.39
26 12000 1.67 1.55 1.47 1.36 1.20
26 15000 1.56 1.36 1.28 1.17 1.01
26 20000 0.91 0.80 0.77 0.70 0.64
30 8000 5.78 3.70 3.44 3.00 2.60
30 10000 3.49 2.76 2.51 2.26 2.03
30 12000 2.31 1.99 1.88 1.77 1.55
30 15000 1.76 1.62 1.53 1.42 1.20
40 4000 6.55 4.61 4.33 3.99 3.63

SGANo. of
Goods

No. of
 Bids

Greedy
 % dev

9

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VI. 4 JOB QPSD PROBLEM

Job Setup Times Proc.
Times

Penalty
Coeff

 1 2 3 4
1 - 1 1 3 1 2
2 1 - 3 2 4 1
3 5 4 - 10 3 1
4 3 6 9 - 10 1

In this example, it is assumed that the setup time for a job

is zero if it is the first in the sequence. Consider the ordered
sequence of jobs (1, 2, 3) and (2, 1, 3). Under the graph
formulation, a node is represented by the set of completed
jobs without regard to the ordering, except for the last job in
the sequence. Because the set of jobs and the last job in the
two ordered sequences in question are the same, the two are
represented by a single node ()3},2,1{ , where the first two
jobs form an (unordered) set and the last job is shown
separately. The cost when the node is reached through the
sequence 1, 2, 3 is 182 and through the sequence 2, 1, 3 is
188. If a traditional graph search algorithm reaches the node
through the two different paths considered, it would simply
discard the higher cost path 2, 1, 3. However, if we look
below this node, we see that the sequence 1, 2, 3, 4 has a cost
of 1206, which is higher than the cost of the sequence 2, 1, 3,
4 which is 1088. A traditional graph search algorithm thus
runs the risk of missing the optimal solution.

In [18], solutions for QPSD only up to 22-job problems
using a memory constrained graph search algorithm have
been reported. Increasing the memory limit to 512K nodes,
we could solve 30-job problems using PC running Windows
XP. We wanted to study how SGA performs on this hard
problem. For a simpler problem not involving setup times,
Townsend [29] had proposed two sufficient conditions for a
given sequence of jobs to be optimal. The first of these
involves ordering the jobs by non-ascending order of their
pi/ai ratios. Being only one of two sufficient conditions for
optimality, this ordering cannot guarantee optimal solutions
for the simpler problem, but it does provide the basis for very
good greedy solutions for that problem. In the absence of any
other known greedy approaches to QPSD, we chose to adopt
Townsend’s heuristic.

Our SGA application to QPSD orders the jobs as above,
and at each stage, chooses the job with the highest pi/ai ratio.
Since UKP and CA have already established the benefit of
learning from optimal solutions, we wanted to check and see
how a standard discrete probability distribution with the right
shape would perform for SGA. The benefit of doing this is
that the up-front cost of solving many problem instances to
optimality can then be avoided. Accordingly, in our
experiments with QPSD, instead of learning the probability
distribution from the solutions to optimal solutions, we
experimented with both the Geometric and the Binomial
distributions (since they can have the proper shape with
suitably chosen parameters) and found that the Binomial
distribution with a low value for its parameter performed
better. The results are given in Table VII. It shows that the
results for QPSD are good, but not as impressive as for UKP.
It is intuitively clear that SGA can give good results only

when the underlying greedy algorithm is reasonably good.
Results of SGA application to QPSD - based on 100 trials
and averaged over 100 random problem instances for each
value of N.

TABLE VII. RESULTS OF SGA APPLICATION TO QPSD
(BASED ON 100 TRIALS AND AVERAGED OVER 100 RANDOM PROBLEM
INSTANCES FOR EACH VALUE OF N)

N % deviation from optimal

Greedy SGA – Binomial

(p = 0.025)
SGA – Geometric

(p=0.8)
10 7.70 1.67 2.07
12 10.02 2.81 3.48
14 11.13 3.70 4.65
16 11.05 4.01 5.14
18 12.50 4.93 6.20
20 13.91 6.10 7.61
22 14.45 7.11 8.34
24 14.41 7.43 8.93
26 15.64 8.31 9.92
28 15.54 8.53 9.75
30 15.71 9.22 10.56

For QPSD we based the greedy approach on a result
obtained for a far simpler problem, and its performance was
not very good. Nevertheless, we find that SGA is able to
improve upon the solution significantly. We need to
experiment with learned distributions in this domain too.

VII. CONCLUSIONS
We have proposed a new approximate approach called

the Stochastic Greedy Algorithm and presented the results of
its application to the Unbounded Knapsack Problem,
Combinatorial Auctions and a hard Single Machine
Sequencing Problem.

The two major contributions of SGA are
• its combining greedy approaches with stochastic

approaches
• its introduction of the idea of learning from the

characteristics of optimal solutions to incorporate in
a generative approach

In all three domains, SGA provides significant
improvements over the greedy solution. Of the three, the
results for the single machine sequencing problem are
perhaps relatively weak, and one reason for this is that no
good greedy approach is known for the problem as of now.
One important finding is that standard discrete probability
distributions perform quite well and that, if necessary, the
costly step to learn the underlying probability distribution
can be avoided on occasion. Furthermore, our findings seem
to hint that probability distributions are pretty stable and
need not necessarily be re-learned when the problem
characteristics change.

Our results explore the potential for learning patterns
from optimal solutions and applying this learning in the
process of generating solutions. There is obviously much
more scope to extend this “supervised learning” approach for
combinatorial optimization. While analyzing optimal

10

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

solutions to learn characteristics, it is possible to assign
several other descriptors to each decision point. For example,
in the knapsack problem, we could attach the percentage
difference between the best available option and the next
best one as a descriptor. Once the decisions made in the
optimal solution are thus tagged, we effectively have
different probability distributions for different states and
SGA could sample from a more fine-grained and situation-
specific probability distribution. Another approach would be
to study numerous optimal solutions and impute decision
rules and see how solutions based on such rules perform.
Broadly speaking, this learning metaphor can be exploited in
numerous ways and certainly opens up new avenues for
further work.

REFERENCES

[1] A. Cochocki, R. Unbehauen, Neural Networks for Optimization and
Signal Processing, New York: John Wiley, 1993,

[2] Balas, E., 1985. On the facial structure of scheduling polyhedra,
Mathematical Programming, 24, 179-218

[3] E. H. Clarke, "Multipart pricing of public goods," Public Choice (11)
1971, pp 17 - 33.

[4] A. Feldman, G. Provan and A. V. Gemund, Computing minimal
diagnoses by greedy stochastic search, In Proc. AAAI 2008, pp. 911-
918.

[5] Y. Fujishima, K. Leyton-Brown, and Y. Shoham, "Taming the
Computational Complexity of Combinatorial Auctions: Optimal and
Approximate Approaches," in: International Joint Conference on
Artificial Intelligence, Stockholm, 1999, pp. 548 - 553.

[6] E. C. Freuder, R. Dechter, B. Ginsberg, B. Selman. and E. P. K.
Tsang, 1995. Systematic versus stochastic constraint satisfaction. In
Proc. IJCAI 95, volume 2.

[7] P. C. Gilmore and R. E. Gomory, 1966, The theory and computation
of knapsack functions, Operations Research, 14(6), pp 1045-1074

[8] T. Groves, "Incentives in Teams," Econometrica (41) 1973, pp 617 -
631.

[9] P. Hart, N. Nilsson and B. Raphael, 1968. A Formal Basis for the
Heuristic Determination of Minimum Cost Paths, IEEE Trans. Syst.
Science and Cybernetics, SSC4(2):100-107

[10] H. H. Hoos and T. Stutzle, Stochastic Local Search
Foundations and Applications, 2004, Elsevier.

[11] J. Hromkovic, R. Královiç, M. Nunkesser, and P. Widmayer (Eds.),
Stochastic Algorithms: Foundations and Applications, Proceedings of
4th International Symposium, SAGA 2007, Lecture Notes in
Computer Science, Zurich, Switzerland, Sept 13-14, 2007.

[12] D. S. Johnson and L. A. McGeoch, The Traveling Salesman Problem:
A Case Study in Local Optimization, In Local Search in
Combinatorial Optimization, E. H. L. Aarts and J.K. Lenstra (Eds),
John Wiley and Sons Ltd, 215-310, 1997.

[13] K. Kask, and R. Dechter, 1999, Stochastic local search for Bayesian
networks. In Proc. AISTAT’99, 113–122.

[14] J. Kruskal, Greedy algorithm for the minimum spanning tree problem,
Proceedings of the American Mathematical Society, 48-50, 1956.

[15] K. Leyton-Brown, M. Pearson, and Y. Shoham, Y. "Towards a
Universal Test Suite for Combinatorial Auction Algorithms," in:
ACM Conference on Electronic Commerce, 2000a, pp. 66 -76.

[16] S. Martello and P. Toth, Knapsack Problems: Algorithms and
Computer Implementations, John Wiley & Sons, 1990.

[17] M. Mathirajan, and B. Meenakshi, Experimental Analysis of some
Variants of Vogel's Approximation Method, Asia-Pacific Journal of
Operational Research 21(4), 447-462, 2004.

[18] S. A. Mondal and A. K. Sen, 2000. TCBB scheme: Applications to
single machine sequencing problems, Proc AAAI-2000, pp. 792-797.

[19] K. Papadimitriou and K. Steiglitz K. Combinatorial Optimization:
Algorithms and Complexity. Prentice-Hall, Englewood Cliffs, NJ,
1982.

[20] M. Pinedo, Scheduling: Theory, Algorithms and Systems. Prentice
Hall. 1995.

[21] D. Pisinger, Algorithms for Knapsack Problems, Ph. D. Thesis,
Department of Computer Science, University of Copenhagen,
Denmark, 1995.

[22] V. Poirriez, N. Yanev and R. Andonov, “A hybrid algorithm for the
unbounded knapsack problem”, Discrete Optimization, volume 6,
2009, pp. 110-124.

[23] A. H. G. Rinooy Kan, Machine Complexity Problems: Classification
Complexity and Computations. Nijhoff, The Hague, 1976.

[24] F. Rossi, P. v. Beek and T. Walsh, Constraint Programming, In
Handbook of Knowledge Representation, Edited by B. Porter, V.
Lifschitz and F. van Harmelen, 2008 , Elsevier B.V.

[25] M. H. Rothkopf, A. Pekec and R. M Harstad. Computationally
Manageable Combinatorial Auctions. Management Science,
44(8):1131 – 1147, 1998.

[26] T. Sandholm, "Algorithm for Optimal Winner Determination in
Combinatorial Auctions," Artificial Intelligence (135) 2002, pp 1 -
54.

[27] A. K. Sen, and A. Bagchi, Graph Search Methods for Non-order-
preserving Evaluation Functions: Applications to Job Sequencing
Problems, Artificial Intelligence, 86(1), 43-73, 1996.

[28] W. Szwarc, M. E. Posner and J. J. Liu, “The single machine
scheduling problem with quadratic penalty function of completion
times”, Management Science. Volume 34, no 2, 1988, pp. 1480-
1488.

[29] W. Townsend, The Single Machine Scheduling Problem with
Quadratic Penalty Function of Completion Times: A Branch-and-
bound Solution, Management Science, 24(5), 530-534, 1978.

[30] W. Vickrey, "Counterspeculation, Auctions, and Competitive Sealed
Tenders," Journal of Finance (16) 1961, pp 8 - 37.

[31] K. V. Viswanathan and A. K. Sen, Greedy by Chance – Stochastic
Greedy Algorithms, Proceedings of the Sixth International
Conference on Autonomic and Autonomous Systems (ICAS 2010),
March 7-13, 2010, Cancun, Mexico, published by IEEE CPS, pp.
182-187.

11

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

